JP2012241963A - Gas-liquid separator - Google Patents

Gas-liquid separator Download PDF

Info

Publication number
JP2012241963A
JP2012241963A JP2011111524A JP2011111524A JP2012241963A JP 2012241963 A JP2012241963 A JP 2012241963A JP 2011111524 A JP2011111524 A JP 2011111524A JP 2011111524 A JP2011111524 A JP 2011111524A JP 2012241963 A JP2012241963 A JP 2012241963A
Authority
JP
Japan
Prior art keywords
gas
liquid
phase refrigerant
droplet
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011111524A
Other languages
Japanese (ja)
Other versions
JP5776326B2 (en
Inventor
Yusuke Onishi
祐輔 大西
Yukihiro Takano
幸裕 高野
Kentetsu Yasujima
賢哲 安嶋
Toshiaki Tsuchiya
敏章 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011111524A priority Critical patent/JP5776326B2/en
Publication of JP2012241963A publication Critical patent/JP2012241963A/en
Application granted granted Critical
Publication of JP5776326B2 publication Critical patent/JP5776326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cyclones (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas-liquid separator which improves separation efficiency of separating a gas-liquid two phase refrigerant into a gas phase refrigerant and a liquid phase refrigerant.SOLUTION: The gas-liquid separator is configured with a gas-liquid two phase refrigerant inflow pipe 1 through which the gas-liquid two phase refrigerant flows in, a gas phase refrigerant outflow pipe 2 through which a separated gas phase refrigerant flows out, a liquid phase refrigerant outflow pipe 3 through which a separated liquid phase refrigerant flows out, a body container 4 into which these pipes are inserted, an eliminator 5 which captures droplets remaining in the separated gas phase refrigerant, and a droplet falling guide 6 which makes the captured droplets fall in a direction of a sidewall of a body portion 4b.

Description

本発明は、冷凍サイクル装置などで使用される気液二相冷媒(気液混相体)を気相冷媒(気体)と液相冷媒(液体)に分離する気液分離器に関する。   The present invention relates to a gas-liquid separator that separates a gas-liquid two-phase refrigerant (gas-liquid mixed phase) used in a refrigeration cycle apparatus into a gas-phase refrigerant (gas) and a liquid-phase refrigerant (liquid).

冷凍サイクル装置などで使用されている気液分離器は、気液二相冷媒の中の液滴を気相冷媒と液相冷媒に分離する。分離する方式としては、主に、遠心力分離、重力分離、表面張力分離の3つの方式がある。   A gas-liquid separator used in a refrigeration cycle apparatus or the like separates droplets in a gas-liquid two-phase refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant. As the separation method, there are mainly three methods of centrifugal force separation, gravity separation, and surface tension separation.

従来の遠心力分離方式による気液分離器を図6を用いて説明する。図6(a)は気液分離器の概略構成の側面図を示し、図6(b)はその平面図を示している。1は気液二相冷媒を流入させる気液二相冷媒流入パイプ、2は分離された気相冷媒を流出させる気相冷媒流出パイプ、3は分離された液相冷媒を流出させる液相冷媒流出パイプ、4は本体容器である。   A conventional gas-liquid separator by centrifugal separation will be described with reference to FIG. FIG. 6A shows a side view of a schematic configuration of the gas-liquid separator, and FIG. 6B shows a plan view thereof. 1 is a gas-liquid two-phase refrigerant inflow pipe for allowing the gas-liquid two-phase refrigerant to flow in, 2 is a gas-phase refrigerant outflow pipe for allowing the separated gas-phase refrigerant to flow out, 3 is a liquid-phase refrigerant outflow for allowing the separated liquid-phase refrigerant to flow out Pipes and 4 are main body containers.

詳説すると、本体容器4は、頂部4a、底部4c、および、頂部4aと底部4cの間を連結する中空円筒型の胴部4bとから構成されている。気液二相冷媒流入パイプ1は、胴部4bの上方側面に接線方向に内壁面を貫通して取付けられ、胴部4bの接線方向から本体容器4内に流入された気液二相冷媒は、その内部で旋回流となる。気相冷媒流出パイプ2は、頂部4aから胴部4bの軸心方向に内壁面を貫通して装入され、気液二相冷媒から分離された気相冷媒を流出させる。液相冷媒流出パイプ3は、底部4cの下方側面に内壁面を貫通して取付けられ、気液二相冷媒から分離された液相冷媒を流出させる。   More specifically, the main body container 4 includes a top portion 4a, a bottom portion 4c, and a hollow cylindrical body portion 4b that connects the top portion 4a and the bottom portion 4c. The gas-liquid two-phase refrigerant inflow pipe 1 is attached to the upper side surface of the body portion 4b through the inner wall surface in the tangential direction, and the gas-liquid two-phase refrigerant flowing into the main body container 4 from the tangential direction of the body portion 4b is It becomes a swirl flow inside. The gas-phase refrigerant outflow pipe 2 is inserted through the inner wall surface in the axial direction of the body portion 4b from the top 4a, and causes the gas-phase refrigerant separated from the gas-liquid two-phase refrigerant to flow out. The liquid-phase refrigerant outflow pipe 3 is attached to the lower side surface of the bottom portion 4c through the inner wall surface, and causes the liquid-phase refrigerant separated from the gas-liquid two-phase refrigerant to flow out.

気液二相冷媒を気相冷媒と液相冷媒に分離する気液分離器の動作を説明すると、図6の矢印で示すように、気液二相冷媒は、気液二相冷媒流入パイプ1の冷媒吐出口1aから、本体容器4内の周方向に流入するように案内されて旋回流となる。本体容器4内を周方向に旋回しながら流れる気液二相冷媒は、旋回流の遠心力により、気体と液体の密度の差から、内側に密度の小さい気相冷媒、外側に密度の大きい液相冷媒に分離される。気相冷媒と液相冷媒とに分離されると、重力により、密度の小さい気相冷媒は内側を上方に、密度の大きい液相冷媒は外側を下方に分かれる。   The operation of the gas-liquid separator that separates the gas-liquid two-phase refrigerant into the gas-phase refrigerant and the liquid-phase refrigerant will be described. As shown by the arrows in FIG. 6, the gas-liquid two-phase refrigerant is the gas-liquid two-phase refrigerant inflow pipe 1. From the refrigerant discharge port 1a, it is guided to flow in the circumferential direction in the main body container 4 to form a swirling flow. The gas-liquid two-phase refrigerant that flows while swirling in the main body container 4 in the circumferential direction is a gas-phase refrigerant having a low density on the inside and a liquid having a high density on the outside due to the difference in density between the gas and the liquid due to the centrifugal force of the swirling flow. Separated into phase refrigerant. When the refrigerant is separated into the gas-phase refrigerant and the liquid-phase refrigerant, the gas-phase refrigerant having a low density is divided into the upper side and the liquid-phase refrigerant having a high density is divided into the lower side by gravity.

このようにして、気相冷媒と分離された液相冷媒は底部4cの液溜領域に降下して溜まる。そして、底部4cに溜まった液相冷媒は液相冷媒入口3aから液相冷媒流出パイプ3に取り込まれ、液相冷媒流出パイプ3内を矢印方向に流出する。また、液相冷媒が分離した気相冷媒は胴部4b内を上昇する。そして、頂部4aに上昇した気相冷媒は気相冷媒入口2aから気相冷媒流出パイプ2に取り込まれ、気相冷媒流出パイプ2内を矢印方向に流出する(たとえば、特許文献1参照)。   In this way, the liquid-phase refrigerant separated from the gas-phase refrigerant descends and accumulates in the liquid reservoir region of the bottom 4c. The liquid refrigerant accumulated in the bottom 4c is taken into the liquid refrigerant outlet pipe 3 from the liquid refrigerant inlet 3a and flows out in the direction of the arrow through the liquid refrigerant outlet pipe 3. Further, the gas phase refrigerant separated from the liquid phase refrigerant rises in the body portion 4b. And the gaseous-phase refrigerant | coolant which rose to the top part 4a is taken in into the gaseous-phase refrigerant | coolant outflow pipe 2 from the gaseous-phase refrigerant | coolant inlet 2a, and flows out in the gaseous-phase refrigerant | coolant outflow pipe 2 in the arrow direction (for example, refer patent document 1).

特開2004−176968号公報JP 2004-176968 A

ところで、この本体容器4の胴部4b内を上昇する気相冷媒には旋回流の遠心力分離作用で分離しなかった液滴が残留することがある。この気相冷媒中に残っている液滴を捕捉するため、メッシュ部材などで構成される液滴捕捉装置9を本体容器4内の上部に設けている。そして、この胴部4b内を上昇する気相冷媒を液滴捕捉装置9内を通過させることで、気相冷媒中に残っている液滴を液滴捕捉装置9で捕捉し、底部4cの液溜領域に降下させるようにしている。   By the way, in the gas phase refrigerant rising in the body portion 4b of the main body container 4, droplets that have not been separated by the centrifugal flow separation action of the swirling flow may remain. In order to capture the droplets remaining in the gas-phase refrigerant, a droplet capturing device 9 composed of a mesh member or the like is provided in the upper part of the main body container 4. Then, by allowing the gas phase refrigerant rising in the body portion 4b to pass through the droplet trapping device 9, droplets remaining in the gas phase refrigerant are trapped by the droplet trapping device 9, and the liquid in the bottom 4c It is made to descend to the reservoir area.

しかしながら、気液二相冷媒流入パイプ1の冷媒吐出口1aから、本体容器4内の周方向に流入するように案内されて旋回流となった気液二相冷媒は、外側は旋回しながら下方に流れ、内側は旋回しながら上方に流れる。このため、この液滴捕捉装置9内を通過する気相冷媒の上昇流は、気相冷媒流出パイプ2が装入されている軸心に近い部分ほど速くなる。このような原因で、液滴捕捉装置9で捕捉した液滴が、軸心に近く速い上昇流の気相冷媒に再度取り込まれ、液滴が含まれる気相冷媒が気相冷媒流出パイプ2から流出するという不都合が生じることがある。   However, the gas-liquid two-phase refrigerant that has been guided to flow in the circumferential direction in the main body container 4 from the refrigerant discharge port 1a of the gas-liquid two-phase refrigerant inflow pipe 1 and turned into a swirling flow And the inside flows upward while turning. For this reason, the upward flow of the gas-phase refrigerant passing through the droplet trapping device 9 becomes faster in the portion closer to the axial center where the gas-phase refrigerant outflow pipe 2 is inserted. For this reason, the liquid droplet captured by the liquid droplet capturing device 9 is taken in again by the high-speed gas-phase refrigerant close to the axial center, and the gas-phase refrigerant containing the liquid droplets is discharged from the gas-phase refrigerant outflow pipe 2. The inconvenience of spilling may occur.

本発明は、以上のような課題を解決するためになされたものであり、液滴捕捉装置で捕捉した液滴の再飛散を防止し、気液二相冷媒を気相冷媒と液相冷媒に分離する分離効率を向上させた気液分離器を提供することを目的とする。   The present invention has been made to solve the above-described problems, and prevents re-scattering of the droplets captured by the droplet capturing device, and converts the gas-liquid two-phase refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant. An object of the present invention is to provide a gas-liquid separator with improved separation efficiency.

上記の目的を達成するために、本発明の請求項1に係る気液分離器は、気液混相体を気体と液体に分離する気液分離器において、
頂部、底部およびその間を連結する中空円筒型の胴部からなる本体容器と、
前記胴部の上方側面に取付けられて、該胴部の接線方向から前記本体容器内に前記気液混相体を流入させて旋回流とする気液混相体流入パイプと、
前記旋回流の遠心力分離作用で、前記気液混相体から分離されて前記胴部内を上昇する前記気体に残留する液滴を捕捉する液滴捕捉装置と、
前記液滴捕捉装置の下部に設けられ、該液滴捕捉装置で捕捉した前記液滴を前記胴部側壁方向に流下させる液滴流下ガイドと、
前記頂部から前記胴部の軸心方向に装入されて、前記分離された気体を流出させる気体流出パイプと、
前記底部の下方側面に取付けられて、前記分離された液体を流出させる液体流出パイプと、を具備することを特徴とする。
In order to achieve the above object, a gas-liquid separator according to claim 1 of the present invention is a gas-liquid separator that separates a gas-liquid mixed phase into gas and liquid.
A main body container comprising a top, a bottom, and a hollow cylindrical body connecting the bottom, and
A gas-liquid mixed-phase inflow pipe that is attached to the upper side surface of the body part and flows into the main body container from the tangential direction of the body part to make a swirl flow;
A droplet trapping device that traps droplets remaining in the gas that is separated from the gas-liquid mixed phase and rises in the body portion by centrifugal force separation action of the swirling flow;
A droplet flow guide provided at a lower portion of the droplet trapping device, and causing the droplet trapped by the droplet trapping device to flow down toward the trunk side wall;
A gas outflow pipe that is inserted from the top in the axial direction of the barrel and that causes the separated gas to flow out;
And a liquid outflow pipe that is attached to a lower side surface of the bottom portion and allows the separated liquid to flow out.

また、本発明の請求項2に係る気液分離器は、上述した請求項1において、前記液滴捕捉装置と前記液滴流下ガイドとを縦方向の接続体を用いて接続することを特徴とする。   The gas-liquid separator according to claim 2 of the present invention is characterized in that, in the above-mentioned claim 1, the droplet trapping device and the droplet flow guide are connected using a connecting member in a vertical direction. To do.

また、本発明の請求項3に係る気液分離器は、上述した請求項1または請求項2において、前記液滴捕捉装置は、複数の開口、あるいは、複数のスリット状の開口を有するエリミネータであることを特徴とする。   A gas-liquid separator according to claim 3 of the present invention is the eliminator having a plurality of openings or a plurality of slit-like openings in the above-described claim 1 or claim 2. It is characterized by being.

また、本発明の請求項4に係る気液分離器は、上述した請求項1または請求項2において、前記液滴捕捉装置は、ステンレス鋼等の耐浸食性細線の織物や編み物で作ったメッシュ部材であることを特徴とする。   According to a fourth aspect of the present invention, there is provided the gas-liquid separator according to the first or second aspect, wherein the droplet trapping device is a mesh made of a woven or knitted erosion-resistant thin wire such as stainless steel. It is a member.

本発明によれば、気液混相体を気体と液体に分離する気液分離器において、頂部、底部およびその間を連結する中空円筒型の胴部からなる本体容器と、前記胴部の上方側面に取付けられて、該胴部の接線方向から前記本体容器内に前記気液混相体を流入させて旋回流とする気液混相体流入パイプと、前記旋回流の遠心力分離作用で、前記気液混相体から分離されて前記胴部内を上昇する前記気体に残留する液滴を捕捉する液滴捕捉装置と、前記液滴捕捉装置の下部に設けられ、該液滴捕捉装置で捕捉した前記液滴を前記胴部側壁方向に流下させる液滴流下ガイドと、前記頂部から前記胴部の軸心方向に装入されて、前記分離された気体を流出させる気体流出パイプと、前記底部の下方側面に取付けられて、前記分離された液体を流出させる液体流出パイプと、を具備することにより、気液混相体の旋回流の遠心力分離作用で分離せず、気体中に残留する液滴は液滴捕捉装置を通過するとき、液滴捕捉装置に捕捉される。この液滴捕捉装置に捕捉された液滴は、液滴捕捉装置の下部に設けられた液滴流下ガイドの傾斜している面で重力により導かれ、上昇流の遅い胴部側壁方向に速やかに流下し、胴部側壁面を伝わって底部の液溜領域に流れ落ちる。これにより、液滴捕捉装置で捕捉した液滴が、軸心に近く速い上昇流の気体に再度取り込まれ、液滴が含まれる気体が気体流出パイプから流出するという不都合がなくなり、液滴捕捉装置で捕捉された液滴は本体容器の底部の液溜領域に流れ落ちる。このようにして、液滴捕捉装置で捕捉された液滴は、液滴捕捉装置の下部に設けられた液滴流下ガイドの傾斜している面で重力により導かれ、上昇流の遅い胴部側壁方向に速やかに流下し、胴部側壁面を伝わって底部の液溜領域に流れ落ちることにより、液滴捕捉装置で捕捉した液滴の再飛散を防止し、気液混相体を気体と液体に分離する分離効率を向上させた気液分離器を提供することが可能となる。   According to the present invention, in a gas-liquid separator that separates a gas-liquid mixed phase into a gas and a liquid, a main body container comprising a top, a bottom, and a hollow cylindrical body connecting between the top and bottom, and an upper side surface of the body The gas-liquid mixed-phase inflow pipe that is attached and flows into the main body container from the tangential direction of the body portion to form a swirling flow, and a centrifugal force separating action of the swirling flow. A droplet capturing device that captures droplets remaining in the gas that is separated from the mixed phase body and rises in the body, and the droplets that are provided below the droplet capturing device and captured by the droplet capturing device On the lower side surface of the bottom part, a liquid drop guide for causing the gas to flow in the direction of the body side wall, a gas outflow pipe that is inserted in the axial direction of the body part from the top part, and flows out the separated gas. Liquid that is attached and causes the separated liquid to flow out And the outflow pipe, the droplet remaining in the gas is not captured by the centrifugal force separation action of the swirling flow of the gas-liquid mixed phase, and the droplet remaining in the gas is captured by the droplet capturing device when passing through the droplet capturing device. Is done. The droplets captured by the droplet trapping device are guided by gravity on the inclined surface of the droplet flow guide provided at the lower part of the droplet trapping device, and promptly in the direction of the body wall where the upward flow is slow. It flows down and flows down the barrel side wall surface to the liquid storage area at the bottom. As a result, the liquid droplet captured by the liquid droplet capturing device is recaptured into the fast rising gas close to the axis, and there is no inconvenience that the gas containing the liquid flows out from the gas outflow pipe. The liquid droplets captured in (1) flow down to the liquid storage area at the bottom of the main body container. In this way, the droplets captured by the droplet trapping device are guided by gravity on the inclined surface of the droplet flow guide provided at the bottom of the droplet trapping device, and the barrel side wall having a slow upward flow It flows down quickly in the direction, flows down the body side wall surface, and flows down to the liquid storage area at the bottom, preventing re-scattering of the droplets captured by the droplet trapping device, and separating the gas-liquid mixed phase into gas and liquid Therefore, it is possible to provide a gas-liquid separator with improved separation efficiency.

本発明に係る気液分離器の実施の形態1の概略構成を示し、(a)は側面図、(b)は平面図である。BRIEF DESCRIPTION OF THE DRAWINGS The schematic structure of Embodiment 1 of the gas-liquid separator which concerns on this invention is shown, (a) is a side view, (b) is a top view. 図1に示した気液分離器の液滴流下ガイドを示し、(a)は平面図、(b)はそのA−A方向の断面側面図である。The droplet flow guide of the gas-liquid separator shown in FIG. 1 is shown, (a) is a top view, (b) is the sectional side view of the AA direction. 図1に示した気液分離器の液滴流下ガイドを示す鳥瞰図である。It is a bird's-eye view which shows the droplet flow guide of the gas-liquid separator shown in FIG. 本発明に係る気液分離器の実施の形態2の概略構成を示し、(a)は側面図、(b)は平面図である。The schematic structure of Embodiment 2 of the gas-liquid separator which concerns on this invention is shown, (a) is a side view, (b) is a top view. 本発明に係る気液分離器の実施の形態3の概略構成を示し、(a)は側面図、(b)は平面図である。The schematic structure of Embodiment 3 of the gas-liquid separator which concerns on this invention is shown, (a) is a side view, (b) is a top view. 従来の気液分離器の概略構成を示し、(a)は側面図、(b)は平面図である。The schematic structure of the conventional gas-liquid separator is shown, (a) is a side view, (b) is a top view.

以下、図面を参照しながら、本発明に係る気液分離器の好適な実施の形態について詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、従来と同一構成に関しては同一符号を用いる。   Hereinafter, preferred embodiments of a gas-liquid separator according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, the same reference numerals are used for the same configuration as the conventional one.

この実施の形態の気液分離器は、冷凍サイクル装置などで使用されている気液二相冷媒(気液混相体)の中の液滴を分離させて気相冷媒(気体)と液相冷媒(液体)に分離する装置で、遠心力分離方式を採用しているものである。
(実施の形態1)
図1は、本発明に係る気液分離器の実施の形態1の概略構成を示し、(a)は側面図、(b)は平面図である。
The gas-liquid separator according to this embodiment separates droplets in a gas-liquid two-phase refrigerant (gas-liquid mixed phase) used in a refrigeration cycle apparatus and the like to separate a gas-phase refrigerant (gas) and a liquid-phase refrigerant. It is a device that separates into (liquid) and adopts a centrifugal separation method.
(Embodiment 1)
FIG. 1 shows a schematic configuration of Embodiment 1 of a gas-liquid separator according to the present invention, in which (a) is a side view and (b) is a plan view.

図1に示すように、気液分離器は、気液二相冷媒を流入させる気液二相冷媒流入パイプ(気液混相体流入パイプ)1、分離された気相冷媒を流出させる気相冷媒流出パイプ(気体流出パイプ)2、分離された液相冷媒を流出させる液相冷媒流出パイプ(液体流出パイプ)3、これらのパイプが挿入される本体容器4、分離された気相冷媒に残留する液滴を捕捉するエリミネータ(液滴捕捉装置)5、捕捉された液滴を胴部4b側壁方向に流下させる液滴流下ガイド6などから構成されている。   As shown in FIG. 1, the gas-liquid separator includes a gas-liquid two-phase refrigerant inflow pipe (gas-liquid mixed phase inflow pipe) 1 for allowing the gas-liquid two-phase refrigerant to flow in, and a gas-phase refrigerant for allowing the separated gas-phase refrigerant to flow out. An outflow pipe (gas outflow pipe) 2, a liquid phase refrigerant outflow pipe (liquid outflow pipe) 3 for flowing out the separated liquid phase refrigerant, a main body container 4 into which these pipes are inserted, and the separated gas phase refrigerant remain. An eliminator (droplet trapping device) 5 that traps the droplets, a droplet flow guide 6 that causes the trapped droplets to flow down toward the side wall of the body 4b, and the like.

本体容器4は、頂部4a、底部4c、および、頂部4aと底部4cの間を連結する中空円筒型の胴部4bとから構成されている。気液二相冷媒流入パイプ1は、胴部4bの上方側面に接線方向に内壁面を貫通して取付けられ、胴部4bの接線方向から本体容器4内に流入された気液二相冷媒は、その内部で旋回流となる。複数の開口、あるいは、複数のスリット状の開口を有するエリミネータ5は、旋回流の遠心力分離作用で、気液二相冷媒から分離されて胴部4b内を上昇する気相冷媒に残留する液滴を捕捉する。液滴流下ガイド6は、エリミネータ5の下部に設けられ、エリミネータ5で捕捉した液滴を胴部4b側壁方向に流下させる。   The main body container 4 includes a top portion 4a, a bottom portion 4c, and a hollow cylindrical body portion 4b that connects the top portion 4a and the bottom portion 4c. The gas-liquid two-phase refrigerant inflow pipe 1 is attached to the upper side surface of the body portion 4b through the inner wall surface in the tangential direction, and the gas-liquid two-phase refrigerant flowing into the main body container 4 from the tangential direction of the body portion 4b is It becomes a swirl flow inside. The eliminator 5 having a plurality of openings or a plurality of slit-like openings is a liquid remaining in the gas-phase refrigerant that is separated from the gas-liquid two-phase refrigerant and rises in the body 4b by centrifugal force separation action of the swirling flow. Capture drops. The liquid drop guide 6 is provided below the eliminator 5 and causes the liquid droplets captured by the eliminator 5 to flow down in the direction of the side wall of the body 4b.

気相冷媒流出パイプ2は、頂部4aから胴部4bの軸心方向に内壁面を貫通して装入され、気液二相冷媒から分離され、液滴流下ガイド6、エリミネータ5を通過した気相冷媒を流出させる。液相冷媒流出パイプ3は、底部4cの下方側面に内壁面を貫通して取付けられ、気液二相冷媒から分離されて底部4cの液溜領域に溜まった液相冷媒を流出させる。   The gas-phase refrigerant outflow pipe 2 is inserted through the inner wall surface in the axial direction from the top 4 a to the body 4 b, separated from the gas-liquid two-phase refrigerant, and passed through the droplet flow guide 6 and the eliminator 5. Let the phase refrigerant flow out. The liquid-phase refrigerant outflow pipe 3 is attached to the lower side surface of the bottom portion 4c through the inner wall surface, and separates the liquid-phase refrigerant separated from the gas-liquid two-phase refrigerant and accumulated in the liquid reservoir region of the bottom portion 4c.

図2は、気液分離器の液滴流下ガイドを示し、(a)は平面図、(b)はそのA−A方向の断面側面図である。また、図3は、液滴流下ガイドを示す鳥瞰図である。   2A and 2B show a droplet flow guide of the gas-liquid separator, where FIG. 2A is a plan view and FIG. 2B is a cross-sectional side view in the AA direction. FIG. 3 is a bird's-eye view showing the droplet flow guide.

図2および図3に示すように、液滴流下ガイド6は、気相冷媒流出パイプ2の周囲に、胴部4b側壁方向に放射状に傾斜(例えば、30度)させて複数配設している。そして、エリミネータ5で捕捉した液滴をその傾斜している面で導いて胴部4b側壁方向に流下させる。   As shown in FIGS. 2 and 3, a plurality of droplet flow guides 6 are disposed around the gas-phase refrigerant outflow pipe 2 so as to be radially inclined (for example, 30 degrees) in the direction toward the side wall of the body portion 4b. . Then, the liquid droplet captured by the eliminator 5 is guided by the inclined surface to flow down in the direction of the side wall of the trunk 4b.

上述した実施の形態1である気液分離器で、気液二相冷媒を気相冷媒と液相冷媒に分離させる動作を説明すると、図1で示すように、気液二相冷媒は、気液二相冷媒流入パイプ1の冷媒吐出口1aから、本体容器4内を周方向(矢印参照)に流入し、流入した気液二相冷媒は本体容器4内壁を沿うように案内されて流れ、旋回流となる。このようにして、本体容器4内壁を周方向に旋回しながら流れる気液二相冷媒は、旋回流の遠心力により、気体と液体の密度の差から、内側に密度が小さい気相冷媒、外側に密度が大きい液相冷媒に分離される。気相冷媒と液相冷媒とに分離されると、重力により、密度の小さい気相冷媒は内側を上方に、密度の大きい液相冷媒は外側を下方に分かれる。   The operation of separating the gas-liquid two-phase refrigerant into the gas-phase refrigerant and the liquid-phase refrigerant in the gas-liquid separator according to the first embodiment will be described. As shown in FIG. From the refrigerant discharge port 1a of the liquid two-phase refrigerant inflow pipe 1, it flows into the main body container 4 in the circumferential direction (see the arrow), and the gas-liquid two-phase refrigerant that flows in is guided and flows along the inner wall of the main body container 4, It becomes a swirl flow. Thus, the gas-liquid two-phase refrigerant that flows while swirling the inner wall of the main body container 4 in the circumferential direction is a gas-phase refrigerant having a small density on the inside due to the centrifugal force of the swirling flow, Is separated into a liquid phase refrigerant having a high density. When the refrigerant is separated into the gas-phase refrigerant and the liquid-phase refrigerant, the gas-phase refrigerant having a low density is divided into the upper side and the liquid-phase refrigerant having a high density is divided into the lower side by gravity.

気相冷媒と分離された液相冷媒は底部4cの液溜領域に降下して溜まる。この底部4cに溜まった液相冷媒は液相冷媒入口3aから液相冷媒流出パイプ3に取り込まれ、液相冷媒流出パイプ3内を矢印方向に流出する。   The liquid-phase refrigerant separated from the gas-phase refrigerant falls and accumulates in the liquid reservoir region of the bottom 4c. The liquid refrigerant accumulated in the bottom 4c is taken into the liquid refrigerant outlet pipe 3 from the liquid refrigerant inlet 3a and flows out in the direction of the arrow through the liquid refrigerant outlet pipe 3.

そして、液相冷媒が分離した気相冷媒は本体容器4の胴部4b内を上昇する。この胴部4b内を上昇する気相冷媒は、液滴流下ガイド6、エリミネータ5を通過し、頂部4aに上昇すると気相冷媒入口2aから気相冷媒流出パイプ2に取り込まれ、気相冷媒流出パイプ2内を矢印方向に流出する。   Then, the gas-phase refrigerant separated from the liquid-phase refrigerant rises in the body portion 4 b of the main body container 4. The gas-phase refrigerant rising in the body 4b passes through the droplet flow guide 6 and the eliminator 5, and when it rises to the top 4a, it is taken into the gas-phase refrigerant outlet pipe 2 from the gas-phase refrigerant inlet 2a and flows out of the gas-phase refrigerant. The pipe 2 flows out in the direction of the arrow.

また、気液二相冷媒の旋回流の遠心力分離作用で分離せず、気相冷媒中に残留する液滴はエリミネータ5を通過するとき、エリミネータ5に捕捉される。このエリミネータ5に捕捉された液滴は、エリミネータ5の下部に設けられた液滴流下ガイド6の傾斜している面で重力により導かれ、上昇流の遅い胴部4b側壁方向に速やかに流下し、胴部4b側壁面を伝わって底部4cの液溜領域に流れ落ちる。これにより、エリミネータ5で捕捉した液滴が、軸心に近く速い上昇流の気相冷媒に再度取り込まれ、液滴が含まれる気相冷媒が気相冷媒流出パイプ2から流出するという不都合がなくなり、エリミネータ5で捕捉された液滴は本体容器4の底部4cの液溜領域に流れ落ちる。   In addition, droplets remaining in the gas-phase refrigerant without being separated by the centrifugal force separation action of the swirling flow of the gas-liquid two-phase refrigerant are captured by the eliminator 5 when passing through the eliminator 5. The droplets captured by the eliminator 5 are guided by gravity on the inclined surface of the droplet flow guide 6 provided at the lower part of the eliminator 5, and quickly flow down toward the side wall of the body 4b where the upward flow is slow. Then, it flows down the side wall surface of the body portion 4b and flows down to the liquid storage area of the bottom portion 4c. As a result, the liquid droplet captured by the eliminator 5 is re-taken into the fast-flowing gas-phase refrigerant close to the axial center, and the inconvenience that the gas-phase refrigerant containing the droplet flows out from the gas-phase refrigerant outflow pipe 2 is eliminated. The liquid droplets captured by the eliminator 5 flow down to the liquid storage area of the bottom 4c of the main body container 4.

このようにして、エリミネータ5で捕捉された液滴は、エリミネータ5の下部に設けられた液滴流下ガイド6の傾斜している面で重力により導かれ、上昇流の遅い胴部4b側壁方向に速やかに流下し、胴部4b側壁面を伝わって底部4cの液溜領域に流れ落ちることにより、エリミネータ5で捕捉した液滴の再飛散を防止し、気液二相冷媒を気相冷媒と液相冷媒に分離する分離効率を向上させた気液分離器を提供することが可能となる。
(実施の形態2)
図4は、本発明に係る気液分離器の実施の形態2の概略構成を示し、(a)は側面図、(b)は平面図である。なお、実施の形態1と同一構成に関しては同一符号を用いる。
In this way, the droplets captured by the eliminator 5 are guided by gravity on the inclined surface of the droplet flow guide 6 provided at the lower portion of the eliminator 5, and are directed toward the side wall of the body 4b where the upward flow is slow. The liquid quickly flows down and flows down to the liquid storage area of the bottom 4c through the side wall surface of the body 4b, thereby preventing re-scattering of the droplets captured by the eliminator 5, and the gas-liquid two-phase refrigerant is separated from the gas-phase refrigerant and the liquid phase. It is possible to provide a gas-liquid separator with improved separation efficiency for separation into refrigerant.
(Embodiment 2)
FIG. 4 shows a schematic configuration of a gas-liquid separator according to a second embodiment of the present invention, where (a) is a side view and (b) is a plan view. The same reference numerals are used for the same configurations as those in the first embodiment.

実施の形態1の気液分離器では、気液二相冷媒流入パイプ1の冷媒吐出口1aから、本体容器4内を周方向に流入するように案内された気液二相冷媒の旋回流の遠心力分離作用で分離せず、気相冷媒中に残留する液滴はエリミネータ5を通過するとき、エリミネータ5に捕捉される。このエリミネータ5に捕捉された液滴は、エリミネータ5の下部に設けられた液滴流下ガイド6の傾斜している面で重力により導かれ、上昇流の遅い胴部4b側壁方向に速やかに流下し、胴部4b側壁面を伝わって底部4cの液溜領域に流れ落ちる。   In the gas-liquid separator of the first embodiment, the swirling flow of the gas-liquid two-phase refrigerant guided so as to flow into the main body container 4 in the circumferential direction from the refrigerant discharge port 1a of the gas-liquid two-phase refrigerant inflow pipe 1. The liquid droplets that are not separated by the centrifugal separation action and remain in the gas-phase refrigerant are captured by the eliminator 5 when passing through the eliminator 5. The droplets captured by the eliminator 5 are guided by gravity on the inclined surface of the droplet flow guide 6 provided at the lower part of the eliminator 5 and quickly flow down toward the side of the body 4b where the upward flow is slow. Then, it flows down the side wall surface of the body portion 4b and flows down to the liquid storage area of the bottom portion 4c.

これにより、エリミネータ5で捕捉した液滴が、軸心に近く速い上昇流の気相冷媒に再度取り込まれ、液滴が含まれる気相冷媒が気相冷媒流出パイプ2から流出するという不都合がなくなり、エリミネータ5で捕捉された液滴は本体容器4の底部4cの液溜領域に流れ落ちるようにしているが、実施の形態2の気液分離器では、エリミネータ5と液滴流下ガイド6とを縦方向の接続体7を用いて接続するようにしている。   As a result, the liquid droplet captured by the eliminator 5 is re-taken into the fast-flowing gas-phase refrigerant close to the axial center, and the inconvenience that the gas-phase refrigerant containing the droplet flows out from the gas-phase refrigerant outflow pipe 2 is eliminated. The droplets captured by the eliminator 5 flow down to the liquid storage area of the bottom 4c of the main body container 4, but in the gas-liquid separator of the second embodiment, the eliminator 5 and the droplet flow guide 6 are vertically connected. The connection body 7 is used for connection.

このように、実施の形態2の構成によっても、エリミネータ5で捕捉された液滴が接続体7を介して液滴流下ガイド6の傾斜している面で重力により導かれ、上昇流の遅い胴部4b側壁方向に速やかに流下し、胴部4b側壁面を伝わって底部4cの液溜領域に流れ落ちることにより、エリミネータ5で捕捉した液滴が、軸心に近く速い上昇流の気相冷媒に再度取り込まれ、液滴が含まれる気相冷媒が気相冷媒流出パイプ2から流出するという不都合がなくなり、エリミネータ5で捕捉された液滴は本体容器4の底部4cの液溜領域に流れ落ちる。   As described above, also in the configuration of the second embodiment, the droplets captured by the eliminator 5 are guided by gravity on the inclined surface of the droplet flow guide 6 via the connecting body 7, and the cylinder having a slow upward flow is used. The liquid droplets quickly flow down in the direction of the side wall of the portion 4b and flow down to the liquid storage area of the bottom portion 4c through the side wall surface of the body portion 4b, so that the droplets captured by the eliminator 5 become a fast rising gas-phase refrigerant close to the axis. The inconvenience that the gas-phase refrigerant that has been taken in again and the droplets are contained flows out of the gas-phase refrigerant outflow pipe 2 is eliminated, and the droplets captured by the eliminator 5 flow down to the liquid reservoir region of the bottom 4c of the main body container 4.

このようにして、エリミネータ5で捕捉された液滴は、接続体7を介して液滴流下ガイド6の傾斜している面で重力により導かれ、上昇流の遅い胴部4b側壁方向に速やかに流下し、胴部4b側壁面を伝わって底部4cの液溜領域に流れ落ちることにより、エリミネータ5で捕捉した液滴の再飛散を防止し、気液二相冷媒を気相冷媒と液相冷媒に分離する分離効率を向上させた気液分離器を提供することが可能となる。
(実施の形態3)
図5は、本発明に係る気液分離器の実施の形態3の概略構成を示し、(a)は側面図、(b)は平面図である。なお、実施の形態1と同一構成に関しては同一符号を用いる。
In this way, the droplets captured by the eliminator 5 are guided by gravity on the inclined surface of the droplet flow guide 6 via the connecting body 7, and promptly in the direction of the side wall of the body 4b where the upward flow is slow. By flowing down and flowing down the body 4b side wall surface and flowing down to the liquid storage region of the bottom 4c, the droplets captured by the eliminator 5 are prevented from re-scattering, and the gas-liquid two-phase refrigerant is converted into a gas-phase refrigerant and a liquid-phase refrigerant. It is possible to provide a gas-liquid separator with improved separation efficiency.
(Embodiment 3)
FIG. 5 shows a schematic configuration of Embodiment 3 of the gas-liquid separator according to the present invention, where (a) is a side view and (b) is a plan view. The same reference numerals are used for the same configurations as those in the first embodiment.

実施の形態1の気液分離器では、気液二相冷媒流入パイプ1の冷媒吐出口1aから、本体容器4内を周方向に流入するように案内された気液二相冷媒の旋回流の遠心力分離作用で分離せず、気相冷媒中に残留する液滴はエリミネータ5を通過するとき、エリミネータ5に捕捉される。このエリミネータ5に捕捉された液滴は、エリミネータ5の下部に設けられた液滴流下ガイド6の傾斜している面で重力により導かれ、上昇流の遅い胴部4b側壁方向に速やかに流下し、胴部4b側壁面を伝わって底部4cの液溜領域に流れ落ちる。   In the gas-liquid separator of the first embodiment, the swirling flow of the gas-liquid two-phase refrigerant guided so as to flow into the main body container 4 in the circumferential direction from the refrigerant discharge port 1a of the gas-liquid two-phase refrigerant inflow pipe 1. The liquid droplets that are not separated by the centrifugal separation action and remain in the gas-phase refrigerant are captured by the eliminator 5 when passing through the eliminator 5. The droplets captured by the eliminator 5 are guided by gravity on the inclined surface of the droplet flow guide 6 provided at the lower part of the eliminator 5 and quickly flow down toward the side of the body 4b where the upward flow is slow. Then, it flows down the side wall surface of the body portion 4b and flows down to the liquid storage area of the bottom portion 4c.

これにより、エリミネータ5で捕捉した液滴が、軸心に近く速い上昇流の気相冷媒に再度取り込まれ、液滴が含まれる気相冷媒が気相冷媒流出パイプ2から流出するという不都合がなくなり、エリミネータ5で捕捉された液滴は本体容器4の底部4cの液溜領域に流れ落ちるようにしているが、実施の形態3の気液分離器では、液滴捕捉装置として、ステンレス鋼等の耐浸食性細線の織物や編み物で作ったメッシュ部材8を用いるようにしている。   As a result, the liquid droplet captured by the eliminator 5 is re-taken into the fast-flowing gas-phase refrigerant close to the axial center, and the inconvenience that the gas-phase refrigerant containing the droplet flows out from the gas-phase refrigerant outflow pipe 2 is eliminated. The liquid droplets captured by the eliminator 5 flow down to the liquid storage area of the bottom 4c of the main body container 4. However, in the gas-liquid separator of the third embodiment, the liquid droplet separator is made of stainless steel or the like. A mesh member 8 made of woven or knitted erodible thin wire is used.

このように、実施の形態3の構成によっても、メッシュ部材8で捕捉された液滴が、メッシュ部材8の下部に設けられた液滴流下ガイド6の傾斜している面で重力により導かれ、上昇流の遅い胴部4b側壁方向に速やかに流下し、胴部4b側壁面を伝わって底部4cの液溜領域に流れ落ちることにより、メッシュ部材8で捕捉した液滴が、軸心に近く速い上昇流の気相冷媒に再度取り込まれ、液滴が含まれる気相冷媒が気相冷媒流出パイプ2から流出するという不都合がなくなり、メッシュ部材8で捕捉された液滴は本体容器4の底部4cの液溜領域に流れ落ちる。   Thus, also in the configuration of the third embodiment, the droplets captured by the mesh member 8 are guided by gravity on the inclined surface of the droplet flow guide 6 provided at the lower portion of the mesh member 8, The liquid droplet trapped by the mesh member 8 quickly rises close to the axial center by quickly flowing down in the direction of the side wall of the barrel portion 4b having a slow upward flow and flowing down the side wall surface of the barrel portion 4b to the liquid storage region of the bottom portion 4c. The inconvenience that the gaseous refrigerant containing the droplets flows out of the gaseous-phase refrigerant outflow pipe 2 without being taken in again by the flowing gas-phase refrigerant is eliminated, and the droplets captured by the mesh member 8 are collected in the bottom 4c of the main body container 4. Flows down to the reservoir area.

このようにして、メッシュ部材8で捕捉された液滴は、メッシュ部材8の下部に設けられた液滴流下ガイド6の傾斜している面で重力により導かれ、上昇流の遅い胴部4b側壁方向に速やかに流下し、胴部4b側壁面を伝わって底部4cの液溜領域に流れ落ちることにより、メッシュ部材8で捕捉した液滴の再飛散を防止し、気液二相冷媒を気相冷媒と液相冷媒に分離する分離効率を向上させた気液分離器を提供することが可能となる。   In this way, the droplets captured by the mesh member 8 are guided by gravity on the inclined surface of the droplet flow guide 6 provided at the lower portion of the mesh member 8, and the side wall of the body portion 4b having a slow upward flow. Quickly flowing in the direction and flowing down the side wall surface of the body portion 4b to the liquid storage region of the bottom portion 4c, thereby preventing re-scattering of the droplets captured by the mesh member 8, and the gas-liquid two-phase refrigerant is converted into a gas-phase refrigerant. It is possible to provide a gas-liquid separator with improved separation efficiency for separation into a liquid phase refrigerant.

なお、液滴捕捉装置としてエリミネータ、およびメッシュ部材を使用した実施の形態で説明しているが、液滴捕捉装置としてデミスターを用いても同様の効果を得ることができる。   In addition, although it demonstrated in embodiment using an eliminator and a mesh member as a droplet capture device, the same effect can be acquired even if it uses a demister as a droplet capture device.

1 気液二相冷媒流入パイプ(気液混相体流入パイプ)
2 気相冷媒流出パイプ(気体流出パイプ)
3 液相冷媒流出パイプ(液体流出パイプ)
4 本体容器
4a 頂部
4b 胴部
4c 底部
5 エリミネータ(液滴捕捉装置)
6 液滴流下ガイド
7 接続体
8 メッシュ部材(液滴捕捉装置)
9 液滴捕捉装置
1 Gas-liquid two-phase refrigerant inlet pipe (gas-liquid mixed-phase inlet pipe)
2 Gas-phase refrigerant outlet pipe (gas outlet pipe)
3 Liquid refrigerant outlet pipe (liquid outlet pipe)
4 Body Container 4a Top 4b Body 4c Bottom 5 Eliminator (Droplet Capture Device)
6 Droplet guide 7 Connection body 8 Mesh member (droplet trapping device)
9 Droplet trapping device

Claims (4)

気液混相体を気体と液体に分離する気液分離器において、
頂部、底部およびその間を連結する中空円筒型の胴部からなる本体容器と、
前記胴部の上方側面に取付けられて、該胴部の接線方向から前記本体容器内に前記気液混相体を流入させて旋回流とする気液混相体流入パイプと、
前記旋回流の遠心力分離作用で、前記気液混相体から分離されて前記胴部内を上昇する前記気体に残留する液滴を捕捉する液滴捕捉装置と、
前記液滴捕捉装置の下部に設けられ、該液滴捕捉装置で捕捉した前記液滴を前記胴部側壁方向に流下させる液滴流下ガイドと、
前記頂部から前記胴部の軸心方向に装入されて、前記分離された気体を流出させる気体流出パイプと、
前記底部の下方側面に取付けられて、前記分離された液体を流出させる液体流出パイプと、を具備することを特徴とする気液分離器。
In a gas-liquid separator that separates a gas-liquid mixture into gas and liquid,
A main body container comprising a top, a bottom, and a hollow cylindrical body connecting the bottom, and
A gas-liquid mixed-phase inflow pipe that is attached to the upper side surface of the body part and flows into the main body container from the tangential direction of the body part to make a swirl flow;
A droplet trapping device that traps droplets remaining in the gas that is separated from the gas-liquid mixed phase and rises in the body portion by centrifugal force separation action of the swirling flow;
A droplet flow guide provided at a lower portion of the droplet trapping device, and causing the droplet trapped by the droplet trapping device to flow down toward the trunk side wall;
A gas outflow pipe that is inserted from the top in the axial direction of the barrel and that causes the separated gas to flow out;
A gas-liquid separator, comprising: a liquid outflow pipe that is attached to a lower side surface of the bottom portion and causes the separated liquid to flow out.
前記液滴捕捉装置と前記液滴流下ガイドとを縦方向の接続体を用いて接続することを特徴とする請求項1に記載の気液分離器。   The gas-liquid separator according to claim 1, wherein the droplet trapping device and the droplet flow-down guide are connected using a connecting member in a vertical direction. 前記液滴捕捉装置は、複数の開口、あるいは、複数のスリット状の開口を有するエリミネータであることを特徴とする請求項1または請求項2に記載の気液分離器。   The gas-liquid separator according to claim 1 or 2, wherein the droplet trapping device is an eliminator having a plurality of openings or a plurality of slit-shaped openings. 前記液滴捕捉装置は、ステンレス鋼等の耐浸食性細線の織物や編み物で作ったメッシュ部材であることを特徴とする請求項1または請求項2に記載の気液分離器。   3. The gas-liquid separator according to claim 1, wherein the droplet trapping device is a mesh member made of a woven or knitted erosion-resistant thin wire such as stainless steel.
JP2011111524A 2011-05-18 2011-05-18 Gas-liquid separator Active JP5776326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011111524A JP5776326B2 (en) 2011-05-18 2011-05-18 Gas-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011111524A JP5776326B2 (en) 2011-05-18 2011-05-18 Gas-liquid separator

Publications (2)

Publication Number Publication Date
JP2012241963A true JP2012241963A (en) 2012-12-10
JP5776326B2 JP5776326B2 (en) 2015-09-09

Family

ID=47463869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011111524A Active JP5776326B2 (en) 2011-05-18 2011-05-18 Gas-liquid separator

Country Status (1)

Country Link
JP (1) JP5776326B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542648A (en) * 2013-10-29 2014-01-29 李明科 Reverse-type refrigerant separating device
CN110448959A (en) * 2019-08-14 2019-11-15 安徽安分光电科技有限公司 A kind of online high efficient gas and liquid separator
JP2020527218A (en) * 2017-08-18 2020-09-03 美的集団股▲フン▼有限公司Midea Group Co., Ltd. Fluid processing equipment and temperature control equipment
WO2021014739A1 (en) * 2019-07-24 2021-01-28 パナソニックIpマネジメント株式会社 Gas-liquid separator and refrigerant circulation system provided with gas-liquid separator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019423A (en) * 1996-07-05 1998-01-23 Matsushita Refrig Co Ltd Oil separator
JP2000320933A (en) * 1999-05-11 2000-11-24 Mitsubishi Electric Corp Gas/liquid separator and its manufacturing method
JP2002013845A (en) * 2000-06-30 2002-01-18 Mitsubishi Electric Corp Oil separator, and freezing cycle, and its oil separation method
JP2005069654A (en) * 2003-08-28 2005-03-17 Matsushita Electric Ind Co Ltd Oil separator
JP2005233470A (en) * 2004-02-18 2005-09-02 Denso Corp Gas-liquid separator
JP2009139050A (en) * 2007-12-10 2009-06-25 Sanyo Electric Co Ltd Oil separator
JP2010048483A (en) * 2008-08-22 2010-03-04 Mitsubishi Electric Corp Gas-liquid separator and air compression device and air conditioner equipped with the gas-liquid separator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019423A (en) * 1996-07-05 1998-01-23 Matsushita Refrig Co Ltd Oil separator
JP2000320933A (en) * 1999-05-11 2000-11-24 Mitsubishi Electric Corp Gas/liquid separator and its manufacturing method
JP2002013845A (en) * 2000-06-30 2002-01-18 Mitsubishi Electric Corp Oil separator, and freezing cycle, and its oil separation method
JP2005069654A (en) * 2003-08-28 2005-03-17 Matsushita Electric Ind Co Ltd Oil separator
JP2005233470A (en) * 2004-02-18 2005-09-02 Denso Corp Gas-liquid separator
JP2009139050A (en) * 2007-12-10 2009-06-25 Sanyo Electric Co Ltd Oil separator
JP2010048483A (en) * 2008-08-22 2010-03-04 Mitsubishi Electric Corp Gas-liquid separator and air compression device and air conditioner equipped with the gas-liquid separator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542648A (en) * 2013-10-29 2014-01-29 李明科 Reverse-type refrigerant separating device
JP2020527218A (en) * 2017-08-18 2020-09-03 美的集団股▲フン▼有限公司Midea Group Co., Ltd. Fluid processing equipment and temperature control equipment
US11168929B2 (en) 2017-08-18 2021-11-09 Midea Group Co., Ltd. Fluid treatment device and temperature regulation apparatus
WO2021014739A1 (en) * 2019-07-24 2021-01-28 パナソニックIpマネジメント株式会社 Gas-liquid separator and refrigerant circulation system provided with gas-liquid separator
JP2021021497A (en) * 2019-07-24 2021-02-18 パナソニックIpマネジメント株式会社 Gas-liquid separator and refrigerator circulation system including the same
JP7304518B2 (en) 2019-07-24 2023-07-07 パナソニックIpマネジメント株式会社 Refrigerant circulation system with gas-liquid separator and gas-liquid separator
CN110448959A (en) * 2019-08-14 2019-11-15 安徽安分光电科技有限公司 A kind of online high efficient gas and liquid separator

Also Published As

Publication number Publication date
JP5776326B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
ES2860524T3 (en) Cyclone, cyclonic mist eliminator and method of use
US9005340B2 (en) Fiber bed assembly including a re-entrainment control device for a fiber bed mist eliminator
JP4857350B2 (en) Fiber bed assembly and fiber bed therefor
US9795898B2 (en) Cyclonic separator system
JP5776326B2 (en) Gas-liquid separator
RU2342182C2 (en) Separator bath
WO2013094161A1 (en) Gas-liquid separation device
JP5216148B1 (en) Gas-liquid separation device for air blowing means
CN111589594A (en) Cyclone separator, compressor and method for separating liquid from liquid and gas flow
US20130312609A1 (en) Apparatus and methods for filtration of solid particles and separation of liquid droplets and liquid aerosols from a gas stream
RU58379U1 (en) GAS VORTEX VALVE SEPARATOR (OPTIONS)
RU2304455C1 (en) Vortex gas separator
JP2005098664A5 (en)
JP2014188409A (en) Moisture separator
RU2299756C1 (en) Vortex type gaseous ejection separator (versions)
JPH10328647A (en) Apparatus for removing fine particle from steam generator for producing pure steam and distilled water
JP2011094843A (en) Condenser
JP5803263B2 (en) Gas-liquid separator
RU88986U1 (en) CENTRIFUGAL DRINKER
JP5814616B2 (en) Oil separator, compression refrigeration apparatus and air compression apparatus
RU59436U1 (en) GAS VORTEX TYPE EJECTION SEPARATOR (OPTIONS)
RU66972U1 (en) GAS VORTEX VALVE SEPARATOR
JP2015039693A (en) Oil separating system
RU2582314C1 (en) Gas-liquid separator
RU2650985C2 (en) Separating centrifugal element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250