JP2012241241A - Titanium material and producing method therefor - Google Patents

Titanium material and producing method therefor Download PDF

Info

Publication number
JP2012241241A
JP2012241241A JP2011113212A JP2011113212A JP2012241241A JP 2012241241 A JP2012241241 A JP 2012241241A JP 2011113212 A JP2011113212 A JP 2011113212A JP 2011113212 A JP2011113212 A JP 2011113212A JP 2012241241 A JP2012241241 A JP 2012241241A
Authority
JP
Japan
Prior art keywords
titanium
tio
particles
powder
titanium material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011113212A
Other languages
Japanese (ja)
Other versions
JP5760278B2 (en
Inventor
Katsuyoshi Kondo
勝義 近藤
Hiroyuki Nishimura
浩之 西村
Takeshi Kashiwagi
猛 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Technical Center Co Ltd
Original Assignee
Inoac Technical Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Technical Center Co Ltd filed Critical Inoac Technical Center Co Ltd
Priority to JP2011113212A priority Critical patent/JP5760278B2/en
Publication of JP2012241241A publication Critical patent/JP2012241241A/en
Application granted granted Critical
Publication of JP5760278B2 publication Critical patent/JP5760278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a titanium material, displaying high strength without remarkably lowering high extension, even without adding expensive element and material.SOLUTION: The titanium material has a crystalline structure of a closed hexagonal lattice arranging atoms to a-axial direction and c-axial direction. The oxygen atoms having ≥4,000 ppm in the titanium, is dissolved as a solid-solution. The value of axial ratio c/a which is the ratio to the lattice constant in the a-axis and the lattice constant in the c-axis, is in the range of 1.589-1.593.

Description

この発明は、チタン材料およびその製造方法に関するものである。   The present invention relates to a titanium material and a method for producing the same.

チタンは、鋼の約1/2の低比重を有する軽量素材であり、また耐腐食性や強度に優れるといった特徴を有することから、軽量化ニーズが強い航空機や鉄道車両、二輪車や自動車などの部品や、家電製品や建築用部材に利用されている。また優れた耐腐食性の観点から、医療用素材としても利用されている。   Titanium is a lightweight material with a specific gravity about half that of steel, and has the characteristics of excellent corrosion resistance and strength. Therefore, parts such as aircraft, railway vehicles, motorcycles and automobiles that have strong needs for weight reduction. It is used for household appliances and building materials. It is also used as a medical material from the viewpoint of excellent corrosion resistance.

しかしながら、チタンは、鉄鋼材料やアルミニウム合金と比較して、素材コストが高いために利用対象が限定されている。特に、チタン合金は、1000MPaを超える高い引張強さを有するものの、延性(破断伸び)が十分ではなく、また常温あるいは低温域での塑性加工性に乏しいといった課題がある。他方、純チタンは、常温にて25%を超える高い破断伸びを有しており、また低温域での塑性加工性にも優れるものの、引張強さが400〜600MPa程度と低い点が課題である。   However, since titanium has a higher material cost compared to steel materials and aluminum alloys, its application target is limited. In particular, a titanium alloy has a high tensile strength exceeding 1000 MPa, but has a problem that ductility (breaking elongation) is not sufficient and plastic workability is poor at room temperature or low temperature. On the other hand, pure titanium has a high elongation at break exceeding 25% at room temperature and is excellent in plastic workability in a low temperature range, but has a low tensile strength of about 400 to 600 MPa. .

高強度および高延性を有するチタン材料に関する従来技術について以下に記載する。いずれの従来技術においても、適正な元素を添加することでチタン材料の強度向上を図ることが基本的な考え方である。多くの場合、チタン素地中に酸素を固溶させることでチタン材料の高強度化を実現することが提案されている。   Prior art relating to titanium materials having high strength and high ductility will be described below. In any prior art, the basic idea is to improve the strength of the titanium material by adding an appropriate element. In many cases, it has been proposed to increase the strength of a titanium material by dissolving oxygen in the titanium substrate.

例えば、特開2002−285268号公報(チタン合金およびその製造方法)では、1.5〜6at%の酸素(O)および/または窒素(N)を含むことによりチタン材料の高強度化を図ることを開示している。酸素は出発原料粉末である純チタン粉末中に事前に含まれている。   For example, in Japanese Patent Laid-Open No. 2002-285268 (titanium alloy and manufacturing method thereof), the strength of the titanium material is increased by including 1.5 to 6 at% oxygen (O) and / or nitrogen (N). Is disclosed. Oxygen is previously contained in pure titanium powder, which is a starting material powder.

同様に、特許第3426605号公報(高強度・高延性チタン合金およびその製造方法)においても、溶解法によって酸素、窒素、鉄(Fe)をチタン合金中に取り込むことを開示しており、ここでも酸素がチタン素地中への固溶元素として強化作用を有している。   Similarly, Japanese Patent No. 3426605 (high strength / high ductility titanium alloy and method for producing the same) discloses that oxygen, nitrogen, and iron (Fe) are incorporated into the titanium alloy by a melting method. Oxygen has a strengthening action as a solid solution element in the titanium substrate.

特開2009−127083号公報(チタン合金の製造方法)においては、純チタンをベースに窒素あるいは酸素の含有率を高めることで、比較的安価なスポンジチタンを原料としたチタン合金の強度を向上させる製法を提案している。ここでは、微細な酸化チタン粒子と純チタン(スポンジチタン)を混合して成形固化した後、真空アーク溶解することで、酸化チタンを分解してそこに含まれる酸素を純チタンに固溶させる方法を開示している。つまり、本製法によれば、添加する酸化チタン粒子は、アーク溶解の過程で溶融した純チタン中に溶解するため、凝固後のチタンインゴット中には酸化チタン粒子の状態として存在しない。   In JP 2009-127083 (a method for producing a titanium alloy), the strength of a titanium alloy using a relatively inexpensive sponge titanium as a raw material is improved by increasing the content of nitrogen or oxygen based on pure titanium. A manufacturing method is proposed. Here, fine titanium oxide particles and pure titanium (sponge titanium) are mixed and molded and solidified, and then vacuum arc melting is performed to decompose titanium oxide and dissolve oxygen contained therein in pure titanium. Is disclosed. That is, according to this manufacturing method, the titanium oxide particles to be added are dissolved in the pure titanium melted in the process of arc melting, and therefore do not exist as titanium oxide particles in the solidified titanium ingot.

US7311873号公報(Process of Direct Powder Rolling of Blended Titanium Alloys, Titanium Matrix Composites, and Titanium Aluminides)においては、少なくとも1種類の元素を含むチタン合金粉末に、炭化物、窒化物、酸化物などの粒子を混合し、冷間圧延加工後に固相状態で焼結することでチタン基複合材料を作製する方法を提案している。ここでは、溶解工程を経由しないため、上記の添加粒子も溶解あるいは分解することなく、粒子の状態で存在する。   In US7311873 (Process of Direct Powder Rolling of Blended Titanium Alloys, Titanium Matrix Composites, and Titanium Aluminides), titanium alloy powder containing at least one element is mixed with particles of carbide, nitride, oxide or the like. A method for producing a titanium-based composite material by sintering in a solid state after cold rolling is proposed. Here, since it does not go through the dissolving step, the above-mentioned added particles are also present in the state of particles without being dissolved or decomposed.

特開2002−285268号公報JP 2002-285268 A 特許第3426605号公報Japanese Patent No. 3426605 特開2009−127083号公報JP 2009-127083 A US7311873号公報US7311873 Publication

チタンに対する高強度と高延性の両立、および素材コストの低減に関する要求は極めて強いことから、これまでに様々な検討が行われてきた。特に、低コスト化の観点から、バナジウム、スカンジウム、ニオブなどの高価な元素ではなく、酸素といった比較的安価な元素による高強度化が従来技術として多く検討されてきた。これまでに開示されている溶解法による酸素取込み技術において、酸素はチタン素地中に固溶することで強化作用を発現しているが、固溶によるチタン中の酸素含有量が増加するにつれて、チタンの延性が顕著に低下するといった課題がある。   Since the demands for both high strength and high ductility for titanium and reduction of material costs are extremely strong, various studies have been conducted so far. In particular, from the viewpoint of cost reduction, many attempts have been made to increase the strength by using relatively inexpensive elements such as oxygen instead of expensive elements such as vanadium, scandium, and niobium. In the oxygen uptake technology by the dissolution method disclosed so far, oxygen expresses a strengthening action by solid solution in the titanium substrate. However, as the oxygen content in titanium by solid solution increases, titanium There is a problem that the ductility of the steel significantly decreases.

本発明は上記の課題を解決するためになされたものであり、その目的は、高価な元素や物質を添加せずに、高い延性を著しく低下させることなく、高強度を発現するチタン材料を提供することである。   The present invention has been made in order to solve the above-mentioned problems, and its object is to provide a titanium material that exhibits high strength without significantly reducing high ductility without adding expensive elements and substances. It is to be.

この発明に従ったチタン材料は、a軸方向およびc軸方向に原子を配列した稠密六方格子の結晶構造を有するものであって、以下の特徴を有する。   The titanium material according to the present invention has a dense hexagonal lattice crystal structure in which atoms are arranged in the a-axis direction and the c-axis direction, and has the following characteristics.

(a)チタン中に酸素原子が固溶していること。   (A) Oxygen atoms are dissolved in titanium.

(b)チタン中の酸素含有量が4000ppm以上であること。   (B) The oxygen content in titanium is 4000 ppm or more.

(c)c軸方向での格子定数とa軸方向での格子定数との比である軸比c/aの値が、1.589〜1.593の範囲内にあること。   (C) The value of the axial ratio c / a, which is the ratio of the lattice constant in the c-axis direction to the lattice constant in the a-axis direction, is in the range of 1.589 to 1.593.

チタン中の酸素含有量の好ましい上限値は、13000ppmである。また、好ましくは、当該チタン材料は、チタン粉末とTiO粒子とを混合後に焼結することによって得られたものである。他の実施形態として、当該チタン材料は、チタン粉末とZrO粒子とを混合後に焼結することによって得られたものであってもよい。 A preferable upper limit of the oxygen content in titanium is 13000 ppm. Preferably, the titanium material is obtained by sintering titanium powder and TiO 2 particles after mixing. As another embodiment, the titanium material may be obtained by sintering titanium powder and ZrO 2 particles after mixing.

この発明に従ったチタン材料の製造方法は、以下の工程を備える。   The manufacturing method of the titanium material according to this invention includes the following steps.

(a)チタン粉末とTiO粒子とを準備する工程。 (A) A step of preparing titanium powder and TiO 2 particles.

(b)混合粉末全体に対してTiO粒子の添加量が質量基準で0.5%〜3.0%となるように調整して上記チタン粉末と上記TiO粒子とを混合する工程。 (B) A step of mixing the titanium powder and the TiO 2 particles by adjusting the addition amount of the TiO 2 particles to 0.5% to 3.0% on a mass basis with respect to the entire mixed powder.

(c)上記混合物を、700℃からTiOの融点未満の温度範囲で、かつ真空雰囲気中で焼結して上記TiO粒子を熱分解させ、解離した酸素原子をチタン中に固溶させる工程。 (C) A step of sintering the mixture in a temperature range from 700 ° C. to less than the melting point of TiO 2 in a vacuum atmosphere to thermally decompose the TiO 2 particles and causing dissociated oxygen atoms to dissolve in titanium. .

チタン材料の製造方法は、上記焼結後に、焼結体を加熱して押出加工する工程をさらに備えてもよい。   The titanium material manufacturing method may further include a step of heating and extruding the sintered body after the sintering.

上記の特徴的な構成の作用効果または技術的意義については、以下の項目で説明する。   The operational effects or technical significance of the above characteristic configuration will be described in the following items.

酸素含有量と引張強さとの関係を示す図である。It is a figure which shows the relationship between oxygen content and tensile strength. 酸素含有量と延性(伸び)との関係を示す図である。It is a figure which shows the relationship between oxygen content and ductility (elongation). 酸素含有量と軸比c/a値との関係を示す図である。It is a figure which shows the relationship between oxygen content and axial ratio c / a value. 軸比c/a値と伸び値との関係を示す図である。It is a figure which shows the relationship between an axial ratio c / a value and elongation value. 粉末冶金法で作製した酸素固溶純チタン材の圧縮試験結果を示す図である。It is a figure which shows the compression test result of the oxygen solid solution pure titanium material produced by the powder metallurgy method. 焼結温度と軸比c/a値との関係を示す図である。It is a figure which shows the relationship between sintering temperature and axial ratio c / a value. 焼結体の組織写真であり、(a)は焼結温度を600℃とした場合、(b)は焼結温度を1000℃とした場合を示している。It is the structure | tissue photograph of a sintered compact, (a) has shown the case where sintering temperature is 600 degreeC, (b) has shown the case where sintering temperature is 1000 degreeC. 焼結体のX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result of a sintered compact. 焼結温度を異ならせた各焼結体のマイクロビッカース硬度の測定結果を示す図である。It is a figure which shows the measurement result of the micro Vickers hardness of each sintered compact which varied the sintering temperature.

本願発明の特徴は、溶解法でチタン材料中に酸素を取り込むのではなく、チタン粉末とTiO粒子との混合物を、700℃からTiOの融点未満の温度で、かつ真空雰囲気中で焼結することにより、TiO粒子を熱分解し、解離した酸素原子をチタン中に固溶させることにある。酸素原子がチタン中に固溶することにより、チタン材料の強度(引張強さ、圧縮強度、硬度)が増加する。 The feature of the present invention is that oxygen is not taken into the titanium material by a melting method, but a mixture of titanium powder and TiO 2 particles is sintered in a vacuum atmosphere at a temperature from 700 ° C. to less than the melting point of TiO 2. By doing so, the TiO 2 particles are thermally decomposed and the dissociated oxygen atoms are dissolved in titanium. When oxygen atoms are dissolved in titanium, the strength (tensile strength, compressive strength, hardness) of the titanium material is increased.

X線回折によれば、チタンの稠密六方格子結晶構造において、TiO粒子の添加量が増加すると、c軸方向の酸素原子の固溶量はほぼ比例して増加するが、a軸方向の酸素原子の固溶量はほぼ一定のままである。c軸方向への酸素原子の固溶により、チタン材料の強度を高めることができる。他方、伸び特性(延性)に関しては、c軸方向での格子定数とa軸方向での格子定数との比である軸比c/aの値が1.593以下であれば、20%を超える伸びが得られる。したがって、固相焼結法によりTiO粒子とチタン粉末とからなる混合粉末を用いて作製した焼結材において、高強度と高延性とを両立させるには、c/aの値を1.589〜1.593の範囲に管理することが必要である。 According to X-ray diffraction, in the dense hexagonal lattice crystal structure of titanium, as the amount of TiO 2 particles added increases, the amount of oxygen atoms dissolved in the c-axis direction increases almost proportionally, but the oxygen in the a-axis direction increases. The amount of dissolved atoms remains almost constant. The strength of the titanium material can be increased by the solid solution of oxygen atoms in the c-axis direction. On the other hand, the elongation characteristic (ductility) exceeds 20% when the value of the axial ratio c / a, which is the ratio of the lattice constant in the c-axis direction to the lattice constant in the a-axis direction, is 1.593 or less. Elongation is obtained. Therefore, in a sintered material produced using a mixed powder composed of TiO 2 particles and titanium powder by the solid phase sintering method, in order to achieve both high strength and high ductility, the value of c / a is 1.589. It is necessary to manage in the range of ~ 1.593.

溶解製法では、チタン中への酸素固溶量が2000〜3000ppm程度の範囲においても、酸素原子はc軸方向に優先的に固溶するため、軸比c/aの値が1.594を超えることになり、延性(伸び特性)が著しく低下してしまう。酸素原子がc軸に固溶する理由は、溶解(液相)状態ではチタン原子の間隔が固相状態よりも大きく、酸素原子がより多数、侵入し易くなるためである。したがって、溶解材では、焼結材と比較して、c軸方向での格子定数が増大する。   In the dissolution manufacturing method, even when the oxygen solid solution amount in titanium is in the range of about 2000 to 3000 ppm, the oxygen atom preferentially dissolves in the c-axis direction, so the value of the axial ratio c / a exceeds 1.594. As a result, ductility (elongation characteristics) is significantly reduced. The reason why oxygen atoms are dissolved in the c-axis is that in the dissolved (liquid phase) state, the interval between titanium atoms is larger than that in the solid phase state, and a larger number of oxygen atoms are likely to enter. Therefore, the lattice constant in the c-axis direction is increased in the melting material as compared with the sintered material.

溶解法によって得たチタン材と、固相焼結法によって得たチタン材とは、固溶酸素含有量が約3000ppm以上になると、強度および延性において顕著な差となって現われてくる。   A titanium material obtained by the melting method and a titanium material obtained by the solid-phase sintering method show significant differences in strength and ductility when the solid solution oxygen content is about 3000 ppm or more.

溶解法によって得たチタン材では、酸素含有量が3100ppm程度のときに最大引張強さを示し、酸素含有量がさらに増加すると引張強さは低下する。伸びに関しては、酸素含有量が2200ppm程度を超えると急激に低下する。   The titanium material obtained by the melting method shows the maximum tensile strength when the oxygen content is about 3100 ppm, and the tensile strength decreases as the oxygen content further increases. Regarding the elongation, when the oxygen content exceeds about 2200 ppm, it rapidly decreases.

固相焼結法によって得たチタン材の場合、酸素含有量が13000ppm程度までの範囲では引張強さは酸素量にほぼ比例して増加し、それ以上に酸素含有量が増えると引張強さは低下する。伸びに関しては、酸素含有量の増加とともに徐々に低下するが、約13000ppmを超えると急激な低下となる。   In the case of a titanium material obtained by the solid-phase sintering method, the tensile strength increases almost in proportion to the oxygen content in the range of the oxygen content up to about 13000 ppm, and the tensile strength increases as the oxygen content further increases. descend. The elongation gradually decreases with an increase in the oxygen content, but when it exceeds about 13,000 ppm, it rapidly decreases.

溶解法では実現することのできない強度特性を持つチタン材を固相焼結法で得るには、チタン中の酸素含有量を4000ppm以上にすることが望ましい。また、良好な伸び特性を維持するには、チタン中の酸素含有量を13000ppm以下にするのが望ましい。   In order to obtain a titanium material having strength characteristics that cannot be realized by the melting method by the solid phase sintering method, it is desirable that the oxygen content in titanium be 4000 ppm or more. In order to maintain good elongation characteristics, it is desirable that the oxygen content in titanium be 13000 ppm or less.

TiOと同様の効果を示す酸化物として、ZrO粒子がある。ZrOの場合、熱分解して発生する酸素がチタン中に固溶すると同時に、Zr(ジルコニウム)がチタンと全率固溶形態をとるためZrの固溶強化も生じる。その結果、更なる高強度化を実現できる。この効果を得るには、ZrO粒子の固相状態を維持する温度での焼結が必要である。 As an oxide showing the same effect as TiO 2 , there is ZrO 2 particles. In the case of ZrO 2 , oxygen generated by thermal decomposition is dissolved in titanium, and at the same time, Zr (zirconium) takes a solid solution form with titanium, so that solid solution strengthening of Zr also occurs. As a result, further increase in strength can be realized. In order to obtain this effect, it is necessary to sinter at a temperature that maintains the solid phase state of the ZrO 2 particles.

TiO粒子とチタン粉末とを混合する場合、最終的に得られるチタン材の強度と延性とを両立させるために、混合粉末全体に対してTiO粒子の添加量を質量基準で0.5%〜3.0%となるように調整することが望ましい。チタン粉末として純チタン粉末を使用する場合、TiO粒子の添加量の望ましい下限値は0.8%である。 When mixing TiO 2 particles and titanium powder, in order to achieve both the strength and ductility of the finally obtained titanium material, the amount of TiO 2 particles added to the entire mixed powder is 0.5% on a mass basis. It is desirable to adjust to be -3.0%. When pure titanium powder is used as the titanium powder, a desirable lower limit of the amount of TiO 2 particles added is 0.8%.

また、混合粉末は、700℃からTiOの融点未満の温度範囲で、かつ真空雰囲気中中で焼結することが望ましい。焼結温度が700℃を超えると軸比c/aの値が急激に増加する。このことは、TiO粒子が熱分解し、解離した酸素原子がチタン中に固溶したことを意味する。したがって、TiO粒子とチタン粉末の混合物から酸素固溶により高強度で高延性のチタン材料を作製するには、混合物を真空雰囲気かつ700℃以上の温度での焼結処理が有効である。 Further, it is desirable that the mixed powder is sintered in a vacuum atmosphere in a temperature range from 700 ° C. to less than the melting point of TiO 2 . When sintering temperature exceeds 700 degreeC, the value of axial ratio c / a will increase rapidly. This means that the TiO 2 particles were thermally decomposed and the dissociated oxygen atoms were dissolved in titanium. Therefore, in order to produce a titanium material having high strength and high ductility by oxygen solid solution from a mixture of TiO 2 particles and titanium powder, a sintering treatment of the mixture at a temperature of 700 ° C. or higher is effective.

TiOの熱分解を促進するには、雰囲気中の酸素分圧を低減する必要があるので、真空雰囲気が望ましい。ただし、一旦、真空状態にした後、アルゴンガスを充填した雰囲気であれば、酸素分圧は低い状態で維持できるので、TiOの熱分解は進行する可能性がある。なお、窒素や水素はTiと反応して化合物を形成し、チタン粉末焼結体の延性を低下させるので好ましくない。 In order to promote the thermal decomposition of TiO 2 , it is necessary to reduce the oxygen partial pressure in the atmosphere, so a vacuum atmosphere is desirable. However, once the atmosphere is filled with argon gas after being evacuated, the oxygen partial pressure can be maintained at a low state, so that thermal decomposition of TiO 2 may proceed. Nitrogen and hydrogen are not preferable because they react with Ti to form a compound and reduce the ductility of the titanium powder sintered body.

チタン材料は、好ましくは、焼結体を加熱して押出加工したものである。なお、出発原料粉末として準備する「チタン粉末」は、純チタン粉末であっても良いし、チタン合金粉末であってもよい。   The titanium material is preferably obtained by heating and extruding a sintered body. The “titanium powder” prepared as the starting material powder may be a pure titanium powder or a titanium alloy powder.

本願発明者らは、本件発明の効果を確認するために、以下の試験を行なった。   The inventors of the present application conducted the following tests in order to confirm the effect of the present invention.

[混合粉末の準備]
TiO粒子(平均粒子径3.1μm)と、純チタン粉末(純度95%以上、平均粒子径28.0μm)とを準備した。混合粉末全体に対してTiO粒子の添加量が質量基準で0.2%、0.4%、0.6%、0.8%、1.0%、1.5%、2.0%、3.0%、4.0%、5.0%となるように調整して、純チタン粉末とTiO粒子とを回転ボールミル装置で1時間混合した。
[Preparation of mixed powder]
TiO 2 particles (average particle size 3.1 μm) and pure titanium powder (purity 95% or more, average particle size 28.0 μm) were prepared. The added amount of TiO 2 particles is 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 1.5%, 2.0% on the mass basis with respect to the entire mixed powder. 3.0%, 4.0%, and 5.0%, and pure titanium powder and TiO 2 particles were mixed with a rotating ball mill for 1 hour.

[焼結]
放電プラズマ焼結装置を用いて、以下の条件で、各混合粉末に対して焼結処理を行なった。
[Sintering]
Using a discharge plasma sintering apparatus, each mixed powder was sintered under the following conditions.

雰囲気:真空雰囲気(4Pa以下)
温度:900℃
加圧力:30MPa
保持時間:30分
[押出棒材の作製]
各粉末焼結体を、赤外線イメージ加熱炉を用いてアルゴンガス雰囲気中で1000℃にて5分間の加熱後、直ちに押出加工(押出比:36)し、直径7mmの押出棒材を作製した。
Atmosphere: Vacuum atmosphere (4 Pa or less)
Temperature: 900 ° C
Applied pressure: 30 MPa
Holding time: 30 minutes [Production of extruded bar]
Each powder sintered body was heated for 5 minutes at 1000 ° C. in an argon gas atmosphere using an infrared image heating furnace, and then immediately extruded (extrusion ratio: 36) to produce an extruded bar having a diameter of 7 mm.

[酸素含有量、引張強さ、延性(伸び)]
各押出材について、酸素含有量を測定し、さらに引張試験および圧縮試験(いずれも歪み速度:5×10−4−1)を行った。比較材として、溶解法によって酸素含有量が異なる純チタン素材を作製し、同様に上記の押出加工により直径7mmの押出棒材とした。
[Oxygen content, tensile strength, ductility (elongation)]
For each extruded material, the oxygen content was measured, and further a tensile test and a compression test (both strain rates: 5 × 10 −4 s −1 ) were performed. As a comparative material, a pure titanium material having a different oxygen content was prepared by a melting method, and an extruded bar material having a diameter of 7 mm was similarly formed by the above-described extrusion process.

[引張試験結果]
引張り試験結果を図1および図2に示す。図1は、酸素含有量と引張強さ(UTS)との関係を示し、図2は、酸素含有量と延性(伸び)との関係を示している。
[Tensile test results]
The results of the tensile test are shown in FIGS. FIG. 1 shows the relationship between oxygen content and tensile strength (UTS), and FIG. 2 shows the relationship between oxygen content and ductility (elongation).

図1および図2のグラフの根拠となった数値データを表1および表2に示す。   Tables 1 and 2 show the numerical data on which the graphs of FIGS. 1 and 2 are based.

図1に示すように、粉末焼結材では、TiO粒子の添加量が3mass%(酸素含有量:12230ppm)までの範囲においては、引張強さ(UTS)は酸素量にほぼ比例して直線的に増加し、最大値1287MPaに達した。最大値に達した後では、酸素量が増加すると引張強さは低下する傾向となった。 As shown in FIG. 1, in the powder sintered material, the tensile strength (UTS) is linearly proportional to the amount of oxygen in the range of up to 3 mass% (oxygen content: 12230 ppm) of TiO 2 particles. The maximum value reached 1287 MPa. After reaching the maximum value, the tensile strength tended to decrease as the amount of oxygen increased.

図2に示すように、粉末焼結材では、伸びは酸素量の増加とともに徐々に低下するが、12230ppmを超えると急激に低下した。つまり、延性(伸び)が低下することで押出素材が脆性となり、その結果、引張強さも低下したことが認められる。   As shown in FIG. 2, in the powder sintered material, the elongation gradually decreases with an increase in the amount of oxygen, but rapidly decreased when the amount exceeded 12230 ppm. That is, it is recognized that the extrusion material becomes brittle due to the decrease in ductility (elongation), and as a result, the tensile strength also decreases.

一方、溶解材では、酸素含有量が3090ppmにおいて引張強さが最大値に達し、その後は低下した。伸びは酸素量の増加とともに徐々に低下するが、2240ppmを超えると、急激に低下した。   On the other hand, in the melting material, the tensile strength reached the maximum value when the oxygen content was 3090 ppm, and then decreased. The elongation gradually decreases with an increase in the amount of oxygen, but suddenly decreased when it exceeded 2240 ppm.

図1および図2に示した結果から理解できるように、粉末焼結材は、溶解材に比べて、より多くの酸素を固溶することが可能であり、その結果、引張強さは溶解材よりも顕著に高い値を示した。また、焼結材において伸びが急激に減少する酸素含有量は、溶解材よりも多い。したがって、TiO粒子を用いて粉末冶金法で作製した純チタン材は、溶解製法材と比較して高い強度と高い延性を維持することが可能である。 As can be understood from the results shown in FIG. 1 and FIG. 2, the powder sintered material can dissolve more oxygen than the dissolved material, and as a result, the tensile strength is the dissolved material. The value was significantly higher than that. In addition, the oxygen content at which the elongation of the sintered material decreases rapidly is higher than that of the melted material. Therefore, a pure titanium material produced by powder metallurgy using TiO 2 particles can maintain high strength and high ductility as compared with a melt production material.

[軸比c/a]
酸素固溶に関しては、X線回折法により、稠密六方格子結晶構造のチタンのa軸とc軸のそれぞれの方向での格子定数の変化(増加)によりチタン中への酸素原子の固溶状態を定量的に評価できる。c軸方向での格子定数とa軸方向での格子定数との比である軸比c/aの値と、酸素含有量との関係を整理した。その結果を図3に示す。
[Axial ratio c / a]
Regarding the oxygen solid solution, the solid solution state of oxygen atoms in titanium is determined by the change (increase) in the lattice constant in each of the a-axis and c-axis directions of titanium having a dense hexagonal lattice crystal structure by X-ray diffraction. Can be evaluated quantitatively. The relationship between the oxygen content and the value of the axial ratio c / a, which is the ratio of the lattice constant in the c-axis direction to the lattice constant in the a-axis direction, was arranged. The result is shown in FIG.

図3のグラフの根拠となった数値データを表3および表4に示す。   Tables 3 and 4 show the numerical data used as the basis for the graph of FIG.

図3に示すように、粉末焼結材では、酸素含有量と軸比c/aの値とはほぼ比例関係にあるが、溶解材では、酸素含有量が3090ppmを超えてからc/a値が急激に増大した。   As shown in FIG. 3, in the powder sintered material, the oxygen content and the value of the axial ratio c / a are in a proportional relationship, but in the dissolved material, the c / a value after the oxygen content exceeds 3090 ppm. Increased rapidly.

c/a値と伸び値との関係を図4に示す。図4のグラフの根拠となった数値データを表5および表6に示す。   FIG. 4 shows the relationship between the c / a value and the elongation value. Tables 5 and 6 show numerical data on which the graph of FIG.

図4に示すように、押出材の製法に関係なく、c/a値が1.594を超える範囲では、伸び値が急激に低下した。この結果から、酸素原子が固溶した純チタン材において、20%を超える伸びを同時に発現するには、c/a値を1.593以下に管理することが有効であると認められる。特に、純チタン材では、900MPa以上の高強度と高延性とを両立するには、c/a値を1.589〜1.593の範囲とすることが望ましい。   As shown in FIG. 4, regardless of the production method of the extruded material, the elongation value rapidly decreased in the range where the c / a value exceeded 1.594. From this result, it is recognized that it is effective to manage the c / a value to 1.593 or less in order to simultaneously develop an elongation exceeding 20% in a pure titanium material in which oxygen atoms are dissolved. In particular, in a pure titanium material, in order to achieve both high strength of 900 MPa or more and high ductility, it is desirable that the c / a value be in the range of 1.589 to 1.593.

[圧縮試験結果]
図5は、粉末冶金法で作製した酸素固溶純チタン材の圧縮試験結果を示している。
[Results of compression test]
FIG. 5 shows a compression test result of an oxygen solid solution pure titanium material produced by a powder metallurgy method.

TiO粒子の添加量が増加するに伴い、圧縮耐力(0.2%YS)と剛性の値はいずれも増加しており、酸素固溶による圧縮強度の向上効果を確認できた。 As the amount of TiO 2 particles added increased, both the compressive yield strength (0.2% YS) and the stiffness increased, confirming the effect of improving the compressive strength due to oxygen solid solution.

[焼結温度]
純チタン粉末(純度95%以上、平均粒子径28.0μm)と1mass%のTiO粒子(平均粒子径3.1μm)とからなる混合粉末を真空雰囲気中(酸素分圧:4Pa)で異なる焼結温度にて固化し、同一条件で押出加工を施して直径7mmの押出棒材を作製した。
[Sintering temperature]
Mixed powders composed of pure titanium powder (purity 95% or more, average particle diameter 28.0 μm) and 1 mass% TiO 2 particles (average particle diameter 3.1 μm) are sintered differently in a vacuum atmosphere (oxygen partial pressure: 4 Pa). The bar was solidified at the setting temperature and extruded under the same conditions to produce an extruded bar with a diameter of 7 mm.

焼結温度とc/a値との関係を図6に示す。図6に示すように、焼結温度が700℃を超えると急激にc/a値が増加していることから、TiO粒子が熱分解し、解離した酸素原子がチタン中に固溶していることが認められる。したがって、粉末冶金法を用いてTiO粒子と純チタン粉末との混合体から酸素固溶により高強度かつ高延性の純チタン材を作製するには、真空雰囲気で700℃以上の焼結加工が有効である。 FIG. 6 shows the relationship between the sintering temperature and the c / a value. As shown in FIG. 6, when the sintering temperature exceeds 700 ° C., the c / a value suddenly increases, so that the TiO 2 particles are thermally decomposed and the dissociated oxygen atoms are dissolved in titanium. It is recognized that Therefore, in order to produce a high-strength and high-ductility pure titanium material by oxygen solid solution from a mixture of TiO 2 particles and pure titanium powder using powder metallurgy, sintering at 700 ° C. or higher in a vacuum atmosphere is required. It is valid.

図7は焼結体の組織写真であり、(a)は焼結温度を600℃とした場合、(b)は焼結温度を1000℃とした場合を示している。600℃の焼結温度では、出発原料であるTiOが未反応の状態で存在しているのに対し、1000℃の焼結温度では、TiO粒子は存在せず、真空雰囲気中での加熱によってTiO粒子が熱分解したことを確認できた。 FIG. 7 is a structural photograph of the sintered body, where (a) shows the case where the sintering temperature is 600 ° C. and (b) shows the case where the sintering temperature is 1000 ° C. At a sintering temperature of 600 ° C., TiO 2 as a starting material exists in an unreacted state, whereas at a sintering temperature of 1000 ° C., TiO 2 particles do not exist and heating in a vacuum atmosphere is performed. Thus, it was confirmed that the TiO 2 particles were thermally decomposed.

図8は、上記の焼結体のX線回折結果を示す図である。600℃の温度で焼結した場合、TiOのピークが検出されており、出発原料であるTiOが未反応である。それに対して、1000℃の温度で焼結した場合、TiOの回折ピークはなく、TiOが熱分解したことを確認できる。 FIG. 8 is a diagram showing an X-ray diffraction result of the sintered body. When sintered at a temperature of 600 ° C., a peak of TiO 2 has been detected, TiO 2 is unreacted is the starting material. In contrast, when sintering was performed at a temperature of 1000 ° C., no diffraction peak of TiO 2, it can be confirmed that the TiO 2 is thermally decomposed.

図9は、焼結温度を異ならせた各焼結体のマイクロビッカース硬度の測定結果を示している。焼結温度が0℃のものは、純チタン原料粉末の素地の硬度である。600℃の温度までの焼結では硬度は大きく増加していないが、800℃以上の焼結温度になると、硬度が著しく増大しており、酸素固溶による強化が生じていることが認められる。   FIG. 9 shows the measurement results of the micro Vickers hardness of each sintered body with different sintering temperatures. The one having a sintering temperature of 0 ° C. is the hardness of the base of the pure titanium raw material powder. In the sintering up to a temperature of 600 ° C., the hardness is not greatly increased. However, when the sintering temperature is 800 ° C. or higher, the hardness is remarkably increased, and it is recognized that strengthening by oxygen solid solution occurs.

[チタン合金粉末の使用]
出発原料粉末として準備する「チタン粉末」は、純チタン粉末に限定されるものではなく、チタン合金粉末であっても良い。本願発明者は、チタン合金粉末とTiO粒子とを混合し、焼結したチタン材料においても同様の効果を奏することを確認した。具体的には、以下の測定結果が得られた。
[Use of titanium alloy powder]
The “titanium powder” prepared as the starting material powder is not limited to pure titanium powder, and may be titanium alloy powder. The inventor of the present application has confirmed that the same effect can be obtained in a titanium material obtained by mixing and sintering a titanium alloy powder and TiO 2 particles. Specifically, the following measurement results were obtained.

(a)Ti−6%Al−4%V粉末の押出材の場合
引張強さ(TS):1156MPa
降伏強さ(YS):1107MPa
伸び:26.3%
(b)Ti−6%Al−4%V粉末+0.5mass%TiO粒子の押出材の場合
引張強さ(TS):1308MPa
降伏強さ(YS):1172MPa
伸び:23.3%
(A) In the case of extruded material of Ti-6% Al-4% V powder Tensile strength (TS): 1156 MPa
Yield strength (YS): 1107 MPa
Elongation: 26.3%
(B) In the case of extruded material of Ti-6% Al-4% V powder + 0.5 mass% TiO 2 particles Tensile strength (TS): 1308 MPa
Yield strength (YS): 1172 MPa
Elongation: 23.3%

本発明は、航空機、鉄道車両、自動車用部品、家電製品素材、建築用構造部材、医療用素材など幅広い分野で使用可能なチタン材料およびその製造方法として有利に利用され得る。   INDUSTRIAL APPLICABILITY The present invention can be advantageously used as a titanium material that can be used in a wide range of fields such as aircraft, railway vehicles, automobile parts, household electrical appliance materials, architectural structural members, and medical materials, and a method for producing the same.

Claims (6)

a軸方向およびc軸方向に原子を配列した稠密六方格子の結晶構造を有するチタン材料であって、
チタン中に酸素原子が固溶しており、
チタン中の酸素含有量が4000ppm以上であり、
c軸方向での格子定数とa軸方向での格子定数との比である軸比c/aの値が1.589〜1.593の範囲内にある、チタン材料。
a titanium material having a dense hexagonal lattice crystal structure in which atoms are arranged in an a-axis direction and a c-axis direction,
Oxygen atoms are dissolved in titanium,
The oxygen content in titanium is 4000 ppm or more,
A titanium material in which the value of the axial ratio c / a, which is the ratio of the lattice constant in the c-axis direction to the lattice constant in the a-axis direction, is in the range of 1.589 to 1.593.
チタン中の酸素含有量が13000ppm以下である、請求項1に記載のチタン材料。   The titanium material according to claim 1 whose oxygen content in titanium is 13000 ppm or less. 当該チタン材料は、チタン粉末とTiO粒子とを混合後に焼結して押出加工することによって得られたものである、請求項1または2に記載のチタン材料。 The titanium material according to claim 1 or 2, wherein the titanium material is obtained by sintering and extruding after mixing titanium powder and TiO 2 particles. 当該チタン材料は、チタン粉末とZrO粒子とを混合後に焼結して押出加工することによって得られたものである、請求項1または2に記載のチタン材料。 The titanium material according to claim 1 or 2, wherein the titanium material is obtained by mixing and sintering titanium powder and ZrO 2 particles and then extruding. チタン粉末とTiO粒子とを準備する工程と、
混合粉末全体に対してTiO粒子の添加量が質量基準で0.5%〜3.0%となるように調整して前記チタン粉末と前記TiO粒子とを混合する工程と、
前記混合物を、700℃からTiOの融点未満の温度範囲で、かつ真空雰囲気中で焼結して前記TiO粒子を熱分解させ、解離した酸素原子をチタン中に固溶させる工程とを備える、チタン材料の製造方法。
Preparing titanium powder and TiO 2 particles;
Adjusting the amount of TiO 2 particles added to the entire mixed powder to be 0.5% to 3.0% on a mass basis and mixing the titanium powder and the TiO 2 particles;
Sintering the mixture in a temperature range from 700 ° C. to less than the melting point of TiO 2 in a vacuum atmosphere to thermally decompose the TiO 2 particles and dissolving dissociated oxygen atoms in titanium. , Manufacturing method of titanium material.
前記焼結後に焼結体を加熱して押出加工する工程をさらに備える、請求項5に記載のチタン材料の製造方法。   The method for producing a titanium material according to claim 5, further comprising a step of heating and extruding the sintered body after the sintering.
JP2011113212A 2011-05-20 2011-05-20 Titanium material and manufacturing method thereof Active JP5760278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011113212A JP5760278B2 (en) 2011-05-20 2011-05-20 Titanium material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011113212A JP5760278B2 (en) 2011-05-20 2011-05-20 Titanium material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012241241A true JP2012241241A (en) 2012-12-10
JP5760278B2 JP5760278B2 (en) 2015-08-05

Family

ID=47463275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011113212A Active JP5760278B2 (en) 2011-05-20 2011-05-20 Titanium material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5760278B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105024A1 (en) 2014-01-10 2015-07-16 勝義 近藤 Titanium powder material, titanium material, and method for producing oxygen solid solution titanium powder material
WO2017077922A1 (en) * 2015-11-02 2017-05-11 勝義 近藤 Oxygen-solid-soluted titanium sintered compact and method for producing same
CN107234242A (en) * 2016-03-29 2017-10-10 精工爱普生株式会社 Titanium sintered body, ornament and heat-resistant part
JP2017214643A (en) * 2016-03-29 2017-12-07 セイコーエプソン株式会社 Titanium sintered compact, ornament, and heat resistant component
JP2018104778A (en) * 2016-12-27 2018-07-05 勝義 近藤 Sintered cutter material and manufacturing method therefor
CN111363946A (en) * 2020-03-17 2020-07-03 新疆湘润新材料科技有限公司 Method for adding TiO2 into titanium alloy ingredients
CN112705720A (en) * 2020-12-24 2021-04-27 中国科学院过程工程研究所 Preparation method of low-oxygen titanium powder
WO2021171747A1 (en) * 2020-02-27 2021-09-02 東邦チタニウム株式会社 Method for manufacturing porous metal body, and porous metal body
CN114951695A (en) * 2022-04-27 2022-08-30 北京科技大学 Preparation method of high-strength high-plasticity double-phase pure titanium
WO2022202740A1 (en) * 2021-03-26 2022-09-29 国立研究開発法人物質・材料研究機構 Titanium alloy for supercritical water utilization device
CN115301950A (en) * 2022-08-11 2022-11-08 西北工业大学 Preparation method of high-oxygen-content industrial pure titanium with accurately controlled oxygen content
CN115386758A (en) * 2022-08-11 2022-11-25 西北工业大学 Preparation method of high-oxygen titanium rolled plate
CN117568642A (en) * 2023-12-25 2024-02-20 中南大学 Oxygen content regulation and control method for powder metallurgy titanium zirconium alloy

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625946A (en) * 1979-08-06 1981-03-12 Tech Res & Dev Inst Of Japan Def Agency Sintered titanium alloy excellent in strength
JPS6126704A (en) * 1984-07-16 1986-02-06 Toshiba Mach Co Ltd Heat insulating sintered material and its manufacture
US4964907A (en) * 1988-08-20 1990-10-23 Kawasaki Steel Corp. Sintered bodies and production process thereof
JPH04224601A (en) * 1990-12-25 1992-08-13 Tokyo Yogyo Co Ltd Manufacture of titanium-based composite material
JPH05171321A (en) * 1991-12-24 1993-07-09 Nkk Corp Titanium alloy for high density powder sintering
JPH05311300A (en) * 1991-10-25 1993-11-22 Nikko Kinzoku Kk Titanium material for key
JP2000129414A (en) * 1998-10-29 2000-05-09 Toyota Motor Corp Production of particle reinforced type titanium alloy
WO2001083838A1 (en) * 2000-05-02 2001-11-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy member
JP2002285268A (en) * 2001-03-26 2002-10-03 Toyota Central Res & Dev Lab Inc Titanium alloy and production method therefor
JP2003286507A (en) * 2002-03-27 2003-10-10 Seiko Epson Corp Method for manufacturing orthodontic member, and orthodontic member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625946A (en) * 1979-08-06 1981-03-12 Tech Res & Dev Inst Of Japan Def Agency Sintered titanium alloy excellent in strength
JPS6126704A (en) * 1984-07-16 1986-02-06 Toshiba Mach Co Ltd Heat insulating sintered material and its manufacture
US4964907A (en) * 1988-08-20 1990-10-23 Kawasaki Steel Corp. Sintered bodies and production process thereof
JPH04224601A (en) * 1990-12-25 1992-08-13 Tokyo Yogyo Co Ltd Manufacture of titanium-based composite material
JPH05311300A (en) * 1991-10-25 1993-11-22 Nikko Kinzoku Kk Titanium material for key
JPH05171321A (en) * 1991-12-24 1993-07-09 Nkk Corp Titanium alloy for high density powder sintering
JP2000129414A (en) * 1998-10-29 2000-05-09 Toyota Motor Corp Production of particle reinforced type titanium alloy
WO2001083838A1 (en) * 2000-05-02 2001-11-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy member
JP2002285268A (en) * 2001-03-26 2002-10-03 Toyota Central Res & Dev Lab Inc Titanium alloy and production method therefor
JP2003286507A (en) * 2002-03-27 2003-10-10 Seiko Epson Corp Method for manufacturing orthodontic member, and orthodontic member

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10307824B2 (en) 2014-01-10 2019-06-04 Katsuyoshi Kondoh Titanium powder, titanium material, and method for producing titanium powder containing solid-soluted oxygen
CN105899314A (en) * 2014-01-10 2016-08-24 近藤胜义 Titanium powder material, titanium material, and method for producing oxygen solid solution titanium powder material
JP6054553B2 (en) * 2014-01-10 2016-12-27 勝義 近藤 Oxygen solid solution titanium material, oxygen solid solution titanium powder material, and method for producing oxygen solid solution titanium powder material
JPWO2015105024A1 (en) * 2014-01-10 2017-03-23 勝義 近藤 Oxygen solid solution titanium material, oxygen solid solution titanium powder material, and method for producing oxygen solid solution titanium powder material
EP3093085A4 (en) * 2014-01-10 2017-09-20 Katsuyoshi Kondoh Titanium powder material, titanium material, and method for producing oxygen solid solution titanium powder material
WO2015105024A1 (en) 2014-01-10 2015-07-16 勝義 近藤 Titanium powder material, titanium material, and method for producing oxygen solid solution titanium powder material
WO2017077922A1 (en) * 2015-11-02 2017-05-11 勝義 近藤 Oxygen-solid-soluted titanium sintered compact and method for producing same
US20220080501A1 (en) * 2015-11-02 2022-03-17 Katsuyoshi Kondoh Oxygen solid solution titanium material sintered compact and method for producing same
US11213889B2 (en) 2015-11-02 2022-01-04 Katsuyoshi Kondoh Oxygen solid solution titanium material sintered compact and method for producing same
JPWO2017077922A1 (en) * 2015-11-02 2018-08-16 勝義 近藤 Oxygen solute titanium sintered body and method for producing the same
CN107234242A (en) * 2016-03-29 2017-10-10 精工爱普生株式会社 Titanium sintered body, ornament and heat-resistant part
US10934607B2 (en) * 2016-03-29 2021-03-02 Seiko Epson Corporation Titanium sintered body, ornament, and heat resistant component
JP2017214643A (en) * 2016-03-29 2017-12-07 セイコーエプソン株式会社 Titanium sintered compact, ornament, and heat resistant component
CN107234242B (en) * 2016-03-29 2021-07-30 精工爱普生株式会社 Titanium sintered compact, decorative article, and heat-resistant member
JP2018104778A (en) * 2016-12-27 2018-07-05 勝義 近藤 Sintered cutter material and manufacturing method therefor
EP4112207A4 (en) * 2020-02-27 2023-08-23 Toho Titanium Co., Ltd. Method for manufacturing porous metal body, and porous metal body
JP2021134396A (en) * 2020-02-27 2021-09-13 東邦チタニウム株式会社 Manufacturing method of porous metal body and porous metal body
WO2021171747A1 (en) * 2020-02-27 2021-09-02 東邦チタニウム株式会社 Method for manufacturing porous metal body, and porous metal body
JP7383524B2 (en) 2020-02-27 2023-11-20 東邦チタニウム株式会社 Method for manufacturing porous metal body and porous metal body
CN111363946A (en) * 2020-03-17 2020-07-03 新疆湘润新材料科技有限公司 Method for adding TiO2 into titanium alloy ingredients
CN112705720A (en) * 2020-12-24 2021-04-27 中国科学院过程工程研究所 Preparation method of low-oxygen titanium powder
WO2022202740A1 (en) * 2021-03-26 2022-09-29 国立研究開発法人物質・材料研究機構 Titanium alloy for supercritical water utilization device
CN114951695A (en) * 2022-04-27 2022-08-30 北京科技大学 Preparation method of high-strength high-plasticity double-phase pure titanium
CN115301950A (en) * 2022-08-11 2022-11-08 西北工业大学 Preparation method of high-oxygen-content industrial pure titanium with accurately controlled oxygen content
CN115386758A (en) * 2022-08-11 2022-11-25 西北工业大学 Preparation method of high-oxygen titanium rolled plate
CN115386758B (en) * 2022-08-11 2024-01-23 西北工业大学 Preparation method of high-oxygen titanium rolled plate
CN117568642A (en) * 2023-12-25 2024-02-20 中南大学 Oxygen content regulation and control method for powder metallurgy titanium zirconium alloy

Also Published As

Publication number Publication date
JP5760278B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5760278B2 (en) Titanium material and manufacturing method thereof
JP6054553B2 (en) Oxygen solid solution titanium material, oxygen solid solution titanium powder material, and method for producing oxygen solid solution titanium powder material
JP6261618B2 (en) Method for producing titanium material and nitrogen solid solution titanium powder material
US7767138B2 (en) Process for the production of a molybdenum alloy
JP4500916B2 (en) Magnesium alloy and manufacturing method thereof
JPWO2011152553A1 (en) Titanium alloy composite powder containing copper powder, chromium powder or iron powder, titanium alloy material using the same, and method for producing the same
Kondoh et al. EXPERIMENTAL AND THEORETICAL ANALYSIS OF NITROGEN SOLID-SOLUTION STRENGTHENING OF PM TITANIUM.
JP5709239B2 (en) Method for producing titanium matrix composite material and titanium matrix composite material produced by the method
US20220080501A1 (en) Oxygen solid solution titanium material sintered compact and method for producing same
CN112281039B (en) Ta-Hf-Zr-ZrB2Alloy bar and preparation method thereof
JP2014019945A (en) Titanium alloy and method for producing the same
Alshammari et al. Behaviour of novel low-cost blended elemental Ti–5Fe-xAl alloys fabricated via powder metallurgy
JP6885900B2 (en) Ti-Fe-based sintered alloy material and its manufacturing method
KR101590427B1 (en) Method of fabricating Ti-6Al-4V alloy
CN112522534B (en) Copper-titanium alloy containing eutectic structure and preparation method thereof
JP6669471B2 (en) Method for producing nitrogen solid solution titanium sintered body
JP4696263B2 (en) High strength and high ductility carbon steel and its manufacturing method
JP2776594B2 (en) Oxide-added intermetallic compound TiA-based alloy
JP2735331B2 (en) Intermetallic compound TiA ▲ -Fe-based alloy
JP2013204115A (en) Brass alloy sintering extruded material and manufacturing method thereof
JPH03197631A (en) Intermetallic compound tial-cr base alloy
JPH03150332A (en) Ti sintered alloy and its manufacture
KR20090018449A (en) Fabrication method of single-phased ru-base intermetallic compound for high temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150519

R150 Certificate of patent or registration of utility model

Ref document number: 5760278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250