JP2012239249A - Uninterruptible power supply system - Google Patents

Uninterruptible power supply system Download PDF

Info

Publication number
JP2012239249A
JP2012239249A JP2011104858A JP2011104858A JP2012239249A JP 2012239249 A JP2012239249 A JP 2012239249A JP 2011104858 A JP2011104858 A JP 2011104858A JP 2011104858 A JP2011104858 A JP 2011104858A JP 2012239249 A JP2012239249 A JP 2012239249A
Authority
JP
Japan
Prior art keywords
power supply
current
switch
mechanical switch
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011104858A
Other languages
Japanese (ja)
Other versions
JP5629639B2 (en
Inventor
Keiichi Oshikiri
恵一 押切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2011104858A priority Critical patent/JP5629639B2/en
Publication of JP2012239249A publication Critical patent/JP2012239249A/en
Application granted granted Critical
Publication of JP5629639B2 publication Critical patent/JP5629639B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an uninterruptible power supply system that can suppress an abnormal current at system switching in a relatively simple configuration and with high control reliability.SOLUTION: The uninterruptible power supply system includes: a converter 11; an inverter 12 for feeding a load via a first mechanical switch 13; a parallel circuit of a second mechanical switch 14 and a semiconductor switch 15 having an input of bypass input power supply and an output connected to the load; a bypass current detector 16; and switching control means 2. At a command to switch the load feed from the output of the inverter 12 to the bypass input power supply, the switching control means 2 starts phase control means 28 for the semiconductor switch 15 and outputs an off command to the first mechanical switch 13, and a predetermined time later, outputs an on command to the second mechanical switch 14. The phase control means 28 controls an ignition phase of the semiconductor switch 15 such that a current flowing through the bypass current detector 16 becomes equal to or lower than a predetermined current limit reference value.

Description

この発明は、商用電源が異常になっても安定した電力を負荷に継続給電できる無停電電源システムに関するものである。   The present invention relates to an uninterruptible power supply system capable of continuously supplying stable power to a load even when a commercial power supply becomes abnormal.

通常の無停電電源システムの負荷は、瞬時的な停電も許容されない例えばコンピュータ等である場合が多い。ここで無停電電源システムとは、少なくとも1台の無停電電源装置を有するシステムである。負荷の運転に際し、無停電電源装置が故障したとき、あるいは無停電電源装置の保守を行なう必要があるとき、無停電電源装置と商用電源の系統切換を素早く行なうことが必要となる。   In many cases, the load of a normal uninterruptible power supply system is, for example, a computer that does not allow an instantaneous power failure. Here, the uninterruptible power supply system is a system having at least one uninterruptible power supply. When operating the load, when the uninterruptible power supply fails or when the uninterruptible power supply needs to be maintained, it is necessary to quickly switch the system between the uninterruptible power supply and the commercial power supply.

上記の系統切換を行なうとき、異なる系統を接続することになるため、系統切換点での2系統間の電圧、あるいは位相が一致しないことによってお互いに横流が発生するなど異常電流が生じる。この異常電流が大きい場合には系統切換スイッチが故障する、あるいは無停電電源装置が過電流故障となって停止してしまう恐れがあった。   When the above system switching is performed, different systems are connected, so that abnormal currents such as cross currents are generated due to voltage or phase mismatch between the two systems at the system switching point. If this abnormal current is large, the system changeover switch may fail, or the uninterruptible power supply may stop due to an overcurrent failure.

このような異常電流を抑制する対策として、無停電電源装置から商用電源への系統切換を行うとき、無停電電源装置の出力電流と負荷電流の偏差を検出し、その偏差がゼロになるように無停電電源装置の出力電圧を制御する提案が為されている(例えば特許文献1参照。)。   As a measure to suppress such abnormal current, when switching the system from the uninterruptible power supply to the commercial power supply, detect the deviation between the output current and the load current of the uninterruptible power supply so that the deviation becomes zero Proposals have been made to control the output voltage of the uninterruptible power supply (see, for example, Patent Document 1).

特開平11−4544号公報(第2−3ページ、図1)Japanese Patent Laid-Open No. 11-4544 (page 2-3, FIG. 1)

特許文献1に示された手法は、軽負荷状態であっても無停電電源装置から商用電源への負荷移行をスムースに行うことを狙ったものであるが、出力電圧制御のみに頼っているため、例えば負荷にコンデンサが接続されている場合には制御の応答速度が問題となる場合があり、また、負荷側の短時間の過電流等の異常現象に対応することが困難な場合もある。従って、無停電電源装置の出力を閉ループ制御するという複雑な制御を行うにしては、その制御信頼性に問題があった。   The method disclosed in Patent Document 1 aims to smoothly shift the load from the uninterruptible power supply to the commercial power supply even in a light load state, but relies only on output voltage control. For example, when a capacitor is connected to the load, the response speed of the control may be a problem, and it may be difficult to cope with an abnormal phenomenon such as a short-time overcurrent on the load side. Therefore, there is a problem in the control reliability of the complicated control of performing the closed loop control of the output of the uninterruptible power supply.

本発明は上記問題点に鑑みて為されたものであり、比較的簡単な構成且つ高い制御信頼性で系統切換時の異常電流を抑制することが可能な無停電電源システムを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an uninterruptible power supply system capable of suppressing an abnormal current during system switching with a relatively simple configuration and high control reliability. And

上記目的を達成するために、本発明の無停電電源システムは、交流電源の入力電圧を直流に変換するコンバータと、この直流または前記交流電源が停電したときバッテリから直流を交流に変換し、第1の機械式スイッチを介して負荷に給電するインバータと、バイパス入力電源を入力とし、出力が前記負荷に接続された第2の機械式スイッチと半導体スイッチの並列回路と、前記バイパス入力電源に流れる電流を検出するバイパス電流検出器と、前記第1の機械式スイッチ、第2の機械式スイッチ及び半導体スイッチを制御する切換制御手段とを備え、前記切換制御手段は、前記負荷への給電を前記インバータの出力から前記バイパス入力電源側に切換える指令を受けたとき、前記半導体スイッチの位相制御手段を開始すると共に前記第2の機械式スイッチにオフ指令を出力し、所定時間経過後に前記第1の機械式スイッチにオン指令を出力し、前記位相制御手段は、前記バイパス電流検出器に流れる電流が所定の電流制限基準値以下となるように前記半導体スイッチの点弧位相を制御するようにしたことを特徴としている。   In order to achieve the above object, an uninterruptible power supply system of the present invention includes a converter that converts an input voltage of an AC power source into a direct current, a direct current from the battery when the direct current or the alternating current power fails, and an alternating current. An inverter that supplies power to the load via one mechanical switch, a bypass input power supply as an input, and an output flows to the parallel circuit of the second mechanical switch and the semiconductor switch connected to the load, and to the bypass input power supply A bypass current detector for detecting current; and a switching control means for controlling the first mechanical switch, the second mechanical switch, and the semiconductor switch, wherein the switching control means supplies power to the load. When receiving a command to switch from the output of the inverter to the bypass input power source, the phase control means of the semiconductor switch is started and the second An off command is output to the mechanical switch, an on command is output to the first mechanical switch after a predetermined time has elapsed, and the phase control means has a current flowing through the bypass current detector that is equal to or less than a predetermined current limit reference value. The ignition phase of the semiconductor switch is controlled so that

この発明によれば、比較的簡単な構成且つ高い制御信頼性で系統切換時の横流を抑制することができる無停電電源システムを提供することが可能となる。   According to the present invention, it is possible to provide an uninterruptible power supply system that can suppress a cross current during system switching with a relatively simple configuration and high control reliability.

本発明の実施例1に係る無停電電源システムの回路構成図。The circuit block diagram of the uninterruptible power supply system which concerns on Example 1 of this invention. 本発明の実施例2に係る無停電電源システムの回路構成図。The circuit block diagram of the uninterruptible power supply system which concerns on Example 2 of this invention.

以下、図面を参照して本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、本発明の実施例1に係る無停電電源システムを図1を参照して説明する。   Hereinafter, an uninterruptible power supply system according to Embodiment 1 of the present invention will be described with reference to FIG.

図1において、無停電電源システム主回路1は、交流入力、バッテリ入力及びバイパス入力を受け、交流出力を図示しない負荷に給電する。交流入力は、開閉器52RCを介して、コンバータ11に与えられる。コンバータ11の直流出力は、インバータ12によって、再び交流に変換され、機械式スイッチ13を介して交流出力となる。交流入力が健全な常時は上述のルートで交流入力から負荷への給電が行われる。バッテリ入力は開閉器72Bを介してインバータ12の入力に接続されている。交流入力が停電により喪失したとき、このバッテリ入力から負荷への給電が行われる。尚、コンバータ11及びインバータ12の制御回路についてはこれらの図示を省略する。   In FIG. 1, an uninterruptible power supply system main circuit 1 receives an AC input, a battery input, and a bypass input, and supplies the AC output to a load (not shown). The AC input is given to the converter 11 through the switch 52RC. The direct current output of the converter 11 is converted again into alternating current by the inverter 12 and becomes an alternating current output via the mechanical switch 13. When the AC input is healthy, power is supplied from the AC input to the load through the above-described route. The battery input is connected to the input of the inverter 12 via the switch 72B. When the AC input is lost due to a power failure, power is supplied from the battery input to the load. Note that illustration of the control circuit of the converter 11 and the inverter 12 is omitted.

バイパス入力は、開閉器52RSと、これと直列に接続された機械式スイッチ14と半導体スイッチ15の並列回路を介して交流出力(負荷)に接続される。コンバータ11またはインバータ12が故障したとき、またはこれらの保守を行うとき、半導体スイッチ15をオンし、機械式スイッチ13をオフし、更に機械式スイッチ14をオンすることによって、交流入力からの給電をバイパス入力からの給電に切換える。   The bypass input is connected to the AC output (load) through the switch 52RS and a parallel circuit of the mechanical switch 14 and the semiconductor switch 15 connected in series. When the converter 11 or the inverter 12 breaks down or when maintenance is performed, the semiconductor switch 15 is turned on, the mechanical switch 13 is turned off, and the mechanical switch 14 is turned on to supply power from the AC input. Switch to power supply from bypass input.

機械式スイッチ13、機械式スイッチ14及び半導体スイッチ15は切換制御回路2からの指令により動作している。切換制御回路2には、無停電電源システム主回路1内に設けられたバイパス電流検出器16による電流フィードバック信号が与えられている。   The mechanical switch 13, the mechanical switch 14, and the semiconductor switch 15 are operated according to a command from the switching control circuit 2. The switching control circuit 2 is given a current feedback signal by a bypass current detector 16 provided in the uninterruptible power supply system main circuit 1.

切換制御回路2には、手動切換シーケンス回路3からの手動切換指令と自動切換えロジック回路4からの自動切換え指令が与えられる。以下、切換制御回路2の内部構成について説明する。   The switching control circuit 2 is given a manual switching command from the manual switching sequence circuit 3 and an automatic switching command from the automatic switching logic circuit 4. Hereinafter, the internal configuration of the switching control circuit 2 will be described.

操作回路21及び操作回路22は、夫々機械式スイッチ13、機械式スイッチ14のオンオフ操作を行う。手動切換シーケンス回路3からの手動切換指令と自動切換えロジック回路4からの自動切換え指令はOR回路23に与えられ、バイパス給電への切換指令が与えられたとき、OR回路23の出力は操作回路21に対して機械式スイッチ13のオフ指令を与えると共に、遅延回路24を介して操作回路22に機械式スイッチ14のオン指令を与える。また、同時に以下に説明するイネーブル回路27をオンさせる指令を与える。   The operation circuit 21 and the operation circuit 22 perform an on / off operation of the mechanical switch 13 and the mechanical switch 14, respectively. The manual switching command from the manual switching sequence circuit 3 and the automatic switching command from the automatic switching logic circuit 4 are given to the OR circuit 23, and when the switching command to bypass power feeding is given, the output of the OR circuit 23 is the operation circuit 21. In addition, an off command for the mechanical switch 13 is given to the operation circuit 22 and an on command for the mechanical switch 14 is given to the operation circuit 22 via the delay circuit 24. At the same time, a command to turn on an enable circuit 27 described below is given.

バイパス電流検出器16による電流フィードバック信号は、設定された電流制御基準信号と突き合わされ、その偏差は電流制御器25によって増幅されイネーブル回路26の入力となる。イネーブル回路26の出力は位相制御回路27に与えられる。位相制御回路27はドライブ回路28を介して半導体スイッチ15の点弧位相を制御する。   The current feedback signal from the bypass current detector 16 is matched with the set current control reference signal, and the deviation is amplified by the current controller 25 and input to the enable circuit 26. The output of the enable circuit 26 is given to the phase control circuit 27. The phase control circuit 27 controls the ignition phase of the semiconductor switch 15 via the drive circuit 28.

次に動作について説明する。通常、無停電電源システムは、機械スイッチ13をオンしインバータ12の出力を交流出力として負荷に給電している。このとき、機械スイッチ14及び半導体スイッチ15はオフしている。この状態において、インバータ12またはコンバータ11が故障、或いはインバータ12が過負荷を検出すると、切換ロジック回路4によって切換条件が作られる。すると、瞬時にイネーブル回路26がオンとなって電流制御器25の出力による半導体スイッチ15の位相制御が有効となる。   Next, the operation will be described. Usually, the uninterruptible power supply system turns on the mechanical switch 13 and supplies the load with the output of the inverter 12 as an AC output. At this time, the mechanical switch 14 and the semiconductor switch 15 are off. In this state, when the inverter 12 or the converter 11 fails or the inverter 12 detects an overload, a switching condition is created by the switching logic circuit 4. Then, the enable circuit 26 is instantly turned on, and the phase control of the semiconductor switch 15 by the output of the current controller 25 becomes effective.

この時点では、電流制限基準信号に対してバイパス電流検出器16による電流フィードバック信号はゼロ(電流は流れていない)であるので、電流制御器26の出力は最小値に振れ、位相制御回路27は最小位相(最大点弧角)でドライブ回路28を駆動する。このとき、インバータ12の出力とバイパス入力が同期していれば、負荷電流相等のバイパス電流は、電流制限基準信号より小さいため、そのまま位相制御回路27は最小位相(最大点弧角)でドライブ回路28を駆動する。   At this time, since the current feedback signal from the bypass current detector 16 is zero (no current flows) with respect to the current limit reference signal, the output of the current controller 26 swings to the minimum value, and the phase control circuit 27 The drive circuit 28 is driven with the minimum phase (maximum firing angle). At this time, if the output of the inverter 12 and the bypass input are synchronized, the bypass current of the load current phase or the like is smaller than the current limit reference signal, so that the phase control circuit 27 continues to drive the drive circuit with the minimum phase (maximum firing angle). 28 is driven.

ところが、インバータ12の出力とバイパス入力が非同期の場合で且つ負荷に変圧器やコンデンサが接続されていると、バイパス入力側の半導体スイッチ15がONすると同時に位相急変によって過大なバイパス電流が流れ、電流制限基準信号を越え、その差分に相当した点弧位相(差分が大きいほど点弧位相が大きくなり、半導体スイッチ15のオフ期間が長くなる。)にてドライブ回路28を駆動することになり、結果として半導体スイッチ15によってバイパス電流が制限される。この非同期時の電圧位相差による過大電流は、例えば負荷に接続された変圧器の偏磁が回復する数サイクルで減衰するので、これに見合う一定時間を遅延回路24で作り、一定時間後にバイパスの機械式スイッチ14をONしてもバイパス入力から過大電流は流れず、負荷へはバイパス電源によって給電を継続することができる。   However, when the output of the inverter 12 and the bypass input are asynchronous and a transformer or a capacitor is connected to the load, the semiconductor switch 15 on the bypass input side is turned on and at the same time an excessive bypass current flows due to a sudden phase change. The drive circuit 28 is driven with an ignition phase that exceeds the limit reference signal and corresponds to the difference (the larger the difference, the longer the ignition phase and the longer the OFF period of the semiconductor switch 15). As a result, the bypass current is limited by the semiconductor switch 15. The excessive current due to the voltage phase difference at the time of non-synchronization is attenuated in, for example, several cycles in which the bias magnetism of the transformer connected to the load is restored. Even if the mechanical switch 14 is turned on, an excessive current does not flow from the bypass input, and power supply to the load can be continued by the bypass power source.

上記制御動作において、インバータ12の出力は機械式スイッチ13のオフによって遮断される。操作回路21及び機械スイッチ13の固有の遅れによって交流入力とバイパス入力が短時間ラップするが、通常の故障時や過負荷時にはラップさせる意味は薄い。しかしながら、例えば手動切換時に機械式スイッチ13の動作を遅らすことによってラップ期間を増やすようにすることも可能である。   In the control operation, the output of the inverter 12 is cut off by turning off the mechanical switch 13. The AC input and the bypass input wrap for a short time due to the inherent delay of the operation circuit 21 and the mechanical switch 13, but the meaning of wrapping during a normal failure or overload is insignificant. However, for example, it is possible to increase the lap period by delaying the operation of the mechanical switch 13 during manual switching.

図2は本発明の実施例2に係る無停電電源システムの回路構成図である。この実施例2の各部について、図1の本発明の実施例1に係る無停電電源システムの各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、バイパス入力を交流電源からではなく、予備の無停電電源システム1Bから給電する構成とした点、また、無停電電源システム主回路1Aのインバータ12の出力電流を検出するインバータ電流検出器17を設け、バイパス電流検出器16との差分を切換制御回路2A内の差電流検出器29で演算し、この差電流を電流制御器25の入力とするようにした点である。   FIG. 2 is a circuit configuration diagram of the uninterruptible power supply system according to the second embodiment of the present invention. About each part of this Example 2, the same part as each part of the uninterruptible power supply system which concerns on Example 1 of this invention of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted. The second embodiment is different from the first embodiment in that the bypass input is not supplied from the AC power supply but from the standby uninterruptible power supply system 1B, and the inverter 12 of the uninterruptible power supply system main circuit 1A An inverter current detector 17 for detecting an output current is provided, and a difference from the bypass current detector 16 is calculated by a difference current detector 29 in the switching control circuit 2A, and this difference current is input to the current controller 25. This is the point.

バイパス入力を予備の無停電電源システム1Bから給電する構成は直列冗長システムと呼ばれる。予備の無停電電源システム1Bは無停電電源システム主回路1Aと同様、コンバータ11B、インバータ12B、機械スイッチ13B、14B及び半導体スイッチ15Bを備えている。   A configuration in which the bypass input is fed from the standby uninterruptible power supply system 1B is called a series redundant system. Similar to the uninterruptible power supply system main circuit 1A, the standby uninterruptible power supply system 1B includes a converter 11B, an inverter 12B, mechanical switches 13B and 14B, and a semiconductor switch 15B.

このような構成において、手動によってインバータ12からバイパス給電側へラップ切換したとき、2台のインバータ12及び12Bの出力がラップすることにより、インバータ出力制御の干渉が発生し、インバータ相互間で定格電流以上の横流が流れる場合がある。このとき、無停電電源システム主回路1A内のバイパス電流検出器16とインバータ電流検出器17との差分電流を差電流検出回路30で検出し、この電流が電流制限基準信号(例えば定格電流に設定しておく。)以内かどうかを電流制御器25で比較し、電流制限基準信号以上であれば半導体スイッチ15の位相制御によりバイパス入力側電流を制限する。そして、一定時間後にインバータ側の機械式スイッチ13がオフすると横流がなくなりバイパス電流は、定格電流以下なるので、バイパス入力側の機械式スイッチ14をオンする。   In such a configuration, when the lap is manually switched from the inverter 12 to the bypass power supply side, the outputs of the two inverters 12 and 12B wrap, causing interference in inverter output control and the rated current between the inverters. The above cross current may flow. At this time, the differential current between the bypass current detector 16 and the inverter current detector 17 in the uninterruptible power supply system main circuit 1A is detected by the differential current detection circuit 30, and this current is set to a current limit reference signal (for example, a rated current). The current controller 25 compares whether or not the current is within the current limit reference signal, and the bypass input side current is limited by phase control of the semiconductor switch 15 if it is equal to or greater than the current limit reference signal. When the inverter-side mechanical switch 13 is turned off after a certain period of time, the cross current disappears and the bypass current becomes equal to or lower than the rated current, so the mechanical switch 14 on the bypass input side is turned on.

以上の動作により、この実施例2によれば、インバータ出力間でラップさせても過大な横流が流れず、過電流を検出することなくインバータ側からバイパス側へ給電を切換えることが可能となる。   According to the above operation, according to the second embodiment, an excessive cross current does not flow even when wrapping between inverter outputs, and power supply can be switched from the inverter side to the bypass side without detecting an overcurrent.

この実施例2においても、インバータ12の出力は機械式スイッチ13のオフによって遮断されるが、操作回路21及び機械スイッチ13の固有の遅れによって交流入力とバイパス入力が数サイクルの期間ラップする。バイパス電源が、負荷急変に対して応答が遅い発電機や旧型の無停電電源装置の場合は、切換時の負荷移行を遅らせることが必要となる場合もあるので、機械式スイッチ13の動作を遅らすことによってラップ期間を増やすようにすることも可能である。   Also in the second embodiment, the output of the inverter 12 is cut off by turning off the mechanical switch 13, but the AC input and the bypass input wrap for a period of several cycles due to the inherent delay of the operation circuit 21 and the mechanical switch 13. If the bypass power supply is a generator that is slow in response to a sudden load change or an old type uninterruptible power supply, it may be necessary to delay the load transition at the time of switching, so the operation of the mechanical switch 13 is delayed. It is also possible to increase the lap period.

1、 無停電電源システム主回路
1A 常用の無停電電源システム主回路
1B 予備の無停電電源システム
2、2A 切換制御回路
3 手動切換シーケンス回路
4 自動切換えロジック回路
11、11B コンバータ
12、12B インバータ
13、13B 機械式スイッチ
14、14B機械式スイッチ
15、15B 半導体スイッチ
16 バイパス電流検出器
17 インバータ電流検出器
21 操作回路
22 操作回路
23 OR回路
24 遅延回路
25 電流制御器
26 イネーブル回路
27 位相制御回路
28 ドライブ回路
29 差電流検出回路
1. Uninterruptible power supply system main circuit 1A Regular uninterruptible power supply system main circuit 1B Backup uninterruptible power supply system 2, 2A Switching control circuit 3 Manual switching sequence circuit 4 Automatic switching logic circuit 11, 11B Converter 12, 12B Inverter 13, 13B Mechanical switch 14, 14B Mechanical switch 15, 15B Semiconductor switch 16 Bypass current detector 17 Inverter current detector 21 Operation circuit 22 Operation circuit 23 OR circuit 24 Delay circuit 25 Current controller 26 Enable circuit 27 Phase control circuit 28 Drive Circuit 29 Differential current detection circuit

Claims (3)

交流電源の入力電圧を直流に変換するコンバータと、
この直流または前記交流電源が停電したときバッテリから直流を交流に変換し、第1の機械式スイッチを介して負荷に給電するインバータと、
バイパス入力電源を入力とし、出力が前記負荷に接続された第2の機械式スイッチと半導体スイッチの並列回路と、
前記バイパス入力電源に流れる電流を検出するバイパス電流検出器と、
前記第1の機械式スイッチ、第2の機械式スイッチ及び半導体スイッチを制御する切換制御手段と
を備え、
前記切換制御手段は、
前記負荷への給電を前記インバータの出力から前記バイパス入力電源側に切換える指令を受けたとき、前記半導体スイッチの位相制御手段を開始すると共に前記第2の機械式スイッチにオフ指令を出力し、所定時間経過後に前記第1の機械式スイッチにオン指令を出力し、
前記位相制御手段は、前記バイパス電流検出器に流れる電流が所定の電流制限基準値以下となるように前記半導体スイッチの点弧位相を制御するようにしたことを特徴とする無停電電源システム。
A converter that converts the input voltage of the AC power source to DC,
An inverter that converts direct current from the battery to alternating current when the direct current or the alternating current power supply fails, and supplies power to the load via the first mechanical switch;
A parallel circuit of a second mechanical switch having a bypass input power supply as input and an output connected to the load, and a semiconductor switch;
A bypass current detector for detecting a current flowing in the bypass input power supply;
Switching control means for controlling the first mechanical switch, the second mechanical switch, and the semiconductor switch,
The switching control means includes
When receiving a command to switch the power supply to the load from the output of the inverter to the bypass input power source, the phase control means of the semiconductor switch is started and an off command is output to the second mechanical switch. An on command is output to the first mechanical switch after a lapse of time,
The uninterruptible power supply system characterized in that the phase control means controls the ignition phase of the semiconductor switch so that the current flowing through the bypass current detector is not more than a predetermined current limit reference value.
交流電源の入力電圧を直流に変換するコンバータと、この直流または前記交流電源が停電したときバッテリから直流を交流に変換し、第1の機械式スイッチを介して負荷に給電するインバータと、
バイパス入力電源を入力とし、出力が前記負荷に接続された第2の機械式スイッチと半導体スイッチの並列回路と、
前記第1の機械式スイッチ、第2の機械式スイッチ及び半導体スイッチを制御する切換制御手段と
を備えた常用無停電電源システムと、
前記常用無停電電源システムと同一構成で、その出力が前記常用無停電電源システムの前記バイパス入力電源である予備無停電電源システムと
を具備し、
前記常用無停電電源システムの前記切換制御手段は、
前記負荷への給電を前記インバータの出力から前記バイパス入力電源側に切換える指令を受けたとき、前記半導体スイッチの位相制御手段を開始すると共に前記第2の機械式スイッチにオフ指令を出力し、所定時間経過後に前記第1の機械式スイッチにオン指令を出力し、
前記位相制御手段は、
前記常用無停電電源システムに設けられたバイパス入力電流検出器及びインバータ出力電流検出器によって検出された各電流の差分電流が、所定の電流制限基準値以下となるように前記半導体スイッチの点弧位相を制御するようにしたことを特徴とする無停電電源システム。
A converter that converts the input voltage of the AC power source into DC, an inverter that converts DC from the battery into AC when the DC or the AC power supply fails, and supplies power to the load via the first mechanical switch;
A parallel circuit of a second mechanical switch having a bypass input power supply as input and an output connected to the load, and a semiconductor switch;
A normal uninterruptible power supply system comprising switching control means for controlling the first mechanical switch, the second mechanical switch, and the semiconductor switch;
A backup uninterruptible power supply system having the same configuration as the normal uninterruptible power supply system, the output of which is the bypass input power supply of the normal uninterruptible power supply system,
The switching control means of the regular uninterruptible power supply system is:
When receiving a command to switch the power supply to the load from the output of the inverter to the bypass input power source, the phase control means of the semiconductor switch is started and an off command is output to the second mechanical switch. An on command is output to the first mechanical switch after a lapse of time,
The phase control means includes
The ignition phase of the semiconductor switch so that the differential current of each current detected by the bypass input current detector and the inverter output current detector provided in the normal uninterruptible power supply system is equal to or less than a predetermined current limit reference value. An uninterruptible power supply system characterized in that it is controlled.
前記負荷への給電を前記インバータの出力から前記バイパス入力電源側に切換える指令を受けたとき、所定時間遅らせて前記第2の機械式スイッチにオフ指令を出力するようにしたことを特徴とする請求項1または請求項2に記載の無停電電源システム。   When receiving an instruction to switch power supply to the load from an output of the inverter to the bypass input power supply side, an OFF instruction is output to the second mechanical switch after a predetermined delay. The uninterruptible power supply system according to claim 1 or 2.
JP2011104858A 2011-05-10 2011-05-10 Uninterruptible power supply system Expired - Fee Related JP5629639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104858A JP5629639B2 (en) 2011-05-10 2011-05-10 Uninterruptible power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104858A JP5629639B2 (en) 2011-05-10 2011-05-10 Uninterruptible power supply system

Publications (2)

Publication Number Publication Date
JP2012239249A true JP2012239249A (en) 2012-12-06
JP5629639B2 JP5629639B2 (en) 2014-11-26

Family

ID=47461667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104858A Expired - Fee Related JP5629639B2 (en) 2011-05-10 2011-05-10 Uninterruptible power supply system

Country Status (1)

Country Link
JP (1) JP5629639B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124017A (en) * 2012-12-20 2014-07-03 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply apparatus
JP2018170876A (en) * 2017-03-30 2018-11-01 新電元工業株式会社 Power supply device and control device
CN112542879A (en) * 2020-11-09 2021-03-23 深圳供电局有限公司 Switching control device and method and power supply system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120746U (en) * 1988-02-03 1989-08-16
JPH01222635A (en) * 1988-02-29 1989-09-05 Toshiba Corp Uninterruptible power supply equipment
JPH08172734A (en) * 1994-12-20 1996-07-02 Fuji Electric Co Ltd Method of controlling uninterruptible power-supply apparatus
JPH08205426A (en) * 1995-01-19 1996-08-09 Toshiba Eng & Constr Co Ltd Uninterruptible stabilized power supply
JPH0956087A (en) * 1995-08-18 1997-02-25 Fuji Electric Co Ltd Uninterrupticle power unit
US20030227785A1 (en) * 2002-06-06 2003-12-11 Johnson Robert W. On-line uninterruptible power supplies with two-relay bypass circuit and methods of operation thereof
JP2009124836A (en) * 2007-11-14 2009-06-04 Fuji Electric Systems Co Ltd Controller of uninterrupted power supply system
JP2010035364A (en) * 2008-07-30 2010-02-12 Toshiba Mitsubishi-Electric Industrial System Corp Uninterrupted power supply system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120746U (en) * 1988-02-03 1989-08-16
JPH01222635A (en) * 1988-02-29 1989-09-05 Toshiba Corp Uninterruptible power supply equipment
JPH08172734A (en) * 1994-12-20 1996-07-02 Fuji Electric Co Ltd Method of controlling uninterruptible power-supply apparatus
JPH08205426A (en) * 1995-01-19 1996-08-09 Toshiba Eng & Constr Co Ltd Uninterruptible stabilized power supply
JPH0956087A (en) * 1995-08-18 1997-02-25 Fuji Electric Co Ltd Uninterrupticle power unit
US20030227785A1 (en) * 2002-06-06 2003-12-11 Johnson Robert W. On-line uninterruptible power supplies with two-relay bypass circuit and methods of operation thereof
JP2009124836A (en) * 2007-11-14 2009-06-04 Fuji Electric Systems Co Ltd Controller of uninterrupted power supply system
JP2010035364A (en) * 2008-07-30 2010-02-12 Toshiba Mitsubishi-Electric Industrial System Corp Uninterrupted power supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124017A (en) * 2012-12-20 2014-07-03 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply apparatus
JP2018170876A (en) * 2017-03-30 2018-11-01 新電元工業株式会社 Power supply device and control device
CN112542879A (en) * 2020-11-09 2021-03-23 深圳供电局有限公司 Switching control device and method and power supply system

Also Published As

Publication number Publication date
JP5629639B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP6190059B2 (en) Uninterruptible power system
JP6224831B2 (en) Uninterruptible power system
JP3940585B2 (en) Grid interconnection device
JP2019146331A (en) Uninterruptible power supply system and control method of the same
JP5629639B2 (en) Uninterruptible power supply system
JP3929449B2 (en) Uninterruptible power supply and power failure compensation system
JP2006340515A (en) Uninterruptible power supply unit
JP4753910B2 (en) Uninterruptible power system
JP6435715B2 (en) Uninterruptible power system
KR102308258B1 (en) Bypass Switch Controller with Reverse Current Protection Function
JP6082667B2 (en) Power conditioner
JP2010220339A (en) Uninterruptible power supply system
JP2009254192A (en) Uninterruptible power supply
JP3473924B2 (en) Uninterruptible power system
JP2009225546A (en) Power conversion apparatus
KR102566563B1 (en) power supply system
JP6658949B1 (en) Uninterruptible power supply system and control method thereof
JP2007028754A (en) Power supply system switching unit
JP2007189861A (en) Uninterruptible power supply system
JP4396926B2 (en) Power converter
US10855084B2 (en) Power conversion system for power system interconnection
JP5324151B2 (en) Uninterruptible power supply system
JP5481055B2 (en) Power converter
JP2010041825A (en) Power supply system
JP6254043B2 (en) Electric motor drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141006

R150 Certificate of patent or registration of utility model

Ref document number: 5629639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees