JP2012238522A - Assembled battery - Google Patents

Assembled battery Download PDF

Info

Publication number
JP2012238522A
JP2012238522A JP2011107881A JP2011107881A JP2012238522A JP 2012238522 A JP2012238522 A JP 2012238522A JP 2011107881 A JP2011107881 A JP 2011107881A JP 2011107881 A JP2011107881 A JP 2011107881A JP 2012238522 A JP2012238522 A JP 2012238522A
Authority
JP
Japan
Prior art keywords
assembled battery
battery
connection body
battery case
assembled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011107881A
Other languages
Japanese (ja)
Inventor
Kohei Fujita
晃平 藤田
Hitoshi Watanabe
仁 渡邉
Masaaki Hosokawa
正明 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2011107881A priority Critical patent/JP2012238522A/en
Publication of JP2012238522A publication Critical patent/JP2012238522A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cycle life performance in an assembled battery by preventing heat radiation performance of electric cells as well as preventing a temperature rise of a connection body in the assembled battery.SOLUTION: The assembled battery 100 which is configured that a plurality of electric cells 2 in a substantially cuboid shape are arranged closely in standing state in a predetermined direction and terminals 23A, 23B of those electric cells 2 are connected with the connection body 4 is characterized in that a protruding part 211 that is formed on at least one lateral surface of a battery case 21 of the adjacent electric cells 2 and extends along a standing direction and the connection body 4 is located above a heat radiation space S formed by the protruding part 211 between the adjacent electric cells 2.

Description

本発明は、例えば鉛蓄電池を複数個用いて構成される組電池に関するものである。   The present invention relates to an assembled battery configured by using a plurality of lead storage batteries, for example.

従来、例えば鉛蓄電池を充放電する場合、充放電時の発熱による鉛蓄電池の温度上昇が問題となっている。鉛蓄電池の放電時には、鉛蓄電池の内部抵抗及び分極に起因するジュール熱による発熱などが考えられる。一方、鉛蓄電池の充電時には、鉛蓄電池の内部抵抗及び分極に起因するジュール熱及び水の電気分解による発熱などが考えられる。   Conventionally, for example, when charging / discharging a lead storage battery, a temperature rise of the lead storage battery due to heat generation during charging / discharging has been a problem. At the time of discharging the lead storage battery, heat generation due to Joule heat caused by internal resistance and polarization of the lead storage battery can be considered. On the other hand, when charging a lead storage battery, Joule heat resulting from internal resistance and polarization of the lead storage battery and heat generation due to water electrolysis can be considered.

このような特質を有する鉛蓄電池を単電池として組電池を構成する場合、組電池の設置スペースをコンパクトにする等の観点から各鉛蓄電池は隙間なく配置され、各鉛蓄電池(特に電槽)が空気に接触しにくくなるため、各鉛蓄電池の放熱性能が低下してしまう。そうすると、各鉛蓄電池の温度が徐々に上昇して、正極板の劣化(正極格子腐食や正極活物質の軟化)が生じてしまい、また負極板の劣化(負極活物質中の有機エキスパンダーの消失や負極活物質の膨張)が生じてしまい、組電池の高率放電特性及びサイクル寿命性能が低下するという問題がある。   In the case of configuring an assembled battery by using a lead storage battery having such characteristics as a single battery, each lead storage battery (especially a battery case) is arranged without any gap from the viewpoint of making the installation space of the assembled battery compact. Since it becomes difficult to contact air, the thermal radiation performance of each lead acid battery will fall. If it does so, the temperature of each lead acid battery will rise gradually, the deterioration of a positive electrode plate (positive electrode grid corrosion and softening of a positive electrode active material) will arise, and the deterioration of a negative electrode plate (a loss of the organic expander in a negative electrode active material) There is a problem that the negative electrode active material expands) and the high-rate discharge characteristics and cycle life performance of the battery pack deteriorate.

ここで特許文献1に示すように、単電池の電槽の外側に凸部を設けて、隣接する単電池の凸部同士を接触させることによって凹部の空間を空気が通過するように構成し、組電池の放熱を行うものが考えられている。   Here, as shown in Patent Document 1, a convex part is provided outside the battery case of the unit cell, and the convex part of the adjacent unit cell is brought into contact with each other so that air passes through the space of the concave part. A battery that dissipates heat from an assembled battery is considered.

しかしながら、単電池の電槽の間に空間を構成するだけでは、組電池の高率放電特性及びサイクル寿命性能の低下を防止するのに十分ではない。つまり、隣接する鉛蓄電池の端子間を接続する接続体が、鉛蓄電池の温度影響及び接続体の内部抵抗による発熱によって温度上昇してしまい、この接続体の温度上昇によっても、組電池の高率放電特性及びサイクル寿命性能の低下という問題が生じる。   However, merely forming a space between the battery cells of the unit cells is not sufficient to prevent the deterioration of the high rate discharge characteristics and cycle life performance of the assembled battery. In other words, the connecting body that connects the terminals of the adjacent lead storage batteries rises in temperature due to the temperature effect of the lead storage battery and the heat generated by the internal resistance of the connecting body. The problem arises that the discharge characteristics and cycle life performance are degraded.

特開平7−85847号公報Japanese Unexamined Patent Publication No. 7-85847

そこで本発明は、上記問題点を一挙に解決すべくなされたものであり、組電池における単電池の放熱性能を低下を防止するとともに接続体の温度上昇を防止して、組電池の高率放電特性及びサイクル寿命性能を向上させることをその主たる課題とするものである。   Therefore, the present invention has been made to solve the above-mentioned problems all at once, and prevents a decrease in the heat dissipation performance of the unit cell in the assembled battery and prevents a temperature rise of the connected body, thereby causing a high rate discharge of the assembled battery. The main problem is to improve the characteristics and cycle life performance.

すなわち本発明に係る組電池は、概略直方体形状をなす複数の単電池を起立した状態で所定方向に密接配置し、それら単電池の端子間を接続体によって接続して構成される組電池であって、隣接する単電池の少なくとも一方の外側面に起立方向に沿って延びる突出部が形成されており、前記接続体が、前記突出部により前記隣接する単電池間に形成される放熱空間の上部に位置することを特徴とする。   That is, the assembled battery according to the present invention is an assembled battery in which a plurality of unit cells having a substantially rectangular parallelepiped shape are closely arranged in a predetermined direction in a standing state, and the terminals of the unit cells are connected by a connecting body. A protrusion extending along the standing direction is formed on at least one outer surface of the adjacent unit cells, and the connection body is an upper part of the heat dissipation space formed between the adjacent unit cells by the protrusion. It is located in.

このようなものであれば、隣接する単電池の間に放熱空間が形成されるので各単電池の放熱性能の低下を防止することができ、放熱空間の上部に接続体が位置しているので接続体の温度上昇を防止することができる。これにより、組電池の高率放電特性及びサイクル寿命性能を向上させることができる。   In such a case, since a heat radiation space is formed between adjacent unit cells, it is possible to prevent deterioration of the heat radiation performance of each unit cell, and the connection body is located above the heat radiation space. The temperature rise of the connection body can be prevented. Thereby, the high rate discharge characteristic and cycle life performance of an assembled battery can be improved.

特に放熱空間の上部に接続体が位置していることにより組電池の温度上昇が抑制される。組電池の温度上昇が抑制される効果は、接続体の表面から下方向に放射される熱のうち電槽に吸収されるものの割合が減ること、及び、放電空間の内部に生じる上方向の空気の流れによって接続体から空気への熱の移動が促進されることに基づくものである。   In particular, the temperature rise of the assembled battery is suppressed by the connection body being located above the heat radiation space. The effect of suppressing the temperature rise of the assembled battery is that the proportion of the heat radiated downward from the surface of the connecting body is absorbed by the battery case, and the upward air generated inside the discharge space This is based on the fact that the flow of heat promotes the transfer of heat from the connection body to the air.

また、組電池の温度上昇が抑制される効果がさらに優れたものとなることから、突出部又は突出部を含む電槽全体は、高熱伝導性フィラーが添加された高分子材料で構成することが好ましい。なぜなら、突出部の熱伝導度が高くなって、放熱性能が向上するからである。放熱性能が向上すると、上方向への空気の流れの量が増え、その結果、接続体が冷却される作用が促進される。この作用が得られる目安は熱伝導度を0.2W/m・K以上とすることである。   Further, since the effect of suppressing the temperature rise of the assembled battery is further improved, the entire battery case including the protruding portion or the protruding portion can be composed of a polymer material to which a high thermal conductive filler is added. preferable. This is because the thermal conductivity of the protrusion is increased and the heat dissipation performance is improved. When the heat dissipation performance is improved, the amount of upward air flow is increased, and as a result, the action of cooling the connection body is promoted. A guideline for obtaining this effect is that the thermal conductivity is 0.2 W / m · K or more.

また、組電池の温度上昇が抑制される効果がさらに優れたものとなることから、放熱空間の上部開口の縦方向寸法は、接続体の幅寸法(接続体カバーを備える場合は接続体カバーの幅寸法)よりも大きくすることが好ましい。なぜなら、放電空間の内部に生じる上方向の空気の流れが接続体の底面によって阻害されるということが軽減されるからである。この構成とすることによって、上方向の空気の流れは、接続体の幅方向の一方側と他方側とに分かれて流れることができ、その結果、接続体の全表面で空気による冷却作用が得られる。   In addition, since the effect of suppressing the temperature rise of the assembled battery is further improved, the vertical dimension of the upper opening of the heat dissipation space is the width dimension of the connection body (if the connection body cover is provided, the connection body cover It is preferable to make it larger than (width dimension). This is because it is reduced that the upward air flow generated in the discharge space is obstructed by the bottom surface of the connection body. With this configuration, the upward air flow can flow separately on one side and the other side in the width direction of the connection body, and as a result, a cooling action by air is obtained on the entire surface of the connection body. It is done.

複数の単電池を収容する組電池ケースを有するものである場合には、前記組電池ケースの側壁又は当該組電池ケースの側壁に接触する単電池の少なくとも一方に、鉛直方向に沿って延びる突出部が形成されていることが望ましい。これならば、隣接する単電池間だけでなく、組電池ケース及び単電池の間にも放熱空間を形成することができ、組電池ケース内に収容される単電池を位置に関係なく好適に冷却させることができるので、より一層組電池の高率放電特性及びサイクル寿命性能を向上させることができる。   In the case of having an assembled battery case that accommodates a plurality of unit cells, a protrusion that extends along the vertical direction on at least one of the unit cell that contacts the side wall of the assembled battery case or the side wall of the assembled battery case Is preferably formed. If this is the case, a heat radiation space can be formed not only between adjacent unit cells but also between the assembled battery case and the unit cell, and the unit cells accommodated in the assembled battery case are suitably cooled regardless of the position. Therefore, the high rate discharge characteristics and cycle life performance of the assembled battery can be further improved.

前記接続体を覆う接続体カバーを有し、前記接続体カバーが、絶縁性及び高熱伝導性フィラーが添加された高分子材料からなり、前記放熱空間の上部に位置することが望ましい。これならば、接続体カバーを介して接続体を効率よく放熱させることができるとともに、当該接続体カバーが放熱空間の上部に位置することから、放熱空間から出る空気を接続体カバーにダイレクトに当てることができ接続体カバーの放熱性を向上させることができる。   It is desirable to have a connection body cover that covers the connection body, and the connection body cover is made of a polymer material to which an insulating and high thermal conductive filler is added, and is located above the heat dissipation space. If this is the case, the connection body can be efficiently dissipated through the connection body cover, and since the connection body cover is located in the upper part of the heat dissipation space, the air from the heat dissipation space is directly applied to the connection body cover. It is possible to improve the heat dissipation of the connection body cover.

このように構成した本発明によれば、組電池における単電池の放熱性能を低下を防止するとともに接続体の温度上昇を防止して、組電池の高率放電特性及びサイクル寿命性能を向上させることができる。   According to the present invention configured as described above, it is possible to improve the high-rate discharge characteristics and cycle life performance of the assembled battery by preventing deterioration of the heat dissipation performance of the single battery in the assembled battery and preventing the temperature of the connected body from rising. Can do.

本実施形態の組電池を模式的に示す斜視図。The perspective view which shows the assembled battery of this embodiment typically. 同実施形態の組電池を模式的に示す平面図。The top view which shows the assembled battery of the embodiment typically. 同実施形態の鉛蓄電池(単電池)を模式的に示す斜視図。The perspective view which shows typically the lead storage battery (unit cell) of the embodiment. 同実施形態の鉛蓄電池(単電池)を模式的に示す側面図及び平面図。The side view and top view which show typically the lead storage battery (unit cell) of the same embodiment. 同実施形態の隣接する鉛蓄電池を示す部分拡大図。The elements on larger scale which show the lead acid battery which adjoins the same embodiment. 窒化ホウ素を含むPP樹脂の熱伝導率等を評価した結果を示す図。The figure which shows the result of having evaluated the thermal conductivity etc. of PP resin containing a boron nitride. 各組電池における高率放電サイクル寿命試験中のサイクル数及び組電池温度の推移のグラフを示す図。The figure which shows the graph of transition of the cycle number and assembled battery temperature in the high rate discharge cycle life test in each assembled battery. 各組電池における高率放電サイクル寿命試験で寿命に達するまでのサイクル数を示す図。The figure which shows the cycle number until it reaches a lifetime in the high-rate discharge cycle life test in each assembled battery. 各凹幅合計における突出部の高さ寸法及び高率放電サイクル寿命試験中の組電池温度のグラフを示す図。The figure which shows the assembled battery temperature graph during the height dimension of the protrusion part in each concave width sum total, and a high rate discharge cycle life test. 変形実施形態の鉛蓄電池を模式的に示す平面図。The top view which shows typically the lead storage battery of deformation | transformation embodiment. 変形実施形態の隣接する鉛蓄電池を示す部分拡大図。The elements on larger scale which show the lead acid battery which adjoins of deformation | transformation embodiment.

以下に本発明に係る組電池の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of an assembled battery according to the present invention will be described with reference to the drawings.

本実施形態に係る組電池100は、例えば電気自動車、フォークリフト車等の運搬車、無人搬送車(AGV:Automatic Guided Vehicles)等に搭載されて使用されるものであり、図1及び図2に示すように、概略直方体形状をなす複数の鉛蓄電池2を起立した状態で所定方向に密接配置して組電池ケース3内に収容し、それら鉛蓄電池2の端子間を接続体4によって接続して構成されている。   The assembled battery 100 according to the present embodiment is used by being mounted on, for example, a transport vehicle such as an electric vehicle or a forklift vehicle, an automatic guided vehicle (AGV), and the like, as shown in FIGS. 1 and 2. As described above, a plurality of lead storage batteries 2 having a substantially rectangular parallelepiped shape are arranged in a predetermined direction in a standing state and accommodated in the assembled battery case 3, and the terminals of the lead storage batteries 2 are connected by the connection body 4. Has been.

具体的にこのものは、特に図2に示すように、概略直方体形状をなす複数の鉛蓄電池2と、当該複数の鉛蓄電池2を縦方向(短手方向、図2ではY方向)及び横方向(長手方向、図2ではX方向)に密接配置して収容する組電池ケース3と、複数の鉛蓄電池の端子を直列に接続する接続体4(図1等では不図示)と、当該接続体4を覆う接続体カバー5とを有する。なお、符号6は、電気ケーブルであり、符号7はプラグ端子である。   Specifically, as shown in FIG. 2 in particular, this includes a plurality of lead storage batteries 2 having a substantially rectangular parallelepiped shape, and the plurality of lead storage batteries 2 in a vertical direction (short direction, Y direction in FIG. 2) and a horizontal direction. An assembled battery case 3 accommodated in close proximity (longitudinal direction, X direction in FIG. 2), a connection body 4 (not shown in FIG. 1 etc.) for connecting terminals of a plurality of lead storage batteries in series, and the connection body 4 and a connecting body cover 5 that covers 4. Reference numeral 6 denotes an electric cable, and reference numeral 7 denotes a plug terminal.

各鉛蓄電池2はモノブロック型のものであり、図3に示すように、極板群が収容された概略直方体形状をなす電槽21と、当該電槽21の上部開口を閉塞する蓋体22とを有する。この蓋体22の長手方向両端には正極端子23A及び負極端子23Bが設けられており、中央部には電槽21内に電解液を注液するための注液口(不図示)が設けられており、本実施形態ではこの注液口に、液面確認用のフロートを有するフロート液口栓24が設けられている。なお、本実施形態の鉛蓄電池2は、電池の耐久性を向上させるとともに長寿命化が可能な液式のクラッド式鉛蓄電池(2V−165Ah/5hR)を用いている。   Each lead-acid battery 2 is of a monoblock type, and as shown in FIG. 3, a battery case 21 having a substantially rectangular parallelepiped shape in which an electrode plate group is accommodated, and a lid body 22 that closes an upper opening of the battery case 21. And have. A positive electrode terminal 23 </ b> A and a negative electrode terminal 23 </ b> B are provided at both ends in the longitudinal direction of the lid body 22, and a liquid injection port (not shown) for injecting an electrolytic solution into the battery case 21 is provided at the center. In this embodiment, a float liquid plug 24 having a float for confirming the liquid level is provided at the liquid injection port. The lead storage battery 2 of the present embodiment uses a liquid clad lead storage battery (2V-165Ah / 5hR) that can improve the durability of the battery and extend its life.

本実施形態の電槽21及び蓋体22は、絶縁性及び高熱伝導性フィラーが添加された高分子材料からなる樹脂成型体である。絶縁性及び高熱伝導性フィラーは、例えば窒化ホウ素、窒化アルミニウム、アルミナ、炭化ケイ素、マグネシア等であり、これらのフィラーを高分子材料であるポリプロピレン(PP)樹脂に添加して、電槽21及び蓋体22を成型している。フィラーの添加量としては、電槽21及び蓋体22の成型性を考慮して1〜30体積%としている。PP樹脂の熱伝導度は0.14(W/m・K)であり、PP樹脂に窒化ホウ素を30体積%添加した場合にはその熱伝導度は0.5(W/m・K)となる。このように電槽21及び蓋体22を絶縁性及び高熱伝導性フィラーが添加された高分子材料から形成することによって電槽21及び蓋体22自体の放熱性を向上させることができる。   The battery case 21 and the lid body 22 of the present embodiment are resin molded bodies made of a polymer material to which insulating and high thermal conductive fillers are added. Insulating and high thermal conductive fillers are, for example, boron nitride, aluminum nitride, alumina, silicon carbide, magnesia, and the like, and these fillers are added to polypropylene (PP) resin, which is a polymer material, so that the battery case 21 and the lid The body 22 is molded. The amount of filler added is 1 to 30% by volume in consideration of the moldability of the battery case 21 and the lid 22. The thermal conductivity of PP resin is 0.14 (W / m · K). When 30% by volume of boron nitride is added to PP resin, the thermal conductivity is 0.5 (W / m · K). Become. Thus, the heat dissipation of the battery case 21 and the lid body 22 itself can be improved by forming the battery case 21 and the lid body 22 from a polymer material to which an insulating and high thermal conductive filler is added.

これらの鉛蓄電池2は、上面が開口した有底の方形箱形状をなす鉄等の金属製の組電池ケース3内に起立した状態で、縦方向及び横方向にマトリックス状に密接した状態で配置される。図1及び図2では、鉛蓄電池2を縦方向に4列及び横方向に6列で密接配置した場合を示しており、本実施形態の組電池100は、鉛蓄電池24個を直列接続したものであり、電池電圧を48V(鉛蓄電池は2V電池)としている。   These lead storage batteries 2 are arranged in a state of standing in a matrix battery case 3 made of metal such as iron having a bottomed rectangular box shape with an open upper surface, and in close contact with each other in a matrix in the vertical and horizontal directions. Is done. 1 and 2 show a case in which the lead storage batteries 2 are closely arranged in four rows in the vertical direction and six rows in the horizontal direction, and the assembled battery 100 of the present embodiment includes 24 lead storage batteries connected in series. The battery voltage is 48V (lead storage battery is 2V battery).

そして、各鉛蓄電池2の電槽21は互いに同一形状をなし、図3及び図4に示すように、各鉛蓄電池2の電槽21の4つの外側面21a〜21dには、起立方向(鉛直方向)に沿って延びる突出した複数の突出部211が形成されている。具体的には4つの外側面21a〜21dのうち、短側面21a、21bにはその両端部に起立方向に沿って上端から下端に亘って2つの突出部211が互いに平行に形成されている。この2つの突出部211により短側面21a、21bには1つの凹部が形成される。一方で4つの外側面21a〜21dのうち、長側面21c、21dには起立方向に沿って上端から下端に亘って6つの突出部211が互いに平行に形成されている。これら6つの突出部211により長側面21c、21dには5つの凹部が形成される。これらの突出部211は放熱フィン部として機能し、電池内部での発熱を効率的に外部に発散させることができる。   And the battery case 21 of each lead acid battery 2 makes the mutually same shape, and as shown in FIG.3 and FIG.4, in the four outer surface 21a-21d of the battery case 21 of each lead acid battery 2, it is a standing direction (vertical). A plurality of projecting portions 211 projecting along (direction) are formed. Specifically, out of the four outer surfaces 21a to 21d, two projecting portions 211 are formed on the short side surfaces 21a and 21b in parallel to each other from the upper end to the lower end along the standing direction at both ends thereof. The two protrusions 211 form one recess on the short side surfaces 21a and 21b. On the other hand, among the four outer surfaces 21a to 21d, the long side surfaces 21c and 21d are formed with six protruding portions 211 in parallel with each other from the upper end to the lower end along the standing direction. These six protrusions 211 form five recesses on the long side surfaces 21c and 21d. These protrusions 211 function as heat radiating fins, and can efficiently dissipate heat generated inside the battery.

また、電槽21に形成される突出部211は、起立方向に直交する断面が概略矩形状をなすように構成されている。そして、突出部211の突出寸法(高さ寸法)は例えば5mmであり、突出部211の幅寸法は、突出部211により形成される凹部の幅寸法の合計が電槽21の外側面21a〜21dの幅寸法の合計に対して1/2以上となるように設定している。   Moreover, the protrusion part 211 formed in the battery case 21 is comprised so that the cross section orthogonal to an upright direction may make a substantially rectangular shape. And the protrusion dimension (height dimension) of the protrusion part 211 is 5 mm, for example, and the sum total of the width dimension of the recessed part formed of the protrusion part 211 is the outer surface 21a-21d of the battery case 21 about the width dimension of the protrusion part 211. It is set to be 1/2 or more of the total width dimension.

そして、図5に示すように、複数の鉛蓄電池2を組電池ケース3に収容した状態で、横方向に隣接する鉛蓄電池2の短側面21a、21bそれぞれに形成された突出部211の先端面同士が接触するとともに、縦方向に隣接する鉛畜電池2の長側面21c、21dに形成された突出部211の先端面同士が接触する。これにより、横方向及び縦方向に隣接する鉛蓄電池2の電槽21間に鉛直方向に沿って延び上方に開口する放熱空間Sが形成される。   And as shown in FIG. 5, in the state which accommodated the some lead acid battery 2 in the assembled battery case 3, the front end surface of the protrusion part 211 formed in each of the short side surfaces 21a and 21b of the lead acid battery 2 adjacent to the horizontal direction While contacting each other, the front end surfaces of the protruding portions 211 formed on the long side surfaces 21c and 21d of the lead live battery 2 adjacent in the vertical direction are in contact with each other. Thereby, the thermal radiation space S extended along a perpendicular direction between the battery cases 21 of the lead storage battery 2 adjacent to a horizontal direction and a vertical direction and opened upwards is formed.

また組電池ケース100の側壁に接触する鉛蓄電池2においては、この鉛蓄電池2の電槽21に形成された突出部211が組電池ケース3の側壁に接触することにより、鉛蓄電池2及び組電池ケース3との間に鉛直方向に沿って延び上方に開口する放熱空間Sが形成される。このように横方向及び縦方向に隣接する鉛蓄電池2の電槽21間に放熱空間Sが形成されるとともに、組電池ケース3及び鉛蓄電池2の間に放熱空間Sが形成されるので、組電池ケース3における収容位置に関わらず、各電池2の放熱性能が低下することを防止できる。   Further, in the lead storage battery 2 that contacts the side wall of the assembled battery case 100, the protruding portion 211 formed in the battery case 21 of the lead storage battery 2 contacts the side wall of the assembled battery case 3, whereby the lead storage battery 2 and the assembled battery. A heat radiation space S extending along the vertical direction and opening upward is formed between the case 3 and the case 3. In this way, the heat radiation space S is formed between the battery cases 21 of the lead storage battery 2 adjacent in the horizontal direction and the vertical direction, and the heat radiation space S is formed between the assembled battery case 3 and the lead storage battery 2. Regardless of the storage position in the battery case 3, it is possible to prevent the heat dissipation performance of each battery 2 from being deteriorated.

接続体4は、図5に示すように、横方向に隣接する鉛蓄電池2において、一方の鉛蓄電池2の正極端子23Aと、他方の鉛蓄電池2の負極端子23Bとを電気的に接続するものである。本実施形態の接続体4は、例えば鉛又は鉛合金等の金属からなり、一方の正極端子23Aが嵌る貫通孔と他方の負極端子23Bが嵌る貫通孔とを有しており、それら貫通孔に各端子23A、23Bが嵌った状態で溶接により接合される。なお、接続体4が接続されない端子には電気ケーブル6が接続されている。   As shown in FIG. 5, the connecting body 4 electrically connects the positive terminal 23 </ b> A of one lead storage battery 2 and the negative terminal 23 </ b> B of the other lead storage battery 2 in the lead storage battery 2 adjacent in the lateral direction. It is. The connection body 4 of the present embodiment is made of metal such as lead or lead alloy, for example, and has a through hole into which one positive terminal 23A fits and a through hole into which the other negative terminal 23B fits. It joins by welding in the state which each terminal 23A and 23B fitted. An electric cable 6 is connected to a terminal to which the connection body 4 is not connected.

接続体カバー5は、絶縁性及び高熱伝導性フィラーが添加された高分子材料からなるものであり、正極端子23A及び負極端子23Bに接合された接続体4の上面及び側面を覆うものである。また接続体カバー5は、接続体の長さに合わせて長さ調節が可能なものであり、接続体4の貫通孔が設けられた端部を覆う部分がそれぞれ中央部に対してスライド可能に構成されている。なお、絶縁性及び高熱伝導性フィラーは例えば窒化ホウ素、窒化アルミニウム、アルミナ、炭化ケイ素またはマグネシア等であり、これらのフィラーを高分子材料であるポリプロピレン(PP)樹脂に添加して、接続体カバー5を成型している。フィラーの添加量としては、接続体カバー5の成型性を考慮して1〜30体積%としている。ここで窒化ホウ素を含むPP樹脂の熱伝導率、体積固有抵抗及び成形性を評価した結果を図6に示す。PP樹脂の熱伝導度は0.14(W/m・K)であり、PP樹脂に窒化ホウ素を30体積%添加した場合にその熱伝導度は0.5(W/m・K)となる。本実施形態では、成型性が良好であり、熱伝導率が最も高い組成D(窒化ホウ素を30体積%添加したもの)を用いている。このように接続体カバー5を絶縁性及び高熱伝導性フィラーが添加された高分子材料から形成することによって接続体カバー5自体の放熱性を向上させることができる。   The connection body cover 5 is made of a polymer material to which an insulating and high thermal conductive filler is added, and covers the upper surface and side surfaces of the connection body 4 joined to the positive terminal 23A and the negative terminal 23B. The connection body cover 5 can be adjusted in length according to the length of the connection body, and the portions covering the end portions of the connection body 4 provided with the through holes are slidable with respect to the center portion. It is configured. The insulating and high thermal conductive filler is, for example, boron nitride, aluminum nitride, alumina, silicon carbide, magnesia, or the like. These fillers are added to a polypropylene (PP) resin, which is a polymer material, to connect the connector cover 5. Is molded. The amount of filler added is 1 to 30% by volume in consideration of the moldability of the connection body cover 5. Here, the results of evaluating the thermal conductivity, volume resistivity and moldability of the PP resin containing boron nitride are shown in FIG. The thermal conductivity of PP resin is 0.14 (W / m · K). When 30% by volume of boron nitride is added to PP resin, the thermal conductivity is 0.5 (W / m · K). . In the present embodiment, a composition D (having 30% by volume of boron nitride added) having good moldability and the highest thermal conductivity is used. Thus, the heat dissipation of the connection body cover 5 itself can be improved by forming the connection body cover 5 from the polymer material to which the insulating and high thermal conductive filler is added.

そして、本実施形態では、横方向に隣接する鉛蓄電池2を接続する接続体4及び接続体カバー5が、当該横方向に隣接する鉛蓄電池2の間に形成された1つの放熱空間Sの上部に位置する(図5参照)。具体的には横方向に隣接する鉛蓄電池2の間に形成された放熱空間Sの上部開口の縦方向寸法が、接続体カバー5の幅寸法よりも大きく設定されており、接続体4及び接続体カバー5が放熱空間Sの上部開口の縦方向中央部を塞ぐように設けられている。なお、横方向に隣接する鉛蓄電池2の間に形成された放熱空間Sの上部開口の横方向寸法は、10mmである。   And in this embodiment, the connection body 4 and the connection body cover 5 which connect the lead storage battery 2 adjacent to the horizontal direction are the upper part of one heat dissipation space S formed between the lead storage batteries 2 adjacent to the said horizontal direction. (Refer to FIG. 5). Specifically, the vertical dimension of the upper opening of the heat dissipation space S formed between the lead storage batteries 2 adjacent in the lateral direction is set to be larger than the width dimension of the connection body cover 5, and the connection body 4 and the connection A body cover 5 is provided so as to block the longitudinal center of the upper opening of the heat radiation space S. In addition, the horizontal direction dimension of the upper opening of the thermal radiation space S formed between the lead storage batteries 2 adjacent to the horizontal direction is 10 mm.

次に、(1)電槽に突出部を設けず、絶縁性及び高熱伝導性フィラーを添加しない従来の組電池A、(2)電槽21、蓋体22及び接続体カバー5に窒化ホウ素を添加した高分子材料を用い、電槽21に突出部を設けなかった組電池B、(3)電槽21、蓋体22及び接続体カバー5に窒化ホウ素を添加した高分子材料を用い、電槽21に突出部211を設けた組電池C(本実施形態の組電池)、(4)電槽21、蓋体22及び接続体カバー5に窒化ホウ素を添加した高分子材料を用い、電槽21に突出部を設けるとともに、突出部が接続体4の真下に位置する(接続体4が放熱空間Sの真上にない)組電池Dの比較を示す。   Next, (1) conventional battery pack A in which no protruding portion is provided in the battery case and no insulating and high thermal conductive filler is added, and (2) boron nitride is applied to the battery case 21, the lid 22 and the connection body cover 5. The assembled battery B using the added polymer material and the battery case 21 having no protrusions, and (3) the polymer material obtained by adding boron nitride to the battery case 21, the lid 22 and the connection body cover 5, An assembled battery C (assembled battery according to this embodiment) in which the protruding portion 211 is provided in the tank 21; (4) a battery case using a polymer material in which boron nitride is added to the battery case 21, the lid 22, and the connection body cover 5; 21 shows a comparison of the assembled battery D in which a protruding portion is provided at 21 and the protruding portion is located directly below the connecting body 4 (the connecting body 4 is not directly above the heat radiation space S).

組電池A〜Dの高率放電サイクル寿命性能を確認するため、組電池A〜Dを165Aの電流で18分間の放電を行った後、33Aの電流で1.8時間の充電を行うパターンを1サイクルとする試験を行った。また、組電池A〜Dのサイクル寿命試験中の容量を確認するため、上記パターンの100サイクル毎に組電池A〜Dを33Aの電流で端子電圧が40.8Vとなるまで放電する判定放電を行い、組電池のA〜Dの容量が初期値(高率放電サイクル寿命試験開始時の組電池の容量)の80%未満となった時点を組電池の寿命と判定した。   In order to confirm the high-rate discharge cycle life performance of the assembled batteries A to D, after discharging the assembled batteries A to D with a current of 165 A for 18 minutes, a pattern of charging 1.8 hours with a current of 33 A A test for one cycle was performed. Moreover, in order to confirm the capacity | capacitance in the cycle life test of assembled battery A-D, the judgment discharge which discharges assembled battery A-D until the terminal voltage becomes 40.8V with the electric current of 33A for every 100 cycles of the said pattern. Then, the time when the capacity of the assembled battery A to D was less than 80% of the initial value (the capacity of the assembled battery at the start of the high rate discharge cycle life test) was determined as the assembled battery life.

図7は、組電池A〜Dの高率放電サイクル寿命試験中における組電池温度の推移を示すグラフである。なお、組電池温度は、組電池中央部の縦横に隣接する4つの電池の角の隙間に熱電対を挿入して測定した。この図7から分かるように、組電池Aに比べて、組電池Bの方が組電池温度が抑えられており、これよりも組電池Dの方が組電池温度が抑えられており、さらに組電池Cの方が組電池温度が抑えられていることが分かる。また、組電池A〜Dが高率放電サイクル寿命試験で寿命に達するまでのサイクル数を図8に示す。この図8から分かるように、組電池Aのサイクル寿命(2200サイクル)に比べて、組電池Bのサイクル寿命が延びており(3300サイクル)、これよりも組電池Dのサイクル寿命が延びており(3400サイクル)、さらに組電池Cのサイクル寿命が延びていることが分かる(3500サイクル)。   FIG. 7 is a graph showing the transition of the assembled battery temperature during the high rate discharge cycle life test of the assembled batteries A to D. The assembled battery temperature was measured by inserting thermocouples into the gaps between the corners of four batteries adjacent in the vertical and horizontal directions at the center of the assembled battery. As can be seen from FIG. 7, the assembled battery B has a lower assembled battery temperature than the assembled battery A, and the assembled battery D has a lower assembled battery temperature than this. It can be seen that the battery C has a lower assembled battery temperature. Further, FIG. 8 shows the number of cycles until the assembled batteries A to D reach the lifetime in the high rate discharge cycle life test. As can be seen from FIG. 8, the cycle life of the assembled battery B is extended (3300 cycles) compared to the cycle life of the assembled battery A (2200 cycles), and the cycle life of the assembled battery D is further extended. (3400 cycles), it can be seen that the cycle life of the battery pack C is further extended (3500 cycles).

また、電槽21に形成される凹部の各幅寸法に対する突出部211の高さ寸法が異なる鉛蓄電池(単電池)を24個直列に接続した組電池100を用いて、上記と同様のパターンで高率放電サイクル寿命試験を行った。その際、電槽21に形成される凹部の各幅寸法における、突出部211の高さ寸法及び高率放電サイクル寿命試験中における組電池温度との関係を図9に示す。凹幅合計=1/3は、凹部の幅寸法の合計が電槽21の外側面21a〜21dの幅寸法の合計に対して3分の1である場合、凹幅合計=1/2は、凹部の幅寸法の合計が電槽21の外側面21a〜21dの幅寸法の合計に対して2分の1である場合、凹幅合計=2/3は、凹部の幅寸法の合計が電槽21の外側面21a〜21dの幅寸法の合計に対して3分の2である場合を示している。この図9から分かるように、突出部211の高さ寸法が大きいほど、組電池温度が低下することが分かり、凹幅合計が1/3に比べて、凹幅合計が1/2以上の場合が格段に組電池温度が低下していることが分かる。   In addition, using the assembled battery 100 in which 24 lead storage batteries (unit cells) having different height dimensions of the protrusions 211 with respect to the width dimensions of the recesses formed in the battery case 21 are connected in series, the pattern is similar to the above. A high rate discharge cycle life test was conducted. At that time, FIG. 9 shows the relationship between the height dimension of the protrusion 211 and the assembled battery temperature during the high rate discharge cycle life test in each width dimension of the recess formed in the battery case 21. When the sum of the widths of the recesses is 1/3, the sum of the widths of the recesses is one third of the sum of the widths of the outer surfaces 21a to 21d of the battery case 21. When the sum of the width dimensions of the recesses is a half of the sum of the width dimensions of the outer surfaces 21a to 21d of the battery case 21, the sum of the recess widths = 2/3 is the sum of the width dimensions of the recesses. The case where it is 2/3 with respect to the sum total of the width dimension of 21 outer surface 21a-21d is shown. As can be seen from FIG. 9, it can be seen that the larger the height of the protruding portion 211 is, the lower the assembled battery temperature is. When the total concave width is ½ or more, the total concave width is ½ or more. However, it can be seen that the temperature of the assembled battery is significantly reduced.

<本実施形態の効果>
このように構成した本実施形態によれば、隣接する鉛畜電池2の間に放熱空間Sが形成されるので各鉛畜電池2の放熱性能の低下を防止することができ、放熱空間Sの上部に接続体4及び接続体カバー5が位置しているので接続体4の温度上昇を防止することができる。これにより、組電池100の高率放電特性及びサイクル寿命性能を向上させることができる。
<Effect of this embodiment>
According to the present embodiment configured as described above, since the heat radiation space S is formed between the adjacent lead live batteries 2, it is possible to prevent the heat radiation performance of each lead live battery 2 from being lowered. Since the connection body 4 and the connection body cover 5 are located in the upper part, the temperature rise of the connection body 4 can be prevented. Thereby, the high rate discharge characteristic and cycle life performance of the assembled battery 100 can be improved.

<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.

例えば、前記実施形態では複数の鉛蓄電池を縦方向及び横方向に密接配置するものであったが、縦方向又は横方向の一方に密接配置するものであっても良い。   For example, in the above embodiment, the plurality of lead storage batteries are closely arranged in the vertical direction and the horizontal direction, but may be closely arranged in one of the vertical direction and the horizontal direction.

また、前記実施形態では電槽の4つの外側面に突出部211を設けるものであったが、図10に示すように電槽の底面に突出部211を形成しても良い。この場合、底面に設ける突出部211の構成としては、長側面に形成した突出部211に連続するように、縦方向に沿って形成しても良いし、短側面に形成した突出部211に連続するように横方向に沿って形成しても良い。なお、図10は後者について図示している。これならば、鉛蓄電池2の底面と及び組電池ケース3の底面との間に放熱空間を形成することができ組電池100の放熱性能を向上させることができる。特に、底面の突出部211を短側面に形成した突出部211に連続するように形成することによって、接続体カバーの下に形成された放熱空間に空気が通りやすくなり、接続体カバー5及び接続体4の温度上昇を一層効果的に防止することができる。   In the embodiment, the protrusions 211 are provided on the four outer surfaces of the battery case. However, the protrusions 211 may be formed on the bottom surface of the battery case as shown in FIG. In this case, the protrusion 211 provided on the bottom surface may be formed along the vertical direction so as to be continuous with the protrusion 211 formed on the long side surface, or continuous with the protrusion 211 formed on the short side surface. As such, it may be formed along the lateral direction. FIG. 10 illustrates the latter. If this is the case, a heat radiation space can be formed between the bottom surface of the lead storage battery 2 and the bottom surface of the assembled battery case 3, and the heat radiation performance of the assembled battery 100 can be improved. In particular, by forming the protruding portion 211 on the bottom surface so as to be continuous with the protruding portion 211 formed on the short side surface, air can easily pass through the heat radiation space formed under the connecting body cover, and the connecting body cover 5 and the connecting body cover 5 are connected. The temperature rise of the body 4 can be more effectively prevented.

さらに、前記実施形態では、鉛蓄電池の4つの外側面全部に放熱フィン部を形成したものであったが、図11に示すように、隣接する鉛畜電池の少なくとも一方の外側面に放熱フィン部を形成したものであっても良い。   Furthermore, in the said embodiment, although the radiation fin part was formed in all the four outer surfaces of a lead storage battery, as shown in FIG. 11, a radiation fin part is provided in at least one outer surface of an adjacent lead live battery. May be formed.

その上、組電池ケースの側壁又は当該組電池ケースの側壁に接触する鉛畜電池の少なくとも一方に放熱フィン部を形成したものであっても良い。   In addition, a radiating fin portion may be formed on at least one of the lead battery that contacts the side wall of the assembled battery case or the side wall of the assembled battery case.

さらに加えて、前記実施形態では横方向に隣接する鉛蓄電池の端子間を接続する接続体及び接続体カバーのみが放熱空間の上部に位置するように構成されているが、全ての接続体及び接続体カバーを放熱空間の上部に位置するように構成しても良い。これにより全ての接続体及び接続体カバーの温度上昇を効果的に防止することができる。   In addition, in the above embodiment, only the connection body and the connection body cover that connect between the terminals of the lead storage batteries adjacent in the lateral direction are configured to be located in the upper part of the heat radiation space. You may comprise so that a body cover may be located in the upper part of heat dissipation space. Thereby, the temperature rise of all the connection bodies and a connection body cover can be prevented effectively.

また、前記実施形態では電槽に突出部を形成しているが、蓋体にも電槽と平面視同一形状の突出部を設けても良い。これにより、各鉛蓄電池の放熱性能の低下を防止して、組電池の高率放電特性及びサイクル寿命性能を向上させることができる。   Moreover, although the protrusion part is formed in the battery case in the said embodiment, you may provide the cover body with the protrusion part of the same shape planar view as the battery case. Thereby, the fall of the thermal radiation performance of each lead acid battery can be prevented, and the high rate discharge characteristic and cycle life performance of an assembled battery can be improved.

前記実施形態では、高分子材料としてPP(ポリプロピレン)樹脂を用いたが、PE(ポリエチレン)樹脂、AS(アクリロニトリルスチレン)樹脂、ABS(アクリロニトリルブタジエンスチレン)樹脂を用いても良い。   In the above embodiment, PP (polypropylene) resin is used as the polymer material, but PE (polyethylene) resin, AS (acrylonitrile styrene) resin, and ABS (acrylonitrile butadiene styrene) resin may be used.

前記実施形態では、2Vの鉛蓄電池を24個直列接続した組電池であったが、2Vの鉛蓄電池を12個直列接続した組電池(24V)であっても良いし、2Vの鉛蓄電池を48個直列接続した組電池(96V)であっても良い。   In the embodiment, the battery is an assembled battery in which 24 2V lead-acid batteries are connected in series. However, an assembled battery (24V) in which 12 2V lead-acid batteries are connected in series may be used, and 48 2V lead-acid batteries may be used. An assembled battery (96V) connected in series may be used.

また、前記実施形態では、液式のクラッド式鉛蓄電池を用いたが、ゲル式又は顆粒シリカ式のクラッド式鉛蓄電池、ペースト式の液式又は制御弁式鉛蓄電池にも適用が可能である。   Moreover, in the said embodiment, although the liquid type clad lead acid battery was used, it is applicable also to a gel type or a granular silica type clad type lead acid battery, a paste type liquid type, or a control valve type lead acid battery.

また、前記実施形態では複数個の鉛蓄電池を用いた組電池について説明したが、その他、アルカリ蓄電池等の種々の電池を用いた組電池に適用可能である。   Moreover, although the said embodiment demonstrated the assembled battery using the some lead acid battery, it is applicable to the assembled battery using various batteries, such as an alkaline storage battery.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100 ・・・組電池
2 ・・・鉛蓄電池(単電池)
3 ・・・組電池ケース
21 ・・・電槽
21a〜21d・・・外側面
211 ・・・突出部
S ・・・放熱空間
23A、23B・・・端子
4 ・・・接続体
5 ・・・接続体カバー
100 ・ ・ ・ Battery 2 ・ ・ ・ Lead battery (single cell)
3 ... Battery case 21 ... Battery case 21a-21d ... Outer surface 211 ... Projection part S ... Radiation space 23A, 23B ... Terminal 4 ... Connection body 5 ... Connector cover

Claims (5)

概略直方体形状をなす複数の単電池を起立した状態で所定方向に密接配置し、それら単電池の端子間を接続体によって接続して構成される組電池であって、
隣接する単電池の少なくとも一方の外側面に起立方向に沿って延びる突出部が形成されており、
前記接続体が、前記突出部により前記隣接する単電池の間に形成される放熱空間の上部に位置することを特徴とする組電池。
A battery assembly configured by closely arranging a plurality of unit cells having a substantially rectangular parallelepiped shape in a predetermined direction in a standing state, and connecting terminals of the unit cells by a connecting body,
A protrusion extending along the standing direction is formed on at least one outer surface of the adjacent unit cell,
The assembled battery is characterized in that the connection body is located above a heat dissipation space formed between the adjacent single cells by the protruding portion.
前記複数の単電池を収容する組電池ケースを有しており、
前記組電池ケースの側壁又は当該組電池ケースの側壁に接触する単電池の少なくとも一方に、鉛直方向に沿って延びる突出部が形成されている請求項1記載の組電池。
It has an assembled battery case that houses the plurality of unit cells,
The assembled battery according to claim 1, wherein a protruding portion extending along a vertical direction is formed on at least one of the side wall of the assembled battery case or the unit cell contacting the side wall of the assembled battery case.
前記単電池の電槽及び当該電槽を閉塞する蓋が、絶縁性及び高熱伝導性フィラーが添加された高分子材料からなる請求項1又は2記載の組電池。   The assembled battery according to claim 1 or 2, wherein the battery case of the unit cell and the lid for closing the battery case are made of a polymer material to which an insulating and high thermal conductive filler is added. 前記接続体を覆う接続体カバーを有し、当該接続体カバーが、絶縁性及び高熱伝導性フィラーが添加された高分子材料からなり、前記放熱空間の上部に位置する請求項1乃至3のいずれかに記載の組電池。   The connection body cover which covers the said connection body, The said connection body cover consists of a polymeric material to which the insulating and high heat conductive filler was added, and is located in the upper part of the said thermal radiation space. An assembled battery according to any one of the above. 前記単電池が鉛蓄電池である請求項1乃至4のいずれかに記載の組電池。
The assembled battery according to claim 1, wherein the single battery is a lead storage battery.
JP2011107881A 2011-05-13 2011-05-13 Assembled battery Withdrawn JP2012238522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107881A JP2012238522A (en) 2011-05-13 2011-05-13 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107881A JP2012238522A (en) 2011-05-13 2011-05-13 Assembled battery

Publications (1)

Publication Number Publication Date
JP2012238522A true JP2012238522A (en) 2012-12-06

Family

ID=47461248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107881A Withdrawn JP2012238522A (en) 2011-05-13 2011-05-13 Assembled battery

Country Status (1)

Country Link
JP (1) JP2012238522A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030471A1 (en) * 2016-08-10 2018-02-15 日立化成株式会社 Case for assembled batteries, lead storage battery, assembled battery, storage battery system, method for improving heat dissipation properties of case for assembled batteries, and method for improving deformation resistance of case for assembled batteries
US10199700B2 (en) 2013-09-10 2019-02-05 Toyota Jidosha Kabushiki Kaisha Temperature adjusting structure and temperature adjusting method for electric power storage device
US10522798B2 (en) 2013-06-14 2019-12-31 Gs Yuasa International Ltd. Energy storage apparatus
WO2022230902A1 (en) * 2021-04-27 2022-11-03 エナジーウィズ株式会社 Assembled battery, method for manufacturing assembled battery, and device for manufacturing assembled battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522798B2 (en) 2013-06-14 2019-12-31 Gs Yuasa International Ltd. Energy storage apparatus
US10199700B2 (en) 2013-09-10 2019-02-05 Toyota Jidosha Kabushiki Kaisha Temperature adjusting structure and temperature adjusting method for electric power storage device
WO2018030471A1 (en) * 2016-08-10 2018-02-15 日立化成株式会社 Case for assembled batteries, lead storage battery, assembled battery, storage battery system, method for improving heat dissipation properties of case for assembled batteries, and method for improving deformation resistance of case for assembled batteries
JPWO2018030471A1 (en) * 2016-08-10 2018-11-22 日立化成株式会社 Case for assembled battery, lead storage battery, assembled battery, storage battery system, method for improving heat dissipation of case for assembled battery, and method for improving deformation resistance of case for assembled battery
WO2022230902A1 (en) * 2021-04-27 2022-11-03 エナジーウィズ株式会社 Assembled battery, method for manufacturing assembled battery, and device for manufacturing assembled battery

Similar Documents

Publication Publication Date Title
JP3569152B2 (en) battery pack
CN106898714B (en) Battery module, battery pack, and vehicle
US9172068B2 (en) Battery pack
US7732091B2 (en) Lithium ion secondary battery
JP5300416B2 (en) Battery system
KR101833525B1 (en) Battery Module Having Molding Part for Insulating
JP6608653B2 (en) Battery module
US8609272B2 (en) Secondary battery with finishing tapes
JP2008166191A (en) Battery pack
JPWO2011092773A1 (en) Battery module
CN209860115U (en) Battery module
KR102411235B1 (en) Battery pack with cell suppression
JP2006073461A (en) Battery pack
JP6808903B2 (en) Battery module and battery pack
KR20110016409A (en) Secondary battery
KR102381962B1 (en) Battery Pack Having Heat Dissipating Member
JP2012238522A (en) Assembled battery
JP2014135180A (en) Battery module
JP2008198435A (en) Battery pack
JP5751634B2 (en) Power storage device
KR20170020095A (en) Battery module
KR20200027327A (en) Secondary Battery Pack Having Radiant Heat Plate
JP5169130B2 (en) Control valve type lead acid battery
JP2015011849A (en) Battery provided with auxiliary battery
KR20210042710A (en) Bettery module

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805