JP2012236902A - Spherical carbon material-containing resin material and method of producing the same - Google Patents

Spherical carbon material-containing resin material and method of producing the same Download PDF

Info

Publication number
JP2012236902A
JP2012236902A JP2011106509A JP2011106509A JP2012236902A JP 2012236902 A JP2012236902 A JP 2012236902A JP 2011106509 A JP2011106509 A JP 2011106509A JP 2011106509 A JP2011106509 A JP 2011106509A JP 2012236902 A JP2012236902 A JP 2012236902A
Authority
JP
Japan
Prior art keywords
carbon material
resin
spherical
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011106509A
Other languages
Japanese (ja)
Other versions
JP5747649B2 (en
Inventor
Hiroyuki Kai
裕之 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2011106509A priority Critical patent/JP5747649B2/en
Publication of JP2012236902A publication Critical patent/JP2012236902A/en
Application granted granted Critical
Publication of JP5747649B2 publication Critical patent/JP5747649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a resin material excellent in electric conductivity in a smaller amount of a carbon material added.SOLUTION: A carbon material-containing resin material is formed by mixing the carbon material with a base resin. A spherical carbon material formed of spherical particles each having an average particle diameter of 1 μm or lower is used as the carbon material. The carbon material accounts for 20 mass% or lower of the base resin.

Description

本発明は球状炭素材含有樹脂材及びその製造方法に関する。   The present invention relates to a spherical carbon material-containing resin material and a method for producing the same.

自動車のバンパやフェンダ等の外装部材をはじめとして、自動車の内装部材や電装部品、その他の電気・電子部品、OA部品など、表面に電着塗装がなされる樹脂材(樹脂成形品)は導電性を有することが要求される。そのため、それら樹脂材には導電性付与材が混入されている。例えば、特許文献1には、ポリアミド樹脂組成物に関し、導電性付与材としてカーボンブラック(ケッチェンブラック)を1〜15重量%添加することにより、体積抵抗率を1×1010Ω・cm未満とし、表面抵抗率を1×1012Ω・cm未満とすることが記載されている。 Resin materials (resin-molded products) that are electrodeposited on the surface, such as automotive bumpers and fenders, as well as automotive interior components, electrical components, other electrical and electronic components, and OA components are conductive. It is required to have Therefore, the conductivity imparting material is mixed in these resin materials. For example, Patent Document 1 relates to a polyamide resin composition, and by adding 1 to 15% by weight of carbon black (Ketjen Black) as a conductivity-imparting material, the volume resistivity is less than 1 × 10 10 Ω · cm. The surface resistivity is described as less than 1 × 10 12 Ω · cm.

特開2007−70457号公報JP 2007-70457 A

上述の如く、樹脂材にカーボンブラック等の炭素材を添加すると、導電性を得ることができるが、その添加量が多くなると、導電性は高まるものの、耐衝撃性等の機械的性質は低下する。   As described above, when a carbon material such as carbon black is added to the resin material, conductivity can be obtained. However, if the amount added is increased, the conductivity increases, but the mechanical properties such as impact resistance decrease. .

そこで、本発明は、少ない炭素材添加量でも期する導電性が得られる樹脂材及びその製造方法を提供する。   Therefore, the present invention provides a resin material that can achieve expected conductivity even with a small carbon material addition amount, and a method for producing the resin material.

本発明は、上記課題を解決するために、導電性付与材として平均粒子径が1μm以下の球状粒子よりなる炭素材を用いた。   In order to solve the above-described problems, the present invention uses a carbon material made of spherical particles having an average particle diameter of 1 μm or less as the conductivity imparting material.

具体的には、ここに提示する球状炭素材含有樹脂材は、炭素材がベース樹脂に混合されてなり、その炭素材は、平均粒子径が1μm以下の球状粒子よりなり、ベース樹脂に対する当該炭素材の含有率が20質量%以下(ベース樹脂100質量部に対する炭素材量が20質量部以下)であり、体積抵抗率が2.6MΩ・cm以下であることを特徴とする。   Specifically, the spherical carbon material-containing resin material presented here is formed by mixing a carbon material with a base resin, and the carbon material is composed of spherical particles having an average particle diameter of 1 μm or less, and the carbon material for the base resin. The content of the material is 20% by mass or less (the amount of the carbon material with respect to 100 parts by mass of the base resin is 20 parts by mass or less), and the volume resistivity is 2.6 MΩ · cm or less.

すなわち、PP(ポリプロピレン)、PE(ポリエチレン)、ナイロン等のPA(ポリアミド)、エポキシ樹脂などの樹脂材は、図1に模式的に示すように、無数の糸状高分子1が絡み合った構造を有する。このため、従前のカーボンブラック2を導電性付与材として樹脂材に添加しても、その粒子径が大きく(例えば、5000nm以上)且つ不定形であることから、その分散性が低く、期する導電性を得るには、添加量を多くする必要がある。   That is, resin materials such as PP (polypropylene), PE (polyethylene), PA (polyamide) such as nylon, and epoxy resin have a structure in which innumerable thread-like polymers 1 are entangled as schematically shown in FIG. . For this reason, even if the conventional carbon black 2 is added to the resin material as a conductivity-imparting material, its particle size is large (for example, 5000 nm or more) and is indefinite, so that its dispersibility is low and expected conductivity. In order to obtain the properties, it is necessary to increase the amount of addition.

これに対して、本発明の場合、炭素材は平均粒子径が1μm以下の球状粒子よりなるから、図2に模式的に示すように、絡み合った糸状高分子1の隙間にも当該微小球状炭素粒子3が入り、その分散性が高くなる。その結果、当該炭素材の含有率が20質量%以下であっても、さらには10質量%以下であっても、樹脂材全体にわたって確実な電子移動パスが構築され、良好な導電性が得られる。炭素材の含有率は、2質量%以上とすることが好ましい。上記炭素材の平均粒子径は500nm以下であることが好ましい。   On the other hand, in the case of the present invention, the carbon material is composed of spherical particles having an average particle diameter of 1 μm or less. Therefore, as schematically shown in FIG. The particles 3 enter and the dispersibility thereof becomes high. As a result, even if the content of the carbon material is 20% by mass or less, or even 10% by mass or less, a reliable electron transfer path is constructed over the entire resin material, and good conductivity is obtained. . The content of the carbon material is preferably 2% by mass or more. The average particle size of the carbon material is preferably 500 nm or less.

なお、上記「平均粒子径」は、SEM(走査型電子顕微鏡)観察で100個の粒子を選び、それらの直径を測定して平均値を算出した個数平均粒子径である。この点は以下に記述する平均粒子径も同じである。   The “average particle diameter” is a number average particle diameter obtained by selecting 100 particles by SEM (scanning electron microscope) observation and measuring the diameters to calculate an average value. This also applies to the average particle size described below.

このような球状炭素材含有樹脂材は次に述べる方法によって得ることができる。それは、平均粒子径が1μm以下の球状粒子よりなる炭素材を準備する工程と、この炭素材をベース樹脂に対して20質量%以下の割合で混入してなる成形用材料を得る工程と、この成形用材料から樹脂材を成形する工程とを備えていることを特徴とする樹脂材の製造方法である。   Such a spherical carbon material-containing resin material can be obtained by the method described below. A step of preparing a carbon material comprising spherical particles having an average particle diameter of 1 μm or less, a step of obtaining a molding material obtained by mixing the carbon material in a proportion of 20% by mass or less with respect to the base resin, And a step of molding a resin material from a molding material.

上記成形用材料を得る工程では、上記炭素材を上記ベース樹脂に対して分散剤の存在下で混入することが、炭素材の分散性を高める上で好ましい。特に、上記炭素材の含有率を10質量%以下とするときは、分散剤を添加することが好ましく、その場合、ベース樹脂に対する分散剤の添加率は、例えば0.5質量%以上3質量%以下、或いは上記炭素材含有率の1/10以上1/4以下(質量比)とすればよい。そのような分散剤としては、疎水基と親水基をそれぞれ一つ以上含む化合物よりなる非イオン性分散剤が好ましい。この場合、疎水基は、炭化水素(フッ素及び/又はケイ素を含んでもよい)、或いは長鎖のポリプロピレンオキシド鎖とすることができる。親水基としては、水酸基、エステル基、リン酸エステル基、エーテル基、エーテルエステル基、アミド基、アミノ基、アミンオキサイド基、イミド基、スルホキシド基などの極性基を有するものとすることができる。非イオン性分散剤の性状は、粉末、ペースト、オイル状などであり特に限定されない。   In the step of obtaining the molding material, it is preferable to mix the carbon material in the presence of a dispersant with respect to the base resin in order to improve the dispersibility of the carbon material. In particular, when the content of the carbon material is 10% by mass or less, it is preferable to add a dispersant. In this case, the additive rate of the dispersant with respect to the base resin is, for example, 0.5% by mass to 3% by mass. Hereinafter, or 1/10 to 1/4 (mass ratio) of the carbon material content. As such a dispersant, a nonionic dispersant made of a compound containing at least one hydrophobic group and one hydrophilic group is preferable. In this case, the hydrophobic group may be a hydrocarbon (which may contain fluorine and / or silicon) or a long polypropylene oxide chain. The hydrophilic group may have a polar group such as a hydroxyl group, an ester group, a phosphate ester group, an ether group, an ether ester group, an amide group, an amino group, an amine oxide group, an imide group, or a sulfoxide group. The properties of the nonionic dispersant are not particularly limited, such as powder, paste, and oil.

このような非イオン性分散剤としては、例えば、1)イミド型非イオン性分散剤、2)ポリアルキレングリコール型非イオン性分散剤、3)多価アルコール型非イオン性分散剤がある。   Examples of such a nonionic dispersant include 1) an imide type nonionic dispersant, 2) a polyalkylene glycol type nonionic dispersant, and 3) a polyhydric alcohol type nonionic dispersant.

1)イミド型非イオン性分散剤としては、ポリビニルピロリドン、ラウリン酸ジエタノールアミド、モノ(ジエチルアミノ)アルキルエーテルなどが挙げられる。   1) Examples of the imide type nonionic dispersant include polyvinylpyrrolidone, lauric acid diethanolamide, mono (diethylamino) alkyl ether, and the like.

2)ポリエチレングリコール鎖またはポリプロピレングリコール鎖を有する非イオン性分散剤としては、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオクチルドデシルエーテル、ポリオキシエチレンアルキレンアリルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレンモノグリセリンエステル、ポリオキシエチレンヘキサグリセリンエステル、ポリオキシエチレンソルビタンモノラウリレート、ポリオキシエチレンソルビタンモノオレート、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンロジンエステルが挙げられる。   2) Nonionic dispersants having a polyethylene glycol chain or a polypropylene glycol chain include polyoxyethylene cetyl ether, polyoxyethylene octyldodecyl ether, polyoxyethylene alkylene allyl ether, polyoxyethylene distyrenated phenyl ether, polyoxy Examples include ethylene monoglycerin ester, polyoxyethylene hexaglycerin ester, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monooleate, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, and polyoxyethylene rosin ester.

3)多価アルコール型非イオン性分散剤としては、ステアリン酸モノグリセライド、オレインサン酸ジグリセライド、パルミチン酸ジグリセライド、ソルビタンモノラウリレート、ソルビタンモノパルミテート、モノ・ジステアリン酸ジグリセリン、トリミリスチン酸ペンタグリセリン、縮合リシノレイン酸テトラグリセリン、縮合リシノレイン酸ヘキサグリセリン、縮合リシノレイン酸ペンタグリセリンが挙げられる。   3) As polyhydric alcohol type nonionic dispersant, stearic acid monoglyceride, oleic acid diglyceride, palmitic acid diglyceride, sorbitan monolaurate, sorbitan monopalmitate, mono-distearic acid diglycerin, trimyristic acid pentaglycerin, Examples thereof include condensed ricinoleic acid tetraglycerin, condensed ricinoleic acid hexaglycerin, and condensed ricinoleic acid pentaglycerin.

本発明によれば、ベース樹脂と混合されている炭素材が、平均粒子径1μm以下の球状粒子よりなるから、当該樹脂材における炭素材の含有率が20質量%以下であっても、樹脂材全体にわたって確実な電子移動パスが構築され、樹脂材の機械的性質を損なうことなく、良好な導電性を得ることができる。   According to the present invention, since the carbon material mixed with the base resin is composed of spherical particles having an average particle diameter of 1 μm or less, the resin material is used even when the carbon material content in the resin material is 20% by mass or less. A reliable electron transfer path is constructed as a whole, and good conductivity can be obtained without impairing the mechanical properties of the resin material.

従前の樹脂材における炭素材の分散状態を示す模式図である。It is a schematic diagram which shows the dispersion state of the carbon material in the conventional resin material. 本発明に係る樹脂材における炭素材の分散状態を示す模式図である。It is a schematic diagram which shows the dispersion state of the carbon material in the resin material which concerns on this invention. 本発明に係る球状フェノール樹脂の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the spherical phenol resin which concerns on this invention. 本発明に係る球状炭素材の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the spherical carbon material which concerns on this invention. 酸触媒のモル比と、球状フェノール樹脂及び球状炭素材各々の平均粒子径との関係を示すグラフ図である。It is a graph which shows the relationship between the molar ratio of an acid catalyst, and the average particle diameter of spherical phenol resin and a spherical carbon material. 実施例2に係る樹脂材の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of a resin material according to Example 2. 分散剤を添加しなかった樹脂材の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the resin material which did not add a dispersing agent. 実施例及び比較例の炭素材含有率と抵抗値との関係を示すグラフ図である。It is a graph which shows the relationship between the carbon material content rate and resistance value of an Example and a comparative example.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its use.

<球状炭素材含有樹脂材の製法>
−球状フェノール樹脂の調製−
界面活性剤としてのCTAB(臭化セチルトリメチルアンモニウム)と、硬化剤としてのヘキサメチレンテトラミンとを水中で混合し、これに、フェノール、ホルムアルデヒド及び酸触媒としての塩酸を加えて混合した。この混合溶液を95℃の温度になるように加熱しながら24時間攪拌した(重合反応)。その後、反応溶液を遠心分離し、得られた生成物を水及びメタノールで洗浄することにより、球状炭素粒子の前駆体である球状フェノール樹脂を得た。この球状フェノール樹脂をアルゴンガス雰囲気下で加熱して270℃の温度に2時間保持することによって硬化させた。
<Method for producing spherical carbon material-containing resin material>
-Preparation of spherical phenol resin-
CTAB (cetyltrimethylammonium bromide) as a surfactant and hexamethylenetetramine as a curing agent were mixed in water, and phenol, formaldehyde, and hydrochloric acid as an acid catalyst were added thereto and mixed. The mixed solution was stirred for 24 hours while being heated to a temperature of 95 ° C. (polymerization reaction). Thereafter, the reaction solution was centrifuged, and the resulting product was washed with water and methanol to obtain a spherical phenol resin which is a precursor of spherical carbon particles. The spherical phenol resin was cured by heating in an argon gas atmosphere and maintaining the temperature at 270 ° C. for 2 hours.

界面活性剤としては、CTABに限らず、他の陽イオン性界面活性剤又は陰イオン性界面活性剤を用いることができる。酸触媒としては、他のハロゲン化水素、硝酸、或いは硫酸を用いることもできる。フェノール類に対する酸触媒の添加割合はモル比で0.01以上0.15以下とすることが好ましい。   The surfactant is not limited to CTAB, and other cationic surfactants or anionic surfactants can be used. As the acid catalyst, other hydrogen halides, nitric acid, or sulfuric acid can also be used. The addition ratio of the acid catalyst to the phenol is preferably 0.01 or more and 0.15 or less in terms of molar ratio.

この場合、水相において界面活性剤のミセルが形成され、そのミセル内にフェノールが導入され、酸触媒の存在下、縮合重合反応が進行する。このミセル内での重合反応の進行により、球状フェノール樹脂粒子が得られる。また、酸触媒によって、界面活性剤の分散が図れ、その結果、ミセルサイズが小さくなるため、得られる球状フェノール樹脂粒子の粒子径が小さくなる。   In this case, surfactant micelles are formed in the aqueous phase, phenol is introduced into the micelles, and the condensation polymerization reaction proceeds in the presence of an acid catalyst. Spherical phenol resin particles are obtained by the progress of the polymerization reaction in the micelle. In addition, the surfactant can be dispersed by the acid catalyst, and as a result, the micelle size is reduced, so that the resulting spherical phenol resin particles have a reduced particle size.

すなわち、酸触媒の添加量の調整により、平均粒子径が300nm以上1000nm以下である球状フェノール樹脂粒子を得ることができる。表1は酸触媒(塩酸)の添加量が、得られる球状フェノール樹脂の粒子径に与える影響を示す。原料添加割合は表1に示すとおりである。塩酸の添加量が多くなるほど、得られる球状フェノール樹脂の粒子径が小さくなっている。   That is, by adjusting the addition amount of the acid catalyst, spherical phenol resin particles having an average particle size of 300 nm or more and 1000 nm or less can be obtained. Table 1 shows the influence of the addition amount of the acid catalyst (hydrochloric acid) on the particle diameter of the obtained spherical phenol resin. The raw material addition ratio is as shown in Table 1. The larger the amount of hydrochloric acid added, the smaller the particle size of the resulting spherical phenol resin.

図3は表1のサンプル2に係る球状フェノール樹脂のSEM像である。上記調製法で得られる球状フェノール樹脂粒子は高い真球度を有することがわかる。その平均粒子径は0.82μmであった。   FIG. 3 is an SEM image of the spherical phenol resin according to Sample 2 in Table 1. It turns out that the spherical phenol resin particle obtained by the said preparation method has high sphericity. The average particle diameter was 0.82 μm.

−微小球状炭素材(球状炭素粒子)の調製−
上述の硬化させた球状フェノール樹脂をアルゴンガス雰囲気下で加熱して800℃の温度に1時間保持した。これは球状フェノール樹脂の炭素化処理である。次いで当該炭素化物を飽和水蒸気を含む窒素ガス雰囲気下で加熱して900℃の温度に55分間保持した。これは水蒸気賦活処理である。
-Preparation of fine spherical carbon materials (spherical carbon particles)-
The above-described cured spherical phenol resin was heated under an argon gas atmosphere and maintained at a temperature of 800 ° C. for 1 hour. This is a carbonization treatment of a spherical phenol resin. Next, the carbonized product was heated in a nitrogen gas atmosphere containing saturated water vapor and held at a temperature of 900 ° C. for 55 minutes. This is a steam activation treatment.

図4は上記サンプル2の球状フェノール樹脂に上記炭素化処理及び水蒸気賦活処理を施して得た微小球状炭素材のSEM像である。球状フェノール樹脂粒子の炭素化及び水蒸気賦活後も、その粒子の球形は保持されている。すなわち、個々の炭素粒子は、互いに分離独立した球状になっている。炭素化・水蒸気賦活後の平均粒子径は0.33μm(330nm)である。球状フェノール樹脂粒子は、炭素化・水蒸気賦活によってその粒子径が小さな球状炭素粒子になることがわかる。   FIG. 4 is an SEM image of a fine spherical carbon material obtained by subjecting the spherical phenol resin of Sample 2 to the carbonization treatment and the steam activation treatment. Even after the carbonization and steam activation of the spherical phenol resin particles, the spherical shape of the particles is maintained. That is, the individual carbon particles have a spherical shape separated and independent from each other. The average particle diameter after carbonization and steam activation is 0.33 μm (330 nm). It can be seen that the spherical phenol resin particles become spherical carbon particles having a small particle diameter by carbonization and steam activation.

図5はサンプル1〜5の球状フェノール樹脂粒子及びそれらを炭素化・水蒸気賦活してなる球状炭素粒子の平均粒子径を示す。平均粒子径320nm〜930nmの球状フェノール樹脂粒子から平均粒子径100nm〜400nmの球状炭素粒子が得られている。   FIG. 5 shows the average particle diameter of the spherical phenol resin particles of Samples 1 to 5 and the spherical carbon particles obtained by carbonizing and steam-activating them. Spherical carbon particles having an average particle size of 100 nm to 400 nm are obtained from spherical phenol resin particles having an average particle size of 320 nm to 930 nm.

−樹脂材成形用材料の調製−
上記微小球状炭素材をベース樹脂に混合する。ベース樹脂として、PP、PA等の熱可塑性樹脂を採用する場合、樹脂混練押出機を用いることができる。すなわち、この押出機に、ベース樹脂のペレット及び微小球状炭素材を投入し、必要に応じて分散剤を投入し、ベース樹脂を溶融させて微小球状炭素材とを混合する。そのような押出機としては、同方向回転2軸押出機(例えば、プラスチック工学研究所製BT-30-S2-36-L)を好適に使用することができる。この場合、ベース樹脂が溶融して粘性を有する温度域になるように、バレル温度を190〜280℃とする。スクリュー回転数は150rpm程度にすればよい。
-Preparation of resin material molding material-
The fine spherical carbon material is mixed with a base resin. When a thermoplastic resin such as PP or PA is employed as the base resin, a resin kneading extruder can be used. That is, the base resin pellets and the fine spherical carbon material are introduced into this extruder, and a dispersant is introduced as necessary, and the base resin is melted and mixed with the fine spherical carbon material. As such an extruder, a co-rotating twin screw extruder (for example, BT-30-S2-36-L manufactured by Plastics Engineering Laboratory) can be preferably used. In this case, the barrel temperature is set to 190 to 280 ° C. so that the base resin is melted and has a viscosity. The screw rotation speed may be about 150 rpm.

ベース樹脂として、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂を採用する場合、未硬化の粘性を有する液状ないしは半液状の当該樹脂に炭素材を混合することによって樹脂材成形用材料を得る。そのとき、必要に応じて、分散剤を使用する。   When a thermosetting resin such as an epoxy resin or a phenol resin is employed as the base resin, a resin material molding material is obtained by mixing a carbon material with the liquid or semi-liquid resin having an uncured viscosity. At that time, a dispersant is used as necessary.

−樹脂材の成形−
上記樹脂材成形用材料によって所定形状の樹脂材(成形品)を得る。その成形には、圧縮成形、射出成形、押出成形など製品に応じた適宜の成形法を採用することができる。
-Molding of resin material-
A resin material (molded product) having a predetermined shape is obtained from the resin material molding material. For the molding, an appropriate molding method according to the product such as compression molding, injection molding, or extrusion molding can be employed.

<実施例及び比較例>
−実施例1〜3−
ベース樹脂をエポキシ樹脂とする球状炭素材含有樹脂材を製造した。すなわち、硬化剤を添加する前の未硬化の液状エポキシ樹脂(プレポリマー)と導電性付与材としての上述の微小球状炭素材(平均粒子径330nm)とを、真空混合機を用いて分散剤の存在下で混合した。真空混合機の回転数は2000rpm、混合時間は10分である。分散剤としては、東京化成製ポリビニルピロリドン(平均分子量10000)を用いた。そうして、この球状炭素材を分散させた液状エポキシ樹脂と硬化剤(長瀬産業社製変性脂肪族アミン(商品名;HARDENER HY 956))とを混合し、得られた成形用材料を鋳型に流し込み、一晩放置して実施例に係る円柱状サンプル(半径5mm,長さ(厚さ)3mm)を得た。
<Examples and Comparative Examples>
-Examples 1-3
A spherical carbon material-containing resin material having an epoxy resin as a base resin was produced. That is, an uncured liquid epoxy resin (prepolymer) before addition of the curing agent and the above-mentioned microspherical carbon material (average particle diameter 330 nm) as a conductivity imparting material are dispersed using a vacuum mixer. Mixed in the presence. The rotation speed of the vacuum mixer is 2000 rpm, and the mixing time is 10 minutes. As the dispersant, polyvinyl pyrrolidone (average molecular weight 10,000) manufactured by Tokyo Chemical Industry was used. Then, a liquid epoxy resin in which the spherical carbon material is dispersed and a curing agent (modified aliphatic amine (trade name; HARDENER HY 956) manufactured by Nagase Sangyo Co., Ltd.) are mixed, and the obtained molding material is used as a mold. Poured and left overnight to obtain a cylindrical sample (radius 5 mm, length (thickness) 3 mm) according to the example.

実施例1は微小球状炭素材含有率が5質量%、分散剤添加率が1質量%であり、実施例2は微小球状炭素材含有率が10質量%、分散剤添加率が1質量%であり、実施例3は微小球状炭素材含有率が20質量%、分散剤添加率が0質量%である。   Example 1 has a fine spherical carbon material content of 5% by mass and a dispersant addition rate of 1% by mass, and Example 2 has a fine spherical carbon material content of 10% by mass and a dispersant addition rate of 1% by mass. In Example 3, the content of the microspherical carbon material is 20% by mass, and the dispersant addition rate is 0% by mass.

図6は実施例2に係る樹脂材のSEM像である。図7は実施例2において分散剤を添加しなかった樹脂材のSEM像である。実施例2の場合、微小球状炭素粒子3が高分散になっていて、ベース樹脂(エポキシ樹脂)は露出していないが、分散剤を添加しなかったケース(図7)では、微小球状炭素粒子3が凝集し、ベース樹脂4が一部露出している。   FIG. 6 is an SEM image of the resin material according to Example 2. FIG. 7 is an SEM image of the resin material to which no dispersant was added in Example 2. In the case of Example 2, the fine spherical carbon particles 3 are highly dispersed and the base resin (epoxy resin) is not exposed, but in the case where the dispersant was not added (FIG. 7), the fine spherical carbon particles 3 is agglomerated and the base resin 4 is partially exposed.

−比較例1〜3−
上記実施例と同じ方法にて、導電性付与材及び分散剤を含有しない比較例1、導電性付与材としてケッチェンブラックを用いた比較例2及び比較例3の各サンプルを作成した。比較例2はケッチェンブラック含有率が10質量%、分散剤添加率が1質量%、比較例3はケッチェンブラック含有率が20質量%、分散剤添加率が0質量%である。分散剤としては実施例と同じものを採用した。
-Comparative Examples 1-3
Samples of Comparative Example 1 containing no conductivity-imparting material and a dispersant, Comparative Example 2 and Comparative Example 3 using ketjen black as the conductivity-imparting material were prepared in the same manner as in the above Examples. Comparative Example 2 has a ketjen black content of 10% by mass and a dispersant addition rate of 1% by mass, and Comparative Example 3 has a ketjen black content of 20% by mass and a dispersant addition rate of 0% by mass. The same dispersant as that used in the example was used.

−体積抵抗率の測定−
実施例及び比較例の各サンプルの両面に銀ペーストを塗布し、高電圧テスターにて抵抗値を測定し、体積抵抗率を求めた。結果を表2及び図8に示す。実施例1〜3は体積抵抗率が2.6MΩ・cm以下(2.0MΩ・cm以下)であり、炭素材含有率が20質量%以下であるにも拘わらず、微小球状炭素材によって樹脂材全体にわたって確実な電子移動パスが構築され、良好な導電性が得られていることがわかる。
-Measurement of volume resistivity-
Silver paste was applied to both surfaces of each sample of the examples and comparative examples, and the resistance value was measured with a high-voltage tester to determine the volume resistivity. The results are shown in Table 2 and FIG. In Examples 1 to 3, although the volume resistivity is 2.6 MΩ · cm or less (2.0 MΩ · cm or less) and the carbon material content is 20% by mass or less, the resin material is made of a microspherical carbon material. It can be seen that a reliable electron transfer path is constructed throughout and good conductivity is obtained.

1 高分子
2 カーボンブラック
3 微小球状炭素粒子
4 ベース樹脂
1 Polymer 2 Carbon Black 3 Microspherical Carbon Particles 4 Base Resin

Claims (4)

炭素材がベース樹脂に混合されてなる樹脂材であって、
上記炭素材は、平均粒子径が1μm以下の球状粒子よりなり、
上記ベース樹脂に対する上記炭素材の含有率が20質量%以下であり、
体積抵抗率が2.6MΩ・cm以下であることを特徴とする球状炭素材含有樹脂材。
A carbon material mixed with a base resin,
The carbon material is composed of spherical particles having an average particle size of 1 μm or less,
The content of the carbon material relative to the base resin is 20% by mass or less,
A spherical carbon material-containing resin material having a volume resistivity of 2.6 MΩ · cm or less.
請求項1において、
上記含有率が10質量%以下であることを特徴とする球状炭素材含有樹脂材。
In claim 1,
A spherical carbon material-containing resin material, wherein the content is 10% by mass or less.
平均粒子径が1μm以下の球状粒子よりなる炭素材を準備する工程と、
上記炭素材をベース樹脂に対して20質量%以下の割合で混入してなる成形用材料を得る工程と、
上記成形用材料から樹脂材を成形する工程とを備えていることを特徴とする樹脂材の製造方法。
Preparing a carbon material comprising spherical particles having an average particle diameter of 1 μm or less;
A step of obtaining a molding material obtained by mixing the carbon material at a ratio of 20% by mass or less with respect to the base resin;
And a step of molding a resin material from the molding material.
請求項3において、
上記成形用材料を得る工程では、上記炭素材を上記ベース樹脂に対して分散剤の存在下で混入することを特徴とする樹脂材の製造方法。
In claim 3,
In the step of obtaining the molding material, the carbon material is mixed into the base resin in the presence of a dispersant.
JP2011106509A 2011-05-11 2011-05-11 Spherical carbon material-containing resin material and method for producing the same Active JP5747649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106509A JP5747649B2 (en) 2011-05-11 2011-05-11 Spherical carbon material-containing resin material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106509A JP5747649B2 (en) 2011-05-11 2011-05-11 Spherical carbon material-containing resin material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012236902A true JP2012236902A (en) 2012-12-06
JP5747649B2 JP5747649B2 (en) 2015-07-15

Family

ID=47460102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106509A Active JP5747649B2 (en) 2011-05-11 2011-05-11 Spherical carbon material-containing resin material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5747649B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111315A (en) * 1997-06-10 1999-01-06 Dainippon Ink & Chem Inc Spherical active carbonaceous material composite and its production
JP2004035386A (en) * 2002-06-28 2004-02-05 Don Un Internatl Co Ltd New carbon nanoparticle, method for manufacturing the same, and transparent conductive polymer composite material containing the same
WO2006046656A1 (en) * 2004-10-28 2006-05-04 Mitsubishi Chemical Corporation Spherical carbon particles and aggregate thereof
JP2007039263A (en) * 2005-08-01 2007-02-15 Univ Of Miyazaki Spherical carbon obtained by using resorcinol-based polymer particle as precursor, and its production method
JP2007070457A (en) * 2005-09-07 2007-03-22 Toray Ind Inc Polyamide resin composition
JP2011071096A (en) * 2009-08-28 2011-04-07 Swcc Showa Cable Systems Co Ltd Conductive resin composition for power cable corrosion-proof layer coating, and power cable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111315A (en) * 1997-06-10 1999-01-06 Dainippon Ink & Chem Inc Spherical active carbonaceous material composite and its production
JP2004035386A (en) * 2002-06-28 2004-02-05 Don Un Internatl Co Ltd New carbon nanoparticle, method for manufacturing the same, and transparent conductive polymer composite material containing the same
WO2006046656A1 (en) * 2004-10-28 2006-05-04 Mitsubishi Chemical Corporation Spherical carbon particles and aggregate thereof
JP2007039263A (en) * 2005-08-01 2007-02-15 Univ Of Miyazaki Spherical carbon obtained by using resorcinol-based polymer particle as precursor, and its production method
JP2007070457A (en) * 2005-09-07 2007-03-22 Toray Ind Inc Polyamide resin composition
JP2011071096A (en) * 2009-08-28 2011-04-07 Swcc Showa Cable Systems Co Ltd Conductive resin composition for power cable corrosion-proof layer coating, and power cable

Also Published As

Publication number Publication date
JP5747649B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
Gu et al. Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes
KR20200031140A (en) Hexagonal boron nitride powder and its manufacturing method, composition and heat dissipation material using the same
JP2008527064A (en) Use of carbon nanotubes in the manufacture of conductive organic compositions and use of the compositions
CN109897341B (en) Composite material of modified graphene reinforced epoxy resin and preparation method
JP6527010B2 (en) Thermally conductive resin molding and method for producing the same
CN106589820B (en) A kind of multiphase composite material with high dielectric constant and preparation method thereof with isolation structure
CN102181168A (en) Polymer matrix composite material and production method of polymer matrix composite material
CN110734642A (en) insulating high-strength nano composite material and preparation method thereof
KR101795788B1 (en) Polymer-carbon based filler composites and preparation methods thereof
Mo et al. Synthesis and characterization of polyimide/multi‐walled carbon nanotube nanocomposites
KR101794079B1 (en) Heating element manufactured using carbon nanotube and polymer
JP5747649B2 (en) Spherical carbon material-containing resin material and method for producing the same
JP3636516B2 (en) Synthetic resin composition and synthetic resin molding
KR20100111454A (en) Method for preparing epoxy/silica multicomposite for high voltage insulation and product thereby
CN109161051B (en) Modified hexagonal boron nitride and preparation method and application thereof
Wang et al. The synergistic effects of carbon black and carbon fibre on the thermal conductivity of silicone rubber
Jeevananda et al. Fabrication of carbon black/HDPE/polyaniline functionalized multi-walled carbon nanotube composites for enhancing PTC characteristics
JP5939543B2 (en) Method for producing porous carbon material
Wang et al. Enhanced Thermal Properties of Epoxy Resin Composites: The role of Tailoring Surface Chemistry of Nano-SiO 2
WO2020183449A1 (en) Composite material with enhanced thermal conductivity and method for fabrication thereof
Varghese et al. Investigating the characteristics of amino silane functionalized alumina nanoparticles doped epoxy nanocomposite for high-voltage insulation
JP2005262391A (en) Composite material composed of nano carbon and carbonaceous second filler and its manufacturing method
Mishra et al. Effect of functionalized MWCNT on the mechanical and dielectric properties of PMMA nanocomposites
Nikravan et al. The effect of foaming on the electrical conductivity of thermoplastic/carbon composites containing nano and micro carbon fillers in compression and injection molding
Park et al. Electrical and mechanical properties of SiR/Nano-silica/Micro-SiC Composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R150 Certificate of patent or registration of utility model

Ref document number: 5747649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150