JP2012241018A - Heat transfer medium comprising corrosion-resistant ionic liquid - Google Patents

Heat transfer medium comprising corrosion-resistant ionic liquid Download PDF

Info

Publication number
JP2012241018A
JP2012241018A JP2011108820A JP2011108820A JP2012241018A JP 2012241018 A JP2012241018 A JP 2012241018A JP 2011108820 A JP2011108820 A JP 2011108820A JP 2011108820 A JP2011108820 A JP 2011108820A JP 2012241018 A JP2012241018 A JP 2012241018A
Authority
JP
Japan
Prior art keywords
functional group
heat medium
group
anion
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011108820A
Other languages
Japanese (ja)
Other versions
JP5937303B2 (en
Inventor
Kotaro Kaneko
恒太郎 金子
Hayato Kawakami
隼人 川上
Koji Kawai
功治 河合
Katsuyuki Sugiyama
克之 杉山
Katsuhisa Kamio
克久 神尾
Toru Yonezawa
徹 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Yushi KK
Hokkaido University NUC
Miyoshi Oil and Fat Co Ltd
Original Assignee
Miyoshi Yushi KK
Hokkaido University NUC
Miyoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Yushi KK, Hokkaido University NUC, Miyoshi Oil and Fat Co Ltd filed Critical Miyoshi Yushi KK
Priority to JP2011108820A priority Critical patent/JP5937303B2/en
Publication of JP2012241018A publication Critical patent/JP2012241018A/en
Application granted granted Critical
Publication of JP5937303B2 publication Critical patent/JP5937303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat transfer medium that, when used as a coolant, an anti-freeze, an antifreezing agent, a snow-melting agent or the like, suppresses corrosion of a substrate brought into contact therewith, is excellently heat-resistant, is liquid at ordinary temperature and fluid even at a low temperature, and reduces environmental loads.SOLUTION: The heat transfer medium comprises an ionic liquid represented by formula (I) (wherein R, R, Rand Rare each independently a 1-5C linear or branched alkyl group, or a functional group represented by the formula: -R-A (wherein Ris a 1-10C linear or branched alkylene group; and A is a functional group) and one to four of R, R, Rand Rare a functional group represented by the formula: -R-A; Xis an anion; A is a functional group affinitive to a substrate surface to be modified while the anion Xbears a functional group affinitive to the medium; and alternatively, A is a functional group affinitive to the medium while the anion Xbears a functional group affinitive to the substrate surface to be modified).

Description

本発明は、イオン液体を用いた熱媒体に関するものである。   The present invention relates to a heat medium using an ionic liquid.

一般にイオン結合により構成される物質は溶融温度が高いが、特定のイオンで構成される物質は、例えば室温付近の温度で溶融している。このようなイオン液体は、不揮発性で耐熱性に優れるといった特徴を有し、さらに熱伝導性が高く、近年では各種用途への応用が広まっている。   In general, a substance composed of ionic bonds has a high melting temperature, but a substance composed of specific ions is melted at a temperature around room temperature, for example. Such an ionic liquid has the characteristics of being non-volatile and excellent in heat resistance, and further has high thermal conductivity, and in recent years, its application to various uses has become widespread.

例えば、内燃機関、燃料電池等の冷却系には、冷却液や不凍液などの熱媒体の基剤としてグリコール類が広く用いられているが、エチレングリコールやプロピレングリコールは中枢神経の麻痺や慢性肝臓疾患の起因となることが知られており、また、PRTR法の第1種指定化学物質に指定されている。   For example, glycols are widely used as cooling mediums such as coolants and antifreezes in cooling systems for internal combustion engines, fuel cells, etc., but ethylene glycol and propylene glycol are used for central nervous system paralysis and chronic liver disease. It is known that it is caused by the above, and is designated as a first-class designated chemical substance in the PRTR method.

これに代替するものとして、イオン液体を基剤として用いることで、エチレングリコール等のグリコール類を基剤とした場合よりも耐熱性に優れた冷却液や不凍液などの熱媒体を得ることができる。近年では、自動車用エンジンは燃費向上や排出有害物質の低減のため稼働時の温度が高温化される傾向にあるが、これに伴って冷却液等の温度も高温となるため、このような背景においてイオン液体は基剤として好適である。   As an alternative to this, by using an ionic liquid as a base, it is possible to obtain a heat medium such as a cooling liquid or an antifreeze liquid that is superior in heat resistance to the case where a glycol such as ethylene glycol is used as a base. In recent years, automotive engines tend to have higher temperatures during operation to improve fuel economy and reduce harmful emissions. An ionic liquid is suitable as a base.

例えば、特許文献1には、内燃機関、燃料電池等の冷却液として、1-ブチル-3-メチルイミダゾリウムクロリド、1-ブチル-3-メチルイミダゾリウムチオシアネート、1-エチル-3-メチルイミダゾリウムエチルサルフェート等のイオン液体を基剤に用い、リン酸2カリウム、セバシン酸カリウム、トリルトリアゾール、硝酸ナトリウム等の防錆剤を併用することが提案されている。   For example, Patent Document 1 discloses 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium thiocyanate, 1-ethyl-3-methylimidazolium as a coolant for internal combustion engines, fuel cells, and the like. It has been proposed that an ionic liquid such as ethyl sulfate is used as a base and a rust inhibitor such as dipotassium phosphate, potassium sebacate, tolyltriazole, sodium nitrate is used in combination.

また、イオン液体はヒートパイプ装置の熱媒体(作動媒体)への使用も検討されている。想定されるヒートパイプ装置の使用温度範囲は-20〜200℃程度である。ヒートパイプの作動媒体として、蒸発潜熱が大きく環境性能やコスト面でも優れる水を用いた場合、使用温度が氷点下になると凍結してしまいヒートパイプとしての作動が停止してしまう。さらに凍結時の体積膨張によりヒートパイプが破裂してしまう可能性もある。そのため凍結防止を目的として水溶性ポリマーやグリコール類を添加して不凍化することが知られているが、添加物自体が蒸気圧を持つのでヒートパイプの沸騰凝縮性能に悪影響を及ぼす懸念があり、またヒートパイプの使用温度範囲が添加物の分解温度以下に制限されてしまう。これに対してイオン液体は不揮発性で耐熱性に優れるためヒートパイプの作動媒体への添加剤として適している。   In addition, the use of ionic liquid as a heat medium (working medium) of a heat pipe device is also being studied. The assumed operating temperature range of the heat pipe device is about -20 to 200 ° C. When water having a large latent heat of vaporization and excellent environmental performance and cost is used as the working medium of the heat pipe, it freezes when the operating temperature is below freezing point, and the operation as a heat pipe stops. Furthermore, the heat pipe may burst due to volume expansion during freezing. For this reason, it is known that water-soluble polymers and glycols are added to prevent freezing in order to prevent freezing. However, the additive itself has a vapor pressure, which may adversely affect the boiling condensation performance of the heat pipe. In addition, the operating temperature range of the heat pipe is limited to the decomposition temperature or less of the additive. In contrast, ionic liquids are non-volatile and have excellent heat resistance, and are therefore suitable as additives for heat pipe working media.

例えば、特許文献2には、ヒートパイプの作動媒体としてイオン液体の水溶液を用いることが提案されている。イオン液体としては1-ブチル-3-メチルイミダゾリウムテトラフルオロボレート、1-ブチル-3-メチルイミダゾリウムアイオダイド、および1-エチル-3-メチルイミダゾリウムトリフルオロスルホネートが用いられている。   For example, Patent Document 2 proposes using an aqueous solution of an ionic liquid as a working medium for a heat pipe. As the ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium iodide, and 1-ethyl-3-methylimidazolium trifluorosulfonate are used.

また、従来、路面等の凍結防止や融雪のために熱媒体と雪氷粒子が直接接触して熱交換する直接散水融雪技術がある。熱媒体として、例えば、水や、エチレングリコール、塩化ナトリウム、塩化カリウム、塩化カルシウム等の塩化物、酢酸ナトリウム、酢酸カリウム等の酢酸塩(特許文献4)、グリセリンと界面活性剤の併用(特許文献5)、または、それらの水溶液が知られている。   Conventionally, there is a direct water spray snow melting technique in which a heat medium and snow and ice particles are in direct contact to exchange heat to prevent freezing of a road surface and the like and to melt snow. Examples of the heat medium include water, chlorides such as ethylene glycol, sodium chloride, potassium chloride, and calcium chloride, acetates such as sodium acetate and potassium acetate (Patent Document 4), and a combination of glycerin and a surfactant (Patent Document) 5) Or their aqueous solutions are known.

特開2010−235889号公報JP 2010-235889 A 特開2009−145038号公報JP 2009-145038 A 特開昭60−243186号公報JP-A-60-243186 特開2003−321668号公報JP 2003-321668 A 特開2007−161807号公報JP 2007-161807 A

しかしながら、イオン液体を基剤として含有する冷却液や不凍液等の熱媒体では、イオン液体による金属への腐食性がある。例えば、イオン液体がイオン化することでこの解離したイオンが金属表面に作用することで、熱交換装置に用いられている金属の腐食性が高まり腐食を引き起こしやすくなる。   However, a heat medium such as a cooling liquid or an antifreeze liquid containing an ionic liquid as a base is corrosive to metals by the ionic liquid. For example, when the ionic liquid is ionized and the dissociated ions act on the metal surface, the corrosiveness of the metal used in the heat exchange device is increased and corrosion is likely to occur.

そして特許文献1に記載の技術では、実施例に用いられているイオン液体単独では金属への腐食性があるため防錆剤を加えているが、経済性等に改善の余地があった。   In the technique described in Patent Document 1, a rust preventive agent is added because the ionic liquid used in the examples alone is corrosive to metals, but there is room for improvement in economy and the like.

なお、特許文献3には、グリコールおよび水を含有する不凍液において、腐食抑制剤としてイオン液体ではないが第4級アンモニウム塩を用いることが提案されている。しかしながら、この第4級アンモニウム塩はpHが高いため、それ自体に金属への腐食性があり腐食抑制には限界がある。   Patent Document 3 proposes that a quaternary ammonium salt is used as an anti-freezing solution containing glycol and water, but not an ionic liquid as a corrosion inhibitor. However, since this quaternary ammonium salt has a high pH, it itself has corrosiveness to metals and has a limit in inhibiting corrosion.

また特許文献2に記載の技術においても実施例に用いられているイオン液体は金属への腐食性があり、凝固点降下にもさらなる向上が求められている。   Also in the technique described in Patent Document 2, the ionic liquid used in the examples is corrosive to metals, and further improvement is required for lowering the freezing point.

また、従来の凍結防止剤や融雪剤のうちエチレングリコールは前記のとおり毒性の懸念がある。そして塩化物と酢酸塩は結晶化のため、濃度の制限や配管の目詰まり、粉塵等の問題点があり、酢酸塩は臭気の問題点もある。グリセリンと界面活性剤の併用は、グリセリンは消防法により危険物第4類(引火性液体)第3類石油類に分類され安全性に懸念があり、また特許文献6の実施例に用いられている界面活性剤は全て固体であり、塩化物と酢酸塩と同様に濃度の制限や配管の目詰まり、粉塵等の問題点がある。   Of the conventional antifreezing agents and snow melting agents, ethylene glycol has a concern about toxicity as described above. Since chloride and acetate are crystallized, there are problems such as concentration restrictions, clogging of piping, dust, and the like, and acetate also has problems of odor. As for the combined use of glycerin and surfactant, glycerin is classified as a hazardous material class 4 (flammable liquid) class 3 petroleum by the Fire Service Act, and there are concerns about safety, and it is used in the examples of Patent Document 6 All of the surfactants are solid, and like the chlorides and acetates, there are problems such as concentration limitations, clogging of piping, and dust.

さらに、化学物質は一般的に、使用期間中はその性能を維持するが、使用後には環境中に排出される化学物質も少なくなく、そのため、地中、水中等の自然環境下において微生物の酵素反応等によって二酸化炭素や水、バイオマス等に分解され環境に負荷を与えないといった適性を備えていることが望ましく、特に近年では環境保護の観点からその重要性は高まっている。   In addition, chemical substances generally maintain their performance during the period of use, but there are not a few chemical substances that are released into the environment after use. Therefore, microbial enzymes are used in natural environments such as underground and in water. It is desirable to have the suitability of being decomposed into carbon dioxide, water, biomass, etc. by reaction or the like so as not to burden the environment, and in recent years, its importance has been increasing from the viewpoint of environmental protection.

本発明は、以上の通りの事情に鑑みてなされたものであり、冷却液、不凍液、凍結防止剤、融雪剤等の熱媒体への使用時に接触する基材の腐食を抑制することができ、高温下でも不揮発性で耐熱性、不燃性に優れ、常温で液体であり、粉塵、配管等の目詰まり等を抑制でき、さらに環境への負荷も低減できる熱媒体を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and can suppress the corrosion of the substrate that comes into contact with the heat medium such as a cooling liquid, an antifreezing liquid, an antifreezing agent, a snow melting agent, It is an object to provide a heat medium that is non-volatile at high temperatures, has excellent heat resistance and non-flammability, is liquid at room temperature, can suppress clogging of dust, piping, etc., and can also reduce the environmental load. .

上記の課題を解決するために、本発明の熱媒体は、基材表面の耐腐食性を改質する熱媒体であって、下記式(I):   In order to solve the above problems, the heat medium of the present invention is a heat medium that modifies the corrosion resistance of the substrate surface, and is represented by the following formula (I):

(式中、R1、R2、R3、R4はそれぞれ独立に炭素数1〜5の直鎖もしくは分岐のアルキル基、または−R5−Aで示される官能基(R5は炭素数1〜10の直鎖もしくは分岐のアルキレン基を示し、Aは官能基を示す。)を示し、R1、R2、R3、R4のうち1〜4個が−R5−Aで示される官能基である。X-はアニオンを示し、Aは改質処理する基材表面との親和性を持つ官能基、アニオンX-は媒体との親和性を持つ官能基を有し、あるいは、Aは媒体との親和性を持つ官能基、アニオンX-は改質処理する基材表面との親和性を持つ官能基を有する。)で表されるイオン液体からなることを特徴としている。 (Wherein R 1 , R 2 , R 3 and R 4 are each independently a linear or branched alkyl group having 1 to 5 carbon atoms, or a functional group represented by -R 5 -A (R 5 is a carbon number) 1 to 10 linear or branched alkylene groups, A represents a functional group), and 1 to 4 of R 1 , R 2 , R 3 and R 4 are represented by -R 5 -A X represents an anion, A represents a functional group having an affinity for the surface of the substrate to be modified, an anion X has a functional group having an affinity for the medium, or A is a functional group having an affinity with a medium, and an anion X has a functional group having an affinity for a substrate surface to be modified.

この熱媒体においては、式(I)で表されるイオン液体は、基材に表面層を形成することが好ましい。   In this heat medium, the ionic liquid represented by the formula (I) preferably forms a surface layer on the substrate.

この熱媒体においては、式(I)のAは、水酸基またはカルボキシル基であることが好ましい。   In this heat medium, A in the formula (I) is preferably a hydroxyl group or a carboxyl group.

この熱媒体においては、式(I)のアニオンX-は、水酸基を有していてもよい炭素数2〜4のモノカルボン酸イオンまたはジカルボン酸イオン、ヒドロキシシクロヘキサンカルボン酸イオン、または炭素数1〜3のアルキルスルホン酸イオンであることが好ましい。 In this heat medium, the anion X of the formula (I) may have a hydroxyl group, a monocarboxylic acid ion or a dicarboxylic acid ion having 2 to 4 carbon atoms, a hydroxycyclohexanecarboxylic acid ion, or a carbon number of 1 to 3 alkyl sulfonate ions are preferred.

この熱媒体においては、式(I)のアニオンX-は、酢酸イオン、グリコール酸イオン、乳酸イオン、酒石酸イオン、1,3,4,5-テトラヒドロキシシクロヘキサンカルボン酸イオン、または炭素数1〜3のアルキルスルホン酸イオンであることが好ましい。 In this heating medium, the anion X of the formula (I) is an acetate ion, a glycolate ion, a lactate ion, a tartrate ion, a 1,3,4,5-tetrahydroxycyclohexanecarboxylate ion, or a carbon number of 1 to 3. It is preferable that it is an alkyl sulfonate ion.

本発明の冷却液は、前記の熱媒体を含有することを特徴としている。   The cooling liquid of the present invention is characterized by containing the above heat medium.

本発明の不凍液は、前記の熱媒体を含有することを特徴としている。   The antifreeze liquid of the present invention is characterized by containing the above heat medium.

本発明の凍結防止剤は、前記の熱媒体を含有することを特徴としている。   The antifreezing agent of the present invention is characterized by containing the above heat medium.

本発明の融雪剤は、前記の熱媒体を含有することを特徴としている。   The snow melting agent of the present invention contains the above heat medium.

本発明の熱媒体によれば、冷却液、不凍液として使用した時に接触する基材の腐食を抑制することができ、高温下でも不揮発性で耐熱性に優れ、常温で液体であり、冷却系熱媒体としての使用時には凝固点が低く低温でも流動性を示し、さらに環境への負荷も低減することができる。   According to the heat medium of the present invention, it is possible to suppress the corrosion of the substrate that comes into contact when used as a cooling liquid or an antifreeze liquid, and is non-volatile and excellent in heat resistance even at high temperatures, and is liquid at room temperature, When used as a medium, it has a low freezing point, exhibits fluidity even at low temperatures, and can reduce the burden on the environment.

本発明の熱媒体によれば、凍結防止剤や融雪剤として使用した時には、低腐食性のため、使用環境中における金属の腐食への影響は小さく、さらに生分解性を有し環境への負荷も低減することができる。また、イオン液体は常温で液状であるため水が揮発しても液状を保ち粉塵とならず、固体化による配管等の目詰まりはなく、高水溶性の構造のため、容易に流し落とすことも可能である。かつイオン液体は不燃性で安全性も高い。   According to the heat medium of the present invention, when used as an antifreezing agent or a snow melting agent, it has low corrosiveness, so the influence on the corrosion of the metal in the use environment is small, and it is biodegradable and has an environmental impact. Can also be reduced. In addition, since the ionic liquid is liquid at room temperature, it remains liquid even when water volatilizes and does not become dust, there is no clogging of piping due to solidification, and it can be easily washed off due to its highly water-soluble structure. Is possible. And ionic liquid is nonflammable and highly safe.

本発明の熱媒体による耐腐食作用を説明する図である。It is a figure explaining the anti-corrosion action by the heat carrier of the present invention.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

本発明の熱媒体は、上記式(I)で表されるイオン液体からなる。   The heat medium of the present invention comprises an ionic liquid represented by the above formula (I).

式(I)において、R1、R2、R3、R4はそれぞれ独立に炭素数1〜5の直鎖もしくは分岐のアルキル基、または−R5−Aで示される官能基(R5は炭素数1〜10の直鎖もしくは分岐のアルキレン基を示し、Aは官能基を示す。)を示し、R1、R2、R3、R4のうち1〜4個が−R5−Aで示される官能基である。X-はアニオンを示し、カチオンに改質処理する基材表面との親和性を持つ官能基、アニオンに媒体との親和性を持つ官能基を有し、あるいはカチオンに媒体との親和性を持つ官能基、アニオンに改質処理する基材表面との親和性を持つ官能基を有し、AまたはアニオンX-を構成する基材および媒体に親和性を持つ官能基は同一でも異なっていてもよい。 In the formula (I), R 1 , R 2 , R 3 and R 4 are each independently a linear or branched alkyl group having 1 to 5 carbon atoms, or a functional group represented by —R 5 -A (R 5 is A straight chain or branched alkylene group having 1 to 10 carbon atoms, A represents a functional group), and 1 to 4 of R 1 , R 2 , R 3 , and R 4 are —R 5 —A It is a functional group shown by. X - represents an anion and has a functional group having an affinity for the substrate surface to be modified to a cation, a functional group having an affinity for the medium in the anion, or an affinity for the medium in the cation. The functional group has a functional group having an affinity for the substrate surface to be modified to an anion, and the functional group having an affinity for the substrate and medium constituting the A or anion X may be the same or different. Good.

−R5−Aで示される官能基において、R5の炭素数1〜10のアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、メチルトリメチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基等が挙げられる。中でも、炭素数1〜5のものが好ましく、炭素数1〜3のものがより好ましく、メチレン基、エチレン基がさらに好ましい。 In the functional group represented by —R 5 —A, examples of the alkylene group having 1 to 10 carbon atoms of R 5 include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a methyltrimethylene group, and pentylene. Group, hexylene group, heptylene group, octylene group, nonylene group, decylene group and the like. Among them, those having 1 to 5 carbon atoms are preferable, those having 1 to 3 carbon atoms are more preferable, and a methylene group and an ethylene group are further preferable.

式(I)のAは、基材もしくは媒体に親和性を持つ官能基を有するもの、具体的には、例えば、水酸基、アルデヒド基、ケトン基、カルボキシル基、カルボニル基、カルバミン酸基、エステル基、アミノ基、ヒドラジン基、ニトロ基、アミド基、尿素基、チオカルボキシル基、ジチオカルボキシル基、チオカルバミン酸基、ジチオカルバミン酸基、チオール基、スルホ基、スルホニル基、リン酸基、ホスホン酸基、シアノ基、エーテル基等の官能基が挙げられ、中でも、水酸基またはカルボキシル基が好ましい。   A in formula (I) has a functional group having an affinity for the substrate or medium, specifically, for example, a hydroxyl group, an aldehyde group, a ketone group, a carboxyl group, a carbonyl group, a carbamic acid group, an ester group. , Amino group, hydrazine group, nitro group, amide group, urea group, thiocarboxyl group, dithiocarboxyl group, thiocarbamic acid group, dithiocarbamic acid group, thiol group, sulfo group, sulfonyl group, phosphoric acid group, phosphonic acid group, Examples of the functional group include a cyano group and an ether group. Among them, a hydroxyl group or a carboxyl group is preferable.

R1、R2、R3、R4のうち、−R5−Aで示される官能基は1〜4個であり、−R5−Aで示される官能基を1〜4個導入することで、イオン液体の水溶性を高めることができる。また、この官能基により生分解性も向上し、環境適性に優れたイオン液体を得ることができる。 Among R 1, R 2, R 3 , R 4, functional group represented by -R 5 -A is 1-4, introducing 1-4 a functional group represented by -R 5 -A Thus, the water solubility of the ionic liquid can be increased. In addition, biodegradability is improved by this functional group, and an ionic liquid excellent in environmental suitability can be obtained.

R1〜R4の炭素数1〜5の直鎖もしくは分岐のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基が挙げられる。中でも、炭素数1〜3のものが好ましく、メチル基、エチル基がより好ましい。 Examples of the linear or branched alkyl group having 1 to 5 carbon atoms of R 1 to R 4 include, for example, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group 2,2-dimethylpropyl group. Among them, those having 1 to 3 carbon atoms are preferable, and a methyl group and an ethyl group are more preferable.

−R5−Aで示される官能基が2個以上の場合、それぞれのAは互いに独立であり、例えば、Aとして水酸基とカルボキシル基の両方を有するものであってもよい。 When there are two or more functional groups represented by —R 5 —A, each A is independent of each other. For example, A may have both a hydroxyl group and a carboxyl group.

本発明の熱媒体は、カチオンに改質処理する基材表面との親和性を持つ官能基、アニオンに媒体との親和性を持つ官能基を有し、あるいはカチオンに媒体との親和性を持つ官能基、アニオンに改質処理する基材表面との親和性を持つ官能基を有していることで、基材にイオン液体の表面層を形成し、腐食抑制作用の向上が可能となる。   The heat medium of the present invention has a functional group having an affinity for the surface of the substrate to be modified to a cation, a functional group having an affinity for the anion in the anion, or an affinity for the medium in the cation. By having a functional group and a functional group having an affinity for the base material surface to be modified to an anion, a surface layer of an ionic liquid is formed on the base material, and the corrosion inhibiting action can be improved.

例えば、図1に示すように、カチオン側においては、金属表面との結合が起こる。具体的には、金属表面の金属酸化物と、結合性官能基(水酸基)が結合する。アニオン側においては、官能基が親水性官能基(ヒドロキシカルボン酸イオン)であるため、水との親和性が高まる。これらの作用によって、金属と水との間にイオン液体が層を形成すると考えられる。腐食は水、酸素、金属が接触することにより発生するため、イオン液体の表面層が形成されることによりこれらの接触を低減し、腐食を抑制することができる。なお、これは一例であって、例えば、カチオン側において親水性官能基を有し、アニオン側において基材表面との結合性官能基を有するものであってもよい。   For example, as shown in FIG. 1, binding to the metal surface occurs on the cation side. Specifically, the metal oxide on the metal surface is bonded to the binding functional group (hydroxyl group). On the anion side, since the functional group is a hydrophilic functional group (hydroxycarboxylate ion), the affinity with water is increased. By these actions, it is considered that the ionic liquid forms a layer between the metal and water. Since corrosion occurs when water, oxygen, and metal come into contact with each other, formation of a surface layer of an ionic liquid can reduce such contact and suppress corrosion. This is an example, and for example, it may have a hydrophilic functional group on the cation side and a binding functional group with the substrate surface on the anion side.

基材表面との結合性官能基による結合態様としては、水素結合、共有結合、配位結合、イオン結合、ファンデルワールス結合等が挙げられる。場合によっては、これらの結合を促進するために、例えば、加熱処理等を行うことができる。   Examples of the bonding mode with the binding functional group to the substrate surface include hydrogen bonding, covalent bonding, coordination bonding, ionic bonding, van der Waals bonding, and the like. In some cases, for example, heat treatment or the like can be performed in order to promote these bonds.

このような点から、式(I)において、アニオンX-としては、基材もしくは媒体に親和性を持つ官能基を有するもの、具体的には、例えば、炭素数2〜4のモノカルボン酸イオンやジカルボン酸イオン(ヒドロキシカルボン酸イオンを含む。)、ヒドロキシシクロヘキサンカルボン酸イオン、アルキルスルホン酸イオン等が挙げられる。中でも、酢酸イオン、グリコール酸イオン、乳酸イオン、酒石酸イオン、1,3,4,5-テトラヒドロキシシクロヘキサンカルボン酸イオン、および炭素数1〜3のアルキルスルホン酸イオンが好ましい。 From this point, in the formula (I), as the anion X , an anion having a functional group having an affinity for a substrate or a medium, specifically, for example, a monocarboxylic acid ion having 2 to 4 carbon atoms And dicarboxylic acid ions (including hydroxycarboxylic acid ions), hydroxycyclohexanecarboxylic acid ions, alkylsulfonic acid ions, and the like. Of these, acetate ions, glycolate ions, lactate ions, tartrate ions, 1,3,4,5-tetrahydroxycyclohexanecarboxylate ions, and alkyl sulfonate ions having 1 to 3 carbon atoms are preferable.

式(I)のイオン液体は、第4級アンモニウムカチオンの官能基や特性基およびアニオンの選択により、低融点でかつ水溶性が高いものを得ることが可能であり、イオン液体の融点は、常温で液体である。   The ionic liquid of formula (I) can be obtained with a low melting point and high water solubility by selecting the functional group, characteristic group and anion of the quaternary ammonium cation. It is liquid.

式(I)のイオン液体は、流動点が好ましくは-10℃以下、より好ましくは-20℃以下、さらに好ましくは-50℃以下である。なお、この流動点は、JIS K 2269-1980に準拠して測定した値である。   The ionic liquid of formula (I) has a pour point of preferably −10 ° C. or lower, more preferably −20 ° C. or lower, and still more preferably −50 ° C. or lower. The pour point is a value measured according to JIS K 2269-1980.

式(I)のイオン液体は、常温(25℃)での水への溶解度が、好ましくは150g/100g water以上、より好ましくは550g/100g water以上、さらに好ましくは900g/100g water以上である。   The ionic liquid of formula (I) has a solubility in water at room temperature (25 ° C.) of preferably 150 g / 100 g water or more, more preferably 550 g / 100 g water or more, and further preferably 900 g / 100 g water or more.

式(I)のイオン液体は、例えば、OECD(経済協力開発機構)テストガイドライン301C法に準拠した生分解性試験による28日間のBOD分解度を60%以上とすることができる。OECDテストガイドライン301のうち、OECDテストガイドライン301C法は、28日間の生化学的酸素要求量(BOD)から求めた分解度が60%以上を満たす化学物質は易分解性物質であり、実際の好気的な水環境では速やかに分解されるため、環境中に残留することがなく、環境に対する影響を低減することができる。   For example, the ionic liquid of formula (I) can have a 28-day BOD degradation degree of 60% or more by a biodegradability test based on the OECD (Economic Cooperation and Development Organization) test guideline 301C method. Among the OECD test guideline 301, the OECD test guideline 301C method is an easily decomposable substance that has a decomposition degree of 60% or more determined from the 28-day biochemical oxygen demand (BOD). Since it is quickly decomposed in an aerobic water environment, it does not remain in the environment and the influence on the environment can be reduced.

すなわち、化学物質は、使用中は安定であるが、使用後は環境中に排出される場合も少なくないため、環境負荷が小さいことが望まれる。例えば、環境に対して開放の条件で使用する場合は、生分解性が高く、環境負荷が小さいほうが望ましい。そして近年では、産業廃棄物に代表される環境問題が深刻になり、廃棄物を削減することが企業の重要な責務となっている。この点において、生分解性の高い化学物質は、廃棄後は焼却処分などをしなくても微生物によって分解されるため廃棄物削減につながる。以上のような背景において、生分解性の高い式(I)のイオン液体は環境負荷低減に貢献するものである。   In other words, chemical substances are stable during use, but are often discharged into the environment after use. For example, when used under conditions open to the environment, it is desirable that the biodegradability is high and the environmental load is small. In recent years, environmental problems represented by industrial waste have become serious, and it has become an important responsibility of companies to reduce waste. In this respect, chemical substances with high biodegradability are decomposed by microorganisms without being incinerated after disposal, leading to waste reduction. In the background as described above, the ionic liquid of the formula (I) having high biodegradability contributes to reducing the environmental load.

式(I)のイオン液体は、具体的には、式(I)の構造に対応するアルキレンハロヒドリン、モノハロアルキルカルボン酸、アルキルハライド等の有機ハロゲン化合物と、アルキルアミン、アルカノールアミン、アミノ酸等のアミン系化合物との反応で合成することができる。   Specifically, the ionic liquid of the formula (I) includes organic halogen compounds such as alkylene halohydrins, monohaloalkyl carboxylic acids, alkyl halides, etc. corresponding to the structure of the formula (I), alkyl amines, alkanol amines, amino acids, etc. It can be synthesized by reaction with an amine compound.

例えば、−R5−Aで示される官能基としてAが水酸基を有するイオン液体は、式(I)の構造に対応する上記有機ハロゲン化合物とアミン系化合物を、アセトニトリル等の溶媒中で反応させる。反応後、析出した固体をろ別、洗浄した後、次の工程としてアニオン交換を行う。アニオン交換を行う際には、得られた反応物と式(I)のX-に対応する酸を水中で反応させる。あるいは、イオン交換樹脂等を使用し、一旦、第4級アンモニウムヒドロキシド塩を合成後、X-に対応する酸を水中で反応させることで得ることができる。使用するイオン交換樹脂は、例えば、水処理用または触媒用として市販されている強塩基性イオン交換樹脂が使用できる。その後、水を減圧留去し、洗浄することにより、目的の化合物を得ることができる。 For example, in an ionic liquid in which A has a hydroxyl group as a functional group represented by -R 5 -A, the organic halogen compound corresponding to the structure of formula (I) and an amine compound are reacted in a solvent such as acetonitrile. After the reaction, the precipitated solid is filtered and washed, and then the next step is anion exchange. When anion exchange is performed, the reaction product obtained is reacted with an acid corresponding to X in formula (I) in water. Alternatively, it can be obtained by synthesizing a quaternary ammonium hydroxide salt using an ion exchange resin or the like and then reacting an acid corresponding to X in water. As the ion exchange resin to be used, for example, a strongly basic ion exchange resin commercially available for water treatment or catalyst can be used. Then, the target compound can be obtained by distilling off water under reduced pressure and washing.

また、−R5−Aで示される官能基としてAがカルボキシル基を有するイオン液体は、上記有機ハロゲン化合物とアミン系化合物を、アミン系化合物過剰の条件にてアセトニトリル等の溶媒中で反応させる。反応後、目的とするアニオンを持つ酸で処理することにより、第4級アンモニウム塩中のアルキルカルボン酸アミン塩をカルボシキル基とすると同時に、アニオン交換することができる。目的のアニオンによっては、得られた第4級アンモニウム塩を、イオン交換樹脂等を使用し、第4級アンモニウムヒドロキシド塩を合成後、X-に対応する酸を水中で反応させることで得ることができる。使用するイオン交換樹脂は、例えば、水処理用または触媒用として市販されている強塩基性イオン交換樹脂が使用できる。その後、水を減圧留去し、洗浄することにより、目的の化合物を得ることができる。 The ion liquid having a A carboxyl group as a functional group represented by -R 5 -A is the organic halogen compound and an amine compound are reacted in a solvent such as acetonitrile at an amine compound over conditions. After the reaction, by treating with an acid having the target anion, the alkylcarboxylic acid amine salt in the quaternary ammonium salt can be converted into a carboxyl group and simultaneously anion exchange can be performed. Depending on the target anion, the obtained quaternary ammonium salt can be obtained by reacting an acid corresponding to X in water after synthesizing a quaternary ammonium hydroxide salt using an ion exchange resin or the like. Can do. As the ion exchange resin to be used, for example, a strongly basic ion exchange resin commercially available for water treatment or catalyst can be used. Then, the target compound can be obtained by distilling off water under reduced pressure and washing.

本発明の熱媒体は、使用条件により必要に応じて水、メタノール、イソプロピルアルコールなどのアルコール系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤、酢酸エチルなどのエステル系溶剤、テトラヒドロフラン、ジイソプロピルエーテルなどのエーテル系溶剤、N,N−ジメチルホルムアミドなどのアミド系溶剤、トルエンなどの芳香族系溶剤、エチレングリコール、ポリエチレングリコール、植物性油、動物性油、鉱物性油、合成油や他の添加剤成分を含有させてもよく、このような各種溶媒などを含有させた構成であっても、本発明の熱媒体が金属の基材表面に作用して金属の腐食が促進されるといった不具合を抑制し、良好に熱交換を作用することができる。   The heat medium of the present invention is water, methanol, isopropyl alcohol and other alcohol solvents, acetone, methyl ethyl ketone and other ketone solvents, ethyl acetate and other ester solvents, tetrahydrofuran, diisopropyl ether and other ethers as necessary depending on the use conditions. Solvents, amide solvents such as N, N-dimethylformamide, aromatic solvents such as toluene, ethylene glycol, polyethylene glycol, vegetable oils, animal oils, mineral oils, synthetic oils and other additive components Even if it is a configuration containing such various solvents, the heat medium of the present invention acts on the surface of the metal substrate to suppress the problem that the corrosion of the metal is promoted, Heat exchange can be satisfactorily performed.

本発明の熱媒体が耐腐食性を改質する基材としては、金属材料により形成された機器の部品や装置を挙げることができ、金属材料としては、例えば、アルミニウム、銅、鉄、亜鉛、マグネシウム、マンガン、モリブデン、クロム、ニッケル、ズズ、鉛等、これら金属の合金等を挙げることができる。媒体としては、前記した水、メタノール、イソプロピルアルコールなどのアルコール系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤、酢酸エチルなどのエステル系溶剤、テトラヒドロフラン、ジイソプロピルエーテルなどのエーテル系溶剤、N,N−ジメチルホルムアミドなどのアミド系溶剤、トルエンなどの芳香族系溶剤、エチレングリコール、ポリエチレングリコール、植物性油、動物性油、鉱物性油、合成油や他の添加剤成分などが相当する。   Examples of the base material on which the heat medium of the present invention modifies corrosion resistance include equipment parts and devices formed of metal materials. Examples of metal materials include aluminum, copper, iron, zinc, Examples thereof include alloys of these metals such as magnesium, manganese, molybdenum, chromium, nickel, tin, lead. Examples of the medium include water, alcohol solvents such as methanol and isopropyl alcohol, ketone solvents such as acetone and methyl ethyl ketone, ester solvents such as ethyl acetate, ether solvents such as tetrahydrofuran and diisopropyl ether, N, N-dimethyl. Examples include amide solvents such as formamide, aromatic solvents such as toluene, ethylene glycol, polyethylene glycol, vegetable oils, animal oils, mineral oils, synthetic oils, and other additive components.

本発明の熱媒体は、腐食を抑制することができるとともに、高温下でも不揮発性で、例えばエチレングリコール等のグリコール類を基剤とした場合よりも耐熱性に優れ、常温で液体であり、凝固点が低く低温でも流動性を示し、さらに環境への負荷も低減できることから、例えば、内燃機関、燃料電池、ヒートパイプ、モーター等の高温で使用される装置、機器等の冷却液や不凍液の基剤として、また、道路、滑走路、ガラス等への散布や塗布、あるいは循環式仮設トイレ、住宅用設備(玄関、ドア、トイレ、排水トラップ等)における散布や塗布により、凍結防止剤、融雪剤として好適に用いることができる。   The heat medium of the present invention can suppress corrosion, is non-volatile at high temperatures, has better heat resistance than when a glycol such as ethylene glycol is used as a base, is liquid at room temperature, and has a freezing point. Is low and exhibits fluidity even at low temperatures, and can also reduce the environmental burden. For example, it is a base for coolants and antifreezes for devices and equipment used at high temperatures such as internal combustion engines, fuel cells, heat pipes, motors, etc. As anti-freezing agent and snow melting agent by spraying and coating on roads, runways, glass, etc., or spraying and coating on circulating temporary toilets and residential facilities (entrances, doors, toilets, drain traps, etc.) It can be used suitably.

本発明の熱媒体を用いた冷却液や不凍液は、例えば、自動車エンジン等の液冷式内燃機関、住宅の暖房ヒーターの一部等の内部を循環させて用いることができ、凝固点降下により凍結を防止することができ、ラジエーター内の細管破裂等も防止することができる。   The coolant or antifreeze using the heat medium of the present invention can be used, for example, by circulating inside a liquid-cooled internal combustion engine such as an automobile engine or a part of a heating heater in a house, and is frozen by lowering the freezing point. It is possible to prevent rupture of capillaries in the radiator.

本発明の熱媒体をヒートパイプ装置の作動媒体に用いることで、高温でも作動媒体が変質・分解することなく、さらに氷点下でも作動媒体が凍結せず、氷点下から高温まで使用温度範囲の広いヒートパイプ装置を提供することができる。また、イオン液体は蒸気圧が極めて低いため、ヒートパイプ装置の沸騰凝縮性能に悪影響を及ぼすこともない。   By using the heat medium of the present invention as the working medium of the heat pipe device, the working medium does not change or decompose even at high temperatures, and the working medium does not freeze even below freezing, and the heat pipe has a wide operating temperature range from below freezing to high temperatures. An apparatus can be provided. Further, since the ionic liquid has an extremely low vapor pressure, it does not adversely affect the boiling condensation performance of the heat pipe device.

なお、本発明の熱媒体は、イオン液体の表面層を基材表面に形成し、これにより酸素や水の透過を抑制して腐食性を低減させる。従って、その効果に基づいて、前記の冷却液、不凍液、凍結防止剤、融雪剤以外の用途への応用も可能である。例えば、本発明の熱媒体は潤滑油として用いることができる。この潤滑油は、耐腐食性イオン液体を基油として含有し摩擦や摺動に曝される部材の表面に用いることができる。潤滑油には、必要に応じて、例えば、鉱物性油や合成油等の他の基油成分やその他の添加剤を適宜配合することができる。   The heat medium of the present invention forms a surface layer of ionic liquid on the surface of the substrate, thereby suppressing permeation of oxygen and water and reducing corrosivity. Therefore, application to uses other than the above-mentioned cooling liquid, antifreeze liquid, antifreezing agent, and snow melting agent is also possible based on the effect. For example, the heat medium of the present invention can be used as a lubricating oil. This lubricating oil contains a corrosion-resistant ionic liquid as a base oil and can be used on the surface of a member exposed to friction and sliding. In the lubricating oil, if necessary, for example, other base oil components such as mineral oil and synthetic oil and other additives can be appropriately blended.

この潤滑油は、腐食抑制に優れ、腐食防止剤は必要とせず、経済的に優れ、生分解性が高く低環境負荷であり、低粘度であっても蒸気圧が低く、引火の危険性もなく、さらに耐熱性に優れ、従来の炭化水素系潤滑油と比べて何ら遜色のない摩擦特性を有し、高温下、真空下等の極めて厳しい条件の下でも長期間使用することができる等の特性を有している。   This lubricating oil has excellent corrosion control, does not require a corrosion inhibitor, is economically excellent, biodegradable and has a low environmental load, has low vapor pressure even at low viscosity, and has a risk of ignition. In addition, it has excellent heat resistance, has friction characteristics comparable to conventional hydrocarbon lubricants, and can be used for a long time even under extremely severe conditions such as high temperature and vacuum. It has characteristics.

従って、例えば、内燃機関、トルク伝達装置、すべり軸受、ころがり軸受、ボールネジ、ころがり案内面等の転動装置、クラッチ内蔵回転伝達装置、パワーステアリング装置、含油軸受、流体軸受、圧縮装置、レシプロ型圧縮機、ターボチャージャー、チェーン、歯車、油圧、真空ポンプ、スパッタ等の蒸着装置、気化、昇華による真空蒸着装置、シリコンウェハー等への注入を目的としたイオン打ち込み装置、液晶、有機EL、プラズマ等の薄型ディスプレー製造に用いられるディスプレー素子製造装置、時計部品、ハードディスク、冷凍機、切削、圧延、絞り抽伸、転造、鍛造、熱処理、熱媒体、洗浄等の装置、ショックアブソーバ、ブレーキ、密封装置、航空機や人工衛星等の航空宇宙機器等に好適に用いることができる。   Therefore, for example, internal combustion engines, torque transmission devices, plain bearings, rolling bearings, ball screws, rolling guide devices such as rolling guide surfaces, clutch built-in rotation transmission devices, power steering devices, oil-impregnated bearings, fluid bearings, compression devices, reciprocating compression Machine, turbocharger, chain, gear, oil pressure, vacuum pump, sputtering deposition equipment, vapor deposition, sublimation vacuum deposition equipment, ion implantation equipment for injection into silicon wafers, liquid crystal, organic EL, plasma, etc. Display element manufacturing equipment used for thin display manufacturing, watch parts, hard disks, refrigerators, cutting, rolling, drawing, rolling, forging, heat treatment, heat medium, washing, etc., shock absorbers, brakes, sealing devices, aircraft And aerospace equipment such as artificial satellites.

また、イオン液体の表面層を形成することにより、水ぬれ性向上、帯電防止等の効果も期待され、その効果によっても、さらに幅広い用途展開が可能である。   Further, by forming the surface layer of the ionic liquid, effects such as improvement of water wettability and antistatic properties are also expected, and even wider application development is possible due to the effects.

以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<合成例1>
下記式で表される化合物を合成した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
<Synthesis Example 1>
A compound represented by the following formula was synthesized.

2-ブロモエタノール(167.26g、1.34mol)とジメチルエチルアミン(293.70g、4.02mol)をアセトニトリル(850ml)中で、室温下、24時間反応させた。反応後、析出した固体をろ別し、洗浄を行うことにより第4級アンモニウムブロマイド塩(246.14g、1.24mol)を得た。   2-Bromoethanol (167.26 g, 1.34 mol) and dimethylethylamine (293.70 g, 4.02 mol) were reacted in acetonitrile (850 ml) at room temperature for 24 hours. After the reaction, the precipitated solid was filtered off and washed to obtain a quaternary ammonium bromide salt (246.14 g, 1.24 mol).

得られた第4級アンモニウムブロマイド塩(246.14g、1.24mol)とメタンスルホン酸(257.57g、2.68mol)を水(600ml)中で、室温下、24時間反応後、水を減圧留去し、黄色液体を得た。得られた液体を洗浄することにより、無色透明液体の上記化合物158.40gを得た。
FT-IR(KBr):3360cm-1:O-H伸縮振動 2923cm-1:C-H伸縮振動
1H-NMR (D2O 400MHz): δ 1.24 (t, 3H,CH 3 CH2N+), δ 2.72 (s, 3H,CH 3 SO3 -),δ 3.03 (s, 6H, CH 3 N+),δ 3.38 (q, 4H, CH 2 N+), δ 3.95 (t, 2H, N+CH2 CH 2 OH).
元素分析:実測値C:39.12% H:9.09% N:6.68% S:15.34%
理論値C:39.42% H:8.98% N:6.57% S:15.03%
<合成例2>
下記式で表される化合物を合成した。
The obtained quaternary ammonium bromide salt (246.14 g, 1.24 mol) and methanesulfonic acid (257.57 g, 2.68 mol) were reacted in water (600 ml) at room temperature for 24 hours, and then water was distilled off under reduced pressure. A yellow liquid was obtained. The obtained liquid was washed to obtain 158.40 g of the above compound as a colorless transparent liquid.
FT-IR (KBr): 3360cm -1 : OH stretching vibration 2923cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400MHz): δ 1.24 (t, 3H, CH 3 CH 2 N +), δ 2.72 (s, 3H, CH 3 SO 3 -), δ 3.03 (s, 6H, CH 3 N + ), δ 3.38 (q, 4H, CH 2 N + ), δ 3.95 (t, 2H, N + CH 2 CH 2 OH).
Elemental analysis: Actual measurement C: 39.12% H: 9.09% N: 6.68% S: 15.34%
Theoretical value C: 39.42% H: 8.98% N: 6.57% S: 15.03%
<Synthesis Example 2>
A compound represented by the following formula was synthesized.

合成例1で得られた第4級アンモニウムブロマイド塩(100.00g、0.50mol)をイオン交換水に溶解し、OH型に置換したイオン交換樹脂(三菱化学(株)製ダイヤイオン SA10A)を充填したカラムに通液することによって第4級アンモニウムヒドロキシド塩(66.05g、0.49mol)を得た。   The quaternary ammonium bromide salt (100.00 g, 0.50 mol) obtained in Synthesis Example 1 was dissolved in ion-exchanged water and charged with an ion-exchange resin (Diaion SA10A manufactured by Mitsubishi Chemical Corporation) substituted for OH type. By passing through a column, a quaternary ammonium hydroxide salt (66.05 g, 0.49 mol) was obtained.

得られた第4級アンモニウムヒドロキシド塩(50.00g、0.37mol)とグリコール酸(56.25g、0.74mol)を水(100ml)で、室温下、24時間反応後、水を減圧留去し、黄色液体を得た。得られた液体を洗浄することにより、黄色透明液体の上記化合物57.17gを得た。
FT-IR(KBr):3320cm-1:O-H伸縮振動 2985cm-1:C-H伸縮振動
1580cm-1:COO-伸縮振動
1H-NMR (D2O 400MHz): δ 1.23 (t, 3H, CH 3 CH2N+), δ 2.98 (s, 6H, CH 3 N+), δ 3.34 (q, 4H, CH 2 N+), δ 3.95 (m, 2H, N+CH2 CH 2 OH), δ 3.96 (s, 2H, CH 2 COO-).
13C-NMR (D2O 100MHz): δ 177.85 (CH2 COO-).
元素分析:実測値C:49.50% H:10.25% N:6.98%
理論値C:49.72% H:9.91% N:7.25%
<合成例3>
下記式で表される化合物を合成した。
The obtained quaternary ammonium hydroxide salt (50.00 g, 0.37 mol) and glycolic acid (56.25 g, 0.74 mol) were reacted with water (100 ml) at room temperature for 24 hours. A liquid was obtained. The obtained liquid was washed to obtain 57.17 g of the above compound as a yellow transparent liquid.
FT-IR (KBr): 3320cm -1 : OH stretching vibration 2985cm -1 : CH stretching vibration
1580cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 1.23 (t, 3H, CH 3 CH 2 N + ), δ 2.98 (s, 6H, CH 3 N + ), δ 3.34 (q, 4H, CH 2 N + ), δ 3.95 (m, 2H , N + CH 2 CH 2 OH), δ 3.96 (s, 2H, CH 2 COO -).
13 C-NMR (D 2 O 100 MHz): δ 177.85 (CH 2 C OO ).
Elemental analysis: actual measurement C: 49.50% H: 10.25% N: 6.98%
Theoretical value C: 49.72% H: 9.91% N: 7.25%
<Synthesis Example 3>
A compound represented by the following formula was synthesized.

合成例2で得られた第4級アンモニウムヒドロキシド塩(50.00g、0.37mol)と酢酸(44.44g、0.74mol)を水(100ml)で、室温下、24時間反応後、水を減圧留去し、黄色液体を得た。得られた液体を洗浄することにより、黄色透明液体の上記化合物52.43gを得た。
FT-IR(KBr):3330cm-1:O-H伸縮振動 2980cm-1:C-H伸縮振動
1580cm-1:COO-伸縮振動
1H-NMR (D2O 400MHz): δ 1.26 (t, 3H, CH 3 CH2N+), δ 1.84 (s, 3H, CH 3 COO-), δ 3.02 (s, 6H, CH 3 N+), δ 3.38 (q, 4H, CH 2 N+), δ 3.94 (t, 2H, N+CH2 CH 2 OH).
13C-NMR (D2O 100MHz): δ 183.09 (CH3 COO-).
元素分析:実測値C:54.00% H:10.98% N:7.60%
理論値C:54.21% H:10.80% N:7.90%
<合成例4>
下記式で表される化合物を合成した。
After reacting the quaternary ammonium hydroxide salt obtained in Synthesis Example 2 (50.00 g, 0.37 mol) and acetic acid (44.44 g, 0.74 mol) with water (100 ml) at room temperature for 24 hours, water was distilled off under reduced pressure. As a result, a yellow liquid was obtained. The obtained liquid was washed to obtain 52.43 g of the above compound as a yellow transparent liquid.
FT-IR (KBr): 3330cm -1 : OH stretching vibration 2980cm -1 : CH stretching vibration
1580cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 1.26 (t, 3H, CH 3 CH 2 N +), δ 1.84 (s, 3H, CH 3 COO -), δ 3.02 (s, 6H, CH 3 N + ), δ 3.38 (q, 4H, CH 2 N + ), δ 3.94 (t, 2H, N + CH 2 CH 2 OH).
13 C-NMR (D 2 O 100 MHz): δ 183.09 (CH 3 C OO ).
Elemental analysis: actual measurement C: 54.00% H: 10.98% N: 7.60%
Theoretical value C: 54.21% H: 10.80% N: 7.90%
<Synthesis Example 4>
A compound represented by the following formula was synthesized.

3-ブロモプロピオン酸(150.00g、0.98mol)とジメチルエチルアミン(358.39g、4.90mol)をアセトニトリル(750ml)中で、室温下、24時間反応させた。反応後、析出した固体をろ別し、洗浄を行うことにより第4級アンモニウムブロマイド塩(204.76g、0.68mol)を得た。   3-Bromopropionic acid (150.00 g, 0.98 mol) and dimethylethylamine (358.39 g, 4.90 mol) were reacted in acetonitrile (750 ml) at room temperature for 24 hours. After the reaction, the precipitated solid was filtered off and washed to obtain a quaternary ammonium bromide salt (204.76 g, 0.68 mol).

得られた第4級アンモニウムブロマイド塩(204.76g、0.68mol)とメタンスルホン酸(235.47g、2.45mol)を水(500ml)中で、室温下、24時間反応後、水を減圧留去し、黄色液体を得た。得られた液体を洗浄することにより、無色透明液体の上記化合物85.60gを得た。
FT-IR(KBr):2961cm-1:C-H伸縮振動 1728cm-1:C=O伸縮振動
1H-NMR (D2O 400MHz): δ 1.35 (t, 3H,CH 3 CH2N+), δ 2.70 (s, 3H,CH 3 SO3 -), δ 2.97 (t, 2H, N+CH2 CH 2 COOH),δ 3.10 (s, 6H, CH 3 N+),δ 3.46 (q, 2H, CH3 CH 2 N+), δ 3.66 (q, 2H, N+ CH 2 CH2COOH).
13C-NMR (D2O 100MHz): δ 171.66 (CH2 COOH).
元素分析:実測値C:39.51% H:8.12% N:5.76% S:12.98%
理論値C:39.82% H:7.94% N:5.80% S:13.29%
下記表に示した上記以外の実施例の化合物は、上記の合成例に準じて合成した。また比較例の化合物は、上記の合成例に準じて、あるいは公知の方法により合成したものを用いた。
[腐食性試験]
JIS K 2234を参考に、1/10スケール(1L→100ml)で試験を行った。試料22.5ml、水52.5ml、合計75mlとなるようにサンプルを混合調整した。JIS K 2234で規定された1/10スケールの金属片をサンプルに投入し、液温88℃、336時間保持した。洗浄後、質量、面積、溶液のpHを測定し、金属片の重量変化率、pH変化を算出して、腐食性を評価した。重量変化率は下記式に従って算出した。この試験方法にてエチレングリコール、プロピレングリコールの腐食性試験を行い、重量変化率を算出したところ、Alは5%未満、Cuは1%未満となった。この結果より、Alは5%未満、Cuは1%未満を低腐食性と評価した。pH変化はJIS K 2234の規格値を用いた。その他の条件、試験操作はJIS K 2234に準拠した。
The obtained quaternary ammonium bromide salt (204.76 g, 0.68 mol) and methanesulfonic acid (235.47 g, 2.45 mol) were reacted in water (500 ml) at room temperature for 24 hours, and then water was distilled off under reduced pressure. A yellow liquid was obtained. The obtained liquid was washed to obtain 85.60 g of the above compound as a colorless transparent liquid.
FT-IR (KBr): 2961cm -1 : CH stretching vibration 1728cm -1 : C = O stretching vibration
1 H-NMR (D 2 O 400MHz): δ 1.35 (t, 3H, CH 3 CH 2 N +), δ 2.70 (s, 3H, CH 3 SO 3 -), δ 2.97 (t, 2H, N + CH 2 CH 2 COOH), δ 3.10 (s, 6H, CH 3 N + ), δ 3.46 (q, 2H, CH 3 CH 2 N + ), δ 3.66 (q, 2H, N + CH 2 CH 2 COOH).
13 C-NMR (D 2 O 100 MHz): δ 171.66 (CH 2 C OOH).
Elemental analysis: actual measurement C: 39.51% H: 8.12% N: 5.76% S: 12.98%
Theoretical value C: 39.82% H: 7.94% N: 5.80% S: 13.29%
The compounds of Examples other than those shown in the following table were synthesized according to the above synthesis examples. Moreover, the compound of the comparative example used what was synthesize | combined by the well-known method according to said synthesis example.
[Corrosion test]
The test was conducted on a 1/10 scale (1 L → 100 ml) with reference to JIS K 2234. The sample was mixed and adjusted to 22.5 ml of sample and 52.5 ml of water for a total of 75 ml. A 1/10 scale metal piece specified in JIS K 2234 was put into a sample and kept at a liquid temperature of 88 ° C. for 336 hours. After washing, the mass, area, and pH of the solution were measured, and the weight change rate and pH change of the metal pieces were calculated to evaluate the corrosivity. The weight change rate was calculated according to the following formula. When the corrosivity test of ethylene glycol and propylene glycol was conducted by this test method and the weight change rate was calculated, Al was less than 5% and Cu was less than 1%. From these results, Al was less than 5%, and Cu was less than 1% as low corrosivity. The standard value of JIS K 2234 was used for the pH change. Other conditions and test operations conformed to JIS K 2234.

[生分解性試験]
生分解性試験は、OECDテストガイドライン301C法に準拠して行った。この試験には一般活性汚泥を微生物源として使用し、調製した標準試験培養液300mlに、微生物源30mg/l、被験物質100mg/lの濃度になるようにそれぞれ投入し、25±1℃、試験期間28日、標準物質にアニリンを使用して行った。分解率はアクタック製BODセンサーを使用して生化学的酸素要求量(BOD;biochemical oxygen demand)を測定し、算出した理論的酸素要求量の値から分解度を算出した。具体的には、28日間のBOD分解度が60%以上の場合を易分解性として評価した。
[流動点]
JIS K 2269-1980に準拠し、試験を行った。75%水溶液に調製した試料を、規定の試験管に45mL仕込み、45℃に加温した水浴に入れ、次いで、規定の方法で冷却した。規定通りに装置をセットした試験管を冷却浴に入れ、0℃から-70℃まで試料の温度が2.5℃下がるごとに、試験管を冷却浴から取り出し、静かに傾けて試験管内の試料が流動するかを確認した。試料が5秒間、全く動かなくなった温度を読み取り、この温度に2.5℃を加え、流動点とした。想定されるヒートパイプ装置の使用温度範囲下限の-20℃を、指標値とした。
[融氷試験]
直径90mmのシャーレに20gの水を入れて‐10℃の低温恒温室で24時間放置して氷を得た後、温度を‐10℃に保った状態で試料を1g散布した。散布して6時間後、融出した液体量を測定し、下記式に従って融氷率を算出した。
[Biodegradability test]
The biodegradability test was conducted in accordance with the OECD test guideline 301C method. In this test, general activated sludge was used as a microbial source, and 300 mL of the prepared standard test broth was added to a concentration of microbial source 30 mg / l and test substance 100 mg / l, respectively. A period of 28 days was performed using aniline as a standard substance. The decomposition rate was determined by measuring the biochemical oxygen demand (BOD) using an Actac BOD sensor and calculating the degree of decomposition from the calculated theoretical oxygen demand value. Specifically, the case where the BOD degradation degree for 28 days was 60% or more was evaluated as easily degradable.
[Pour point]
The test was conducted in accordance with JIS K 2269-1980. A sample prepared as a 75% aqueous solution was charged to a specified test tube in a volume of 45 mL, placed in a water bath heated to 45 ° C., and then cooled by a specified method. Place the test tube with the equipment set as specified in the cooling bath, and remove the test tube from the cooling bath every time the sample temperature drops from 0 ° C to -70 ° C by 2.5 ° C, and gently incline the sample in the test tube. I confirmed what to do. The temperature at which the sample stopped moving at all for 5 seconds was read, and 2.5 ° C. was added to this temperature to obtain the pour point. The assumed operating temperature range lower limit of −20 ° C. of the heat pipe device was used as an index value.
[Fused ice test]
After putting 20 g of water in a petri dish with a diameter of 90 mm and leaving it in a low temperature constant temperature room at −10 ° C. for 24 hours to obtain ice, 1 g of the sample was sprayed with the temperature kept at −10 ° C. Six hours after spraying, the amount of melted liquid was measured, and the ice melting rate was calculated according to the following formula.

<実施例1〜5、比較例1〜6>
表1〜表3に示す化合物について腐食性試験、生分解性試験、流動点の測定を行った。腐食性試験の金属片にはAlを用いた。
<Examples 1-5, Comparative Examples 1-6>
The compounds shown in Tables 1 to 3 were measured for corrosivity test, biodegradability test, and pour point. Al was used for the metal piece of the corrosion test.

その結果を表1〜表3に示す。   The results are shown in Tables 1 to 3.

表1〜3より、実施例1〜5の化合物(イオン液体)は腐食性試験ではpHが安定しており低腐食性で、生分解性試験では易分解性を示し、流動点はいずれも-50℃以下であった。   From Tables 1 to 3, the compounds (ionic liquids) of Examples 1 to 5 are stable in pH in the corrosivity test and have low corrosivity, and are easily decomposable in the biodegradability test. It was below 50 ° C.

一方、カチオンあるいはアニオンに、基材もしくは媒体に親和性を持つ官能基を有しない化合物を用いた比較例1〜3は、腐食性試験ではpH変動、腐食性があり、実施例1〜5と比べても差異が顕著に認められ、さらにイミダゾール系のカチオンを持つ化合物(イオン液体)を用いた比較例4〜6もpH変動、腐食性が認められた。いずれも実施例1〜5と比べて流動点が高く指標値の-20℃以上で、生分解性試験のBOD分解度は60%未満であった。
<実施例6〜13、比較例7〜13>
表4〜表6に示す化合物について腐食性試験、生分解性試験、流動点の測定を行った。腐食性試験の金属片にはCuを用いた。
On the other hand, Comparative Examples 1 to 3 using a compound that does not have a functional group having an affinity for a substrate or a medium as a cation or an anion have pH fluctuation and corrosivity in a corrosive test. In comparison, the difference was recognized remarkably, and pH variations and corrosivity were also observed in Comparative Examples 4 to 6 using a compound having an imidazole cation (ionic liquid). In all cases, the pour point was higher than that of Examples 1 to 5 and the index value was −20 ° C. or higher, and the degree of BOD degradation in the biodegradability test was less than 60%.
<Examples 6 to 13 and Comparative Examples 7 to 13>
The compounds shown in Tables 4 to 6 were subjected to a corrosivity test, a biodegradability test, and a pour point measurement. Cu was used for the metal piece of the corrosion test.

その結果を表4〜表6に示す。   The results are shown in Tables 4-6.

表4〜6より、(前記と重複するものも含むが)実施例6〜13の化合物(イオン液体)は腐食性試験ではpHが安定しており低腐食性で、生分解性試験では易分解性を示し、流動点はいずれも-50℃以下であった。   From Tables 4 to 6, the compounds (ionic liquids) of Examples 6 to 13 (including those overlapping with the above) have stable pH and low corrosivity in the corrosive test, and are easily decomposed in the biodegradability test. The pour points were all -50 ° C or lower.

一方、カチオンあるいはアニオンに、基材もしくは媒体に親和性を持つ官能基を有しない化合物を用いた比較例7〜9は、腐食性試験ではpH変動、腐食性があり、実施例6〜13と比べても差異が顕著に認められ、さらにイミダゾール系のカチオンを持つ化合物(イオン液体)を用いた比較例10〜13もpH変動、腐食性が認められた。いずれも実施例6〜13と比べて流動点が高く指標値の-20℃以上で、生分解性試験のBOD分解度は60%未満であった。   On the other hand, Comparative Examples 7 to 9 using a compound having no functional group having an affinity for a substrate or a medium as a cation or an anion have pH fluctuation and corrosivity in the corrosive test. In comparison, the difference was remarkably recognized, and furthermore, Comparative Examples 10 to 13 using a compound having an imidazole cation (ionic liquid) also showed pH fluctuation and corrosivity. In all cases, the pour point was higher than that of Examples 6 to 13 and the index value was -20 ° C or higher, and the degree of BOD degradation in the biodegradability test was less than 60%.

以上の結果にも示されるように、実施例の化合物は、図1のようにカチオンに結合性官能基、アニオンに媒体との親和性がある官能基を有し、あるいは、アニオンに結合性官能基、カチオンに媒体との親和性がある官能基を有しているため、イオン液体の層が金属片の表面に形成されて比較例の化合物に比べて著しく低腐食性となったものと考えられる。このように実施例の化合物は腐食を抑制する熱媒体として特に適している。さらに流動点がいずれも-50℃以下であることから、冷却液や不凍液として好適である。
<実施例14〜18>
表7に示す化合物について融氷試験を行った。その結果を表7に示す。
As shown in the above results, the compounds of Examples have binding functional groups on the cations and functional groups having affinity with the medium on the anions as shown in FIG. It is considered that the ionic liquid layer was formed on the surface of the metal piece and became significantly less corrosive than the compound of the comparative example because it has a functional group having affinity with the medium for the group and cation. It is done. Thus, the compounds of the examples are particularly suitable as a heat medium for inhibiting corrosion. Further, since all of the pour points are −50 ° C. or less, it is suitable as a cooling liquid or antifreeze liquid.
<Examples 14 to 18>
The compound shown in Table 7 was subjected to an ice melting test. The results are shown in Table 7.

表7より、実施例14〜18のイオン液体はいずれも10%以上の融氷率を示し、流動点がいずれも-50℃以下で易分解性であることからも、凍結防止剤や融雪剤等として好適である。   From Table 7, the ionic liquids of Examples 14 to 18 all show a melting rate of 10% or more, and the pour points are all easily decomposable at -50 ° C. or less. Etc. are suitable.

Claims (9)

基材表面の耐腐食性を改質する熱媒体であって、下記式(I):
(式中、R1、R2、R3、R4はそれぞれ独立に炭素数1〜5の直鎖もしくは分岐のアルキル基、または−R5−Aで示される官能基(R5は炭素数1〜10の直鎖もしくは分岐のアルキレン基を示し、Aは官能基を示す。)を示し、R1、R2、R3、R4のうち1〜4個が−R5−Aで示される官能基である。X-はアニオンを示し、Aは改質処理する基材表面との親和性を持つ官能基、アニオンX-は媒体との親和性を持つ官能基を有し、あるいは、Aは媒体との親和性を持つ官能基、アニオンX-は改質処理する基材表面との親和性を持つ官能基を有する。)で表されるイオン液体からなることを特徴とする熱媒体。
A heat medium that modifies the corrosion resistance of the surface of a substrate, which is represented by the following formula (I):
(Wherein R 1 , R 2 , R 3 and R 4 are each independently a linear or branched alkyl group having 1 to 5 carbon atoms, or a functional group represented by -R 5 -A (R 5 is a carbon number) 1 to 10 linear or branched alkylene groups, A represents a functional group), and 1 to 4 of R 1 , R 2 , R 3 and R 4 are represented by -R 5 -A X represents an anion, A represents a functional group having an affinity for the surface of the substrate to be modified, an anion X has a functional group having an affinity for the medium, or A is a functional group having an affinity for the medium, and anion X has a functional group having an affinity for the surface of the substrate to be modified. .
式(I)で表されるイオン液体は、基材に表面層を形成することを特徴とする請求項1に記載の熱媒体。   The heat medium according to claim 1, wherein the ionic liquid represented by the formula (I) forms a surface layer on the substrate. 式(I)のAは、水酸基またはカルボキシル基であることを特徴とする請求項1または2に記載の熱媒体。   The heat medium according to claim 1 or 2, wherein A in the formula (I) is a hydroxyl group or a carboxyl group. 式(I)のアニオンX-は、水酸基を有していてもよい炭素数2〜4のモノカルボン酸イオンまたはジカルボン酸イオン、ヒドロキシシクロヘキサンカルボン酸イオン、または炭素数1〜3のアルキルスルホン酸イオンであることを特徴とする請求項1〜3のいずれかに記載の熱媒体。 The anion X of the formula (I) is a monocarboxylic acid ion or dicarboxylic acid ion having 2 to 4 carbon atoms which may have a hydroxyl group, a hydroxycyclohexanecarboxylic acid ion, or an alkylsulfonic acid ion having 1 to 3 carbon atoms. The heat medium according to claim 1, wherein the heat medium is a heat medium. 式(I)のアニオンX-は、酢酸イオン、グリコール酸イオン、乳酸イオン、酒石酸イオン、1,3,4,5-テトラヒドロキシシクロヘキサンカルボン酸イオン、または炭素数1〜3のアルキルスルホン酸イオンであることを特徴とする請求項4に記載の熱媒体。 The anion X − in the formula (I) is an acetate ion, glycolate ion, lactate ion, tartrate ion, 1,3,4,5-tetrahydroxycyclohexanecarboxylate ion, or alkyl sulfonate ion having 1 to 3 carbon atoms. The heat medium according to claim 4, wherein the heat medium is present. 請求項1〜5のいずれかに記載の熱媒体を含有することを特徴とする冷却液。   A cooling liquid comprising the heat medium according to claim 1. 請求項1〜5のいずれかに記載の熱媒体を含有することを特徴とする不凍液。   An antifreeze containing the heat medium according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の熱媒体を含有することを特徴とする凍結防止剤。   An antifreezing agent comprising the heat medium according to claim 1. 請求項1〜5のいずれかに記載の熱媒体を含有することを特徴とする融雪剤。   A snow melting agent comprising the heat medium according to claim 1.
JP2011108820A 2011-05-13 2011-05-13 Coolant, antifreeze, antifreeze, snow melting agent using corrosion resistant ionic liquid as heat medium Active JP5937303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011108820A JP5937303B2 (en) 2011-05-13 2011-05-13 Coolant, antifreeze, antifreeze, snow melting agent using corrosion resistant ionic liquid as heat medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011108820A JP5937303B2 (en) 2011-05-13 2011-05-13 Coolant, antifreeze, antifreeze, snow melting agent using corrosion resistant ionic liquid as heat medium

Publications (2)

Publication Number Publication Date
JP2012241018A true JP2012241018A (en) 2012-12-10
JP5937303B2 JP5937303B2 (en) 2016-06-22

Family

ID=47463089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108820A Active JP5937303B2 (en) 2011-05-13 2011-05-13 Coolant, antifreeze, antifreeze, snow melting agent using corrosion resistant ionic liquid as heat medium

Country Status (1)

Country Link
JP (1) JP5937303B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614118A (en) * 2013-12-04 2014-03-05 宁波赛茵特科技服务有限公司 Snow melting and deicing agent special for airport
CN103709995A (en) * 2013-12-04 2014-04-09 宁波赛茵特科技服务有限公司 Environmentally-friendly runway snow melting and deicing agent
JP5892530B1 (en) * 2015-10-15 2016-03-23 株式会社日本理水研 Heat medium and hot water supply apparatus or heat exchange apparatus using the heat medium
JP2016117844A (en) * 2014-12-22 2016-06-30 日清紡ホールディングス株式会社 Base material for heat medium
EP3147616A4 (en) * 2014-05-23 2017-11-29 Denso Corporation Heat transport system
CN116731571A (en) * 2023-05-05 2023-09-12 上海三银涂料科技股份有限公司 Water-based rust-transferring primer for low-surface-treatment steel structure and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117836A1 (en) * 2009-03-31 2010-10-14 E. I. Du Pont De Nemours And Company Ionic compounds in lithium bromide/water absorption cycle systems
JP2010233589A (en) * 2009-03-30 2010-10-21 Fujifilm Corp Radiographic apparatus
WO2011089322A1 (en) * 2010-01-25 2011-07-28 Oy Granula Ab Ltd The use of a composition with low corrosive properties
US20110180746A1 (en) * 2010-01-25 2011-07-28 Oy Granula Ab Ltd Method for preparing freezing point depressant composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233589A (en) * 2009-03-30 2010-10-21 Fujifilm Corp Radiographic apparatus
WO2010117836A1 (en) * 2009-03-31 2010-10-14 E. I. Du Pont De Nemours And Company Ionic compounds in lithium bromide/water absorption cycle systems
WO2011089322A1 (en) * 2010-01-25 2011-07-28 Oy Granula Ab Ltd The use of a composition with low corrosive properties
US20110180746A1 (en) * 2010-01-25 2011-07-28 Oy Granula Ab Ltd Method for preparing freezing point depressant composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614118A (en) * 2013-12-04 2014-03-05 宁波赛茵特科技服务有限公司 Snow melting and deicing agent special for airport
CN103709995A (en) * 2013-12-04 2014-04-09 宁波赛茵特科技服务有限公司 Environmentally-friendly runway snow melting and deicing agent
EP3147616A4 (en) * 2014-05-23 2017-11-29 Denso Corporation Heat transport system
JP2016117844A (en) * 2014-12-22 2016-06-30 日清紡ホールディングス株式会社 Base material for heat medium
JP5892530B1 (en) * 2015-10-15 2016-03-23 株式会社日本理水研 Heat medium and hot water supply apparatus or heat exchange apparatus using the heat medium
CN116731571A (en) * 2023-05-05 2023-09-12 上海三银涂料科技股份有限公司 Water-based rust-transferring primer for low-surface-treatment steel structure and preparation method thereof

Also Published As

Publication number Publication date
JP5937303B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5937303B2 (en) Coolant, antifreeze, antifreeze, snow melting agent using corrosion resistant ionic liquid as heat medium
US5085793A (en) Corrosion-inhibited antifreeze/coolant composition
EP1206504B1 (en) Synergistic combinations of carboxylates for use as freezing point depressants and corrosion inhibitors in heat transfer fluids
JPS6326388A (en) Corrosion suppressing antifreeze liquid/cooling composition
US20090001313A1 (en) Antifreeze Concentrate and Coolant Compositions and Preparation Thereof
US20090250654A1 (en) Antifreeze concentrate and coolant compositions and preparation thereof
CA2051278C (en) Corrosion-inhibited antifreeze/coolant composition containing cyclohexane acid(s)
EP2438211B1 (en) Hot test fluid containing vapor phase inhibition
CA2051609A1 (en) Corrosion-inhibited antifreeze/coolant composition
JP6467908B2 (en) Substrate for heat medium
KR101296849B1 (en) GLYCERINE Antifreeze composition
JPS60243186A (en) Anti-freeze
KR19980066099A (en) Cold and heat transfer medium composition
KR20170009844A (en) Non-aqueous heat transfer fluid with reduced low temperature viscosity
JP2009256735A (en) Cooling liquid composition
MXPA01000019A (en) Antifreeze concentrates and coolant compositions containing these concentrates for cooling circuits in internal combustion engines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160512

R150 Certificate of patent or registration of utility model

Ref document number: 5937303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250