JP2012237152A - Method for cooling concrete - Google Patents

Method for cooling concrete Download PDF

Info

Publication number
JP2012237152A
JP2012237152A JP2011107303A JP2011107303A JP2012237152A JP 2012237152 A JP2012237152 A JP 2012237152A JP 2011107303 A JP2011107303 A JP 2011107303A JP 2011107303 A JP2011107303 A JP 2011107303A JP 2012237152 A JP2012237152 A JP 2012237152A
Authority
JP
Japan
Prior art keywords
cooling
water
concrete
air
concrete body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011107303A
Other languages
Japanese (ja)
Other versions
JP5606990B2 (en
Inventor
Tatsuya Nukushina
達也 温品
Kenzo Watanabe
賢三 渡邉
Shuji Yanai
修司 柳井
Masayuki Egashira
正之 江頭
Ken Mukaihara
健 向原
Arihisa Watanabe
有寿 渡邊
Noboru Sakata
昇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2011107303A priority Critical patent/JP5606990B2/en
Publication of JP2012237152A publication Critical patent/JP2012237152A/en
Application granted granted Critical
Publication of JP5606990B2 publication Critical patent/JP5606990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for cooling concrete, which achieves high cooling efficiency and prevents the concrete from being dried during cooling, with simplified equipment for the method.SOLUTION: A method for cooling concrete after casting comprises the steps of: forming a cooling hole formed of a bottomed vertical hole 5 in the top face 1a of a cast concrete body 1, with the inside surface 5a composed of exposed surface of the concrete body 1; and supplying air into water in a pool part 7 for reserving water at the bottom of the vertical hole 5 formed in the step of forming the cooling hole, through a blast pipe 9 inserted into the water in the pool part 7.

Description

本発明は、コンクリートを打設後に冷却するコンクリートの冷却方法に関するものである。   The present invention relates to a concrete cooling method for cooling concrete after placing.

一般に、打設されたコンクリート体は、打設後の水和発熱に起因して温度応力が発生するので、温度応力によるひび割れ等を防止すべく冷却する必要がある。従来、コンクリートの打設後の冷却方法として、下記の特許文献1の技術が知られている。この冷却方法では、鉛直なスパイラル管を配設してコンクリートを打設した後、スパイラル管内に給水管を挿入して給水を行うことにより、コンクリート体を冷却するようにしている。   In general, since the placed concrete body generates temperature stress due to hydration heat generation after placing, it needs to be cooled to prevent cracking due to the temperature stress. Conventionally, the technique of the following patent document 1 is known as a cooling method after placing concrete. In this cooling method, a concrete body is cooled by placing a vertical spiral pipe and placing concrete, and then inserting a water supply pipe into the spiral pipe to supply water.

特開2007−303159号公報JP 2007-303159 A

しかしながら、特許文献1の冷却方法では、スパイラル管から溢れる使用済みの冷却水が発生する。コンクリート体を冷却した後の使用済み冷却水は強アルカリ性であるので、使用済み冷却水の廃棄に際しては所定の処理が必要であり、大掛かりな処理設備を必要としてしまう。また、冷却水を循環させるとしても、同様に大型で高コストのチラー等の装置を必要としてしまう。ここで、上記のような水処理や水の循環を省略するためには、上記スパイラル管に冷却用空気を送り込む方法も考えられる。ところが、空気を冷媒とすると、水を冷媒とする場合に比べて冷却効率が劣る。これに対し、冷却効率を向上させるためには、スパイラル管を除去した後の鉛直孔に冷却用空気を送り込むことも考えられる。しかしながらこの場合、鉛直孔の内側面に冷却用空気が直接に接触するので、内側面からコンクリート体が乾燥し易く、当該コンクリート体の品質が劣化するおそれがある。   However, in the cooling method of Patent Document 1, used cooling water overflows from the spiral tube. Since the used cooling water after cooling the concrete body is strongly alkaline, a predetermined process is required when the used cooling water is discarded, and a large-scale processing facility is required. Further, even if the cooling water is circulated, a large and high-cost device such as a chiller is similarly required. Here, in order to omit the water treatment and the water circulation as described above, a method of sending cooling air into the spiral pipe is also conceivable. However, when air is used as the refrigerant, the cooling efficiency is inferior compared to when water is used as the refrigerant. On the other hand, in order to improve the cooling efficiency, it is conceivable to send cooling air into the vertical hole after the spiral tube is removed. However, in this case, since the cooling air directly contacts the inner side surface of the vertical hole, the concrete body is easily dried from the inner side surface, and the quality of the concrete body may be deteriorated.

上記のような事情に鑑み、本発明は、必要な設備を簡易にし、冷却効率を得ると共に、冷却中のコンクリートの乾燥を抑制することができるコンクリートの冷却方法を提供することを目的とする。   In view of the circumstances as described above, it is an object of the present invention to provide a concrete cooling method capable of simplifying necessary equipment, obtaining cooling efficiency, and suppressing drying of the concrete being cooled.

本発明の冷却方法は、コンクリートを打設後に冷却するコンクリートの冷却方法であって、打設されたコンクリート体の上面に、コンクリート体の表面を内側面に露出させた状態の有底の冷却孔を形成する冷却孔形成工程と、冷却孔形成工程で形成された冷却孔の底部に水を溜め、水の中に挿入した送風管を通じて水の中に冷却用空気を送り込む送気工程と、を備えたことを特徴とする。   The cooling method of the present invention is a concrete cooling method for cooling after placing concrete, and has a bottomed cooling hole in a state in which the surface of the concrete body is exposed to the inner surface on the top surface of the placed concrete body. A cooling hole forming step for forming the water, and an air supply step for storing water at the bottom of the cooling hole formed in the cooling hole forming step and feeding cooling air into the water through a blower pipe inserted into the water. It is characterized by having.

本発明の冷却方法によれば、コンクリート体の冷却孔内で冷却用空気が流動することで、コンクリート体が冷却される。このように、冷媒として空気を用いるので、使用済み冷媒を処理する必要がなく、設備を簡易化することができる。また、冷却孔の内側面にコンクリート体自体の表面が露出しており、当該コンクリート体の表面に冷却用空気が接触する。よって、冷却空気がコンクリート体から直接熱を奪い、冷却効率を高めることができる。また、冷却用空気が冷却孔の底部に溜められた水中を通過することで、冷却用空気の湿度が上昇する。よって、湿度が高い冷却用空気が、冷媒として冷却孔内を流動することになる。従って、本発明の冷却方法がコンクリート体自体の表面に冷却用空気を直接接触させる方式であっても、コンクリート体の乾燥を抑制することができる。   According to the cooling method of the present invention, the concrete body is cooled by the cooling air flowing in the cooling holes of the concrete body. Thus, since air is used as the refrigerant, it is not necessary to process the used refrigerant, and the equipment can be simplified. Further, the surface of the concrete body itself is exposed on the inner surface of the cooling hole, and the cooling air contacts the surface of the concrete body. Therefore, the cooling air can take heat directly from the concrete body, and the cooling efficiency can be improved. Moreover, the humidity of cooling air rises because the cooling air passes through the water stored in the bottom of the cooling hole. Therefore, the cooling air with high humidity flows in the cooling hole as a refrigerant. Therefore, even if the cooling method of the present invention is a system in which cooling air is in direct contact with the surface of the concrete body itself, drying of the concrete body can be suppressed.

また、送気工程では、冷却用空気に霧を含ませることとしてもよい。この構成によれば、冷却孔で流動する空気の湿度が更に高まることで、コンクリート体の乾燥抑制効果が更に高められる。   In the air supply process, the cooling air may contain mist. According to this configuration, the humidity of the air flowing through the cooling holes is further increased, so that the effect of suppressing the drying of the concrete body is further enhanced.

また、送気工程で水中に挿入される送風管の先端部には、冷却用空気の排気口が複数設けられていることが好ましい。この構成によれば、送風管の先端部から水中に排出される気泡が細かくなるので、冷却用空気の湿度を高める効果が高くなり、その結果、コンクリート体の乾燥抑制効果が高まる。   Moreover, it is preferable that the front-end | tip part of the ventilation pipe inserted in water by an air_supply process is provided with two or more exhaust ports of cooling air. According to this configuration, since the bubbles discharged from the front end portion of the blower pipe become finer, the effect of increasing the humidity of the cooling air is increased, and as a result, the effect of suppressing the drying of the concrete body is increased.

また、送風管の先端部は、冷却用空気が通過する複数の管体を束ねて形成されており、各管体の端部の開口が上記の排気口を構成していることとしてもよい。この構成によれば、簡易な構造によって複数の排気口を先端部に設けた送風管が実現される。   Moreover, the front-end | tip part of a ventilation pipe | tube is formed by bundling a plurality of pipes through which cooling air passes, and the opening at the end of each pipe may constitute the above-mentioned exhaust port. According to this configuration, a blower pipe having a plurality of exhaust ports provided at the distal end portion is realized with a simple structure.

また、送気工程では、冷却孔に給水管が更に挿入され、当該給水管を通じて外部からの水を冷却孔の底部に補充することとしてもよい。この構成によれば、冷却孔の底部から蒸散で減少する水を外部から補充することができる。   In the air supply process, a water supply pipe may be further inserted into the cooling hole, and water from the outside may be replenished to the bottom of the cooling hole through the water supply pipe. According to this structure, the water which decreases by transpiration from the bottom part of a cooling hole can be replenished from the outside.

本発明のコンクリートの冷却方法によれば、必要な設備を簡易にし、冷却効率を得ると共に、冷却中のコンクリートの乾燥を抑制することができる。   According to the concrete cooling method of the present invention, necessary equipment can be simplified, cooling efficiency can be obtained, and drying of the concrete during cooling can be suppressed.

本発明の冷却方法に係るコンクリートの打設工程を示す断面図である。It is sectional drawing which shows the placement process of the concrete which concerns on the cooling method of this invention. 本発明の冷却方法における冷却孔形成工程を示す断面図である。It is sectional drawing which shows the cooling hole formation process in the cooling method of this invention. 本発明の冷却方法における送気工程を示す断面図である。It is sectional drawing which shows the air supply process in the cooling method of this invention. 送風管の一例を示す正面図である。It is a front view which shows an example of an air duct. 図4の送風管の先端部を示す底面図である。It is a bottom view which shows the front-end | tip part of the ventilation pipe | tube of FIG. 送風管の他の例を示す正面図である。It is a front view which shows the other example of a ventilation pipe | tube. 本発明者らが行った試験結果を示すグラフである。It is a graph which shows the test result which the present inventors conducted. 本発明者らが行った他の試験結果を示すグラフである。It is a graph which shows the other test result which the present inventors conducted. 本発明者らが行った更に他の試験結果を示すグラフである。It is a graph which shows the further another test result which the present inventors conducted. 本発明者らが行った更に他の試験結果を示すグラフである。It is a graph which shows the further another test result which the present inventors conducted.

以下、図面を参照しつつ本発明に係るコンクリートの冷却方法の好適な実施形態について詳細に説明する。   Hereinafter, a preferred embodiment of a concrete cooling method according to the present invention will be described in detail with reference to the drawings.

図1〜図3に、本実施形態の冷却方法が対象とするコンクリート体1を示す。コンクリート体1は、例えば鉄筋コンクリート構造物の一部をなし、いわゆる「マスコンクリート」と呼ばれる大断面の鉄筋コンクリート体である。コンクリート体1は、大断面であるゆえに、打設後の硬化時の内外の温度差が大きくなる傾向にあり、打設後に特に冷却を必要とするものである。   1 to 3 show a concrete body 1 targeted by the cooling method of the present embodiment. The concrete body 1 is, for example, a part of a reinforced concrete structure and is a reinforced concrete body having a large cross section called “mass concrete”. Since the concrete body 1 has a large cross section, there is a tendency that the temperature difference between the inside and outside at the time of hardening after placement tends to be large, and cooling is particularly required after placement.

図1に示すように、コンクリート体1は、複数の円筒形のスパイラルチューブ3を鉛直に埋め込んだ状態で打設される。このとき、複数のスパイラルチューブ3は、例えば上から見て格子状の配置でコンクリート体1に規則的に配列される。打設から所定の時間が経過した時点(例えば、打設の翌日)で、コンクリート体1がある程度硬化すると、図2に示すように、スパイラルチューブ3が取り除かれる。スパイラルチューブ3を取り除いた跡として、コンクリート体1の上面1aから鉛直下方に延びる有底の鉛直孔(冷却孔)5が形成される(冷却孔形成工程)。鉛直孔5の内側面5aには、コンクリート体1の地肌が剥き出しになり、コンクリート体1自体の表面が直接露出する。なお、図2以降では、複数形成される鉛直孔5のうちの1つのみを図示している。   As shown in FIG. 1, the concrete body 1 is placed in a state where a plurality of cylindrical spiral tubes 3 are vertically embedded. At this time, the plurality of spiral tubes 3 are regularly arranged on the concrete body 1 in, for example, a lattice-like arrangement as viewed from above. When the concrete body 1 is hardened to some extent when a predetermined time has passed since the placement (for example, the day after placement), the spiral tube 3 is removed as shown in FIG. A bottomed vertical hole (cooling hole) 5 extending vertically downward from the upper surface 1a of the concrete body 1 is formed as a trace after removing the spiral tube 3 (cooling hole forming step). On the inner surface 5a of the vertical hole 5, the background of the concrete body 1 is exposed, and the surface of the concrete body 1 itself is directly exposed. In FIG. 2 and subsequent figures, only one of the plurality of vertical holes 5 formed is shown.

続いて、図3に示すように、上記鉛直孔5の底部に水が溜められて溜水部7が形成されると共に、鉛直孔5内に送風管9が挿入される。送風管9の先端ノズル9aは、溜水部7の水中に挿入される。この状態から、送風管9を通じて溜水部7の水中に冷却用空気が送り込まれる(送気工程)。そうすると、冷却用空気は、送風管9の先端ノズル9aから水中に排出され、気泡として溜水部7を上昇する。更に冷却用空気は、溜水部7の水面上方において鉛直孔5内を上向きに流動し、最終的に、鉛直孔5の上端開口から外部に排出される。このとき、溜水部7の水面より上の部分で、冷却用空気が内側面5aに接触しながらコンクリート体1から熱を奪うので、コンクリート体1の冷却が実現される。   Subsequently, as shown in FIG. 3, water is accumulated at the bottom of the vertical hole 5 to form the water reservoir 7, and the blower tube 9 is inserted into the vertical hole 5. The tip nozzle 9 a of the blower tube 9 is inserted into the water of the water reservoir 7. From this state, cooling air is sent into the water of the reservoir 7 through the blower tube 9 (air supply process). Then, the cooling air is discharged into the water from the tip nozzle 9a of the blower tube 9, and ascends the water reservoir 7 as bubbles. Further, the cooling air flows upward in the vertical hole 5 above the water surface of the water reservoir 7 and is finally discharged to the outside from the upper end opening of the vertical hole 5. At this time, the cooling air takes heat away from the concrete body 1 while being in contact with the inner side surface 5a in the portion above the water surface of the water reservoir 7, so that the cooling of the concrete body 1 is realized.

溜水部7の水は蒸散により徐々に失われるので、適切に補充する必要がある。そこで、鉛直孔5内には、給水部21からの水を溜水部7に適宜送り込むための給水管23が挿入される。給水管23の上流端は給水部21に接続され、給水管23の下流端は溜水部7の水中に挿入される。給水管23による給水速度は、給水管23による給水量と溜水部7の水の蒸散量とが均衡するように、例えば1時間当たり100〜500mLに設定すればよい。例えば、鉛直孔5の孔径が3cmの場合には給水速度は100mL/時とされ、鉛直孔5の孔径が10cmの場合には給水速度は500mL/時とされる。給水管23による給水は、常時行われてもよく、所定の間隔で定期的に1回ずつ行われてもよい。また、給水管23の管径は例えば0.5〜3cmであり、給水管23としては例えば塩化ビニール製のビニールホース等を用いることができる。   Since the water in the reservoir 7 is gradually lost due to transpiration, it is necessary to replenish appropriately. Therefore, a water supply pipe 23 for appropriately feeding water from the water supply unit 21 to the water storage unit 7 is inserted into the vertical hole 5. The upstream end of the water supply pipe 23 is connected to the water supply part 21, and the downstream end of the water supply pipe 23 is inserted into the water of the reservoir part 7. What is necessary is just to set the water supply speed | rate by the water supply pipe | tube 23 to 100-500 mL per hour, for example so that the water supply amount by the water supply pipe | tube 23 and the transpiration | evaporation amount of the water of the reservoir 7 may balance. For example, when the hole diameter of the vertical hole 5 is 3 cm, the water supply speed is 100 mL / hour, and when the hole diameter of the vertical hole 5 is 10 cm, the water supply speed is 500 mL / hour. Water supply by the water supply pipe 23 may be performed constantly, or may be performed once at regular intervals. Moreover, the pipe diameter of the water supply pipe 23 is 0.5-3 cm, for example, As the water supply pipe 23, the vinyl hose made from a vinyl chloride etc. can be used, for example.

なお、給水管23の寸法は、水が流通可能であり、かつ、送風管9と一緒に鉛直孔5に挿入可能であれば適宜変更が可能である。また、溜水部7に水を補充できればよいので、給水管23の下流端を溜水部7の水中に挿入することは必須ではなく、給水管23の下流端は溜水部7の水面の上方にあってもよい。   The dimensions of the water supply pipe 23 can be appropriately changed as long as water can flow and can be inserted into the vertical hole 5 together with the blower pipe 9. Moreover, since it is sufficient if water can be replenished to the water reservoir 7, it is not essential to insert the downstream end of the water supply pipe 23 into the water of the water reservoir 7, and the downstream end of the water supply pipe 23 is the water surface of the water reservoir 7. It may be above.

以上のような給水部21及び給水管23の存在により、溜水部7から蒸散して失われる水を外部から補うことができる。また、溜水部7の水が適当に入れ替わることにより、水の温度上昇が抑えられ、コンクリート体1冷却における冷却効率低下を抑えることができる。   Due to the presence of the water supply unit 21 and the water supply pipe 23 as described above, water lost by transpiration from the water storage unit 7 can be supplemented from the outside. Moreover, when the water in the reservoir 7 is appropriately replaced, the temperature rise of the water can be suppressed, and the cooling efficiency reduction in the cooling of the concrete body 1 can be suppressed.

上述の冷却方法で冷却しながらコンクリート体1を硬化させ、その後、一般的なモルタル注入工法を用いて補修用モルタルで鉛直孔5を埋めるか、又は一般的なコンクリート充填工法を用いてコンクリートで鉛直孔5を埋める(埋め戻し工程)。なお、鉛直孔5の孔径が70mm未満の場合にはモルタル充填工法を用い、鉛直孔5の孔径が70mm以上の場合にはコンクリート充填工法を用いることが好ましい。   The concrete body 1 is cured while being cooled by the cooling method described above, and then the vertical holes 5 are filled with a repairing mortar using a general mortar pouring method, or vertically with concrete using a general concrete filling method. The hole 5 is filled (backfilling step). In addition, when the hole diameter of the vertical hole 5 is less than 70 mm, it is preferable to use a mortar filling method, and when the hole diameter of the vertical hole 5 is 70 mm or more, it is preferable to use a concrete filling method.

次に、上記の冷却用空気を送出する送風部の構成について具体的に説明する。送風部は、前述の送風管9と、送風管9の上流端部に冷却用空気を吹き込むミスト扇風機13と、を備えている。ミスト扇風機13は、コンクリートの加湿養生に用いられる市販のものであり、霧を含んだ風を送り出す扇風機である。ミスト扇風機13は、分送風部15及び送風ホース17を介して送風管9の後端部に接続されている。送風管9の直径は例えば、2〜8cmである。なお、分送風部15には、複数の送風ホース17を接続することができるので、1つのミスト扇風機13からの風を複数の鉛直孔5に分けて送ることができる。   Next, the configuration of the blower that sends out the cooling air will be specifically described. The blower unit includes the above-described blower tube 9 and a mist fan 13 that blows cooling air into the upstream end of the blower tube 9. The mist fan 13 is a commercially available fan used for humidifying and curing concrete, and is a fan that sends out mist-containing wind. The mist fan 13 is connected to the rear end of the blower tube 9 via the minute blower 15 and the blower hose 17. The diameter of the air duct 9 is, for example, 2 to 8 cm. In addition, since the several ventilation hose 17 can be connected to the minute ventilation part 15, the wind from one mist fan 13 can be divided and sent to the several vertical hole 5. FIG.

図4に示すように、送風管9の後端部にはミスト扇風機13からの冷却用空気を集める集風部9bが設けられている。前述の送風ホース17の先端は、当該集風部9bに接続されている。そして、図4及び図5に示すように、集風部9bの下流側には、複数の管体9cが束ねられ形成された通風部9dが設けられている。そして、通風部9dの先端が前述の先端ノズル9aとして機能する。すなわち、先端ノズル9aは複数(ここでは4本)の管体9cが束ねられ形成されたものであり、管体9cの先端部の開口が、冷却用空気を溜水部7の水中に排出する排気口9fとして機能する。なお、管体9cの本数は4本には限られず、通風部9dは更に多数の管体9cが束ねられたものでもよい。   As shown in FIG. 4, an air collecting portion 9 b that collects cooling air from the mist fan 13 is provided at the rear end portion of the air duct 9. The tip of the blower hose 17 is connected to the air collecting part 9b. As shown in FIGS. 4 and 5, a ventilation portion 9d formed by bundling a plurality of tubes 9c is provided on the downstream side of the air collection portion 9b. And the front-end | tip of the ventilation part 9d functions as the above-mentioned front-end | tip nozzle 9a. That is, the tip nozzle 9a is formed by bundling a plurality (four in this case) of tube bodies 9c, and the opening at the tip of the tube body 9c discharges the cooling air into the water of the water reservoir 7. It functions as an exhaust port 9f. Note that the number of the tube bodies 9c is not limited to four, and the ventilation portion 9d may be a bundle of a large number of tube bodies 9c.

なお、送風管9に代えて、図6に示す送風管109を用いてもよい。送風管109は、通風部9dに代えて、1本の管体からなる通風部109dを有している。そして、通風部109dの下流端には、多数の排気口を備えたノズル部品109aが取り付けられている。ノズル部品109aとしては、多数の排気口を備えるタイプの市販の金属ノズル等を適宜用いればよいので、ノズル部品109aの詳細な説明及び図示は省略する。   Instead of the blower tube 9, a blower tube 109 shown in FIG. 6 may be used. The blower pipe 109 has a ventilation part 109d formed of a single tube instead of the ventilation part 9d. And the nozzle component 109a provided with many exhaust ports is attached to the downstream end of the ventilation part 109d. As the nozzle component 109a, a commercially available metal nozzle of a type having a large number of exhaust ports may be used as appropriate, and thus detailed description and illustration of the nozzle component 109a are omitted.

このような複数の排気口9fを備えた先端ノズル9a,109aによれば、溜水部7の水中に排出される気泡を細かくすることができる。   According to the tip nozzles 9a and 109a provided with such a plurality of exhaust ports 9f, the bubbles discharged into the water of the reservoir 7 can be made fine.

なお、図3の例では、ミスト扇風機13及び給水部21をコンクリート体1の上面1aに設置しているが、ミスト扇風機13及び給水部21はコンクリート体1の上面1a以外に設置してもよい。ミスト扇風機13及び給水部21はコンクリート体1の上面1a以外に設置すれば、ミスト扇風機13及び給水部21の設置で上面1aが傷付くことが避けられる。一方、ミスト扇風機13及び給水部21をコンクリート体1の上面1aに設置すれば、配管等の手間が低減され作業の効率化が図られる。例えば打設の翌日にこの冷却作業を行うとすれば、上面1aは既にある程度硬化しているので、ミスト扇風機13及び給水部21を上面1aに設置することが可能である。この場合、上面1aを養生シート等で養生することが好ましい。   In addition, in the example of FIG. 3, although the mist fan 13 and the water supply part 21 are installed in the upper surface 1a of the concrete body 1, the mist fan 13 and the water supply part 21 may be installed in places other than the upper surface 1a of the concrete body 1. . If the mist fan 13 and the water supply unit 21 are installed on other than the upper surface 1a of the concrete body 1, it is possible to avoid the upper surface 1a from being damaged by the installation of the mist fan 13 and the water supply unit 21. On the other hand, if the mist fan 13 and the water supply unit 21 are installed on the upper surface 1a of the concrete body 1, labor for piping and the like is reduced, and work efficiency is improved. For example, if this cooling operation is performed on the next day after placing, since the upper surface 1a has already been hardened to some extent, the mist fan 13 and the water supply unit 21 can be installed on the upper surface 1a. In this case, it is preferable to cure the upper surface 1a with a curing sheet or the like.

次に、上述した冷却方法による作用効果について説明する。   Next, the effect by the cooling method mentioned above is demonstrated.

上述の冷却方法によれば、コンクリート体1に設けた鉛直孔5内で冷却用空気が流動することで、コンクリート体1が冷却される。このように、冷媒として空気を用いるので、使用済み冷媒を処理する必要がなく、設備を簡易化することができる。また、鉛直孔5の内側面5aにコンクリート体1自体の表面が露出しており、当該コンクリート体1の表面に冷却用空気が接触する。よって、冷却空気がコンクリート体1から直接熱を奪い、その結果、冷却効率を高めることができる。また、冷却用空気が溜水部7の水中を通過することで、冷却用空気の湿度が上昇する。よって、湿度が高い冷却用空気が、冷媒として鉛直孔5内を流動することになる。従って、上述の冷却方法がコンクリート体1自体の表面に冷却用空気を直接接触させる方式であっても、コンクリート体1の乾燥を抑制することができる。   According to the cooling method described above, the concrete body 1 is cooled by the cooling air flowing in the vertical holes 5 provided in the concrete body 1. Thus, since air is used as the refrigerant, it is not necessary to process the used refrigerant, and the equipment can be simplified. Further, the surface of the concrete body 1 itself is exposed on the inner surface 5 a of the vertical hole 5, and the cooling air contacts the surface of the concrete body 1. Therefore, cooling air takes heat directly from the concrete body 1, and as a result, cooling efficiency can be improved. Moreover, the humidity of cooling air rises because cooling air passes through the water of the reservoir part 7. Therefore, the cooling air having high humidity flows in the vertical holes 5 as a refrigerant. Therefore, even if the above-described cooling method is a method in which cooling air is in direct contact with the surface of the concrete body 1 itself, drying of the concrete body 1 can be suppressed.

以上のように、上述の冷却方法によれば、必要な設備を簡易にし、冷却効率を得ると共に、冷却中のコンクリート体1の乾燥を抑制することができる。   As described above, according to the above-described cooling method, necessary equipment can be simplified, cooling efficiency can be obtained, and drying of the concrete body 1 during cooling can be suppressed.

また、送気工程では、ミスト扇風機13を用いることにより冷却用空気に霧を含ませることとしている。この構成により、鉛直孔5内で流動する空気の湿度が更に高まり、コンクリート体1の乾燥抑制効果が更に高められる。   Further, in the air supply process, mist is included in the cooling air by using the mist fan 13. With this configuration, the humidity of the air flowing in the vertical holes 5 is further increased, and the drying suppression effect of the concrete body 1 is further enhanced.

また、送風管9の先端ノズル9aには、複数の排気口9fが存在し、同様に送風管109のノズル部品109aにも多数の排気口が存在するので、水中に排出される冷却用空気の気泡が細かくなる。よって、溜水部7を通過する際に冷却用空気と水との接触面積が大きくなり、冷却用空気の湿度を高める効果が高くなり、その結果、コンクリート体の乾燥抑制効果を更に高めることができる。また、送風管9のように複数の管を束ねて先端ノズル9aを形成すると、簡単な構造により複数の排気口9fを送風管の先端部に設けることができる。   In addition, since there are a plurality of exhaust ports 9f in the tip nozzle 9a of the blower tube 9, and there are also a number of exhaust ports in the nozzle part 109a of the blower tube 109, the cooling air discharged into the water is also present. Bubbles become finer. Therefore, the contact area between the cooling air and water increases when passing through the water reservoir 7, and the effect of increasing the humidity of the cooling air is increased. As a result, the effect of suppressing the drying of the concrete body can be further enhanced. it can. Further, when a plurality of tubes are bundled like the blower tube 9 to form the tip nozzle 9a, a plurality of exhaust ports 9f can be provided at the tip of the blower tube with a simple structure.

鉛直孔5の深さは、コンクリート体1の厚さ(上下幅)の50〜90%であることが好ましい。鉛直孔5の深さが、上記の下限よりも浅い場合には十分な冷却効率が得られず、上記の上限よりも深い場合には埋戻し工程の手間が大きい。また、この観点から、鉛直孔5の深さはコンクリート体1の厚さの70〜80%であることが更に好ましい。   The depth of the vertical hole 5 is preferably 50 to 90% of the thickness (vertical width) of the concrete body 1. When the depth of the vertical hole 5 is shallower than the above lower limit, sufficient cooling efficiency cannot be obtained. When the depth of the vertical hole 5 is deeper than the above upper limit, the labor of the backfilling process is large. From this viewpoint, the depth of the vertical hole 5 is more preferably 70 to 80% of the thickness of the concrete body 1.

また、鉛直孔5の孔径は、コンクリート体1の配筋条件に応じて設定される。具体的には、鉛直孔5の孔径は、コンクリート体1に含まれる鉄筋の最大あきの1/5〜4/5であることが好ましい。鉛直孔5の孔径が、上記の下限よりも小さい場合には十分な冷却効率が得られず、上記の上限よりも大きい場合には、鉄筋を避けて鉛直孔5を形成することが困難になる。また、この観点から、鉛直孔5の孔径は、コンクリート体1に含まれる鉄筋の最大あきの1/2〜3/4であることが更に好ましい。   Further, the hole diameter of the vertical hole 5 is set according to the bar arrangement condition of the concrete body 1. Specifically, the hole diameter of the vertical hole 5 is preferably 1/5 to 4/5 of the maximum perforation of the reinforcing bar contained in the concrete body 1. When the hole diameter of the vertical hole 5 is smaller than the above lower limit, sufficient cooling efficiency cannot be obtained, and when the hole diameter is larger than the upper limit, it is difficult to form the vertical hole 5 avoiding the reinforcing bars. . From this point of view, the hole diameter of the vertical hole 5 is more preferably 1/2 to 3/4 of the maximum perforation of the reinforcing bar contained in the concrete body 1.

鉛直孔5の配置密度は、冷却効率に鑑み、孔径に応じて設定される。具体的には、下式(1)の関係を満足するように設定されることが好ましい。
α=901×lnφ+830 …(1)
但し、αは、コンクリート体1を上から見た場合の鉛直孔5の配置密度の逆数〔cm/本〕である。すなわち、αの値は、鉛直孔5の1本当たりで冷却を負担すべきコンクリート体1の面積(上から見た面積)を意味する。また、φは、鉛直孔5の孔径〔cm〕である。
The arrangement density of the vertical holes 5 is set according to the hole diameter in view of cooling efficiency. Specifically, it is preferable to set so as to satisfy the relationship of the following formula (1).
α = 901 × lnφ + 830 (1)
However, α is the reciprocal [cm 2 / piece] of the arrangement density of the vertical holes 5 when the concrete body 1 is viewed from above. That is, the value of α means the area (area viewed from above) of the concrete body 1 that should bear the cooling per vertical hole 5. Φ is the hole diameter [cm] of the vertical hole 5.

以下、上式(1)の根拠となった試験について説明する。本発明者らは、上述の冷却方法を用いてコンクリート体1を冷却する試験を行った。具体的には、3通りの鉛直孔5の孔径φ(30mm、50mm、100mm)と、2通りの上記αの値(500cm/本、2800cm/本)と、をそれぞれ組み合わせて合計6通りのコンクリート体1の試験体を作製し、各試験体を上述の冷却方法で冷却した。そして、センサーを各試験体の中心の位置にセットして、冷却中における各試験体の中心の温度の最高値(以下「最高中心温度」という)を測定し、図7に示すようにグラフにプロットして各パラメータ同士の相関関係を得た。すなわち、図7に示すように、αの値と最高中心温度との関係は、孔径φ=30mmのときにグラフL30で表され、孔径φ=50mmのときにグラフL50で表され、孔径φ=100mmのときにグラフL100で表されることが判明した。 Hereinafter, the test that is the basis of the above equation (1) will be described. The inventors conducted a test for cooling the concrete body 1 using the above-described cooling method. Specifically, pore diameter φ of the vertical holes 5 of ways 3 (30 mm, 50 mm, 100 mm) and, the value of α of two types (500 cm 2 / present, 2800 cm 2 / present) and the total six in combination of Concrete bodies 1 were prepared, and each specimen was cooled by the above-described cooling method. Then, the sensor is set at the center position of each specimen, and the maximum value of the temperature at the center of each specimen during cooling (hereinafter referred to as “maximum center temperature”) is measured. The correlation between parameters was obtained by plotting. That is, as shown in FIG. 7, the relationship between the value and the maximum center temperature of α is represented graphically L 30 when a pore size of phi = 30 mm, it represented graphically L 50 when a pore size of phi = 50 mm, pore size It is represented by the graph L 100 was found at phi = 100 mm.

ここで、試験体の最高中心温度を60℃とすることを条件とすれば、図7のグラフL30,L50,L100より、孔径φとαの値との関係が図8のように求められる。すなわち、図7の各グラフL30,L50,L100と、試験体の最高中心温度=60℃を示す直線と、の各交点を求め、当該各交点におけるφとαの値をプロットしたものが図8のグラフである。なお、上記条件の「60℃」とは、試験体の温度ひび割れの発生確率が低く抑えられるための最高中心温度の上限値である。そして、図8にプロットされた3点で示される相関関係は、上式(1)に近似される。すなわち、式(1)の関係を満足するように孔径φとαの値とを設定することにより、冷却中のコンクリート体1の最高中心温度を60℃に抑えることができ、その結果、コンクリート体1の温度ひび割れの発生確率を低く抑えることができる。 Here, assuming that the maximum center temperature of the specimen is 60 ° C., the relationship between the hole diameter φ and the value of α is as shown in FIG. 8 from the graphs L 30 , L 50 , L 100 of FIG. Desired. That is, each intersection point of each graph L 30 , L 50 , L 100 in FIG. 7 and a straight line indicating the maximum center temperature of the test body = 60 ° C. is obtained, and the values of φ and α at each intersection point are plotted. Is the graph of FIG. Note that “60 ° C.” in the above condition is an upper limit value of the maximum center temperature for suppressing the probability of occurrence of temperature cracks in the specimen. The correlation indicated by the three points plotted in FIG. 8 is approximated by the above equation (1). That is, the maximum center temperature of the concrete body 1 during cooling can be suppressed to 60 ° C. by setting the values of the hole diameter φ and α so as to satisfy the relationship of the formula (1). As a result, the concrete body The probability of occurrence of temperature cracks 1 can be kept low.

なお、鉛直孔5の配置密度について、上式(1)に従えば、鉛直孔5の孔径が30mmであるときには鉛直孔5を1m当たり5.7本設け、鉛直孔5の孔径が50mmであるときには鉛直孔5を1m当たり4.2本設け、鉛直孔5の孔径が100mmであるときには鉛直孔5を1m当たり3.5本設けることになる。 Regarding the arrangement density of the vertical holes 5, according to the above formula (1), when the hole diameter of the vertical holes 5 is 30 mm, 5.7 vertical holes 5 are provided per 1 m 2 , and the hole diameter of the vertical holes 5 is 50 mm. In some cases, 4.2 vertical holes 5 are provided per 1 m 2 , and when the diameter of the vertical holes 5 is 100 mm, 3.5 vertical holes 5 are provided per 1 m 2 .

また、溜水部7の深さは、80mm以上であることが好ましい。溜水部7の深さが80mm未満であれば冷却用空気を湿潤する効果が十分に得られない。更には、溜水部7の深さは、鉛直孔5の深さの1/3以下であることが好ましい。また、溜水部7の深さが鉛直孔5の深さの1/3よりも深い場合には、冷却用空気に接触する分の内側面5aの面積が小さくなり十分な冷却効率が得られない。   Moreover, it is preferable that the depth of the water storage part 7 is 80 mm or more. If the depth of the water reservoir 7 is less than 80 mm, the effect of wetting the cooling air cannot be obtained sufficiently. Furthermore, the depth of the water reservoir 7 is preferably 1/3 or less of the depth of the vertical hole 5. Further, when the depth of the water reservoir 7 is deeper than 1/3 of the depth of the vertical hole 5, the area of the inner side surface 5a corresponding to the cooling air is reduced, and sufficient cooling efficiency is obtained. Absent.

以下、溜水部7の好ましい深さを80mm以上とする根拠となった試験について説明する。まず、本発明者らは、コンクリートを打設しコンクリート体1に鉛直孔5を設けた。その後、溜水等は行わず鉛直孔5内を空にしたままで、鉛直孔5内に種々の湿度の空気を流入させてコンクリート体1を冷却し、冷却が完了したコンクリート体1の含水率を測定した。流入させた空気(すなわち鉛直孔5の内側面5aに接触する空気;以下「接触空気湿度」)の湿度(%)と、コンクリート体1の含水率と、の相関関係が図9のように得られた。   Hereinafter, the test which became the basis which makes the preferable depth of the water storage part 7 80 mm or more is demonstrated. First, the inventors cast concrete and provided the vertical holes 5 in the concrete body 1. Thereafter, the water content of the concrete body 1 after cooling is completed by cooling the concrete body 1 by flowing air of various humidity into the vertical hole 5 without emptying the water and so on. Was measured. FIG. 9 shows a correlation between the humidity (%) of the inflowed air (that is, the air that contacts the inner surface 5a of the vertical hole 5; hereinafter referred to as “contact air humidity”) and the moisture content of the concrete body 1. It was.

一般に、十分に養生されたコンクリートの含水率は10〜15%であることが必要である。よって、図9の相関関係から、接触空気湿度は80〜100%が必要であることが判明した。   In general, the moisture content of a well-cured concrete needs to be 10-15%. Therefore, it was found from the correlation in FIG. 9 that the contact air humidity needs to be 80 to 100%.

その一方、本発明者らは、上述した冷却方法において、溜水部7の深さと、集風部9bから送り込む冷却用空気の湿度(流入空気湿度)と、を変えながら、鉛直孔5の内側面5aに接触する冷却用空気の湿度(接触空気湿度)を測定する試験を行った。試験の結果、溜水部7の深さと接触空気湿度との相関関係は、図10に示す通りであった。図10によれば、溜水部7の深さを80mm以上とすれば、流入空気湿度に関わらず、接触空気湿度が80〜100%になることが判明した。よって、溜水部7の深さを80mm以上にすることで、接触空気湿度が80〜100%になり、その結果、コンクリートの含水率が10〜15%と良好な値になる。   On the other hand, in the cooling method described above, the inventors have changed the depth of the reservoir portion 7 and the humidity of the cooling air fed from the air collecting portion 9b (inflow air humidity) while changing the inside of the vertical hole 5. The test which measures the humidity (contact air humidity) of the cooling air which contacts the side surface 5a was done. As a result of the test, the correlation between the depth of the reservoir 7 and the contact air humidity was as shown in FIG. According to FIG. 10, when the depth of the water reservoir 7 is 80 mm or more, it has been found that the contact air humidity is 80 to 100% regardless of the inflow air humidity. Therefore, by setting the depth of the water reservoir 7 to 80 mm or more, the contact air humidity becomes 80 to 100%, and as a result, the moisture content of the concrete becomes a good value of 10 to 15%.

なお、溜水部7の深さを100mm以上とすると更に好ましい。すなわち、図10に示されるとおり、溜水部7の深さを100mm以上とすれば、流入空気湿度に関わらず、接触空気湿度を100%近くにすることができる。よって、溜水部7の深さを100mm以上とすることにより、上記の良好なコンクリートの含水率を、余裕をもって実現することができる。   In addition, it is more preferable when the depth of the water reservoir 7 is 100 mm or more. That is, as shown in FIG. 10, if the depth of the water reservoir 7 is 100 mm or more, the contact air humidity can be close to 100% regardless of the inflow air humidity. Therefore, by setting the depth of the water reservoir 7 to 100 mm or more, the above-described good concrete moisture content can be realized with a margin.

以上、本発明の好適な一実施形態について説明したが、本発明は、この実施形態に限定されるものではない。例えば、実施形態の冷却方法で用いたミスト扇風機13に代えて、通常の送風機を用いてもよい。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to this embodiment. For example, instead of the mist fan 13 used in the cooling method of the embodiment, a normal blower may be used.

1…コンクリート体、1a…上面、5…鉛直孔(冷却孔)、5a…内側面、7…溜水部、9,109…送風管、9a…先端ノズル(送風管の先端部)、9c…管体、9f…排気口、23…給水管、109a…ノズル部品(送風管の先端部)。   DESCRIPTION OF SYMBOLS 1 ... Concrete body, 1a ... Upper surface, 5 ... Vertical hole (cooling hole), 5a ... Inner side surface, 7 ... Reservoir part, 9,109 ... Air blower, 9a ... Tip nozzle (tip part of air blower), 9c ... Tube body, 9f ... exhaust port, 23 ... water supply pipe, 109a ... nozzle component (tip of air blower pipe)

Claims (5)

コンクリートを打設後に冷却するコンクリートの冷却方法であって、
打設されたコンクリート体の上面に、前記コンクリート体の表面を内側面に露出させた状態の有底の冷却孔を形成する冷却孔形成工程と、
前記冷却孔形成工程で形成された前記冷却孔の底部に水を溜め、前記水の中に挿入した送風管を通じて前記水の中に冷却用空気を送り込む送気工程と、
を備えたことを特徴とするコンクリートの冷却方法。
A concrete cooling method for cooling after placing concrete,
A cooling hole forming step of forming a bottomed cooling hole in a state in which the surface of the concrete body is exposed to the inner surface on the upper surface of the placed concrete body;
An air supply step of storing water at the bottom of the cooling hole formed in the cooling hole forming step, and sending cooling air into the water through a blower pipe inserted into the water;
A method for cooling concrete, comprising:
前記送気工程では、
前記冷却用空気に霧を含ませることを特徴とする請求項1に記載のコンクリートの冷却方法。
In the air supply process,
The concrete cooling method according to claim 1, wherein fog is included in the cooling air.
前記送気工程で前記水中に挿入される前記送風管の先端部には、前記冷却用空気の排気口が複数設けられていることを特徴とする請求項1又は2に記載のコンクリートの冷却方法。   The method for cooling concrete according to claim 1 or 2, wherein a plurality of exhaust ports for the cooling air are provided at a distal end portion of the blower pipe inserted into the water in the air supply step. . 前記送風管の先端部は、前記冷却用空気が通過する複数の管体を束ねて形成されており、
各前記管体の端部の開口が前記排気口を構成していることを特徴とする請求項3に記載のコンクリートの冷却方法。
The tip of the blast tube is formed by bundling a plurality of tubes through which the cooling air passes,
The concrete cooling method according to claim 3, wherein an opening at an end portion of each tubular body constitutes the exhaust port.
前記送気工程では、
前記冷却孔に給水管が更に挿入され、当該給水管を通じて外部からの水を前記冷却孔の底部に補充することを特徴とする請求項1〜4の何れか1項に記載のコンクリートの冷却方法。
In the air supply process,
The method for cooling concrete according to any one of claims 1 to 4, wherein a water supply pipe is further inserted into the cooling hole, and water from the outside is replenished to the bottom of the cooling hole through the water supply pipe. .
JP2011107303A 2011-05-12 2011-05-12 Concrete cooling method Active JP5606990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107303A JP5606990B2 (en) 2011-05-12 2011-05-12 Concrete cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107303A JP5606990B2 (en) 2011-05-12 2011-05-12 Concrete cooling method

Publications (2)

Publication Number Publication Date
JP2012237152A true JP2012237152A (en) 2012-12-06
JP5606990B2 JP5606990B2 (en) 2014-10-15

Family

ID=47460281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107303A Active JP5606990B2 (en) 2011-05-12 2011-05-12 Concrete cooling method

Country Status (1)

Country Link
JP (1) JP5606990B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098600A (en) * 2014-11-25 2016-05-30 株式会社熊谷組 Pipe cleaning system and pipe cleaning method
CN112523508A (en) * 2020-11-25 2021-03-19 上海市建筑科学研究院有限公司 Emergency treatment method for slurry blasting of bottom communicating cavity of precast concrete shear wall

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431564A (en) * 1990-05-29 1992-02-03 Taisei Corp Cooling of mass concrete
JP2007303159A (en) * 2006-05-11 2007-11-22 Hazama Corp Method of preventing cracks in concrete structure
JP2011032658A (en) * 2009-07-30 2011-02-17 Ohbayashi Corp Apparatus for cooling placed concrete of bridge pier of composite steel pipe-concrete structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431564A (en) * 1990-05-29 1992-02-03 Taisei Corp Cooling of mass concrete
JP2007303159A (en) * 2006-05-11 2007-11-22 Hazama Corp Method of preventing cracks in concrete structure
JP2011032658A (en) * 2009-07-30 2011-02-17 Ohbayashi Corp Apparatus for cooling placed concrete of bridge pier of composite steel pipe-concrete structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098600A (en) * 2014-11-25 2016-05-30 株式会社熊谷組 Pipe cleaning system and pipe cleaning method
CN112523508A (en) * 2020-11-25 2021-03-19 上海市建筑科学研究院有限公司 Emergency treatment method for slurry blasting of bottom communicating cavity of precast concrete shear wall

Also Published As

Publication number Publication date
JP5606990B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5606990B2 (en) Concrete cooling method
EP2608213A3 (en) Method for filling with water and bleeding air from the primary coolant circuit of a nuclear plant unit, cover and flange for carrying out said method
JP2006300404A (en) Method of removing scale
US10605533B2 (en) Deaerator
JP2011031209A (en) Wet type flue gas desulfurization apparatus
KR100946362B1 (en) Heat exchanger of automatic wash type enabling elimination of dust
JP2007317493A (en) Fuel cell system
JP6274902B2 (en) Method and apparatus for cooling concrete
CN213453589U (en) Multi-angle adjustable steam exhaust silencer for steam boiler
CN211585813U (en) Air dust removal purification device
JP6184854B2 (en) Chemical cleaning method for boiler piping
JP2018142438A (en) Fuel battery device
CN205505755U (en) Rapid cooling device of metallurgical stove
CN104595253A (en) Air suction pipe structure for compressor
JP2008104948A (en) Charging element for gas/liquid contact, filler for gas/liquid contact and manufacturing method of charging element for gas/liquid contact
KR101657247B1 (en) Vapor collecting device
CN211852287U (en) Install swift indoor air supply fan that airs exhaust
JP2019113256A (en) Heat exchanger
JP2014000572A (en) Operation method of diffuser
CN204532981U (en) A kind of compressor air suction tube structure
CN210952411U (en) Sulfur melting waste heat steam condensate water recovery device
CN202759934U (en) Constant pressure device for agricultural irrigation system
CN210624644U (en) Environment-friendly water curtain oil smoke purification all-in-one machine
CN203797867U (en) Humidifying water recycling device for air-conditioning fresh air handling unit of incubation room
JP3101273U (en) Evaporative condenser with finless bare refrigerant tubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140827

R150 Certificate of patent or registration of utility model

Ref document number: 5606990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250