JP2012237625A - Object distance detection device - Google Patents

Object distance detection device Download PDF

Info

Publication number
JP2012237625A
JP2012237625A JP2011106130A JP2011106130A JP2012237625A JP 2012237625 A JP2012237625 A JP 2012237625A JP 2011106130 A JP2011106130 A JP 2011106130A JP 2011106130 A JP2011106130 A JP 2011106130A JP 2012237625 A JP2012237625 A JP 2012237625A
Authority
JP
Japan
Prior art keywords
distance
time
time difference
reception intensity
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011106130A
Other languages
Japanese (ja)
Inventor
Shingo Ogawa
真吾 小川
Shinnosuke Saito
真之介 齋藤
Masaru Otsuki
賢 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011106130A priority Critical patent/JP2012237625A/en
Publication of JP2012237625A publication Critical patent/JP2012237625A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve detection accuracy of distance to an object.SOLUTION: An object distance detection device 10 includes: a distance detection part 25 which detects time difference from time when electromagnetic waves are transmitted by a transmission part 11a of a radar device 11 to time when reflected waves are received by a reception part 11b, and calculates distance from a vehicle to an object on the basis of the time difference; a maximum value estimation part 24 which estimates the maximum value (estimated peak voltage Vpeak) of reception intensity according to inclinations on the increment side and the decrement side of the reception intensity in waveform F of reception intensity distribution on a two-dimensional orthogonal coordinate plane showing correspondence between the time difference and the reception intensity of the reflected waves; and a distance correction part 26 which corrects the distance calculated by the distance detection part 25 on the basis of time width (estimated pulse width W) in which the reception intensity in the waveform F of the reception intensity distribution is equal to or more than a voltage threshold Vth, and the maximum value (estimated peak voltage Vpeak).

Description

この発明は、物体距離検出装置に関する。   The present invention relates to an object distance detection device.

従来、例えばレーザ光を用いた送信波の放射時刻と反射波の受信時刻との時間差に基づき反射点までの距離を測定する際に、反射波の受信強度と時間差との対応関係において反射波の受信強度が所定閾値よりも大きい間の時間幅に基づいて時間差を補正することによって、反射波の受信強度差により生じる測定誤差を補正する距離測定装置が知られている(例えば、特許文献1参照)。   Conventionally, for example, when measuring the distance to the reflection point based on the time difference between the emission time of the transmission wave using laser light and the reception time of the reflected wave, the reflected wave is reflected in the correspondence between the reception intensity of the reflected wave and the time difference. A distance measuring device is known that corrects a measurement error caused by a difference in received intensity of reflected waves by correcting a time difference based on a time width during which the received intensity is greater than a predetermined threshold (see, for example, Patent Document 1). ).

特開平9−236661号公報JP-A-9-236661

ところで、上記従来技術に係る距離測定装置によれば、反射波の受信強度が弱い場合には時間幅も短くなり、反射波の受信強度が強い場合には時間幅も長くなるという対応関係に基づき、時間差を補正している。
しかしながら、反射波の受信強度と時間幅との対応関係は反射波を発する物体に応じて変化し、例えば、反射波の受信強度が弱い場合に時間幅が長くなったり、反射波の受信強度が強い場合に時間幅が短くなるという対応関係も生じる可能性があり、適切な補正を行なうことができない虞がある。
By the way, according to the distance measuring device according to the above-described prior art, the time width is shortened when the received intensity of the reflected wave is weak, and the time width is lengthened when the received intensity of the reflected wave is strong. The time difference is corrected.
However, the correspondence relationship between the received intensity of the reflected wave and the time width varies depending on the object that emits the reflected wave. For example, when the received intensity of the reflected wave is weak, the time width becomes longer or the received intensity of the reflected wave is lower. There is a possibility that the time width is shortened when the time is strong, and there is a possibility that appropriate correction cannot be performed.

本発明は上記事情に鑑みてなされたもので、物体に対する距離の検出精度を向上させることが可能な物体距離検出装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an object distance detection device capable of improving the accuracy of detection of the distance to an object.

上記課題を解決して係る目的を達成するために、本発明の請求項1に係る物体距離検出装置は、車両からの所定領域に向けて電磁波を発信する発信手段(例えば、実施の形態での発信部11a)と、前記発信手段により発信された前記電磁波が前記所定領域内の物体により反射された反射波を受信する受信手段(例えば、実施の形態での受信部11b)と、前記発信手段により前記電磁波が発信された時刻から前記受信手段により前記反射波が受信された時刻までの時間差を検出する時間差検出手段(例えば、実施の形態での距離検出部25)と、前記時間差検出手段により検出された前記時間差に基づき前記車両から前記物体までの距離を算出する距離算出手段(例えば、実施の形態での距離検出部24が兼ねる)とを備える物体距離検出装置であって、前記時間差検出手段により検出された前記時間差と前記受信手段により受信された前記反射波の受信強度との対応関係を示す2次元直交座標面上での曲線(例えば、実施の形態での受信強度分布の波形F)における前記受信強度の増加側での傾きと前記受信強度の減少側での傾きとに応じて、前記受信強度の極大値(例えば、実施の形態での推定ピーク電圧Vpeak)を推定する極大値推定手段(例えば、実施の形態での極大値推定部24)と、前記曲線における前記受信強度が所定閾値(例えば、実施の形態での電圧閾値Vth)以上である時間幅(例えば、実施の形態での推定パルス幅W)と、前記極大値推定手段により推定された前記極大値とに基づいて、前記距離算出手段により算出された前記距離を補正する補正手段(例えば、実施の形態での距離補正部26)とを備える。   In order to solve the above problems and achieve the object, an object distance detection device according to claim 1 of the present invention is a transmission means for transmitting an electromagnetic wave toward a predetermined area from a vehicle (for example, in the embodiment). A transmitting unit 11a), a receiving unit (for example, the receiving unit 11b in the embodiment) that receives a reflected wave reflected by an object in the predetermined area, and the transmitting unit. The time difference detecting means (for example, the distance detecting unit 25 in the embodiment) for detecting the time difference from the time when the electromagnetic wave is transmitted to the time when the reflected wave is received by the receiving means, and the time difference detecting means Object distance detection comprising: distance calculation means for calculating the distance from the vehicle to the object based on the detected time difference (for example, the distance detection unit 24 in the embodiment also serves as) A curve on a two-dimensional orthogonal coordinate plane showing a correspondence relationship between the time difference detected by the time difference detection means and the reception intensity of the reflected wave received by the reception means (for example, an embodiment) In the reception strength distribution waveform F) at the reception strength distribution waveform F) according to the slope of the reception strength increase side and the slope of the reception strength decrease side (for example, the estimated peak in the embodiment) Maximum value estimating means for estimating the voltage Vpeak) (for example, the maximum value estimating unit 24 in the embodiment) and the reception intensity in the curve is equal to or greater than a predetermined threshold (for example, the voltage threshold Vth in the embodiment). Correction for correcting the distance calculated by the distance calculation unit based on a time width (for example, the estimated pulse width W in the embodiment) and the maximum value estimated by the maximum value estimation unit And a stage (e.g., distance correction section 26 in the embodiment).

さらに、本発明の第2態様に係る物体距離検出装置では、前記時間差検出手段は、前記発信手段により前記電磁波が発信された時刻から前記受信強度が前記所定閾値以上である前記反射波が受信された時刻までの前記時間差を検出し、前記距離算出手段は、前記時間差検出手段により検出された前記時間差のうち前記受信強度が前記所定閾値である場合の前記時間差に基づき前記距離を算出する。   Further, in the object distance detection device according to the second aspect of the present invention, the time difference detection means receives the reflected wave having the reception intensity equal to or greater than the predetermined threshold from the time when the electromagnetic wave is transmitted by the transmission means. The time difference up to a predetermined time is detected, and the distance calculation means calculates the distance based on the time difference when the reception intensity is the predetermined threshold among the time differences detected by the time difference detection means.

本発明の第1態様に係る物体距離検出装置によれば、電磁波が発信された時刻から反射波が受信された時刻までの時間差に基づき算出された距離を、時間差と反射波の受信強度との対応関係を示す受信強度分布の受信強度の極大値と受信強度が所定閾値以上である時間幅とに基づいて補正することにより、距離の精度を向上させることができる。
また、例えば受信手段の出力をサンプリングするADコンバータの入力上限電圧が反射波の受信強度の極大値よりも小さいことなどに起因して、受信強度の極大値を直接に検出することができない場合であっても、時間差と反射波の受信強度との対応関係を示す曲線における受信強度の増加側および減少側での傾きに応じて受信強度の極大値を精度良く推定することができる。
According to the object distance detection device of the first aspect of the present invention, the distance calculated based on the time difference from the time when the electromagnetic wave is transmitted to the time when the reflected wave is received is calculated as the time difference and the reception intensity of the reflected wave. The accuracy of the distance can be improved by correcting based on the maximum value of the reception intensity of the reception intensity distribution indicating the correspondence and the time width in which the reception intensity is equal to or greater than the predetermined threshold.
For example, when the maximum input voltage of the AD converter that samples the output of the receiving means is smaller than the maximum value of the received intensity of the reflected wave, the maximum value of the received intensity cannot be directly detected. Even in this case, it is possible to accurately estimate the maximum value of the received intensity according to the slope of the received intensity on the increasing side and decreasing side in the curve indicating the correspondence between the time difference and the received intensity of the reflected wave.

さらに、本発明の第2態様に係る物体距離検出装置によれば、受信強度が所定閾値である反射波に対して算出した距離を、受信強度が所定閾値以上である時間幅と極大値とにより補正することによって、反射点までの距離の検出精度を向上させることができる。   Furthermore, according to the object distance detection device according to the second aspect of the present invention, the distance calculated for the reflected wave whose reception intensity is a predetermined threshold is determined by the time width and the maximum value where the reception intensity is equal to or greater than the predetermined threshold. By correcting, the detection accuracy of the distance to the reflection point can be improved.

本発明の実施の形態に係る物体距離検出装置の構成図である。It is a block diagram of the object distance detection apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る物体距離検出装置により検出された受信強度分布の波形Fと推定パルス幅Wおよび推定ピーク電圧Vpeakとの例を示す図である。It is a figure which shows the example of the waveform F of the receiving intensity distribution detected by the object distance detection apparatus which concerns on embodiment of this invention, the estimated pulse width W, and the estimated peak voltage Vpeak. 本発明の実施の形態に係る物体距離検出装置に記憶されている距離補正値C(M,L)と距離L(Tofup)と推定ピーク電圧Vpeakおよび推定パルス幅Wの積M(=Vpeak×W)との対応関係を示すデータの例を示す図である。The product M (= Vpeak × W) of the distance correction value C (M, L), the distance L (Tofup), the estimated peak voltage Vpeak, and the estimated pulse width W stored in the object distance detecting device according to the embodiment of the present invention. It is a figure which shows the example of the data which show a corresponding relationship. 本発明の実施の形態に係る物体距離検出装置の検出対象である各種の物体と推定ピーク電圧Vpeakおよび推定パルス幅Wとの対応関係の例を示す図である。It is a figure which shows the example of the correspondence of the various objects which are the detection targets of the object distance detection apparatus which concerns on embodiment of this invention, the estimated peak voltage Vpeak, and the estimated pulse width W. 本発明の実施の形態に係る物体距離検出装置により検出された受信強度分布の波形Fと推定パルス幅Wおよび推定ピーク電圧Vpeakとの例を示す図である。It is a figure which shows the example of the waveform F of the receiving intensity distribution detected by the object distance detection apparatus which concerns on embodiment of this invention, the estimated pulse width W, and the estimated peak voltage Vpeak. 本発明の実施の形態に係る物体距離検出装置により検出された受信強度分布の波形Fと推定パルス幅Wおよび推定ピーク電圧Vpeakとの例を示す図である。It is a figure which shows the example of the waveform F of the receiving intensity distribution detected by the object distance detection apparatus which concerns on embodiment of this invention, the estimated pulse width W, and the estimated peak voltage Vpeak. 本発明の実施の形態に係る物体距離検出装置により検出された受信強度分布の波形Fと推定パルス幅Wおよび推定ピーク電圧Vpeakとの例を示す図である。It is a figure which shows the example of the waveform F of the receiving intensity distribution detected by the object distance detection apparatus which concerns on embodiment of this invention, the estimated pulse width W, and the estimated peak voltage Vpeak. 本発明の実施の形態に係る物体距離検出装置に記憶されている距離補正値C(M)と推定ピーク電圧Vpeakおよび推定パルス幅Wの積M(=Vpeak×W)との対応関係を示すデータの例を示す図である。Data indicating a correspondence relationship between the distance correction value C (M) stored in the object distance detection device according to the embodiment of the present invention and the product M (= Vpeak × W) of the estimated peak voltage Vpeak and the estimated pulse width W It is a figure which shows the example of.

以下、本発明の一実施形態に係る物体距離検出装置について添付図面を参照しながら説明する。
本実施の形態による物体距離検出装置10は、例えば車両に搭載され、図1に示すように、レーダ装置11と、処理装置12とを備えて構成されている。
Hereinafter, an object distance detection apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
An object distance detection device 10 according to the present embodiment is mounted on, for example, a vehicle and includes a radar device 11 and a processing device 12 as shown in FIG.

レーダ装置11は、発信部11aと受信部11bとを備え、車両の外界(例えば、車両の進行方向の前方など)に設定された検出対象領域を複数の角度領域に分割し、各角度領域を走査するようにして、赤外光レーザやミリ波などの電磁波の発信信号を発信部11aから発信する。
そして、各発信信号が車両の外部の検出対象領域内の物体(例えば、他車両や構造物や路面など)や歩行者などによって反射されることで生じた反射波の反射信号を受信部11bにより受信する。
そして、発信信号および反射信号に係る信号を処理装置12に出力する。
The radar apparatus 11 includes a transmission unit 11a and a reception unit 11b, and divides a detection target region set in the external environment of the vehicle (for example, ahead of the traveling direction of the vehicle) into a plurality of angular regions, and each angular region is divided into a plurality of angular regions. A transmission signal of an electromagnetic wave such as an infrared laser or a millimeter wave is transmitted from the transmission unit 11a so as to scan.
And the reflected signal of the reflected wave produced by each outgoing signal being reflected by the object (for example, another vehicle, a structure, a road surface, etc.) in the detection object field outside a vehicle, a pedestrian, etc. is received by receiving part 11b. Receive.
Then, a signal related to the transmission signal and the reflection signal is output to the processing device 12.

処理装置12は、例えば図1に示すように、ADコンバータ21と、受信強度分布検出部22と、パルス幅検出部23と、極大値推定部24と、距離検出部25と、距離補正部26とを備えて構成されている。   For example, as illustrated in FIG. 1, the processing device 12 includes an AD converter 21, a reception intensity distribution detection unit 22, a pulse width detection unit 23, a maximum value estimation unit 24, a distance detection unit 25, and a distance correction unit 26. And is configured.

ADコンバータ21は、レーダ装置11の発信部11aにより電磁波が発信されてから受信部11bの出力(つまり、受信部11bにより受信された反射波の受信強度を示す信号)を所定の一定周期でサンプリングして、受信部11bにより受信された反射波の受信強度(例えば、電圧)のアナログ値をデジタル値に変換する。
ADコンバータ21は、例えば図2に示す出力電圧の各データ点Pのように、受信部11bの出力を所定の一定周期でサンプリングして得られるアナログ値の入力電圧毎にAD変換を実行し、デジタル値の出力電圧を出力する。
The AD converter 21 samples the output of the reception unit 11b after the electromagnetic wave is transmitted from the transmission unit 11a of the radar apparatus 11 (that is, a signal indicating the reception intensity of the reflected wave received by the reception unit 11b) at a predetermined constant cycle. Then, the analog value of the reception intensity (for example, voltage) of the reflected wave received by the receiving unit 11b is converted into a digital value.
The AD converter 21 performs AD conversion for each input voltage of an analog value obtained by sampling the output of the receiving unit 11b at a predetermined constant period, for example, as each data point P of the output voltage shown in FIG. Outputs the digital output voltage.

なお、ADコンバータ21は、適正なAD変換を実行可能な入力電圧に対して所定の入力上限電圧Vupおよび入力下限電圧を有しており、入力下限電圧以上かつ入力上限電圧Vup以下の入力電圧に対しては、入力電圧のアナログ値に応じたデジタル値を有する出力電圧を出力する。
一方、この入力上限電圧Vupよりも大きい入力電圧に対しては、例えば図2に示す出力電圧の各データ点Pのように、入力電圧のアナログ値にかかわりなく一律に入力上限電圧Vupのデジタル値を有する出力電圧を出力する。
Note that the AD converter 21 has a predetermined input upper limit voltage Vup and an input lower limit voltage with respect to an input voltage capable of performing appropriate AD conversion, and has an input voltage that is greater than or equal to the input lower limit voltage and less than or equal to the input upper limit voltage Vup. On the other hand, an output voltage having a digital value corresponding to the analog value of the input voltage is output.
On the other hand, for an input voltage larger than the input upper limit voltage Vup, for example, as in each data point P of the output voltage shown in FIG. 2, the digital value of the input upper limit voltage Vup is uniform regardless of the analog value of the input voltage. Is output.

受信強度分布検出部22は、例えば図2に示すような複数のデータ点Pによる受信強度分布を検出する。
例えば、受信強度分布検出部22は、ADコンバータ21の出力タイミングを示す時間(つまり、発信部11aにより電磁波が発信された時刻から受信部11bにより反射波が受信された時刻までの時間差)をX座標軸とし、ADコンバータ21の出力電圧(つまり、受信部11bにより受信された反射波の受信強度(例えば、電圧))をY座標軸とする2次元直交座標面上において、ADコンバータ21によるサンプリングによって得られる複数のデータ点Pの分布を検出する。
なお、図2には、レーダ装置11の発信部11aの発光強度設計値に応じた、受信部11bにより受信される反射波の受信強度の推定波形Dの一例についても示した。
The reception intensity distribution detection unit 22 detects a reception intensity distribution by a plurality of data points P as shown in FIG.
For example, the reception intensity distribution detection unit 22 indicates the time indicating the output timing of the AD converter 21 (that is, the time difference from the time when the electromagnetic wave is transmitted by the transmission unit 11a to the time when the reflected wave is received by the reception unit 11b) X It is obtained by sampling by the AD converter 21 on a two-dimensional orthogonal coordinate plane having the coordinate axis and the output voltage of the AD converter 21 (that is, the reception intensity (for example, voltage) of the reflected wave received by the receiving unit 11b) as the Y coordinate axis. The distribution of a plurality of data points P to be detected is detected.
FIG. 2 also shows an example of the estimated waveform D of the received intensity of the reflected wave received by the receiving unit 11b in accordance with the emission intensity design value of the transmitting unit 11a of the radar apparatus 11.

パルス幅検出部23は、2次元直交座標面上での複数のデータ点Pによる受信強度分布の波形Fにおいて、例えばADコンバータ21の入力下限電圧よりも大きく、かつ入力上限電圧Vupよりも小さい所定の電圧閾値Vthに対して、受信強度が所定の電圧閾値Vth以上である時間幅を検出する。
より具体的には、波形Fにおいて、受信強度(つまり電圧)の増加側で所定の電圧閾値Vthに対応する座標点Aの時刻(立ち上がりタイミング)Tofupと、受信強度(つまり電圧)の減少側で所定の電圧閾値Vthに対応する座標点Bの時刻(立ち下がりタイミング)Tofdnとの間の時間幅を、推定パルス幅Wとして検出する。
The pulse width detection unit 23 is a predetermined value smaller than the input lower limit voltage of the AD converter 21 and lower than the input upper limit voltage Vup, for example, in the waveform F of the received intensity distribution by the plurality of data points P on the two-dimensional orthogonal coordinate plane. A time width in which the reception intensity is equal to or higher than a predetermined voltage threshold Vth is detected with respect to the voltage threshold Vth.
More specifically, in the waveform F, the time (rise timing) Toup of the coordinate point A corresponding to the predetermined voltage threshold Vth on the increase side of the reception intensity (that is, voltage) and the decrease side of the reception intensity (that is, voltage). The time width between the time (falling timing) Tofdn of the coordinate point B corresponding to the predetermined voltage threshold Vth is detected as the estimated pulse width W.

極大値推定部24は、2次元直交座標面上での複数のデータ点Pによる受信強度分布の波形Fにおいて、受信強度の増加側での傾きと受信強度の減少側での傾きとに応じて、受信強度の極大値(推定ピーク電圧Vpeak)を推定する。
より具体的には、受信強度(つまり電圧)の増加側で所定の電圧閾値Vthに対応する座標点Aでの接線LAと、受信強度(つまり電圧)の減少側で所定の電圧閾値Vthに対応する座標点Bでの接線LBとの交点Qを検出し、この交点Qに対応する受信強度(つまり電圧)を、受信強度の極大値(推定ピーク電圧Vpeak)として検出する。
The local maximum estimator 24 corresponds to the inclination on the increase side of the reception intensity and the inclination on the decrease side of the reception intensity in the waveform F of the reception intensity distribution by the plurality of data points P on the two-dimensional orthogonal coordinate plane. Then, the maximum value (estimated peak voltage Vpeak) of the reception intensity is estimated.
More specifically, the tangent line LA at the coordinate point A corresponding to the predetermined voltage threshold value Vth on the increase side of the reception strength (that is, voltage) and the predetermined voltage threshold value Vth on the decrease side of the reception strength (that is, voltage). The intersection point Q with the tangent line LB at the coordinate point B to be detected is detected, and the reception intensity (that is, voltage) corresponding to this intersection point Q is detected as the maximum value of the reception intensity (estimated peak voltage Vpeak).

距離検出部25は、受信強度分布検出部22により検出された受信強度分布に基づき、発信部11aにより電磁波が発信された時刻(発信時刻)から受信部11bにより反射波が受信された時刻(受信時刻)までの時間差を検出し、この時間差に基づき車両から物体(つまり、反射波の反射点)までの距離Lを算出する。   The distance detection unit 25 is based on the reception intensity distribution detected by the reception intensity distribution detection unit 22 and the time when the reflected wave is received by the reception unit 11b from the time when the electromagnetic wave is transmitted by the transmission unit 11a (transmission time) (reception) A time difference up to (time) is detected, and a distance L from the vehicle to the object (that is, the reflection point of the reflected wave) is calculated based on this time difference.

例えば、距離検出部25は、ADコンバータ21の出力に基づき、レーダ装置11の発信部11aにより電磁波が発信されてから受信部11bの出力に対するADコンバータ21による何回目のサンプリングによって得られた出力であるかに応じて、発信時刻から受信時刻までの時間差を検出する。   For example, based on the output of the AD converter 21, the distance detection unit 25 is an output obtained by sampling the AD converter 21 with respect to the output of the reception unit 11b after the electromagnetic wave is transmitted by the transmission unit 11a of the radar apparatus 11. Depending on whether or not there is a time difference from the transmission time to the reception time.

また、例えば、距離検出部25は、レーダ装置11の発信部11aにより電磁波が発信されてから受信強度(つまり電圧)が所定の電圧閾値Vth以上である反射波が受信された時刻までの時間差を検出する。
そして、距離検出部25は、例えば、受信強度(つまり電圧)が所定の電圧閾値Vthである場合の時間差(つまり、図2に示す受信強度分布における座標点Aの時刻(立ち上がりタイミング)Tofupに対する時間差)に基づき、車両から物体(つまり、反射波の反射点)までの距離Lを算出する。
Further, for example, the distance detection unit 25 calculates the time difference from the time when the electromagnetic wave is transmitted by the transmission unit 11a of the radar apparatus 11 to the time when the reflected wave whose reception intensity (that is, voltage) is equal to or higher than the predetermined voltage threshold Vth is received. To detect.
Then, the distance detection unit 25, for example, the time difference when the reception intensity (that is, voltage) is the predetermined voltage threshold Vth (that is, the time difference with respect to the time (rise timing) Toup of the coordinate point A in the reception intensity distribution shown in FIG. ) To calculate the distance L from the vehicle to the object (that is, the reflection point of the reflected wave).

距離補正部26は、パルス幅検出部23により検出された推定パルス幅Wと、極大値推定部24により検出された推定ピーク電圧Vpeakとに基づき、距離検出部25により検出された距離L、例えば受信強度(つまり電圧)が所定の電圧閾値Vthである場合の時間差(つまり、図2に示す受信強度分布における座標点Aの時刻(立ち上がりタイミング)Tofupに対する時間差)に基づく距離L(Tofup)を補正する。   The distance correction unit 26 is configured to detect a distance L detected by the distance detection unit 25 based on the estimated pulse width W detected by the pulse width detection unit 23 and the estimated peak voltage Vpeak detected by the maximum value estimation unit 24, for example, The distance L (Tofup) based on the time difference when the reception intensity (that is, voltage) is the predetermined voltage threshold Vth (that is, the time difference with respect to the time (rise timing) Toup of the coordinate point A in the reception intensity distribution shown in FIG. 2) is corrected. To do.

距離補正部26は、例えば、距離L(Tofup)の補正に用いる距離補正係数Cに対して予め作成された所定マップのデータとして、少なくとも推定ピーク電圧Vpeakおよび推定パルス幅Wに応じた所定の距離補正値係数Cのデータを記憶している。
例えば図3に示す所定の距離補正係数Cは、推定ピーク電圧Vpeakおよび推定パルス幅Wの積M(=Vpeak×W)と距離L(Tofup)とに応じて変化し、積Mあるいは距離L(Tofup)の増大に伴い、増大傾向に変化している。
The distance correction unit 26 is, for example, a predetermined distance corresponding to at least the estimated peak voltage Vpeak and the estimated pulse width W as data of a predetermined map created in advance for the distance correction coefficient C used for correcting the distance L (Tofup). Data of the correction value coefficient C is stored.
For example, the predetermined distance correction coefficient C shown in FIG. 3 changes according to the product M (= Vpeak × W) of the estimated peak voltage Vpeak and the estimated pulse width W and the distance L (Tofup), and the product M or the distance L ( With the increase in Tofup), the trend is increasing.

そして、距離補正部26は、例えば下記数式(1)に示すように、距離補正係数C(M,L)を用いて、距離検出部24により検出された距離L(Tofup)を補正し、補正後の距離L(TOF)を算出する。   Then, the distance correction unit 26 corrects the distance L (Tofup) detected by the distance detection unit 24 using the distance correction coefficient C (M, L), for example, as shown in the following formula (1). The subsequent distance L (TOF) is calculated.

Figure 2012237625
Figure 2012237625

上記数式(1)において、推定ピーク電圧Vpeakおよび推定パルス幅Wの積M(=Vpeak×W)は反射エネルギー(つまり、受信部11bにより受信された反射波のエネルギー)に比例することから、距離補正部26は、距離L(Tofup)に加えて、検出対象物(つまり、反射波を発する物体あるいは歩行者など)の面積や形状などを考慮した補正を行なっていることになる。   In the above formula (1), the product M (= Vpeak × W) of the estimated peak voltage Vpeak and the estimated pulse width W is proportional to the reflected energy (that is, the energy of the reflected wave received by the receiving unit 11b). The correction unit 26 performs correction in consideration of the area and shape of the detection target (that is, an object that emits a reflected wave, a pedestrian, or the like) in addition to the distance L (Tofup).

つまり、反射波を発する各種の検出対象物は、反射波の受信強度つまり推定ピーク電圧Vpeakと、検出対象物上の点(反射点)の奥行きつまり推定パルス幅Wとに応じて、例えば図4に示すような分布特性を有している。   In other words, various detection objects that emit reflected waves are, for example, shown in FIG. 4 according to the reception intensity of the reflected waves, that is, the estimated peak voltage Vpeak, and the depth of the point (reflection point) on the detection object, that is, the estimated pulse width W. It has a distribution characteristic as shown in FIG.

例えば図4において、歩行者に対しては、推定ピーク電圧Vpeakが弱く、かつ推定パルス幅Wがやや広くなり、対向車両に対しては、推定ピーク電圧Vpeakが弱く、かつ推定パルス幅Wがやや狭くなる。
また、例えば、看板に対しては、推定ピーク電圧Vpeakが強く、かつ推定パルス幅Wが広くなり、大型車に対しては、推定ピーク電圧Vpeakが強く、かつ推定パルス幅Wがさらに広くなる。
For example, in FIG. 4, for pedestrians, the estimated peak voltage Vpeak is weak and the estimated pulse width W is slightly wider, and for the oncoming vehicle, the estimated peak voltage Vpeak is weak and the estimated pulse width W is slightly Narrow.
Further, for example, the estimated peak voltage Vpeak is strong and the estimated pulse width W is wide for a signboard, and the estimated peak voltage Vpeak is strong and the estimated pulse width W is further widened for a large vehicle.

距離補正部26は、例えば図4に示すように、各種の検出対象物に応じて変化する推定ピーク電圧Vpeakおよび推定パルス幅Wを用いることで、各種の検出対象物に対して、車両制御に必要とされる車両から最も近い点(最近接点)に対する距離を精度良く検出することができる。   For example, as illustrated in FIG. 4, the distance correction unit 26 uses an estimated peak voltage Vpeak and an estimated pulse width W that change according to various detection objects to control various detection objects. The distance to the nearest point (nearest point) from the required vehicle can be detected with high accuracy.

本実施の形態による物体距離検出装置10は上記構成を備えており、次に、この物体距離検出装置10の動作例について説明する。   The object distance detection apparatus 10 according to the present embodiment has the above-described configuration. Next, an operation example of the object distance detection apparatus 10 will be described.

例えば図5に示す車両Sの前方に存在する対向車両RAに対しては、対向車両RAのフロントグリルおよびヘッドライトの周辺部を反射点とする反射波による波形FA1と、対向車両RAのボンネットの周辺部を反射点とする反射波による波形FA2となどが合成されてなる波形Fが検出される。そして、この波形Fに対して推定パルス幅W1および推定ピーク電圧Vpeak1が検出される。   For example, with respect to the oncoming vehicle RA existing in front of the vehicle S shown in FIG. 5, the waveform FA1 of the reflected wave having the reflection point at the front grille and the headlight of the oncoming vehicle RA and the hood of the oncoming vehicle RA A waveform F obtained by synthesizing the waveform FA2 and the like by a reflected wave having a reflection point at the periphery is detected. Then, the estimated pulse width W1 and the estimated peak voltage Vpeak1 are detected for this waveform F.

また、例えば図6に示す車両Sの前方に存在する先行車両RBに対しては、先行車両RBの後端リフレクタの周辺部を反射点とする反射波による波形FB1と、先行車両RBの車体後部の周辺部を反射点とする反射波による波形FB2となどが合成されてなる波形Fが検出される。そして、この波形Fに対して推定パルス幅W2(>W1)および推定ピーク電圧Vpeak2(>Vpeak1)が検出される。
この場合には、図5に示す対向車両RAに比べて、推定パルス幅W2および推定ピーク電圧Vpeak2が大きくなることに伴い、距離Lの精度が低下する(つまり、位置精度のばらつきが大きくなる)ことから、より大きな積M(=Vpeak2×W2)に応じた補正が行なわれることで、位置精度のばらつきが抑制される。
Further, for example, for the preceding vehicle RB existing in front of the vehicle S shown in FIG. 6, a waveform FB1 based on a reflected wave having a reflection point at the periphery of the rear end reflector of the preceding vehicle RB, and a rear body portion of the preceding vehicle RB. A waveform F obtained by combining a waveform FB2 and the like by a reflected wave having a reflection point in the periphery of the signal is detected. Then, an estimated pulse width W2 (> W1) and an estimated peak voltage Vpeak2 (> Vpeak1) are detected for the waveform F.
In this case, as the estimated pulse width W2 and the estimated peak voltage Vpeak2 increase as compared with the oncoming vehicle RA shown in FIG. 5, the accuracy of the distance L decreases (that is, the variation in the positional accuracy increases). Therefore, the correction according to the larger product M (= Vpeak2 × W2) is performed, thereby suppressing the variation in position accuracy.

また、例えば図7に示す車両Sの前方に存在する大型車両RCに対しては、大型車両RCおよび積載物の各種の部位を反射点とする反射波による複数の波形FC1,FC2,…などが合成されてなる波形Fが検出される。そして、この波形Fに対して推定パルス幅W3(>W2)および推定ピーク電圧Vpeak3(>Vpeak2)が検出される。
この場合には、図6に示す先行車両RBに比べて、推定パルス幅W3および推定ピーク電圧Vpeak3が大きくなることに伴い、距離Lの精度が低下する(つまり、位置精度のばらつきが大きくなる)ことから、より大きな積M(=Vpeak3×W3)に応じた補正が行なわれることで、位置精度のばらつきが抑制される。
Further, for example, for the large vehicle RC existing in front of the vehicle S shown in FIG. 7, a plurality of waveforms FC1, FC2,. A combined waveform F is detected. An estimated pulse width W3 (> W2) and an estimated peak voltage Vpeak3 (> Vpeak2) are detected for this waveform F.
In this case, as the estimated pulse width W3 and the estimated peak voltage Vpeak3 increase as compared with the preceding vehicle RB shown in FIG. 6, the accuracy of the distance L decreases (that is, the variation in positional accuracy increases). Therefore, the correction according to the larger product M (= Vpeak3 × W3) is performed, thereby suppressing the variation in position accuracy.

上述したように、本実施の形態による物体距離検出装置10によれば、レーダ装置11の発信部11aにより電磁波が発信された時刻(発信時刻)から受信部11bにより反射波が受信された時刻(受信時刻)までの時間差に基づき算出された距離Lを、推定ピーク電圧Vpeakおよび推定パルス幅Wに基づいて補正することにより、距離Lの精度を向上させることができる。   As described above, according to the object distance detection device 10 according to the present embodiment, the time when the reflected wave is received by the receiving unit 11b from the time (transmitting time) when the electromagnetic wave is transmitted by the transmitting unit 11a of the radar device 11 ( By correcting the distance L calculated based on the time difference until the (reception time) based on the estimated peak voltage Vpeak and the estimated pulse width W, the accuracy of the distance L can be improved.

また、例えばADコンバータ21の入力上限電圧Vupが、受信部11bの出力を所定の一定周期でサンプリングして得られるアナログ値の入力電圧よりも小さいことなどに起因して、受信部11bにより受信された反射波の受信強度の極大値を直接に検出することができない場合であっても、受信強度分布の波形Fにおける受信強度の増加側および減少側での傾きに応じて受信強度の極大値(推定ピーク電圧Vpeak)を精度良く推定することができる。   In addition, for example, the input upper limit voltage Vup of the AD converter 21 is received by the receiving unit 11b due to being smaller than an analog input voltage obtained by sampling the output of the receiving unit 11b at a predetermined constant period. Even if it is not possible to directly detect the maximum value of the reception intensity of the reflected wave, the maximum value of the reception intensity (in accordance with the slope of the reception intensity distribution waveform F on the increase side and decrease side of the reception intensity ( The estimated peak voltage Vpeak) can be estimated with high accuracy.

なお、上述した実施の形態において、距離補正係数Cは積M(=Vpeak×W)と距離L(Tofup)とに応じて変化するとしたが、これに限定されず、例えば図8に示すように、距離補正係数Cは積M(=Vpeak×W)のみに応じて変化してもよい。
例えば図8に示す所定の距離補正係数Cのデータでは、積M(=Vpeak×W)の増大に伴い、距離補正係数Cの増大率が低下傾向に変化しつつ、距離補正係数Cは増大傾向に変化している。
In the above-described embodiment, the distance correction coefficient C is changed according to the product M (= Vpeak × W) and the distance L (Tofup), but is not limited to this. For example, as shown in FIG. The distance correction coefficient C may change only according to the product M (= Vpeak × W).
For example, in the data of the predetermined distance correction coefficient C shown in FIG. 8, as the product M (= Vpeak × W) increases, the increase rate of the distance correction coefficient C changes to a decreasing tendency, and the distance correction coefficient C increases. Has changed.

10 物体距離検出装置
11a 発信部(発信手段)
11b 受信部(受信手段)
24 極大値推定部(極大値推定手段)
25 距離検出部(時間差検出手段、距離算出手段)
26 距離補正部(補正手段)
10 Object Distance Detection Device 11a Transmission Unit (Transmission Unit)
11b Receiver (Receiving means)
24 local maximum estimation unit (local maximum estimation means)
25 Distance detector (time difference detector, distance calculator)
26 Distance correction unit (correction means)

Claims (2)

車両からの所定領域に向けて電磁波を発信する発信手段と、
前記発信手段により発信された前記電磁波が前記所定領域内の物体により反射された反射波を受信する受信手段と、
前記発信手段により前記電磁波が発信された時刻から前記受信手段により前記反射波が受信された時刻までの時間差を検出する時間差検出手段と、
前記時間差検出手段により検出された前記時間差に基づき前記車両から前記物体までの距離を算出する距離算出手段とを備える物体距離検出装置であって、
前記時間差検出手段により検出された前記時間差と前記受信手段により受信された前記反射波の受信強度との対応関係を示す2次元直交座標面上での曲線における前記受信強度の増加側での傾きと前記受信強度の減少側での傾きとに応じて、前記受信強度の極大値を推定する極大値推定手段と、
前記曲線における前記受信強度が所定閾値以上である時間幅と、前記極大値推定手段により推定された前記極大値とに基づいて、前記距離算出手段により算出された前記距離を補正する補正手段とを備えることを特徴とする物体距離検出装置。
A transmission means for transmitting electromagnetic waves toward a predetermined area from the vehicle;
Receiving means for receiving the reflected wave reflected by the object in the predetermined area, the electromagnetic wave transmitted by the transmitting means;
A time difference detecting means for detecting a time difference from a time when the electromagnetic wave is transmitted by the transmitting means to a time when the reflected wave is received by the receiving means;
An object distance detection device comprising distance calculation means for calculating a distance from the vehicle to the object based on the time difference detected by the time difference detection means;
A slope on the increase side of the reception intensity in a curve on a two-dimensional orthogonal coordinate plane showing a correspondence relationship between the time difference detected by the time difference detection means and the reception intensity of the reflected wave received by the reception means; Maximum value estimation means for estimating a maximum value of the reception strength according to the slope on the decrease side of the reception strength;
Correction means for correcting the distance calculated by the distance calculation means based on a time width in which the received intensity in the curve is equal to or greater than a predetermined threshold and the maximum value estimated by the maximum value estimation means; An object distance detection device comprising:
前記時間差検出手段は、前記発信手段により前記電磁波が発信された時刻から前記受信強度が前記所定閾値以上である前記反射波が受信された時刻までの前記時間差を検出し、
前記距離算出手段は、前記時間差検出手段により検出された前記時間差のうち前記受信強度が前記所定閾値である場合の前記時間差に基づき前記距離を算出することを特徴とする請求項1に記載の物体距離検出装置。
The time difference detection means detects the time difference from the time when the electromagnetic wave is transmitted by the transmission means to the time when the reflected wave having the reception intensity equal to or greater than the predetermined threshold is received,
The object according to claim 1, wherein the distance calculation unit calculates the distance based on the time difference when the reception intensity is the predetermined threshold among the time differences detected by the time difference detection unit. Distance detection device.
JP2011106130A 2011-05-11 2011-05-11 Object distance detection device Withdrawn JP2012237625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106130A JP2012237625A (en) 2011-05-11 2011-05-11 Object distance detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106130A JP2012237625A (en) 2011-05-11 2011-05-11 Object distance detection device

Publications (1)

Publication Number Publication Date
JP2012237625A true JP2012237625A (en) 2012-12-06

Family

ID=47460642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106130A Withdrawn JP2012237625A (en) 2011-05-11 2011-05-11 Object distance detection device

Country Status (1)

Country Link
JP (1) JP2012237625A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129426A (en) * 2016-01-19 2017-07-27 株式会社デンソー Laser radar device
JP2018528437A (en) * 2015-09-29 2018-09-27 クアルコム,インコーポレイテッド Lidar system using reflected signal intensity measurement
CN110031860A (en) * 2019-04-03 2019-07-19 维沃移动通信有限公司 Laser distance measurement method, device and mobile terminal
JP2021139625A (en) * 2020-03-02 2021-09-16 三菱電機株式会社 Object detection device
WO2023181947A1 (en) * 2022-03-23 2023-09-28 株式会社デンソー Object detection device and object detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018528437A (en) * 2015-09-29 2018-09-27 クアルコム,インコーポレイテッド Lidar system using reflected signal intensity measurement
US11131756B2 (en) 2015-09-29 2021-09-28 Qualcomm Incorporated LIDAR system with reflected signal strength measurement
JP2017129426A (en) * 2016-01-19 2017-07-27 株式会社デンソー Laser radar device
CN110031860A (en) * 2019-04-03 2019-07-19 维沃移动通信有限公司 Laser distance measurement method, device and mobile terminal
CN110031860B (en) * 2019-04-03 2021-04-02 维沃移动通信有限公司 Laser ranging method and device and mobile terminal
JP2021139625A (en) * 2020-03-02 2021-09-16 三菱電機株式会社 Object detection device
JP7068364B2 (en) 2020-03-02 2022-05-16 三菱電機株式会社 Object detection device
WO2023181947A1 (en) * 2022-03-23 2023-09-28 株式会社デンソー Object detection device and object detection method

Similar Documents

Publication Publication Date Title
JP7053982B2 (en) Ghost removal method and radar device
US10614322B2 (en) Object recognition device
US10551494B2 (en) Road information detection apparatus and road information detection method
JP6520203B2 (en) Mounting angle error detection method and device, vehicle-mounted radar device
WO2017060965A1 (en) Light control device, control method, program, and storage medium
US20080106462A1 (en) Object detection system and object detection method
JP2012237625A (en) Object distance detection device
JP2014169922A (en) Object recognition device
JPWO2012128096A1 (en) Radar equipment
JPWO2013088938A1 (en) Radar equipment
JP4197033B2 (en) Radar
CN108474854B (en) Information processing apparatus, information processing method, and program
JPWO2007015288A1 (en) Axis deviation amount estimation method and axis deviation amount estimation device
JP2016109675A (en) Object detection device, speed detection device and vehicle
JP2010271083A (en) Device for determining axial displacement of radar
JP6358155B2 (en) Axis misalignment judgment device
JP2007248146A (en) Radar device
JP2021182009A (en) Light control device, control method, program and storage medium
JP2015132553A (en) Object detection device
JP2018115930A (en) Radar device and method for detecting target
JP5436652B1 (en) Vehicle periphery monitoring device and vehicle periphery monitoring method
JP2011209238A (en) Detection apparatus and detection program
JP6923799B2 (en) Radar device
JP4001611B2 (en) Ranging radar equipment
JP6494694B2 (en) Detection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805