JP2012241231A - Amorphous alloy with excellent corrosion resistance and excellent electrical conductivity, and use thereof - Google Patents

Amorphous alloy with excellent corrosion resistance and excellent electrical conductivity, and use thereof Download PDF

Info

Publication number
JP2012241231A
JP2012241231A JP2011112109A JP2011112109A JP2012241231A JP 2012241231 A JP2012241231 A JP 2012241231A JP 2011112109 A JP2011112109 A JP 2011112109A JP 2011112109 A JP2011112109 A JP 2011112109A JP 2012241231 A JP2012241231 A JP 2012241231A
Authority
JP
Japan
Prior art keywords
amorphous alloy
corrosion resistance
alloy according
amorphous
electrical conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011112109A
Other languages
Japanese (ja)
Other versions
JP5875254B2 (en
Inventor
Takao Kurahashi
隆郎 倉橋
Tsunehiro Mimura
恒裕 三村
Kenji Amitani
健児 網谷
Yasunori Saotome
康典 早乙女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nakayama Steel Works Ltd
Original Assignee
Tohoku University NUC
Nakayama Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nakayama Steel Works Ltd filed Critical Tohoku University NUC
Priority to JP2011112109A priority Critical patent/JP5875254B2/en
Priority to PCT/JP2012/062682 priority patent/WO2012157712A1/en
Publication of JP2012241231A publication Critical patent/JP2012241231A/en
Application granted granted Critical
Publication of JP5875254B2 publication Critical patent/JP5875254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To make an amorphous alloy which can resolve the problem of combining corrosion resistance and electrical conductivity and which exhibits ductility and is useful as a regular industrial material applicable to various fields.SOLUTION: The amorphous alloy contains at least 66 at% of Ni and, for example, 5-25 at% of B as a semimetal. It is preferable that the amorphous alloy contains Mo and Nb as additional major elements, and further contains Cu in some cases. The amorphous alloy does not form any passive film, but exhibits corrosion resistance on the basis of the electrical double layer theory.

Description

請求項に係る発明は、工業用材料として大量に使用できる、電気2重層による耐食性と通電性を兼ね備えたアモルファス合金に関するものである。   The claimed invention relates to an amorphous alloy that can be used in a large amount as an industrial material and has both corrosion resistance and electrical conductivity due to an electric double layer.

アモルファス合金が世に出て50年近くになり、高耐食性を持つ組成も多く発見されているが、この特性は、表面に安定した不動態皮膜を形成することによるものである。不動態は通電性が悪いため、これらは耐食性と通電性が同時に求められる環境での使用には適していない。今回はこの物性課題に取り込み解決したものである。   Amorphous alloys have been on the market for nearly 50 years, and many compositions with high corrosion resistance have been discovered. This property is due to the formation of a stable passive film on the surface. Passivation has poor electrical conductivity, so these are not suitable for use in environments where corrosion resistance and electrical conductivity are required simultaneously. This time, this physical property problem has been incorporated and solved.

Fe-Cr系、Fe-Cr-Mo系等Fe基のアモルファス合金は優れた耐食性を持っている。従って、古くから研究され多くの論文や特許がある。その代表的なものはFe-Cr-Mo-P 系の特許第3805601である。アモルファス化する為の半金属は高耐食性の不動態形成に役立つP(論文;橋本功二、非晶質ステンレス、日本金属学会報、第8巻、第5号(1979)、を参照)が主体である。其の形態はP-C、P-Bが主なものである。さらにCr量がat%で25以上と、Moのat%で7以上との組み合わせでは、王水の1カ月間、常温浸漬試験でも腐食0に近い、卓越した高耐食性を有する(特開2009-270152号公報を参照)。
上記で報告されているように、高耐食性を持つアモルファス合金は、Crが濃化した不動態を形成する。
Fe-based amorphous alloys such as Fe-Cr and Fe-Cr-Mo have excellent corrosion resistance. Therefore, there are many papers and patents that have been studied since ancient times. Its typical are patent No. 3805601 of the Fe-Cr-Mo-P system. The semi-metals for amorphization mainly consist of P (refer to the paper; Koji Hashimoto, Amorphous Stainless Steel, Journal of the Japan Institute of Metals, Vol. 8, No. 5 (1979)), which is useful for forming a highly corrosion-resistant passive state. It is. The main forms are PC and PB. Furthermore, when the Cr content is 25 or more at% and 7 or more at the Mo at%, it has excellent corrosion resistance that is close to zero corrosion even in the room temperature immersion test for 1 month for aqua regia (JP2009- 270152).
As reported above, amorphous alloys with high corrosion resistance form a Cr-enriched passivation.

Fe基以外では、Ni基アモルファス合金も研究され、高耐食性と延性が良いとされて、多くの特許文献がだされてきた。
たとえば特許文献1・2により、Ni-Cr-P-B系アモルファスの希塩酸への耐食性が報告されている。
又最近では、特許文献3・4がある。特に特許文献3は「高強度、高耐食性Ni基アモルファス合金」として広い範囲での成分を開示している。すなわち、Ni(80-w-x-y)NbCrMoyP20-zBzで0.1≦W≦10、4≦X≦18、3≦Y≦12、4≦Z ≦6の範囲となっている。
Other than Fe-based materials, Ni-based amorphous alloys have been studied, and high patent resistance and ductility are considered good, and many patent documents have been issued.
For example, Patent Documents 1 and 2 report the corrosion resistance of Ni—Cr—PB amorphous to dilute hydrochloric acid.
Recently, there are Patent Documents 3 and 4. In particular, Patent Document 3 discloses a wide range of components as “high strength, high corrosion resistance Ni-based amorphous alloy”. That is, a Ni (80-wxy) Nb w Cr x Mo y P 20-z B z with 0.1 ≦ W ≦ 10,4 ≦ X ≦ 18,3 ≦ Y ≦ 12,4 ≦ range of Z ≦ 6 .

特開昭60-002641号公報JP 60-002641 A 特開昭61-243142号公報JP-A-61-243142 特開2001-049407号公報Japanese Patent Laid-Open No. 2001-049407 特開平8-225901号公報JP-A-8-225901

これ等多くの文献に記載のNi基アモルファス合金は、半金属がP-B、P-C、P-Siの組み合わせが多く、合金も上記成分比率を変えたものが多い。最近は燃料電池のセパレーター用としてNi80-x-Crx-P16-B4が多く紹介されている。又1960〜1970年代ではNi-Cr-Bのものも紹介されている。
これらのNi基アモルファス合金は、Crが濃化した不動態により高耐食性を発揮するために、通電性が悪い。そのため、通電性が必要な用途での使用に適さない。
Many of these Ni-based amorphous alloys described in the literature have many combinations of PB, PC, and P—Si as semimetals, and many alloys also have the above-mentioned component ratios changed. Recently, many Ni 80-x -Cr x -P 16 -B 4 have been introduced as fuel cell separators. In the 1960s and 1970s, Ni-Cr-B products were also introduced.
Since these Ni-based amorphous alloys exhibit high corrosion resistance due to the passivated Cr, they have poor electrical conductivity. Therefore, it is not suitable for use in applications that require electrical conductivity.

そこで、本発明では、不動態を形成しない材料ということを前提に、下記のような特性を有するアモルファス合金を作製する。
・耐食性に優れていること: 浸漬試験及び定電位電解電流密度測定などでSUS316Lよりも優れていることを確認する。
・通電性に優れること: 接触抵抗の測定により、不動態を形成する材料(SUS316L)よりも低い抵抗値を持っていることを確認する。
・さらに、好ましくは延性に優れていること: 延性評価指数(後述する密着曲げ試験による)で4以上であることを確認する。
Therefore, in the present invention, an amorphous alloy having the following characteristics is manufactured on the assumption that the material does not form a passive state.
・ Excellent corrosion resistance: Confirm that it is superior to SUS316L by immersion test and constant potential electrolytic current density measurement.
・ Excellent electrical conductivity: Confirm that the resistance value is lower than that of the material that forms passivity (SUS316L) by measuring contact resistance.
-Furthermore, preferably it is excellent in ductility: It is confirmed that the ductility evaluation index (according to the adhesion bending test described later) is 4 or more.

本発明のアモルファス合金は、不動態皮膜を形成することなく、電気2重層を構成することにより耐食性を発揮するものであることを特徴とする。
不動態皮膜は高い耐食性を有するが、強固な絶縁体でもある。本発明のアモルファス合金は、不動態を形成しないで電気2重層を構成することにより耐食性を発揮するため、耐食性とともにすぐれた通電性を有することとなる。電気2重層に基づく耐食性は、アモルファス合金の表面に不動態皮膜を形成するのではなく、固体・液体間の界面にある狭い範囲の液相中に電気抵抗の高い部分を形成して耐食性を発揮するものである。その場合、不動態のような高絶縁性の皮膜を有しないので接触抵抗は低く、したがって通電性はきわめて良好である。電気2重層に基づく耐食性を具備させるには、アモルファス合金の成分系をたとえば下記のようにするのがよい。
The amorphous alloy of the present invention is characterized by exhibiting corrosion resistance by forming an electric double layer without forming a passive film.
Passive films have high corrosion resistance but are also strong insulators. Since the amorphous alloy of the present invention exhibits corrosion resistance by forming an electric double layer without forming a passive state, it has excellent current resistance as well as corrosion resistance. Corrosion resistance based on the electric double layer does not form a passive film on the surface of the amorphous alloy, but exhibits corrosion resistance by forming a portion with high electrical resistance in a narrow liquid phase at the interface between solid and liquid. To do. In that case, since it does not have a highly insulating film such as a passive film, the contact resistance is low, and therefore, the electrical conductivity is very good. In order to provide corrosion resistance based on the electric double layer, the component system of the amorphous alloy is preferably as follows, for example.

発明のアモルファス合金は、Crを含有しないようにするとよい。Crはその酸化物が不動態を形成しやすいことを考慮し、不動態によらない耐食性を具備させるためである。   The amorphous alloy of the present invention should not contain Cr. This is because Cr is provided with corrosion resistance that does not depend on the passive state, considering that the oxide easily forms a passive state.

発明のアモルファス合金については、さらに、Niを66at%以上含有し、さらにMo、NbおよびBを含有するようにするとよい。
アモルファス合金について上記のようにCrを含有させないとすると、電気2重層に基づくこととしてもあらゆる薬品に対して高い耐食性が必ず発揮されるわけではない。しかし、ここに示すようにNiを66at%以上含有させ、Mo、NbおよびBをも含めるようにすると、塩酸(35%)、硫酸(98%)、苛性ソーダ(45%)など高濃度の薬品に対して優れた耐食性を有するものとなる。
また、さらに微量のCuを含有するようにすると、耐食性の点で一層好ましい。
The amorphous alloy of the present invention may further contain 66 at% or more of Ni and further contain Mo, Nb and B.
If the amorphous alloy does not contain Cr as described above, high corrosion resistance is not necessarily exhibited for all chemicals even if it is based on an electric double layer. However, as shown here, if Ni is contained at 66at% or more and Mo, Nb and B are also included, it will become a high concentration chemical such as hydrochloric acid (35%), sulfuric acid (98%), caustic soda (45%). On the other hand, it has excellent corrosion resistance.
Further, it is more preferable in terms of corrosion resistance to contain a trace amount of Cu.

また、アモルファス化のための半金属としてBを含有し、Pを含有しないようにするとさらに好ましい。
アモルファス化のための半金属としてPを含有する場合、このPが不動態の形成を招きやすいほか、水素吸収をするため、時間を経て遅れ破壊を誘発しがちである。その点、当該半金属としてBを含有させPを含めないなら、不動態を形成させにくいうえ遅れ破壊が発生しない。また、Pを含有しないこととすると、その僅かなコンタミをも嫌うIC基板の洗浄機器等にも使用することが可能になる。
Further, it is more preferable that B is contained as a semimetal for amorphization and P is not contained.
When P is contained as a semimetal for amorphization, this P tends to cause formation of a passive state, and also tends to induce delayed fracture over time because it absorbs hydrogen. In that respect, if B is contained as the metalloid and P is not included, it is difficult to form a passive state and delayed fracture does not occur. Further, if it does not contain P, it can be used for an IC substrate cleaning device or the like that also dislikes slight contamination.

発明のアモルファス合金は、以下に示す成分系とするのがとくに好ましい。
a) 成分系Ni100-x-y-zMoxNbyBzで示され、Niの量が66at%≦Niであり、他の成分量を示すx、y、zが0.1at%≦x≦15at%、0.1at%≦y≦15at%、5at%≦z≦25at%であるもの。
b) 成分系Ni100-v-x-y-zMovNbxCuyBzで示され、Niの量が66at%≦Niであり、他の成分量を示すv、x、y、zが0.1at%≦v≦15at%、0.1at%≦x≦15at%、0.1at%≦y≦5at%、5at%≦z≦25at%であるもの。
これら成分系のアモルファス合金は、不動態形成によるのではなく電気2重層の原理によって高い耐食性を発揮し、したがって通電性にも優れている。高い延性を有する点でも好ましい。
It is particularly preferable that the amorphous alloy of the invention has the following component system.
a) It is represented by the component system Ni 100-xyz Mo x Nb y B z , the amount of Ni is 66 at% ≦ Ni, and x, y, z indicating other component amounts are 0.1 at% ≦ x ≦ 15 at%, 0.1at% ≦ y ≦ 15at%, 5at% ≦ z ≦ 25at%.
b) Component system Ni 100-vxyz Mo v Nb x Cu y B z , the amount of Ni is 66 at% ≦ Ni, and other component amounts v, x, y, z are 0.1 at% ≦ v ≤15at%, 0.1at% ≤x≤15at%, 0.1at% ≤y≤5at%, 5at% ≤z≤25at%.
These component-based amorphous alloys exhibit high corrosion resistance based on the principle of an electric double layer, not by passive formation, and are therefore excellent in electrical conductivity. It is also preferable in that it has high ductility.

発明のアモルファス合金は、耐食性と通電性が要求される固体高分子型燃料電池(PEFC)セパレータに使用するのに適している。
固体高分子型燃料電池のセパレータは、その燃料電池においてガス(燃料・空気)や水の流路を作り、且つ電気を流すためのものであり、80〜100℃の酸性水溶液に接する環境で使用されることから、高い耐食性と通電性とが要求される。発明のアモルファス合金は上記のとおり耐食性と通電性に優れるため、かかるセパレータ(またはセパレータの表面部分)を構成するのに絶好の特性を有しているといえる。
The amorphous alloy of the invention is suitable for use in a polymer electrolyte fuel cell (PEFC) separator that requires corrosion resistance and electrical conductivity.
The polymer electrolyte fuel cell separator is used to create gas (fuel / air) and water flow paths in the fuel cell and to conduct electricity, and is used in an environment where it is in contact with an acidic aqueous solution at 80 to 100 ° C. Therefore, high corrosion resistance and electrical conductivity are required. Since the amorphous alloy of the invention is excellent in corrosion resistance and electrical conductivity as described above, it can be said that it has excellent characteristics for constituting such a separator (or a surface portion of the separator).

また、発明のアモルファス合金は、高温環境での耐食材(高温薬液取扱い装置の材料等)とするのに適している。
高温(100℃程度以上)であって腐食性の強い環境下においても、十分な耐食性を発揮し得るからである。なお、高温環境での耐食材として、たとえば薬液の加熱に使用する熱交換器または反応容器等がある。
The amorphous alloy of the invention is suitable for use as a corrosion-resistant material in a high-temperature environment (such as a material for a high-temperature chemical solution handling apparatus).
This is because sufficient corrosion resistance can be exhibited even in a high temperature (about 100 ° C. or higher) and highly corrosive environment. In addition, as a corrosion-resistant material in a high temperature environment, there exist a heat exchanger used for the heating of a chemical | medical solution, a reaction container, etc., for example.

本発明のアモルファス合金にはつぎのような特徴をもたせることができる。すなわち、
・ 高延性の確保
ただし、Ni-Mo-Nb-Bを主成分とするアモルファス合金で、Nbの含有率を上げると延性は失われていく。Nbを8at%以上含有しながら延性を確保するためには、Mo、Bの含有率のバランスが重要となる(図2参照)。
The amorphous alloy of the present invention can have the following characteristics. That is,
・ Ensuring high ductility However, in an amorphous alloy mainly composed of Ni-Mo-Nb-B, the ductility is lost when the Nb content is increased. In order to ensure ductility while containing Nb in an amount of 8 at% or more, it is important to balance the contents of Mo and B (see FIG. 2).

・ 高耐食性の確保
不動態の形成を避けるために、Crを含有しないアモルファス合金とした。ph=1硫酸への耐食性にはNbが効果的である。また、Ni-Mo-Nb-B系アモルファス合金へのCuの添加も、耐食性を向上させるのに有効である。高耐食性を確認するための試験として、後述のように硫酸浸漬にともなう重量減少の測定、直流抵抗値変化の測定および定電位電解電流密度変化の測定を行った(図3、図5、図6参照)。
なお、それぞれの成分の役割はつぎのとおりである。
Mo;還元性環境での耐食性を向上、多く入れると延性を損なう。
Nb;耐食性に優れ、Moと組み合わせると更に耐食性を向上させる。
但し、多く入れると延性を損なう。
Cu;微量添加により、耐食性を向上させる。
B;非晶質形成能を上げる半金属。耐食性には直接影響しない。
これら成分系でのアモルファス合金において、還元性環境の希硫酸に対応した成分系として、
Ni-Mo-Nb-B、Ni-Mo-Nb-Cu-B
が好ましい。
また、不動態で耐食性を発揮するものは、高温(100℃程度以上の)薬液では不動態が破壊されるため耐食性が大きく低下する。電気2重層の原理で耐食性を発揮するものは、それとは異なる違いを確認できる(図7参照)。
・ Ensuring high corrosion resistance In order to avoid the formation of passivity, an amorphous alloy containing no Cr was used. Nb is effective for corrosion resistance to ph = 1 sulfuric acid. In addition, addition of Cu to the Ni—Mo—Nb—B based amorphous alloy is also effective in improving the corrosion resistance. As a test for confirming high corrosion resistance, as described later, measurement of weight loss due to sulfuric acid immersion, measurement of DC resistance value change, and measurement of constant potential electrolytic current density change were performed (FIGS. 3, 5, and 6). reference).
The role of each component is as follows.
Mo: Improves corrosion resistance in a reducing environment.
Nb: Excellent corrosion resistance. When combined with Mo, corrosion resistance is further improved.
However, if more are added, ductility is impaired.
Cu; Corrosion resistance is improved by adding a small amount.
B: A semi-metal that increases the ability to form amorphous materials. Does not directly affect corrosion resistance.
In amorphous alloys with these component systems, as a component system corresponding to dilute sulfuric acid in a reducing environment,
Ni-Mo-Nb-B, Ni-Mo-Nb-Cu-B
Is preferred.
In addition, those that are passive and exhibit corrosion resistance are greatly deteriorated in corrosion resistance because the passive state is destroyed at high temperature (about 100 ° C. or higher). It is possible to confirm a difference from the one that exhibits corrosion resistance by the electric double layer principle (see FIG. 7).

・ 通電性の確保
本発明については、接触抵抗測定により通電性を評価した(図8参照)。発明材はCrを含有しておらず、通電性を悪化する不動態を形成していないため、SUS316Lよりも1/3以下の小さな値であり、グラファイトに近い値となっている。よって、高い通電性が期待できる。
-Ensuring electric conductivity About this invention, the electric conductivity was evaluated by contact resistance measurement (refer FIG. 8). Since the inventive material does not contain Cr and does not form a passive state that deteriorates the electrical conductivity, the value is 1/3 or less smaller than SUS316L, which is close to that of graphite. Therefore, high electrical conductivity can be expected.

本発明のアモルファス合金は、耐食性、通電性が共に優れ、また延性も高くすることができる優れたものであり、適用範囲の広い本格的な工業用材料としての展開が可能である。   The amorphous alloy of the present invention is excellent in both corrosion resistance and electrical conductivity and can be improved in ductility, and can be developed as a full-scale industrial material with a wide application range.

作製したアモルファスリボンについてのX線回折プロファイルである。It is an X-ray diffraction profile about the produced amorphous ribbon. アモルファスリボンにおける延性評価指数との関係を示す線図である。It is a diagram which shows the relationship with the ductility evaluation index | exponent in an amorphous ribbon. アモルファスリボンの80℃硫酸における重量変化を示す線図である。It is a diagram which shows the weight change in 80 degreeC sulfuric acid of an amorphous ribbon. インピーダンス測定の解析に用いた等価回路である。It is an equivalent circuit used for analysis of impedance measurement. アモルファスリボンのインピーダンス測定における皮膜の直流抵抗値を示す線図である。It is a diagram which shows the direct current | flow resistance value of the film | membrane in the impedance measurement of an amorphous ribbon. アモルファスリボンの80℃硫酸(ph=1)における定電位電解電流密度を示す線図である。It is a diagram which shows the constant potential electrolysis current density in 80 degreeC sulfuric acid (ph = 1) of an amorphous ribbon. アモルファスの常温5%燐酸及び140℃85%燐酸への浸漬腐食減量を示す線図である。FIG. 4 is a diagram showing immersion corrosion weight loss in amorphous room temperature 5% phosphoric acid and 140 ° C. 85% phosphoric acid. アモルファスリボンの接触抵抗値を示す線図である。It is a diagram which shows contact resistance values, such as an amorphous ribbon.

発明によるアモルファス合金は、冷却されたロールを1個もしくは2個使用するいわゆる単ロール法もしくは双ロール法によって製造することができ、または、金属粉末を溶融させる火炎の周囲に冷却ガスを吹き付ける急冷機能付きの溶射装置を使用する溶射法によって製造することができる。   The amorphous alloy according to the invention can be produced by a so-called single roll method or twin roll method using one or two cooled rolls, or a quenching function in which a cooling gas is blown around a flame for melting metal powder It can manufacture by the thermal spraying method using a thermal spraying apparatus with a mark.

発明者らは、アモルファス合金からなるリボン(金属薄片)を、以下の手順により単ロール法で作製した。すなわち、表1に示す各アモルファス合金について、まず、該当する各成分の純金属と半金属との混合物をAr雰囲気中で高周波加熱で溶解し、Cu製の鋳型で鋳造して母合金を得た。その母合金を、再度Ar雰囲気中の高周波加熱で溶解し、回転しているCu製の単ロール表面に吹きつけてアモルファスリボンを得た。アモルファスリボンの厚みは、上記単ロールの回転数を変えることにより、25μmおよび50μmとした。そのリボンがアモルファスであることについては、X線回折でハローピークを観察することにより(図1参照)確認した。   The inventors produced a ribbon (metal flake) made of an amorphous alloy by the single roll method according to the following procedure. That is, for each amorphous alloy shown in Table 1, first, a mixture of pure metal and semimetal of each corresponding component was melted by high-frequency heating in an Ar atmosphere, and cast with a Cu mold to obtain a master alloy. . The mother alloy was again melted by high frequency heating in an Ar atmosphere and sprayed onto the rotating single roll surface of Cu to obtain an amorphous ribbon. The thickness of the amorphous ribbon was set to 25 μm and 50 μm by changing the rotation speed of the single roll. The ribbon was confirmed to be amorphous by observing a halo peak by X-ray diffraction (see FIG. 1).

[延性の確認]
上記で作製した各アモルファスリボンについて180°の密着曲げ試験を行い、リボンの割れ発生の有無により、各アモルファス合金に関する延性の評価を行った。その結果を、上記の表1に併せて示す。なお、延性の評価指数は、以下の基準にしたがい1〜4のいずれかで表す。
評価指数1:25μm厚リボンで密着曲げ×
評価指数2:50μm厚リボンで密着曲げ×
評価指数3:50μm厚リボンで密着曲げ△
評価指数4:50μm厚リボンで密着曲げ○
また、密着曲げ○、△、×の判定は以下の基準に従う。
×:リボン全長の100%で割れ発生
△:リボン全長の50%で割れ発生
○:リボン全長の100%で割れ発生せず
[Confirmation of ductility]
Each amorphous ribbon produced above was subjected to a 180 ° adhesion bending test, and the ductility of each amorphous alloy was evaluated based on whether or not the ribbon was cracked. The results are also shown in Table 1 above. The ductility evaluation index is represented by any one of 1 to 4 according to the following criteria.
Evaluation index 1: Adhesive bending with 25μm thick ribbon ×
Evaluation index 2: Adhesion bending with 50μm thick ribbon ×
Evaluation index 3: Adhesive bending with 50μm thick ribbon △
Evaluation index 4: Adhesive bending with 50μm thick ribbon ○
Moreover, the determination of contact | adherence bending (circle), (triangle | delta), and x follows the following references | standards.
×: Cracking occurred at 100% of the total ribbon length △: Cracking occurred at 50% of the total ribbon length ○: No cracking occurred at 100% of the total ribbon length

[耐食性の確認(1)]
上記で作製した各アモルファスリボンについて、常温でph=1硫酸への浸漬試験を行った。そのリボンの重量変化を経過観測して、減量率で腐食板厚(減厚量)を算定し、耐食性の評価を行った。その結果を表1に示す。

Figure 2012241231
なお、表1の浸漬試験で使用したアモルファスリボンの厚さは25ミクロンである。H-2(SUS316L)のみバルクで浸漬試験を実施した。
図2は、リボンサンプル(Ni87-x-yMoxNbyB13)の延性を整理したものである。図中の○内数字は、延性評価指数を示し、斜線域は、表1の耐食性評価で減厚量<5(μm/年)であった組成を示す。これより、延性評価指数4を得るための組成が明らかになった。Ni-Mo-Nb-Bを主成分とするアモルファス合金で、Nbの含有率を上げると延性は失われていく。Nbを8at%以上含有しながら延性を確保するためには、Mo、Bの含有率のバランスが重要となる。 [Confirmation of corrosion resistance (1)]
Each amorphous ribbon produced above was subjected to an immersion test in ph = 1 sulfuric acid at room temperature. The change in weight of the ribbon was observed, the corrosion plate thickness (thickness reduction) was calculated by the weight loss rate, and the corrosion resistance was evaluated. The results are shown in Table 1.
Figure 2012241231
In addition, the thickness of the amorphous ribbon used in the immersion test of Table 1 is 25 microns. Only H-2 (SUS316L) was subjected to immersion test in bulk.
Figure 2 is obtained by organizing the ductility of the ribbon sample (Ni 87-xy Mo x Nb y B 13). The numbers in circles in the figure indicate the ductility evaluation index, and the hatched area indicates the composition whose thickness reduction was <5 (μm / year) in the corrosion resistance evaluation of Table 1. From this, the composition for obtaining the ductility evaluation index 4 became clear. It is an amorphous alloy mainly composed of Ni-Mo-Nb-B, and the ductility is lost when the Nb content is increased. In order to ensure ductility while containing Nb in an amount of 8 at% or more, the balance of the contents of Mo and B is important.

[耐食性の確認(2)]
Cu含有、Cu無添加の2試料で、濃度0.1N、1Nの80℃硫酸にて浸漬試験を行った。調査試料は、上記で常温ph=1硫酸への耐食性が認められた組成の一部で、[at%]でNi72Mo4.5Nb10B13Cu0.5(以下Cu含有)とNi72.5Mo4.5Nb10B13(以下Cu無添加)の2種類である。
ここでは、リボンサンプルの重量変化を調査し、測定時間は240h(10日)とした。その結果が図3に示されており、縦軸の腐食量はリボンサンプルの重量減少量を示している。腐食量の少ないものがより耐食性があると言える。4条件の結果ともに優れた耐食性であるが、各硫酸濃度共に、Cu含有試料でより高い耐食性を示す。
[Confirmation of corrosion resistance (2)]
An immersion test was performed with 80 ° C. sulfuric acid having a concentration of 0.1N and 1N on two samples containing and not containing Cu. The survey sample is a part of the composition where corrosion resistance to sulfuric acid at normal temperature ph = 1 was observed in the above, and [at%] Ni 72 Mo 4.5 Nb 10 B 13 Cu 0.5 (hereinafter referred to as Cu) and Ni 72.5 Mo 4.5 Nb 10 B 13 (hereinafter Cu-free).
Here, the change in the weight of the ribbon sample was investigated, and the measurement time was 240 h (10 days). The result is shown in FIG. 3, and the amount of corrosion on the vertical axis indicates the amount of weight reduction of the ribbon sample. It can be said that those with less corrosion are more corrosion resistant. The results of the four conditions are both excellent in corrosion resistance, but each sulfuric acid concentration shows higher corrosion resistance in the Cu-containing sample.

[耐食性の確認(3)]
インピーダンス測定により、前記したCu含有、Cu無添加の2試料で、皮膜の直流抵抗を求めた。試験片は、厚さ1mmの塩ビ板で貼付け補強を施し、自由表面側を測定対象とした。対極には、20mm角の白金板を使用し、試験片との距離は約15mmに設置した。測定温度は25℃で、硫酸濃度は0.1N、1Nの2種類とした。各硫酸濃度共に、80℃で同濃度の硫酸に10時間浸漬した前後で測定を実施した。このとき、10日間浸漬後の測定では、新しい25℃硫酸でインピーダンス測定を行った。測定装置は、Princeton Applied Reserch社製のPAR-STAT-2273を使用。測定では、1,000,000〜0.01[Hz]の範囲を対数値で40点に分割した各周波数の交流を印加し、インピーダンス値と位相の差を断続的に測定した。また解析には、図4に示す等価回路によりR1、R2、Cを算出した。
図5は、上記インピーダンス測定で得られたR2(皮膜の直流抵抗。図4参照)を示している。耐食性の指標はR1およびR2で、これらの値が大きいと電流密度が低下し、耐食性が大きいと言える。高Cr含有不動態により耐食性を持つ場合は、R1の値が大きくなるが、電気2重層による耐食システムを示すものはR2の値が大きくなる。R1については、全測定でR2の1/30以下の値でしかなかったため、ここでは示していない。
図5によると、Cu含有試料で、各硫酸濃度共に、浸漬前後で安定した値となっている。ここで特筆すべきは、皮膜の直流抵抗値の高さである。不動態皮膜形成で耐食性を持つ材料の場合、この測定で、皮膜外回路の直流抵抗値R1が高いが、開発材では逆の結果となっている。このような結果は、一般的には電気2重層と言われる呼ばれる構造を持つ場合に得られるものである。開発材の耐食性も、この効果によるものと判断できる。この事象は、コンデンサ等では実用化されているが、これまでアモルファス合金で確認されたことはなかった。
[Confirmation of corrosion resistance (3)]
The impedance was measured to determine the direct current resistance of the film using the two samples containing Cu and not containing Cu. The test piece was affixed and reinforced with a 1 mm thick vinyl chloride plate, and the free surface side was the measurement target. A 20 mm square platinum plate was used as the counter electrode, and the distance from the test piece was set at about 15 mm. The measurement temperature was 25 ° C. and the sulfuric acid concentration was 0.1N and 1N. Each sulfuric acid concentration was measured before and after being immersed in sulfuric acid of the same concentration at 80 ° C. for 10 hours. At this time, in the measurement after immersion for 10 days, impedance measurement was performed with fresh 25 ° C. sulfuric acid. The measuring device is PAR-STAT-2273 manufactured by Princeton Applied Reserch. In the measurement, alternating current of each frequency obtained by dividing the range of 1,000,000 to 0.01 [Hz] into 40 points by logarithmic values was applied, and the difference between the impedance value and the phase was measured intermittently. In the analysis, R1, R2, and C were calculated using the equivalent circuit shown in FIG.
FIG. 5 shows R2 (the DC resistance of the film, see FIG. 4) obtained by the impedance measurement. The index of corrosion resistance is R1 and R2, and when these values are large, the current density decreases and it can be said that the corrosion resistance is large. The value of R1 increases when it has corrosion resistance due to high Cr-containing passivation, but the value of R2 increases when it shows a corrosion resistant system with an electric double layer. R1 is not shown here because it was only 1/30 or less of R2 in all measurements.
According to FIG. 5, in the Cu-containing sample, each sulfuric acid concentration is a stable value before and after immersion. What should be noted here is the height of the DC resistance of the film. In the case of a material having corrosion resistance due to formation of a passive film, the DC resistance value R1 of the circuit outside the film is high in this measurement, but the reverse result is obtained for the developed material. Such a result is obtained when a structure called an electric double layer is generally used. The corrosion resistance of the developed material can also be judged to be due to this effect. This phenomenon has been put to practical use in capacitors and the like, but has never been confirmed with amorphous alloys.

[耐食性の確認(4)]
1Vの電位負荷状態での電流密度を測定した。薬液は、ph=1の80℃硫酸で、80000秒以上の連続測定を行った。ここでも試料は、前記したCu含有、Cu無添加の2試料を用いた。試験片、対極、試験装置は、インピーダンス測定と同じである。結果は図6に示す。腐食減量は電流密度と相関があるため、電流密度が低い方が耐食性があると言える。なお、SUS316Lでは同条件試験で、1〜10μmという結果も出ている。本調査材は、共に、SUS316Lよりも耐食性が良いと言える。
[Confirmation of corrosion resistance (4)]
The current density was measured at a potential load of 1V. The chemical solution was 80 ° C. sulfuric acid with ph = 1, and continuous measurement was performed for 80,000 seconds or more. Here again, the two samples containing Cu and not containing Cu were used. A test piece, a counter electrode, and a test apparatus are the same as impedance measurement. The results are shown in FIG. Since corrosion weight loss correlates with current density, it can be said that the lower the current density, the better the corrosion resistance. In SUS316L, a result of 1 to 10 μm is also obtained in the same condition test. Both of the survey materials can be said to have better corrosion resistance than SUS316L.

[耐食性の確認(5)]
Ni63Cr20B17とNi66Mo15B19のリボンで、浸漬試験を行い、耐食性の確認を行った。浸漬に用いた薬液は、5%燐酸(常温)と85%燐酸(140℃)の2種類とし、浸漬時間は、各々7日と600時間とした。図7は、浸漬前リボンの厚さと浸漬時の重量変化より換算した年間厚さ減量を示している。
Ni63Cr20B17は、不動態により耐食性を発揮しており、5%燐酸(常温)では腐食減量を確認できなかったが、85%燐酸(140℃)では急激に耐食性が悪化する。これは従来より言われているように、高温薬液により不動態が破壊されるためと予想される。対してNi66Mo15B19では、85%燐酸(140℃)でも、5%燐酸(常温)と比べてそれほど大きな悪化を見せていない。これは、電気2重層による耐食性が、不動態と比較して、温度への耐性が強いことを示している。
[Confirmation of corrosion resistance (5)]
An immersion test was conducted on Ni 63 Cr 20 B 17 and Ni 66 Mo 15 B 19 ribbons to confirm corrosion resistance. The chemicals used for the immersion were two types of 5% phosphoric acid (room temperature) and 85% phosphoric acid (140 ° C.), and the immersion times were 7 days and 600 hours, respectively. FIG. 7 shows the annual thickness reduction converted from the thickness of the ribbon before immersion and the change in weight during immersion.
Ni 63 Cr 20 B 17 exhibits corrosion resistance due to passivation. Corrosion loss could not be confirmed with 5% phosphoric acid (room temperature), but the corrosion resistance deteriorates rapidly with 85% phosphoric acid (140 ° C.). This is expected because the passive state is destroyed by the high-temperature chemical solution, as has been said conventionally. On the other hand, in Ni 66 Mo 15 B 19 , even 85% phosphoric acid (140 ° C.) does not show much deterioration compared with 5% phosphoric acid (room temperature). This indicates that the resistance to corrosion due to the electric double layer is more resistant to temperature than the passive state.

[通電性の確認]
接触抵抗は、金の板を試験片面にあて1[ A/cm2]の定電流を流すことで発生する電圧降下量を測定し、オームの法則に基づいて抵抗を導出する方法で実施した。金の板と、試験片との接触面積は、1cm2である。このときの加圧力は5MPaとした。結果は図8に示し、比較のため、SUS316Lとグラファイトの値も記載する。接触抵抗は、材料を重ね合わせた際の通電性を評価する指標となり、小さい方がより通電性が良いと判断できる。
[Confirmation of electrical conductivity]
The contact resistance was measured by measuring the amount of voltage drop generated by applying a constant current of 1 [A / cm 2 ] to a test piece against a gold plate and deriving the resistance based on Ohm's law. The contact area between the gold plate and the test piece is 1 cm 2 . The pressing force at this time was 5 MPa. The results are shown in FIG. 8, and the values of SUS316L and graphite are also shown for comparison. The contact resistance is an index for evaluating the conductivity when the materials are overlapped, and it can be determined that the smaller the resistance, the better the conductivity.

Claims (11)

不動態皮膜を形成することなく、電気2重層を構成することにより耐食性を発揮することを特徴とするアモルファス合金。   An amorphous alloy characterized by exhibiting corrosion resistance by forming an electric double layer without forming a passive film. Crを含有しないことを特徴とする請求項1に記載したアモルファス合金。   The amorphous alloy according to claim 1, which does not contain Cr. Niを66at%以上含有し、さらにMo、NbおよびBを含有することを特徴とする請求項2に記載したアモルファス合金。   3. The amorphous alloy according to claim 2, wherein Ni is contained at 66 at% or more and Mo, Nb and B are further contained. アモルファス化のための半金属としてBを含有し、Pを含有しないことを特徴とする請求項3に記載したアモルファス合金。   4. The amorphous alloy according to claim 3, wherein B is contained as a semimetal for amorphization and P is not contained. さらにCuを含有することを特徴とする請求項3または4に記載したアモルファス合金。   The amorphous alloy according to claim 3 or 4, further comprising Cu. 成分系Ni100-x-y-zMoxNbyBzで示され、Niの量が66at%≦Niであり、他の成分量を示すx、y、zが0.1at%≦x≦15at%、0.1at%≦y≦15at%、5at%≦z≦25at%であることを特徴とする請求項1〜4のいずれかに記載したアモルファス合金。 Component system Ni 100-xyz Mo x Nb y B z , the amount of Ni is 66 at% ≦ Ni, and x, y, z indicating the amount of other components is 0.1 at% ≦ x ≦ 15 at%, 0.1 at The amorphous alloy according to claim 1, wherein% ≦ y ≦ 15 at% and 5 at% ≦ z ≦ 25 at%. 成分系Ni100-v-x-y-zMovNbxCuyBzで示され、Niの量が66at%≦Niであり、他の成分量を示すv、x、y、zが0.1at%≦v≦15at%、0.1at%≦x≦15at%、0.1at%≦y≦5at%、5at%≦z≦25at%であることを特徴とする請求項1〜5のいずれかに記載したアモルファス合金。 Indicated by the component system Ni 100-vxyz Mo v Nb x Cu y B z , the amount of Ni is 66 at% ≦ Ni, and v, x, y, z indicating other component amounts are 0.1 at% ≦ v ≦ 15 at The amorphous alloy according to claim 1, wherein%, 0.1 at% ≦ x ≦ 15 at%, 0.1 at% ≦ y ≦ 5 at%, and 5 at% ≦ z ≦ 25 at%. 耐食性と通電性が要求される固体高分子型燃料電池(PEFC)セパレータとすることを特徴とする請求項1〜7のいずれかに記載したアモルファス合金の用途。   The use of the amorphous alloy according to any one of claims 1 to 7, wherein the polymer electrolyte fuel cell (PEFC) separator is required to have corrosion resistance and electric conductivity. 高温環境での耐食材とすることを特徴とする請求項1〜7のいずれかに記載したアモルファス合金の用途。   The use of the amorphous alloy according to any one of claims 1 to 7, wherein the material is a corrosion-resistant material in a high temperature environment. 請求項1〜7のいずれかに記載したアモルファス合金によって、酸性水溶液に接する部分の少なくとも表面が構成されていることを特徴とする固体高分子型燃料電池のセパレータ。   A separator for a polymer electrolyte fuel cell, wherein the amorphous alloy according to any one of claims 1 to 7 comprises at least a surface of a portion in contact with an acidic aqueous solution. 請求項1〜7のいずれかに記載したアモルファス合金によって、薬液に接する部分の少なくとも表面が構成されていることを特徴とする高温薬液取扱い装置。   A high-temperature chemical solution handling apparatus, wherein the amorphous alloy according to any one of claims 1 to 7 comprises at least a surface of a portion in contact with the chemical solution.
JP2011112109A 2011-05-19 2011-05-19 Amorphous alloys with excellent corrosion resistance and electrical conductivity and their applications Active JP5875254B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011112109A JP5875254B2 (en) 2011-05-19 2011-05-19 Amorphous alloys with excellent corrosion resistance and electrical conductivity and their applications
PCT/JP2012/062682 WO2012157712A1 (en) 2011-05-19 2012-05-17 Amorphous alloy with excellent corrosion resistance and excellent electrical conductivity, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011112109A JP5875254B2 (en) 2011-05-19 2011-05-19 Amorphous alloys with excellent corrosion resistance and electrical conductivity and their applications

Publications (2)

Publication Number Publication Date
JP2012241231A true JP2012241231A (en) 2012-12-10
JP5875254B2 JP5875254B2 (en) 2016-03-02

Family

ID=47177029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011112109A Active JP5875254B2 (en) 2011-05-19 2011-05-19 Amorphous alloys with excellent corrosion resistance and electrical conductivity and their applications

Country Status (2)

Country Link
JP (1) JP5875254B2 (en)
WO (1) WO2012157712A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186007A (en) * 2018-04-09 2019-10-24 トヨタ自動車株式会社 Sulfide all-solid battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109399765B (en) * 2017-08-16 2022-02-01 南京理工大学 Method for electrochemically degrading azo dye wastewater by using amorphous alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497515A (en) * 1978-01-03 1979-08-01 Allied Chem Garasujogokin
JPS63297533A (en) * 1987-05-29 1988-12-05 Mitsubishi Metal Corp High corrosion resistant amorphous nickel alloy for high temperature concentrated sulfuric acid
JPH09143642A (en) * 1995-11-29 1997-06-03 Takeshi Masumoto Nickel base amorphous metal filament
JP2004232070A (en) * 2003-01-31 2004-08-19 Mitsui Chemicals Inc Member for fuel cell separator and separator
WO2012053570A1 (en) * 2010-10-20 2012-04-26 株式会社中山製鋼所 Ni-BASED AMORPHOUS ALLOY WITH HIGH DUCTILITY, HIGH CORROSION RESISTANCE AND EXCELLENT DELAYED FRACTURE RESISTANCE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497515A (en) * 1978-01-03 1979-08-01 Allied Chem Garasujogokin
JPS63297533A (en) * 1987-05-29 1988-12-05 Mitsubishi Metal Corp High corrosion resistant amorphous nickel alloy for high temperature concentrated sulfuric acid
JPH09143642A (en) * 1995-11-29 1997-06-03 Takeshi Masumoto Nickel base amorphous metal filament
JP2004232070A (en) * 2003-01-31 2004-08-19 Mitsui Chemicals Inc Member for fuel cell separator and separator
WO2012053570A1 (en) * 2010-10-20 2012-04-26 株式会社中山製鋼所 Ni-BASED AMORPHOUS ALLOY WITH HIGH DUCTILITY, HIGH CORROSION RESISTANCE AND EXCELLENT DELAYED FRACTURE RESISTANCE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186007A (en) * 2018-04-09 2019-10-24 トヨタ自動車株式会社 Sulfide all-solid battery

Also Published As

Publication number Publication date
WO2012157712A1 (en) 2012-11-22
JP5875254B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
CN103189539B (en) The Ni base amorphous alloy that high ductibility, highly corrosion resistant and resistance to delayed fracture are excellent
Zhu et al. Electrochemical study on the corrosion behaviors of 316 SS in HITEC molten salt at different temperatures
JP4889271B2 (en) Metal glass composite material and member for electronic and electrical equipment using the same
JP6028881B1 (en) Titanium alloy, separator, and polymer electrolyte fuel cell
Li et al. Facile preparation of superhydrophobic structures on Al alloys surfaces with superior corrosion resistance
JP5621186B2 (en) Method for producing stainless steel for polymer electrolyte fuel cell separator
JP5875254B2 (en) Amorphous alloys with excellent corrosion resistance and electrical conductivity and their applications
Priyotomo et al. The corrosion behavior of Ni3 (Si, Ti) intermetallic compounds with Al, Cr, and Mo in various acidic solutions
Ouyan et al. Physical and Electrochemical Properties of Ni-P/TiN coated Ti for bipolar plates in PEMFCs
Li et al. Performance of tantalum modified 316L stainless steel bipolar plate for proton exchange membrane fuel cell
Fleury et al. Fe-based amorphous alloys as bipolar plates for PEM fuel cell
López-Pérez et al. Comparative effect of Neospora caninum infection in BALB/c mice at three different gestation periods
Gaoyong et al. Influence of rare earth elements on corrosion behavior of Al-brass in marine water
JP2006253089A (en) Metal separator for fuel cell and its manufacturing method
Heo et al. Effects of PVD deposition method on electrochemical properties and interfacial contact resistance of CrN coated titanium as PEMFC bipolar plate
Castañeda et al. Electrochemical behavior of Ni-Al-Fe alloys in simulated human body solution
Sunitha et al. Study of SiC/graphite particulates on the corrosion behavior of Al 6065 MMCs using tafel polarization and impedance
JP2014080668A (en) Insoluble electrode material and insoluble electrode
Tian et al. Bulk metallic glass Zr55Cu30Al10Ni5 bipolar plates for proton exchange membrane fuel cell
de Oliveira et al. Corrosion of Al85Ni9Ce6 amorphous alloy in the first hours of immersion in 3.5‐wt% NaCl solution: The role of surface chemistry
Yang et al. Effects of Cr content on the corrosion behavior of porous Ni–Cr–Mo–Cu alloys in H3PO4 solution
Yan et al. Novel Graphite Paper/Cu-Coated Magnesium as Bipolar Plates for Ultra-lightweight Proton Exchange Membrane Fuel Cells
Huang et al. Surface treatments of stainless steel by electroless silver coatings as a bipolar plate for proton exchange membrane fuel cells
Kumar et al. The improved galvanic corrosion resistance of a eutectic high entropy alloy through heat treatment
Zhang et al. The performance research of TaC modified 316L bipolar plate for proton exchange membrane fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160119

R150 Certificate of patent or registration of utility model

Ref document number: 5875254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250