JP2012237579A - Object detection device for vehicle - Google Patents

Object detection device for vehicle Download PDF

Info

Publication number
JP2012237579A
JP2012237579A JP2011105171A JP2011105171A JP2012237579A JP 2012237579 A JP2012237579 A JP 2012237579A JP 2011105171 A JP2011105171 A JP 2011105171A JP 2011105171 A JP2011105171 A JP 2011105171A JP 2012237579 A JP2012237579 A JP 2012237579A
Authority
JP
Japan
Prior art keywords
detection
vehicle
end point
collision
lateral movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011105171A
Other languages
Japanese (ja)
Other versions
JP5698597B2 (en
Inventor
Yoji Sasabuchi
洋治 笹渕
Hiroaki Tani
裕章 谷
Akihito Kimata
亮人 木俣
Hiroyuki Koike
弘之 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011105171A priority Critical patent/JP5698597B2/en
Publication of JP2012237579A publication Critical patent/JP2012237579A/en
Application granted granted Critical
Publication of JP5698597B2 publication Critical patent/JP5698597B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately detect static and moving states of an object existing on the outside of an own vehicle.SOLUTION: An object detection device 10 for a vehicle includes: a reflection point calculation part 21 for calculating a position of a reflection point, on an object, of an electromagnetic wave transmitted from a radar device 12; a distance calculation part 22 for calculating a distance from the own vehicle up to the object; an end point detection part 23 for detecting both end points of the object in a horizontal direction based on the position of the reflection point; an overlap determination part 24 for determining whether or not either one of the end points of a detecting object overlaps with a comparing object when observing the end points from the own vehicle; and an end point movement speed calculation part 25 for calculating, when the overlap determination part 24 determines an overlap and the distance up to the detecting object becomes nearer than the distance up to the comparing object with the lapse of time, a lateral movement speed of the detecting object on the basis of a lateral movement distance of the other end point of the detecting object which does not overlap with the comparing object. The object detection device 10 for the vehicle improves the detection accuracy of the lateral movement speed of the detecting object.

Description

本発明は、車両用物体検知装置に関する。   The present invention relates to a vehicle object detection device.

従来、例えば、自車両周辺の障害物をレーダ装置により検出し、障害物への衝突の可能性が大きい場合には、衝突を回避するように制御する走行制御装置が知られている(例えば、特許文献1参照)。   Conventionally, for example, a traveling control device that detects an obstacle around the host vehicle by a radar device and controls to avoid the collision when the possibility of a collision with the obstacle is large is known (for example, Patent Document 1).

特開2005−100232号公報Japanese Patent Laid-Open No. 2005-10032

しかしながら、従来技術に係る走行制御装置においては、障害物の重心の移動に基づいて、当該障害物の移動/静止を判定し、あるいは、移動速度を算出しているため、障害物の一部が前走車などに遮蔽されている場合、上述の判定あるいは算出が精度よく行われないという問題がある。つまり、自車と前走車と障害物との位置関係が刻々と変化するに連れて、障害物が前走車に遮蔽されている遮蔽状態が刻々と変化する。従って、遮蔽状態の変化に伴い、障害物として検知可能な領域(検知幅)が変化するため、例えば、障害物が静止物であっても、その重心位置が変化していると判断される。これにより、静止物が移動物であると誤判定されるなど、移動/静止の判定、あるいは、移動速度の算出の精度が低下する。
特に、自車の進行方向において、自車と障害物との間に前走車が存在する状態から、前 走車が移動することにより、自車と前走車との間に障害物が存在する状態に場合には、精度の問題は大きくなる。つまり、障害物の遮蔽状態が解消されるため、当該障害物の検知幅は、遮蔽されていた部分の幅に相当する分、遮蔽されていた部分の側に広がることになる。よって、当該障害物の重心位置は、遮蔽されていた部分の側に移動し、当該障害物は、横移動していなかったとしても、遮蔽されていた部分の側に横移動する移動物体として誤認識される。
また、障害物が高反射物体である場合やセンサ表面に雨滴が付いている場合にも、実際の障害物の幅よりも広い検知幅となるため、精度の問題は大きくなる。つまり、障害物の検知幅が実際の幅より広くなるときは、障害物の遮蔽状態の変化に対する障害物の検知幅の変化が大きくなるため、例えば、障害物を遮蔽していた前走車が当該障害物を越えた場合の誤認識の程度は、当該障害物が反射物体である場合やセンサ表面に雨滴が付いている場合の方が、そうでない場合に比べ、大きくなる。
さらに、上述のように、従来技術に係る走行制御装置においては、前走車などに一部が遮蔽されている障害物に係る、移動/静止の判定、あるいは、移動速度の算出が精度よく行われていないため、不要な衝突回避制御を行ってしまうという問題も生じる。
However, in the travel control device according to the related art, since the movement / stillness of the obstacle is determined or the moving speed is calculated based on the movement of the center of gravity of the obstacle, a part of the obstacle is When the vehicle is shielded by a preceding vehicle or the like, there is a problem that the above determination or calculation is not performed with high accuracy. That is, as the positional relationship between the host vehicle, the preceding vehicle, and the obstacle changes every moment, the shielding state in which the obstacle is shielded by the preceding vehicle changes every moment. Therefore, since the area (detection width) that can be detected as an obstacle changes with the change in the shielding state, for example, even if the obstacle is a stationary object, it is determined that the position of the center of gravity has changed. As a result, the accuracy of the determination of movement / stillness or the calculation of the movement speed is lowered, for example, it is erroneously determined that the stationary object is a moving object.
In particular, in the traveling direction of the vehicle, there is an obstacle between the vehicle and the preceding vehicle when the preceding vehicle moves from the state where the preceding vehicle exists between the vehicle and the obstacle. In this situation, the accuracy problem becomes large. That is, since the obstacle shielding state is eliminated, the obstacle detection width spreads toward the shielded portion by the amount corresponding to the width of the shielded portion. Therefore, the position of the center of gravity of the obstacle moves to the side of the shielded part, and even if the obstacle does not move laterally, it is erroneously detected as a moving object that laterally moves to the side of the shielded part. Be recognized.
Even when the obstacle is a highly reflective object or when raindrops are attached to the sensor surface, the detection width is wider than the actual width of the obstacle, so the accuracy problem becomes large. In other words, when the obstacle detection width becomes wider than the actual width, the change in the obstacle detection width with respect to the change in the obstacle shielding state becomes large. The degree of erroneous recognition when the obstacle is exceeded is greater when the obstacle is a reflective object or when a raindrop is attached to the sensor surface than when the obstacle is not.
Furthermore, as described above, in the traveling control device according to the related art, the determination of movement / stillness or the calculation of the movement speed relating to the obstacle partially shielded by the preceding vehicle or the like is performed with high accuracy. As a result, there is a problem that unnecessary collision avoidance control is performed.

本発明は上記事情に鑑みてなされたもので、自車両の外部に存在する物体の静止および移動の状態を精度良く検知することが可能な車両用物体検知装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vehicle object detection device that can accurately detect the stationary and moving states of an object existing outside the host vehicle.

上記課題を解決して係る目的を達成するために、本発明の第1態様に係る車両用物体検知装置は、自車両周辺の所定範囲に向けて電磁波を発信すると共に、該電磁波が自車両周辺の物体により反射されて生じる反射波を受信する発受信手段(例えば、実施の形態でのレーダ装置12)と、前記物体上における前記電磁波の反射点の位置を算出する反射点算出手段(例えば、実施の形態での反射点算出部21)と、前記反射点算出手段により算出された前記反射点の位置に基づき自車両から前記物体までの距離を算出する距離算出手段(例えば、実施の形態での距離算出部22)と、前記反射点算出手段により算出された前記反射点の位置に基づき前記物体の水平方向の両方の端点を検出する端点検出手段(例えば、実施の形態での端点検出部23)と、前記端点検出手段により前記端点として少なくとも、前記物体のうち、検知対象物の端点と自車両からの距離が自車両から前記検知対象物までの距離よりも近い位置にある比較対象物の端点とが検出された場合に、前記検知対象物の何れか一方の端点が自車両から見て前記比較対象物に重なっているか否かを判定する重なり判定手段(例えば、実施の形態での重なり判定部24)と、前記重なり判定手段により重なっていると判定され、かつ、時間経過と共に前記検知対象物までの距離が前記比較対象物までの距離よりも近くなった場合に、前記検知対象物の前記比較対象物に重なっていない他方の端点の横移動量に基づいて前記検知対象物の横移動速度を算出する端点移動速度算出手段(例えば、実施の形態での端点移動速度算出部25)とを備える。   In order to solve the above-described problems and achieve the object, the vehicle object detection device according to the first aspect of the present invention transmits an electromagnetic wave toward a predetermined range around the own vehicle, and the electromagnetic wave is around the own vehicle. Transmitting / receiving means (for example, the radar apparatus 12 in the embodiment) that receives a reflected wave that is reflected by the object, and reflection point calculating means (for example, the position of the reflection point of the electromagnetic wave on the object) Reflection point calculation unit 21 in the embodiment and distance calculation means for calculating the distance from the vehicle to the object based on the position of the reflection point calculated by the reflection point calculation means (for example, in the embodiment) Distance calculation unit 22) and end point detection means for detecting both horizontal end points of the object based on the position of the reflection point calculated by the reflection point calculation unit (for example, the end point detection unit in the embodiment) 3) and at least a comparison object having a distance from an end point of the detection target object to the own vehicle, which is closer than the distance from the own vehicle to the detection target object, as the end point by the end point detection means. When an end point is detected, an overlap determination means for determining whether one of the end points of the detection target overlaps the comparison target when viewed from the host vehicle (for example, in the embodiment) When it is determined that the overlap is determined by the overlap determination unit 24) and the overlap determination unit, and the distance to the detection target becomes shorter than the distance to the comparison target over time, the detection target An end point moving speed calculating means for calculating a lateral moving speed of the object to be detected based on a lateral moving amount of the other end point that does not overlap the comparison object (for example, an end point moving speed calculation in the embodiment) Part 25) and a.

さらに、本発明の第2態様に係る車両用物体検知装置では、前記検知対象物は、実際の物体の大きさに応じた幅の反射波よりも大きい幅の反射波が前記発受信手段により受信される高反射物体である。   Furthermore, in the vehicle object detection device according to the second aspect of the present invention, the detection object receives the reflected wave having a width larger than the reflected wave having a width corresponding to the actual size of the object by the transmitting / receiving unit. Highly reflective object.

さらに、本発明の第3態様に係る車両用物体検知装置では、前記発受信手段に対する付着物の付着状態を判定する付着判定手段(例えば、実施の形態での付着判定部29)を更に備え、前記端点移動速度算出手段は、前記付着判定手段により前記付着物が付着していると判定された場合に、前記検知対象物の前記比較対象物に重なっていない方の端点の横移動量に基づいて前記検知対象物の横移動速度を算出する。   Furthermore, the vehicle object detection device according to the third aspect of the present invention further includes an adhesion determination unit (for example, an adhesion determination unit 29 in the embodiment) that determines an adhesion state of the deposit on the transmission / reception unit. The end point movement speed calculation means is based on the lateral movement amount of the end point of the detection object that does not overlap the comparison object when the adhesion determination means determines that the attachment is attached. The lateral movement speed of the detection object is calculated.

さらに、本発明の第4態様に係る車両用物体検知装置では、前記検知対象物との衝突の可能性を判定する衝突判定手段(例えば、実施の形態での衝突判定部27)と、前記衝突判定手段により衝突の可能性があると判定された場合には衝突回避制御を行い、前記衝突判定手段により衝突の可能性がないと判定された場合には衝突回避制御を行わない車両制御手段(例えば、実施の形態での車両制御部28)とを更に備え、前記衝突判定手段は、前記端点移動速度算出手段により算出された前記検知対象物の横移動速度がゼロである場合に衝突の可能性はないと判定する。   Furthermore, in the vehicle object detection device according to the fourth aspect of the present invention, a collision determination unit (for example, the collision determination unit 27 in the embodiment) that determines the possibility of a collision with the detection target object, and the collision Vehicle control means that performs collision avoidance control when the determination means determines that there is a possibility of collision, and vehicle control means that does not perform collision avoidance control when the collision determination means determines that there is no possibility of collision ( For example, the vehicle control unit 28) in the embodiment is further provided, and the collision determination unit is capable of collision when the lateral movement speed of the detection target calculated by the end point movement speed calculation unit is zero. It is determined that there is no sex.

本発明の第1態様に係る車両用物体検知装置によれば、比較対象物(例えば、前走車)による検知対象物(例えば、障害物)の重なり状態(遮蔽状態)が解消されて、該検知対象物の検知幅が比較対象物側に広がり、自車両前方まで広がったとしても、検知対象物の端点のうちの比較対象物側と逆側の端点の横移動量に基づいて検知対象物の横移動速度を算出するため、精度良く、検知対象物の横移動速度を算出することができる。   According to the vehicle object detection device of the first aspect of the present invention, the overlapping state (shielding state) of the detection target object (for example, an obstacle) by the comparison target object (for example, the preceding vehicle) is eliminated, Even if the detection width of the detection object spreads to the comparison object side and extends to the front of the host vehicle, the detection object is based on the lateral movement amount of the end point on the opposite side of the comparison object side of the detection object. Therefore, the lateral movement speed of the detection target can be calculated with high accuracy.

本発明の第2態様に係る車両用物体検知装置によれば、検知対象物が、検知幅が実際の幅よりも広がり易い高反射物であっても、精度良く、検知対象物の横移動速度を算出することができる。   According to the vehicle object detection device of the second aspect of the present invention, even if the detection target is a highly reflective object whose detection width is likely to spread more than the actual width, the lateral movement speed of the detection target is accurate. Can be calculated.

本発明の第3態様に係る車両用物体検知装置によれば、発受信手段に汚れや雨滴などが付着し、検知幅が実際の幅よりも広がり易い場合であっても、精度良く、検知対象物の横移動速度を算出することができる。   According to the vehicle object detection device of the third aspect of the present invention, even if dirt or raindrops adhere to the transmitting / receiving means and the detection width is likely to be wider than the actual width, the detection target is accurate. The lateral movement speed of the object can be calculated.

本発明の第4態様に係る車両用物体検知装置によれば、重なり状態が解除されることで検知幅が広がったとしても検知対象物の横移動速度を正確に算出するため、重なり状態が解除された場合であっても、正確に衝突の可能性を判定することができる。よって、重なり状態が解除された場合に衝突する可能性が無いのにもかかわらず行っていたような不要な衝突回避制御を抑えることができる。   According to the vehicle object detection device of the fourth aspect of the present invention, the overlapping state is canceled in order to accurately calculate the lateral movement speed of the detection target even if the detection range is widened by releasing the overlapping state. Even in such a case, the possibility of collision can be accurately determined. Therefore, it is possible to suppress unnecessary collision avoidance control that has been performed even though there is no possibility of collision when the overlapping state is released.

本発明の実施の形態に係る車両用物体検知装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle object detection apparatus which concerns on embodiment of this invention. 図1に示すレーダ装置の所定のレーダ検知領域α内で検知された全物体数m(例えば、m=5)の各物体M1,…,M5の例を示す図である。FIG. 2 is a diagram illustrating an example of each object M1,..., M5 of the total number of objects m (for example, m = 5) detected within a predetermined radar detection region α of the radar apparatus shown in FIG. 図1に示すレーダ装置の所定のレーダ検知領域α内での検知対象物と比較対象物との例を示す図である。It is a figure which shows the example of the detection target object and the comparison target object in the predetermined radar detection area | region (alpha) of the radar apparatus shown in FIG. 図1に示すレーダ装置の所定のレーダ検知領域α内での検知対象物と比較対象物との例を示す図である。It is a figure which shows the example of the detection target object and the comparison target object in the predetermined radar detection area | region (alpha) of the radar apparatus shown in FIG. 図1に示す車両用物体検知装置の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the vehicle object detection apparatus shown in FIG.

以下、本発明の一実施形態に係る車両用物体検知装置について添付図面を参照しながら説明する。図1は、本発明の実施の形態に係る車両用物体検知装置10の構成を示すブロック図である。図2は、レーダ装置12の所定のレーダ検知領域α内で検知された全物体数m(例えば、m=5)の各物体M1,…,M5の例を示す図である。図3は、レーダ装置12の所定のレーダ検知領域α内での検知対象物と比較対象物との例を示す図である。   Hereinafter, a vehicle object detection device according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing a configuration of a vehicle object detection device 10 according to an embodiment of the present invention. FIG. 2 is a diagram illustrating an example of each object M1,..., M5 of the total number of objects m (for example, m = 5) detected within the predetermined radar detection area α of the radar apparatus 12. FIG. 3 is a diagram illustrating an example of a detection target and a comparison target within a predetermined radar detection region α of the radar apparatus 12.

車両用物体検知装置10は、例えば、図1に示すように、車両用物体検知装置10を制御するCPU(中央演算装置)を備えた処理ユニット11と、レーダ装置12と、車両状態センサ13と、スロットルアクチュエータ14と、ブレーキアクチュエータ15と、ステアリングアクチュエータ16と、報知装置17とを含んで構成されている。   For example, as shown in FIG. 1, the vehicle object detection device 10 includes a processing unit 11 including a CPU (central processing unit) that controls the vehicle object detection device 10, a radar device 12, and a vehicle state sensor 13. The throttle actuator 14, the brake actuator 15, the steering actuator 16, and the notification device 17 are included.

レーダ装置12は、例えば自車両の外界に設定された所定領域(レーダ検知領域α)を複数の角度領域に分割し、各角度領域を走査するようにして、電磁波の発信信号を発信し、各発信信号が自車両の外部の物体(例えば、他車両や構造物など)によって反射されることで生じた反射信号を受信し、反射点の位置およびレーダ装置12から外部の物体までの距離に係る検知信号を生成し、処理ユニット11に出力する。   For example, the radar apparatus 12 divides a predetermined area (radar detection area α) set in the external environment of the host vehicle into a plurality of angle areas, and transmits an electromagnetic wave transmission signal so as to scan each angle area. A reflection signal generated by reflecting the transmission signal by an object outside the host vehicle (for example, another vehicle or a structure) is received, and the position of the reflection point and the distance from the radar device 12 to the object outside the vehicle are related. A detection signal is generated and output to the processing unit 11.

車両状態センサ13は、例えば、自車両の速度(車速)を検出する車速センサと、車体に作用する加速度を検知する加速度センサと、車体の姿勢や進行方向を検知するジャイロセンサと、ヨーレート(車両重心の上下方向軸回りの回転角速度)を検知するヨーレートセンサと、例えば人工衛星を利用して自車両の位置を測定するためのGPS(Global Positioning System)信号などの測位信号を受信する測位信号受信機と、運転者による運転操作(例えば、アクセルペダルの踏み込み操作量、ブレーキペダルの踏み込み操作量、ステアリングホイールの舵角、シフトポジションなど)を検出する各センサとなどを備えて構成され、自車両の各種の車両情報の検出結果の信号を出力する。   The vehicle state sensor 13 includes, for example, a vehicle speed sensor that detects the speed (vehicle speed) of the host vehicle, an acceleration sensor that detects acceleration acting on the vehicle body, a gyro sensor that detects the posture and traveling direction of the vehicle body, and a yaw rate (vehicle A yaw rate sensor that detects the rotational angular velocity of the center of gravity about the vertical axis) and a positioning signal reception that receives a positioning signal such as a GPS (Global Positioning System) signal for measuring the position of the vehicle using an artificial satellite, for example. Vehicle and each sensor for detecting a driving operation by the driver (for example, an accelerator pedal depression amount, a brake pedal depression amount, a steering wheel steering angle, a shift position, etc.) The signal of the detection result of various vehicle information is output.

車両用物体検知装置10の処理ユニット11は、例えば、反射点算出部21と、距離算出部22と、端点検出部23と、重なり判定部24と、端点移動速度算出部25と、記憶部26と、衝突判定部27と、車両制御部28とを備えて構成されている。なお、処理ユニット11は、破線で示すように、更に、付着判断部29を備えて構成されていてもよい。   The processing unit 11 of the vehicle object detection device 10 includes, for example, a reflection point calculation unit 21, a distance calculation unit 22, an end point detection unit 23, an overlap determination unit 24, an end point moving speed calculation unit 25, and a storage unit 26. And a collision determination unit 27 and a vehicle control unit 28. Note that the processing unit 11 may further include an adhesion determination unit 29 as indicated by a broken line.

反射点算出部21は、レーダ装置12から出力される検知信号に基づき、レーダ装置12から発信されて自車両の外部に存在する物体の表面上で反射された電磁波の反射点の位置を算出する。
距離算出部22は、反射点算出部21により算出された複数の反射点の位置に基づき自車両から物体までの距離を算出する。
端点検出部23は、反射点算出部21により算出された複数の反射点の位置に基づき物体の水平方向の一方又は他方の端点を検出する。例えば、端点検出部23は、検知対象物の端点と、比較対象物の端点とを検出する。
Based on the detection signal output from the radar device 12, the reflection point calculation unit 21 calculates the position of the reflection point of the electromagnetic wave transmitted from the radar device 12 and reflected on the surface of an object existing outside the host vehicle. .
The distance calculation unit 22 calculates the distance from the host vehicle to the object based on the positions of the plurality of reflection points calculated by the reflection point calculation unit 21.
The end point detection unit 23 detects one or the other end point in the horizontal direction of the object based on the positions of the plurality of reflection points calculated by the reflection point calculation unit 21. For example, the end point detection unit 23 detects the end point of the detection target and the end point of the comparison target.

重なり判定部24は、端点検出部23により端点として少なくとも、検知対象物の端点と、自車両からの距離が自車両から検知対象物までの距離よりも近い位置にある比較対象物の端点とが検出された場合に、検知対象物の端点のうちの一方が自車両から見て比較対象物に重なっているか否かを判定する。より詳細には、重なり判定部24は、距離算出部22により算出された自車両から物体までの距離と、端点検出部23により検出された物体の水平方向の一方又は他方の端点とに基づいて、レーダ装置12により検知された複数の物体において、検知対象物と、検知対象物よりも自車両に近い位置にある比較対象物との適宜の組み合わせに対し、検知対象物の端点が自車両から見て比較対象物に重なっているか否かを判定する。   The overlap determination unit 24 has at least an end point of the detection target as an end point by the end point detection unit 23 and an end point of the comparison target at a position where the distance from the own vehicle is closer than the distance from the own vehicle to the detection target. When it is detected, it is determined whether one of the end points of the detection object overlaps the comparison object as viewed from the host vehicle. More specifically, the overlap determination unit 24 is based on the distance from the host vehicle to the object calculated by the distance calculation unit 22 and one or the other end point in the horizontal direction of the object detected by the end point detection unit 23. In the plurality of objects detected by the radar device 12, the end point of the detection target is detected from the own vehicle with respect to an appropriate combination of the detection target and the comparison target closer to the own vehicle than the detection target. It is determined whether or not it overlaps with the comparison object.

例えば、図2に示すように、レーダ装置12の所定のレーダ検知領域α内で複数の物体(M1,…,M5)が検出された場合に、重なり判定部24は、例えば、検知対象物としての物体M1の水平方向の一方(例えば、右側)又は他方(例えば、左側)の端点のうちの一方(右側の端点)は、自車両から見て比較対象物として物体M3に重なっていると判定する。   For example, as shown in FIG. 2, when a plurality of objects (M1,..., M5) are detected within a predetermined radar detection area α of the radar apparatus 12, the overlap determination unit 24, for example, It is determined that one (right end point) of one (for example, the right side) or the other (for example, the left side) of the object M1 in the horizontal direction overlaps the object M3 as a comparison object when viewed from the host vehicle. To do.

重なり判定部24は、端点移動速度算出部25に判定結果を出力する。例えば、重なり判定部24は、検知対象物の端点のうちの一方が自車両から見て比較対象物に重なっていることを示す重なりフラグを判定結果として出力する。即ち、重なり判定部24は、検知対象物の端点のうちの一方が自車両から見て比較対象物に重なっていると判定した場合、重なりフラグのフラグ値(=1)を出力する。   The overlap determination unit 24 outputs the determination result to the end point movement speed calculation unit 25. For example, the overlap determination unit 24 outputs, as a determination result, an overlap flag indicating that one of the end points of the detection object overlaps the comparison object as viewed from the host vehicle. That is, the overlap determination unit 24 outputs the flag value (= 1) of the overlap flag when it is determined that one of the end points of the detection target overlaps the comparison target as viewed from the host vehicle.

端点移動速度算出部25は、検知対象物の横移動速度(自車幅方向における相対速度)Vyを算出する。具体的には、例えば、端点移動速度算出部25は、重なり判定部24により検知対象物の端点のうちの一方が自車両から見て比較対象物に重なっていると判定され、かつ、時間経過と共に検知対象物までの距離が比較対象物までの距離よりも近くなった場合に、検知対象物の端点のうちの他方の横移動量、即ち、比較対象物に重なっていない方の横移動量に基づいて、該検知対象物の横移動速度を算出する。なお、端点移動速度算出部25は、「重なり判定部24により検知対象物の端点のうちの一方が自車両から見て比較対象物に重なっていると判定され、かつ、時間経過と共に検知対象物までの距離が比較対象物までの距離よりも近くなった場合」という条件を満たさないときは、例えば、検知対象物の重心の横移動量に基づいて、該検知対象物の横移動速度を算出してもよい。   The end point movement speed calculation unit 25 calculates a lateral movement speed (relative speed in the vehicle width direction) Vy of the detection target. Specifically, for example, the end point moving speed calculation unit 25 determines that one of the end points of the detection target is overlapped with the comparison target when viewed from the own vehicle by the overlap determination unit 24, and the time elapses. In addition, when the distance to the object to be detected becomes closer than the distance to the object to be compared, the other lateral movement amount of the end points of the object to be detected, that is, the amount of lateral movement not overlapping the object to be compared Based on the above, the lateral movement speed of the detection object is calculated. Note that the end point moving speed calculation unit 25 determines that one of the end points of the detection object is overlapped with the comparison object when viewed from the own vehicle by the overlap determination unit 24, and the detection object is detected over time. If the condition “when the distance to the comparison object is closer than the distance to the comparison object” is not satisfied, for example, the lateral movement speed of the detection object is calculated based on the lateral movement amount of the center of gravity of the detection object. May be.

以下、端点移動速度算出部25による、検知対象物の端点のうちの他方の横移動量に基づく横移動速度の算出について詳細に説明する。
例えば図3(a)に示すように、検知対象物(例えば、障害物M1)の端点のうちの一方(RE)が自車両Pから見て比較対象物(前走車M3)に重なっていると判定され、かつ、図3(b)(c)に示すように、時間経過(時刻t0、t1、t2の変化)と共に、自車両Pから検知対象物(障害物M1)までの距離が比較対象物までの距離よりも近くなった場合に、端点移動速度算出部25は、検知対象物の端点のうちの他方(LE)の横移動量に基づいて、検知対象物の横移動速度Vyを算出する。
Hereinafter, calculation of the lateral movement speed based on the lateral movement amount of the other end point of the detection target by the end point movement speed calculation unit 25 will be described in detail.
For example, as shown in FIG. 3A, one of the end points (RE) of the detection target (for example, the obstacle M1) overlaps the comparison target (the preceding vehicle M3) when viewed from the own vehicle P. As shown in FIGS. 3B and 3C, the distance from the own vehicle P to the detection object (obstacle M1) is compared with the passage of time (changes in times t0, t1, and t2). When the distance to the object is closer, the end point moving speed calculation unit 25 calculates the lateral moving speed Vy of the detection object based on the amount of lateral movement of the other (LE) of the end points of the detection object. calculate.

つまり、時間経過に伴ってレーダ装置12による検知対象物の検知幅は変化し、検知幅の変化に伴って検知対象物の重心位置も変化するため、重心位置の移動量に基づいて横移動速度を算出する従来の技術では、検知対象物が自車両の幅方向に静止していたとしても、当該重心位置の移動量に応じて横移動速度が算出され、自車両の幅方向に移動する移動物体として認識されてしまう。
一方、本願の技術では、時間経過に伴ってレーダ装置12による検知対象物の検知幅が変化したとしても、比較対象物に重なっていない検知対象物の端点の横移動量に基づいて横移動速度を算出するため、検知対象物が自車両の幅方向に静止している場合には横移動速度Vyはゼロとなり、自車両の幅方向に移動していない静止物体として正しく認識されるようになる。
That is, the detection width of the detection object by the radar device 12 changes with time, and the center of gravity position of the detection object also changes with the change of detection width, so the lateral movement speed is based on the amount of movement of the center of gravity position. In the conventional technique for calculating the movement, even if the detection target is stationary in the width direction of the host vehicle, the lateral movement speed is calculated according to the amount of movement of the center of gravity position, and the movement of moving in the width direction of the host vehicle is performed. It will be recognized as an object.
On the other hand, in the technique of the present application, even if the detection width of the detection object by the radar device 12 changes with time, the lateral movement speed is based on the lateral movement amount of the end point of the detection object that does not overlap the comparison object. Therefore, when the object to be detected is stationary in the width direction of the host vehicle, the lateral movement speed Vy is zero, and is correctly recognized as a stationary object that has not moved in the width direction of the host vehicle. .

なお、検知対象物が高反射物体である場合、あるいは、レーダ装置12に何らかの付着物(例えば、雨滴、夜露、汚垢、埃)が付着している場合には、本願の技術は特に有用である。
つまり、上述のような場合には、実際の物体の大きさに応じた幅の反射波よりも大きい幅の反射波がレーダ装置12により受信されるため、そうでない場合(例えば、図3参照)に比べ、実際の幅に比べて検知幅が大きくなり易く(例えば、図4参照)、重心位置の変化量は多くなり易いため、従来の技術では、移動物体と誤認識される可能性が高かったが、本願の技術では、上述のような場合であっても、比較対象物に重なっていない検知対象物の端点の横移動量に基づいて横移動速度を算出するため、検知対象物が自車両の幅方向に静止している場合には横移動速度Vyはゼロとなり、自車両の幅方向に移動していない静止物体として正しく認識される。
Note that the technique of the present application is particularly useful when the detection target is a highly reflective object, or when some kind of attached matter (for example, raindrops, night dew, dirt, dust) is attached to the radar device 12. is there.
That is, in the above-described case, the reflected wave having a width larger than the reflected wave having a width corresponding to the actual size of the object is received by the radar device 12; Compared to the actual width, the detection width is likely to be larger than the actual width (see, for example, FIG. 4), and the amount of change in the center of gravity position is likely to increase. However, in the technique of the present application, even in the above-described case, the lateral movement speed is calculated based on the lateral movement amount of the end point of the detection target that does not overlap the comparison target. When the vehicle is stationary in the width direction of the vehicle, the lateral movement speed Vy is zero, and is correctly recognized as a stationary object that has not moved in the width direction of the host vehicle.

従って、端点移動速度算出部25は、処理ユニット11が付着判定部29を備える場合、付着判定部29によりレーダ装置12に付着物が付着していると判定された場合に、検知対象物の端点のうちの他方の横移動量に基づいて検知対象物の横移動速度を算出するようにしてもよい。なお、レーダ装置12に付着物が付着していると反射光がぼやける性質があるため、付着判定部29は、反射光のぼやけ具合が所定の閾値以上である場合に、付着状態であると判定する。なお、検知対象物が高反射物体であるか否かについても同様に、付着判定部29が判断してもよい。即ち、付着判定部29は、反射光のぼやけ具合が所定の閾値以上である場合には、検知対象物が高反射物体であると判断してもよい。   Therefore, when the processing unit 11 includes the adhesion determination unit 29, the endpoint movement speed calculation unit 25 detects the endpoint of the detection target when the adhesion determination unit 29 determines that the adhesion is attached to the radar device 12. The lateral movement speed of the detection target may be calculated based on the other lateral movement amount. In addition, since there is a property that the reflected light is blurred when the attached matter is attached to the radar device 12, the attachment determining unit 29 determines that the attached state is present when the degree of blurring of the reflected light is equal to or greater than a predetermined threshold. To do. Similarly, the adhesion determination unit 29 may determine whether or not the detection target is a highly reflective object. That is, the adhesion determination unit 29 may determine that the detection target is a highly reflective object when the degree of blurring of the reflected light is equal to or greater than a predetermined threshold.

なお、端点移動速度算出部25は、重なり判定部24によって検知対象物の水平方向の両方の端点(例えば、図3、図4に示すLE及びRE)が自車両から見て比較対象物に重なっていると判定された場合には、検知対象物の横移動速度Vyをゼロと算出してもよい。また、端点移動速度算出部25は、検知対象物の水平方向の一方の端点がレーダ装置12から発信される電磁波の所定の発信範囲の水平方向の境界端(レーダ検知端)上、又は所定の発信範囲外に存在する場合で、かつ、水平方向の他方の端点が重なり判定部24によって自車両から見て比較対象物に重なっていると判定された場合には、検知対象物の横移動速度Vyをゼロと算出してもよい。   The end point moving speed calculation unit 25 causes the overlap determination unit 24 to overlap both end points in the horizontal direction of the detection target (for example, LE and RE shown in FIGS. 3 and 4) with the comparison target as viewed from the host vehicle. If it is determined that the horizontal movement speed Vy of the detection target is zero, it may be calculated as zero. In addition, the end point moving speed calculation unit 25 has one end point in the horizontal direction of the detection target on the horizontal boundary end (radar detection end) of a predetermined transmission range of the electromagnetic wave transmitted from the radar device 12, or a predetermined end point. The lateral movement speed of the detection target object when it is outside the transmission range and the other end point in the horizontal direction is determined to overlap the comparison target as viewed from the own vehicle by the overlap determination unit 24 Vy may be calculated as zero.

記憶部26は、重なり判定部24によって比較対象物に重なっていないと判定された検知対象物の端点の位置の過去のデータを記憶する。
また、記憶部26は、重なり判定部24から出力される重なりフラグのフラグ値および端点移動速度算出部25から出力される検知対象物の端点の横移動速度Vyを記憶する。
The storage unit 26 stores past data on the position of the end point of the detection target object that is determined not to overlap the comparison target object by the overlap determination unit 24.
In addition, the storage unit 26 stores the flag value of the overlap flag output from the overlap determination unit 24 and the lateral movement speed Vy of the end point of the detection target output from the end point movement speed calculation unit 25.

衝突判定部27は、検知対象物との衝突の可能性を判定する。具体的には、衝突判定部27は、車両状態センサ13から出力される自車両の各種の車両情報の検出結果の信号と、端点移動速度算出部25により算出された横移動速度Vyとなどに基づいて、自車両と検知対象物との衝突可能性の有無を判定する。例えば、衝突判定部27は、端点移動速度算出部25により算出された検知対象物の横移動速度Vyがゼロ(検知対象物が自車両の幅方向に静止する静止物体)である場合には、現在の走行状況を維持して走行すれば衝突の可能性はないと判定する。   The collision determination unit 27 determines the possibility of collision with the detection target. Specifically, the collision determination unit 27 uses the detection result signals of various vehicle information of the host vehicle output from the vehicle state sensor 13, the lateral movement speed Vy calculated by the end point movement speed calculation unit 25, and the like. Based on this, it is determined whether there is a possibility of collision between the host vehicle and the detection target. For example, the collision determination unit 27, when the lateral movement speed Vy of the detection target calculated by the end point movement speed calculation unit 25 is zero (a stationary object in which the detection target is stationary in the width direction of the host vehicle), It is determined that there is no possibility of collision if the vehicle travels while maintaining the current traveling state.

車両制御部28は、衝突判定部27による判定結果に応じて、自車両の走行状態を制御する。具体的には、車両制御部28は、衝突判定部27によって検知対象物との衝突の可能性があると判定された場合には、検知対象物に対する衝突回避制御を行う。
より詳細には、車両制御部28は、検知対象物との衝突から回避するために、自車両の走行を制御する制御信号を各アクチュエータに出力する。車両制御部28が出力する制御信号は、例えば、トランスミッション(T/M)の変速動作を制御する制御信号、スロットルアクチュエータ14により内燃機関(E)の駆動力を制御する制御信号、ブレーキアクチュエータ15により減速を制御する制御信号、ステアリングアクチュエータ16により転舵を制御する制御信号などである。
なお、車両制御部28は、衝突判定部27によって検知対象物との衝突の可能性がないと判定された場合には、上述の衝突回避制御を行わない。
また、車両制御部28は、自車両の乗員に各種の情報を報知する場合に、報知装置17を制御する制御信号を出力する。
The vehicle control unit 28 controls the traveling state of the host vehicle according to the determination result by the collision determination unit 27. Specifically, the vehicle control unit 28 performs collision avoidance control on the detection target when the collision determination unit 27 determines that there is a possibility of a collision with the detection target.
More specifically, the vehicle control unit 28 outputs a control signal for controlling the traveling of the host vehicle to each actuator in order to avoid a collision with the detection target. The control signal output by the vehicle control unit 28 includes, for example, a control signal for controlling the transmission operation of the transmission (T / M), a control signal for controlling the driving force of the internal combustion engine (E) by the throttle actuator 14, and the brake actuator 15. These include a control signal for controlling deceleration and a control signal for controlling turning by the steering actuator 16.
Note that the vehicle control unit 28 does not perform the above-described collision avoidance control when the collision determination unit 27 determines that there is no possibility of a collision with the detection target.
Moreover, the vehicle control part 28 outputs the control signal which controls the alerting | reporting apparatus 17, when notifying a passenger | crew of the own vehicle various information.

続いて、車両用物体検知装置10の処理の流れについて説明する。図5は、車両用物体検知装置10の処理の流れを示すフローチャートである。具体的には、検知対象物の横移動速度を算出する処理の流れを示すフローチャートである。なお、図5に示すフローチャートは、反射点算出部21が、レーダ装置12から出力される自車両の外部の物体までの距離に係る検知信号に基づき、自車両の外部に存在する物体の表面上で反射された電磁波の反射点の位置を算出することにより開始する。   Next, a process flow of the vehicle object detection device 10 will be described. FIG. 5 is a flowchart showing a process flow of the vehicle object detection device 10. Specifically, it is a flowchart showing a flow of processing for calculating the lateral movement speed of the detection target. In the flowchart shown in FIG. 5, the reflection point calculation unit 21 is on the surface of an object existing outside the host vehicle based on the detection signal related to the distance to the object outside the host vehicle output from the radar device 12. It starts by calculating the position of the reflection point of the electromagnetic wave reflected by.

まず、図5において、距離算出部22は、反射点算出部21により算出された複数の反射点の位置に基づき自車両から物体までの距離を算出し、端点検出部23は、反射点算出部21により算出された複数の反射点の位置に基づき物体の水平方向の一方又は他方の端点を検出する(ステップS01)。   First, in FIG. 5, the distance calculation unit 22 calculates the distance from the host vehicle to the object based on the positions of the plurality of reflection points calculated by the reflection point calculation unit 21, and the end point detection unit 23 includes the reflection point calculation unit. One or the other end point in the horizontal direction of the object is detected based on the positions of the plurality of reflection points calculated by 21 (step S01).

次に、重なり判定部24は、物体の前後方向の位置関係に基づいて、前後移動物体MO(例えば、自車に対する前走車。比較対象物に相当)の存在の有無を判断する(ステップS02)。例えば、重なり判定部24は、一の物体の所定時間における上記位置の変化が所定の閾値よりも小さい場合、当該物体は前後移動物体MOであると判断し、前後移動物体MOは存在すると判断する。   Next, the overlap determination unit 24 determines the presence / absence of the forward / backward moving object MO (for example, a preceding vehicle relative to the host vehicle, which corresponds to the comparison target) based on the positional relationship of the objects in the front / rear direction (step S02). ). For example, if the change in the position of one object at a predetermined time is smaller than a predetermined threshold, the overlap determination unit 24 determines that the object is a forward / backward moving object MO, and determines that the forward / backward moving object MO exists. .

ステップS02において前後移動物体MOが存在しないと判断した場合(ステップS02:No)、ステップS06に進む。一方、ステップS02において前後移動物体MOが存在すると判断した場合(ステップS02:Yes)、重なり判定部24は、当該前後移動物体MOの自車から見て遠方(側方又は後方)に側方物体Nx(検知対象物に相当)が存在するか否かを判断する(ステップS03)。
なお、重なり判定部24は、ステップS02において、複数の前後移動物体MOが存在すると判断した場合には、夫々の前後移動物体MOについて側方物体Nxが存在するか否かを判断する。
When it is determined in step S02 that the front and rear moving object MO does not exist (step S02: No), the process proceeds to step S06. On the other hand, when it is determined in step S02 that the forward / backward moving object MO exists (step S02: Yes), the overlap determining unit 24 moves the lateral object far away (sideward or backward) as viewed from the own vehicle of the forward / backward moving object MO. It is determined whether or not Nx (corresponding to a detection target) exists (step S03).
Note that if the overlap determination unit 24 determines in step S02 that there are a plurality of front and rear moving objects MO, it determines whether or not there is a side object Nx for each of the front and rear moving objects MO.

ステップS03において前後移動物体MOの自車から見て遠方に側方物体Nxが存在しないと判断した場合(ステップS03:No)、ステップS06に進む。一方、ステップS03において前後移動物体MOの自車から見て遠方に側方物体Nxが存在すると判断した場合(ステップS03:Yes)、重なり判定部24は、側方物体Nxの端点のうちの何れか一方が、自車両から見て前後移動物体MOに重なっているか否かを判定する(ステップS04)。即ち、重なり判定部24は、自車両に近い側に位置する比較対象物である前後移動物体MOによって、自車両に遠い側に位置する検知対象物である側方物体Nxが遮蔽されているか否かを判定する。
具体的には、重なり判定部24は、前後移動物体MOの一の端点の方向が、側方物体Nxの一の端点の方向と一致している場合、側方物体Nxの端点のうちの何れか一方が、自車両から見て前後移動物体MOに重なっている、即ち、前後移動物体MOによって側方物体Nxが遮蔽されていると判定する。
なお、重なり判定部24は、ステップS03において、一の前後移動物体MOの自車から見て遠方に複数の側方物体Nxが存在すると判断した場合には、夫々の側方物体Nxについて、前後移動物体MOに遮蔽されているか否かを判定する。また、複数の前後移動物体MOが存在し、夫々の前後移動物体MOの自車から見て遠方に1又は2以上の側方物体Nxが存在すると判断した場合には、前後移動物体MOと側方物体Nxの組み合わせ毎に判定する。
If it is determined in step S03 that the side object Nx does not exist far away from the vehicle of the front and rear moving object MO (step S03: No), the process proceeds to step S06. On the other hand, when it is determined in step S03 that the side object Nx exists far away from the own vehicle of the front and rear moving object MO (step S03: Yes), the overlap determination unit 24 determines which of the end points of the side object Nx. It is determined whether or not one of them overlaps the forward / backward moving object MO as viewed from the host vehicle (step S04). In other words, the overlap determination unit 24 determines whether or not the side object Nx, which is a detection target located on the side far from the own vehicle, is blocked by the front-rear moving object MO, which is a comparison target located on the side close to the own vehicle. Determine whether.
Specifically, when the direction of one end point of the forward / backward moving object MO matches the direction of one end point of the side object Nx, the overlap determination unit 24 selects any of the end points of the side object Nx. It is determined that one of them overlaps the forward / backward moving object MO as viewed from the own vehicle, that is, the side object Nx is shielded by the forward / backward moving object MO.
If the overlap determination unit 24 determines in step S03 that there are a plurality of side objects Nx in the distance as viewed from the vehicle of the one back-and-forth moving object MO, It is determined whether or not the moving object MO is shielded. In addition, when it is determined that there are a plurality of back and forth moving objects MO and one or more side objects Nx exist in the distance as viewed from the own vehicle of each of the back and forth moving objects MO, Determination is made for each combination of rectangular objects Nx.

ステップS04において側方物体Nxの端点のうちの何れか一方が自車両から見て前後移動物体MOに重なっていないと判定した場合(ステップS04:No)、ステップS06に進む。一方、ステップS04において側方物体Nxの端点のうちの何れか一方が自車両から見て前後移動物体MOに重なっていると判定した場合(ステップS04:Yes)、重なり判定部24は、端点による横移動速度算出の要否判定フラグ「fEageVJudObj」に「True(=1)」を設定する(ステップS05)。なお、上記フラグは、前後移動物体MOと側方物体Nxの組み合わせ毎に設定する。また、上記フラグ「fEageVJudObj」の初期値は「False(=0)」であるものとする。   When it is determined in step S04 that any one of the end points of the side object Nx does not overlap with the forward / backward moving object MO when viewed from the host vehicle (step S04: No), the process proceeds to step S06. On the other hand, when it is determined in step S04 that any one of the end points of the side object Nx overlaps the forward / backward moving object MO when viewed from the host vehicle (step S04: Yes), the overlap determination unit 24 determines whether the end point is based on the end point. “True (= 1)” is set in the necessity determination flag “fEageVJudObj” for the lateral movement speed calculation (step S05). The flag is set for each combination of the forward / backward moving object MO and the side object Nx. The initial value of the flag “fEageVJudObj” is “False (= 0)”.

ステップS02(No)、ステップS03(No)、ステップS04(No)、ステップS05に続いて、重なり判定部24は、フラグ「fEageVJudObj」=1、かつ、前後移動物体MOの前後位置x_MO>側方物体Nxの前後位置x_Nxという条件を満たすか否かを判断する(ステップS06)。つまり、重なり判定部24は、前後移動物体MOが前方への移動によって側方物体Nxを前後の位置関係において追い越したか否か(側方物体Nxが前後移動物体MOの手前になったか否か)、即ち、前後移動物体MOによる側方物体Nxの遮蔽が解消されたか否かを判断する。   Subsequent to step S02 (No), step S03 (No), step S04 (No), and step S05, the overlap determination unit 24 determines that the flag “fEageVJudObj” = 1 and the front-rear position x_MO> side of the front-rear moving object MO. It is determined whether or not the condition of the front and back position x_Nx of the object Nx is satisfied (step S06). That is, the overlap determination unit 24 determines whether or not the forward / backward moving object MO has passed the lateral object Nx in the forward / backward positional relationship by moving forward (whether or not the lateral object Nx is in front of the forward / backward moving object MO). That is, it is determined whether or not the side object Nx is blocked by the front and rear moving object MO.

ステップS06において重なり判定部24がNOと判断した場合、端点移動速度算出部25は、側方物体Nxの横移動速度を側方物体Nxの重心の横移動量により計算する(ステップS07)。具体的には、端点移動速度算出部25は、側方物体Nxの横移動速度Vy_Nxを、当該側方物体Nxの今回の重心横位置yNCxと、当該側方物体Nxの前回の重心横位置yNCxz1とを用いて下記式(1)に従って算出する。なお、tは、1処理周期時間である。
Vy_Nx=(yNCx−yNCxz1)/t…(1)
そして、本フローチャートは終了する。
When the overlap determining unit 24 determines NO in step S06, the end point moving speed calculating unit 25 calculates the lateral moving speed of the side object Nx based on the lateral moving amount of the center of gravity of the side object Nx (step S07). Specifically, the end point moving speed calculation unit 25 determines the lateral moving speed Vy_Nx of the side object Nx, the current center-of-gravity lateral position yNCx of the side object Nx, and the previous center-of-gravity lateral position yNCxz1 of the side object Nx. And according to the following formula (1). Note that t is one processing cycle time.
Vy_Nx = (yNCx−yNCxz1) / t (1)
Then, this flowchart ends.

一方、ステップS06において重なり判定部24がYESと判断した場合、端点移動速度算出部25は、側方物体Nxの横移動速度Vy_Nxを、当該側方物体Nxの前後移動物体MOから遠い方の端点の横移動量により計算する(ステップS08)。具体的には、端点移動速度算出部25は、側方物体Nxの横移動速度Vy_Nxを、当該側方物体Nxの前後移動物体MOの反対側の今回の端点横位置yNoutxと、当該側方物体Nxの前後移動物体MOの反対側の前回の端点横位置yNoutxz1とを用いて下記式(2)に従って算出する。
Vy_Nx=(yNoutx‐yNoutxz1)/t…(2)
On the other hand, if the overlap determination unit 24 determines YES in step S06, the end point moving speed calculation unit 25 sets the lateral moving speed Vy_Nx of the side object Nx to the end point far from the front and rear moving object MO of the side object Nx. Is calculated based on the lateral movement amount (step S08). Specifically, the end point moving speed calculation unit 25 sets the lateral moving speed Vy_Nx of the side object Nx, the current end point lateral position yNoutx on the opposite side of the side object Nx to the front and rear moving object MO, and the side object. Using the previous end point lateral position yNoutxz1 on the opposite side of the Nx back-and-forth moving object MO, calculation is performed according to the following equation (2).
Vy_Nx = (yNoutx−yNoutxz1) / t (2)

ステップS08に続いて、例えば、端点移動速度算出部25は、端点による横移動速度算出回数CNT_EVJをカウントアップする(ステップS09)。なお、CNT_EVJは、側方物体Nx毎に存在し、夫々の側方物体Nxが上記式(2)に従って端点によって横移動速度を算出する都度、夫々についてカウントアップする。   Subsequent to step S08, for example, the end point moving speed calculation unit 25 counts up the number CNT_EVJ of lateral movement speed calculation by the end point (step S09). Note that CNT_EVJ exists for each side object Nx, and is counted up each time each side object Nx calculates the lateral movement speed by the end point according to the above equation (2).

ステップS09に続いて、例えば、端点移動速度算出部25は、端点による横移動速度算出回数CNT_EVJが、端点による横移動速度算出最大回数cnt_EVJ_maxに達したか否かを判断する(ステップS10)。ステップS10においてCNT_EVJがcnt_EVJ_maxに達していないと判断した場合(ステップS10:No)、本フローチャートは終了する。一方、ステップS10においてCNT_EVJがcnt_EVJ_maxに達したと判断した場合(ステップS10:Yes)、当該側方物体Nxのフラグ「fEageVJudObj」を初期化し(ステップS11)、本フローチャートは終了する。   Subsequent to step S09, for example, the endpoint movement speed calculation unit 25 determines whether or not the number of lateral movement speed calculations CNT_EVJ by the endpoints has reached the maximum number of lateral movement speed calculations cnt_EVJ_max by the endpoints (step S10). When it is determined in step S10 that CNT_EVJ has not reached cnt_EVJ_max (step S10: No), this flowchart ends. On the other hand, when it is determined in step S10 that CNT_EVJ has reached cnt_EVJ_max (step S10: Yes), the flag “fEageVJudObj” of the side object Nx is initialized (step S11), and this flowchart ends.

なお、図5に示すフローチャートの、端点による横移動速度算出回数CNT_EVJ、横移動速度算出最大回数cnt_EVJ_maxは、側方物体Nxが前後移動物体MOよりも手前になった場合に、前後移動物体MOよりも手前になってから一定回数は、端点に基づいて横移動速度の算出を行い、その後は、重心に基づいて横移動速度の算出するために設けたものである。cnt_EVJ_maxは、処理周期時間t、側方物体Nxの前後移動物体MO側の端点の横位置が変化し終わるまでに要する時間(予測値)、換言すれば、前後移動物体MOが側方物体Nxを追い越した後に側方物体Nxの検知幅が安定するまでに要する時間(予測値)などに基づいて、予め設定しておくとよい。   In the flowchart shown in FIG. 5, the lateral movement speed calculation count CNT_EVJ and the maximum lateral movement speed calculation count cnt_EVJ_max by the end points are obtained from the front / rear moving object MO when the side object Nx is closer to the front / rear moving object MO. A certain number of times since the forefront is provided to calculate the lateral movement speed based on the end point and thereafter calculate the lateral movement speed based on the center of gravity. cnt_EVJ_max is the processing cycle time t, the time required for the lateral position of the end point of the side object Nx on the front and rear moving object MO side to finish changing (predicted value), in other words, the front and rear moving object MO determines the side object Nx. It may be set in advance based on the time (predicted value) required for the detection width of the side object Nx to stabilize after overtaking.

また、図5に示すフローチャートのステップS03とステップS04の間において、重なり判定部24は、CPUの負荷、効果などを勘案し、ステップS03において自車から見て前後移動物体MOの遠方に存在するとした側方物体Nxについて、検知幅が特に大きくなり易いか否かを判断し、検知幅が特に大きくなり易いと判断した場合にのみステップS04に進むようにし、そうでない場合にはステップS06に進むようにしてもよい。   Further, between step S03 and step S04 in the flowchart shown in FIG. 5, the overlap determination unit 24 takes into consideration the load and effect of the CPU, and in step S03, the overlap determination unit 24 is located far from the front and rear moving object MO as viewed from the own vehicle. It is determined whether or not the detection width of the lateral object Nx is likely to be particularly large, and the process proceeds to step S04 only when it is determined that the detection width is likely to be particularly large. Otherwise, the process proceeds to step S06. You may make it.

例えば、重なり判定部24は、側方物体Nxが高反射物体である場合、又は、レーダ装置12に付着物が付着している場合の少なくとも何れかの場合であるときに、検知幅が特に大きくなり易いと判断する。なお、付着判定部29が反射光のぼやけ具合に基づいて上述の何れかの場合であるか否かを判定してもよい。   For example, the overlap determination unit 24 has a particularly large detection width when the side object Nx is a highly reflective object or at least one of cases where an attachment is attached to the radar device 12. Judge that it is easy to become. Note that the adhesion determination unit 29 may determine whether it is any of the above cases based on the degree of blurring of the reflected light.

以上、本実施の形態による車両用物体検知装置10について説明したが、車両用物体検知装置10によれば、比較対象物(例えば、前走車)による検知対象物(例えば、障害物)の重なり状態(遮蔽状態)が解消されて、該検知対象物の検知幅が比較対象物側に広がり、自車両前方まで広がったとしても、検知対象物の端点のうちの比較対象物側と逆側の端点の横移動量に基づいて検知対象物の横移動速度を算出するため、精度良く、検知対象物の横移動速度を算出することができる。つまり、検知対象物の一部が前走車によって遮蔽されている状態から、前走車が検知対象物よりも遠くへ移動して遮蔽状態が解消された場合には、検知対象物の横移動速度を、遮蔽状態において遮蔽されていなかった側の端点に基づいて算出するため、精度良く、横移動速度を算出することができる。   As described above, the vehicle object detection device 10 according to the present embodiment has been described. However, according to the vehicle object detection device 10, the detection object (for example, an obstacle) is overlapped by the comparison object (for example, the preceding vehicle). Even if the state (shielding state) is canceled and the detection width of the detection object spreads to the comparison object side and extends to the front of the host vehicle, the end point of the detection object on the side opposite to the comparison object side Since the lateral movement speed of the detection object is calculated based on the lateral movement amount of the end point, the lateral movement speed of the detection object can be calculated with high accuracy. In other words, when a part of the detection object is shielded by the preceding vehicle and the preceding vehicle moves further than the detection object and the shielding state is resolved, the detection object is moved laterally. Since the speed is calculated based on the end point on the side that is not shielded in the shielded state, the lateral movement speed can be calculated with high accuracy.

さらに、検知対象物が、重なり状態が解除されたときに検知幅が実際の幅よりも広がり易い高反射物であっても、精度良く、検知対象物の横移動速度を算出することができる。また、レーダ装置12に汚れや雨滴などが付着し、重なり状態が解除されたときに検知幅が実際の幅よりも広がり易い場合であっても、精度良く、検知対象物の横移動速度を算出することができる。   Furthermore, even if the detection target is a highly reflective object whose detection width is likely to be wider than the actual width when the overlapping state is canceled, the lateral movement speed of the detection target can be calculated with high accuracy. In addition, even when dirt or raindrops adhere to the radar device 12 and the detection width is likely to be wider than the actual width when the overlapping state is canceled, the lateral movement speed of the detection target can be calculated accurately. can do.

さらに、重なり状態が解除されることで検知幅が広がったとしても検知対象物の横移動速度を正確に算出するため、重なり状態が解除された場合であっても、正確に衝突の可能性を判定することができる。よって、重なり状態が解除された場合に衝突する可能性が無いのにもかかわらず行っていたような不要な衝突回避制御を抑えることができる。   Furthermore, even if the overlap state is released, the lateral movement speed of the detection target is accurately calculated even if the detection range is widened. Can be determined. Therefore, it is possible to suppress unnecessary collision avoidance control that has been performed even though there is no possibility of collision when the overlapping state is released.

なお、図3及び図4は、検知対象物における比較対象物に遮蔽されていない部分の実際の幅に比べ、当該部分に対応する検知幅が大きくなる例であるが、検知対象物の比較対象物に遮蔽されていない部分の実際の幅と当該部分に対応する検知幅とが略等しくなる場合であっても、車両用物体検知装置10は当然に上述の効果がある。
つまり、検知対象物における比較対象物に遮蔽されていない部分の実際の幅と、当該部分に対応する検知幅とが略同一である場合、さらには、検知対象物における比較対象物に遮蔽されていない部分の実際の幅に比べ、当該部分に対応する検知幅が小さくなるような場合であっても、比較対象物が移動し、遮蔽状態を生じさせていた検知対象物を追い越したときは、遮蔽状態が解消して遮蔽部分が露出するため、検知対象物の検知幅は、比較対象物が存在していた一方向に大きくなる。つまり、上述の追い越しに起因し、一端側の遮蔽部分が露出するため重心位置が上記一方向側に移動する。
3 and 4 are examples in which the detection width corresponding to the part is larger than the actual width of the part not covered by the comparison target in the detection target. Even when the actual width of the portion not covered by the object and the detection width corresponding to the portion are substantially equal, the vehicle object detection device 10 naturally has the above-described effects.
That is, when the actual width of the portion of the detection target that is not shielded by the comparison target is substantially the same as the detection width corresponding to the portion, the detection target is further shielded by the comparison target of the detection target. Even if the detection width corresponding to the part is smaller than the actual width of the part that is not, when the comparison object moves and overtakes the detection object that caused the shielding state, Since the shielding state is canceled and the shielding part is exposed, the detection width of the detection object increases in one direction where the comparison object exists. That is, due to the overtaking described above, the shielding portion on one end side is exposed, so that the position of the center of gravity moves to the one direction side.

従って、従来の技術では、遮蔽されていない部分の検知幅が当該部分の実際の幅に比べ大きくなるか否かに関係なく、上述の追い越しに起因して移動する重心位置に基づいて横移動速度を算出することになるため、正しく、検知対象物の横移動速度を算出することができない。しかしながら、車両用物体検知装置10によれば、遮蔽されていない部分の検知幅が当該部分の実際の幅に比べ大きくなるか否かに関係なく、遮蔽状態が生じていたときから露出していた他方の端点の移動量に基づいて横移動速度を算出するようにしているため、重心位置の横移動に何ら影響されることはなく、精度良く、検知対象物の横移動速度を算出することができる。   Therefore, in the prior art, the lateral movement speed based on the position of the center of gravity that moves due to the above-mentioned overtaking, regardless of whether or not the detection width of the unshielded portion is larger than the actual width of the portion. Therefore, the lateral movement speed of the detection target cannot be calculated correctly. However, according to the vehicle object detection device 10, it has been exposed from the time when the shielding state has occurred regardless of whether or not the detection width of the unshielded portion is larger than the actual width of the portion. Since the lateral movement speed is calculated based on the movement amount of the other end point, the lateral movement speed of the detection target can be accurately calculated without being affected by the lateral movement of the gravity center position. it can.

10 車両用物体検知装置
12 レーダ装置(発受信手段)
21 反射点算出部(反射点算出手段)
22 距離算出部(距離算出手段)
23 端点検出部(端点検出手段)
24 重なり判定部(重なり判定手段)
25 端点移動速度算出部(端点移動速度算出手段)
27 衝突判定部(衝突判定手段)
28 車両制御部(車両制御手段)
29 付着判定部(付着判定手段)
DESCRIPTION OF SYMBOLS 10 Vehicle object detection apparatus 12 Radar apparatus (transmission / reception means)
21 Reflection point calculation unit (reflection point calculation means)
22 Distance calculation part (distance calculation means)
23 End point detection unit (end point detection means)
24 Overlap determination unit (overlap determination means)
25 End point moving speed calculation unit (end point moving speed calculating means)
27 Collision judgment unit (collision judgment means)
28 Vehicle control unit (vehicle control means)
29 Adhesion determination unit (adhesion determination means)

Claims (4)

自車両周辺の所定範囲に向けて電磁波を発信すると共に、該電磁波が自車両周辺の物体により反射されて生じる反射波を受信する発受信手段と、
前記物体上における前記電磁波の反射点の位置を算出する反射点算出手段と、
前記反射点算出手段により算出された前記反射点の位置に基づき自車両から前記物体までの距離を算出する距離算出手段と、
前記反射点算出手段により算出された前記反射点の位置に基づき前記物体の水平方向の両方の端点を検出する端点検出手段と、
前記端点検出手段により前記端点として少なくとも、前記物体のうち、検知対象物の端点と自車両からの距離が自車両から前記検知対象物までの距離よりも近い位置にある比較対象物の端点とが検出された場合に、前記検知対象物の何れか一方の端点が自車両から見て前記比較対象物に重なっているか否かを判定する重なり判定手段と、
前記重なり判定手段により重なっていると判定され、かつ、時間経過と共に前記検知対象物までの距離が前記比較対象物までの距離よりも近くなった場合に、前記検知対象物の前記比較対象物に重なっていない他方の端点の横移動量に基づいて前記検知対象物の横移動速度を算出する端点移動速度算出手段と
を備えることを特徴とする車両用物体検知装置。
Transmitting and receiving means for transmitting an electromagnetic wave toward a predetermined range around the host vehicle and receiving a reflected wave generated by the reflection of the electromagnetic wave by an object around the host vehicle;
Reflection point calculating means for calculating the position of the reflection point of the electromagnetic wave on the object;
Distance calculating means for calculating a distance from the host vehicle to the object based on the position of the reflecting point calculated by the reflecting point calculating means;
End point detection means for detecting both end points in the horizontal direction of the object based on the position of the reflection point calculated by the reflection point calculation means;
As the end point by the end point detection means, at least, among the objects, the end point of the detection target object and the end point of the comparison target object located at a position closer to the distance from the own vehicle to the detection target object. An overlap determination means for determining whether one of the end points of the detection object overlaps the comparison object when viewed from the own vehicle when detected,
When it is determined that the overlap is determined by the overlap determination unit, and the distance to the detection target becomes shorter than the distance to the comparison target with time, the comparison target of the detection target is An object detection device for a vehicle, comprising: an end point movement speed calculation unit that calculates a lateral movement speed of the detection target based on a lateral movement amount of the other end point that does not overlap.
前記検知対象物は、実際の物体の大きさに応じた幅の反射波よりも大きい幅の反射波が前記発受信手段により受信される高反射物体であることを特徴とする請求項1に記載の車両用物体検知装置。   The detection object is a highly reflective object in which a reflected wave having a width larger than a reflected wave having a width corresponding to the size of an actual object is received by the transmitting / receiving unit. Vehicle object detection device. 前記発受信手段に対する付着物の付着状態を判定する付着判定手段を更に備え、
前記端点移動速度算出手段は、
前記付着判定手段により前記付着物が付着していると判定された場合に、前記検知対象物の前記比較対象物に重なっていない方の端点の横移動量に基づいて前記検知対象物の横移動速度を算出することを特徴とする請求項1又は請求項2に記載の車両用物体検知装置。
An adhesion determining means for determining an adhesion state of the deposit on the transmitting / receiving means;
The end point moving speed calculating means includes:
When it is determined by the adhesion determination means that the adhered object is adhered, the lateral movement of the detection object is based on the lateral movement amount of the end point of the detection object that does not overlap the comparison object. The vehicle object detection device according to claim 1, wherein a speed is calculated.
前記検知対象物との衝突の可能性を判定する衝突判定手段と、
前記衝突判定手段により衝突の可能性があると判定された場合には衝突回避制御を行い、前記衝突判定手段により衝突の可能性がないと判定された場合には衝突回避制御を行わない車両制御手段と
を更に備え、
前記衝突判定手段は、
前記端点移動速度算出手段により算出された前記検知対象物の横移動速度がゼロである場合に衝突の可能性はないと判定することを特徴とする請求項1から請求項3の何れか1つに記載の車両用物体検知装置。
Collision determination means for determining the possibility of collision with the detection object;
Vehicle control that performs collision avoidance control when the collision determination means determines that there is a possibility of collision, and does not perform collision avoidance control when the collision determination means determines that there is no possibility of collision And further comprising means
The collision determination means includes
4. The method according to claim 1, wherein when the lateral moving speed of the detection target calculated by the end point moving speed calculating means is zero, it is determined that there is no possibility of a collision. The object detection apparatus for vehicles as described in 2.
JP2011105171A 2011-05-10 2011-05-10 Vehicle object detection device Expired - Fee Related JP5698597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011105171A JP5698597B2 (en) 2011-05-10 2011-05-10 Vehicle object detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011105171A JP5698597B2 (en) 2011-05-10 2011-05-10 Vehicle object detection device

Publications (2)

Publication Number Publication Date
JP2012237579A true JP2012237579A (en) 2012-12-06
JP5698597B2 JP5698597B2 (en) 2015-04-08

Family

ID=47460608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105171A Expired - Fee Related JP5698597B2 (en) 2011-05-10 2011-05-10 Vehicle object detection device

Country Status (1)

Country Link
JP (1) JP5698597B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002839A (en) * 2017-06-16 2019-01-10 株式会社東芝 Information processor, movable body, information processing method, and program
CN112255621A (en) * 2020-10-09 2021-01-22 中国第一汽车股份有限公司 Calibration method and device of vehicle sensor, electronic equipment and storage medium
CN113341404A (en) * 2020-03-02 2021-09-03 加特兰微电子科技(上海)有限公司 Constant false alarm detection method and device, integrated circuit and radio device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10105891A (en) * 1996-09-30 1998-04-24 Mazda Motor Corp Moving object recognizing device for vehicle
JPH10153661A (en) * 1996-11-26 1998-06-09 Omron Corp Range-finding device
JP2002181936A (en) * 2000-12-11 2002-06-26 Nissan Motor Co Ltd Method and apparatus for measurement of position of obstacle
JP2008062873A (en) * 2006-09-11 2008-03-21 Honda Motor Co Ltd Travel safety device for vehicle
JP2009014479A (en) * 2007-07-04 2009-01-22 Honda Motor Co Ltd Object detection device for vehicle
JP2009282592A (en) * 2008-05-20 2009-12-03 Hitachi Ltd Vehicular outside world recognition device and vehicle system
JP2010261897A (en) * 2009-05-11 2010-11-18 Honda Motor Co Ltd Object detection apparatus for vehicle
WO2011013284A1 (en) * 2009-07-31 2011-02-03 本田技研工業株式会社 Object detection device for vehicle and object detection method for vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10105891A (en) * 1996-09-30 1998-04-24 Mazda Motor Corp Moving object recognizing device for vehicle
JPH10153661A (en) * 1996-11-26 1998-06-09 Omron Corp Range-finding device
JP2002181936A (en) * 2000-12-11 2002-06-26 Nissan Motor Co Ltd Method and apparatus for measurement of position of obstacle
JP2008062873A (en) * 2006-09-11 2008-03-21 Honda Motor Co Ltd Travel safety device for vehicle
JP2009014479A (en) * 2007-07-04 2009-01-22 Honda Motor Co Ltd Object detection device for vehicle
JP2009282592A (en) * 2008-05-20 2009-12-03 Hitachi Ltd Vehicular outside world recognition device and vehicle system
JP2010261897A (en) * 2009-05-11 2010-11-18 Honda Motor Co Ltd Object detection apparatus for vehicle
WO2011013284A1 (en) * 2009-07-31 2011-02-03 本田技研工業株式会社 Object detection device for vehicle and object detection method for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002839A (en) * 2017-06-16 2019-01-10 株式会社東芝 Information processor, movable body, information processing method, and program
CN113341404A (en) * 2020-03-02 2021-09-03 加特兰微电子科技(上海)有限公司 Constant false alarm detection method and device, integrated circuit and radio device
CN112255621A (en) * 2020-10-09 2021-01-22 中国第一汽车股份有限公司 Calibration method and device of vehicle sensor, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP5698597B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
US11738744B2 (en) Driving support apparatus
JP5396475B2 (en) Vehicle object detection device
US9297892B2 (en) Method of operating a radar system to reduce nuisance alerts caused by false stationary targets
US20150353078A1 (en) Driving assistance apparatus
US9764719B2 (en) Method and device for avoiding a possible subsequent collision and for reducing the accident consequences of a collision
JP6597590B2 (en) Driving assistance device
JP4969606B2 (en) Vehicle object detection device
WO2010067397A1 (en) Object detection device and object detection method
CN109891262A (en) Object detection device
JP2016080643A (en) Object detector
US11891081B2 (en) Warning apparatus
WO2020039840A1 (en) Radar processing device
JP5560371B2 (en) Vehicle object detection device
JP2011018165A (en) Vehicle travel safety device
CN104176055A (en) Apparatus and method for detecting a critical driving situation of a vehicle
JP5698597B2 (en) Vehicle object detection device
CN111591287A (en) Pre-collision control device
JP4956043B2 (en) Vehicle object detection device
JP5396142B2 (en) Vehicle travel safety device
CN107614329B (en) Report the collision avoidance device in collision avoidance direction
WO2020137747A1 (en) Driving assistance apparatus
JP2011018166A (en) Travel safety device for vehicle
JP5178652B2 (en) Vehicle travel safety device
US20240168156A1 (en) Method for classifying at least one object in the surroundings of a vehicle by means of an ultrasonic sensor system, controller, ultrasonic sensor system, and vehicle
JP2023151509A (en) Radar device, notification determination method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150213

R150 Certificate of patent or registration of utility model

Ref document number: 5698597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees