JP2012232949A - pH-RESPONSIVE LIPOSOME - Google Patents

pH-RESPONSIVE LIPOSOME Download PDF

Info

Publication number
JP2012232949A
JP2012232949A JP2011103692A JP2011103692A JP2012232949A JP 2012232949 A JP2012232949 A JP 2012232949A JP 2011103692 A JP2011103692 A JP 2011103692A JP 2011103692 A JP2011103692 A JP 2011103692A JP 2012232949 A JP2012232949 A JP 2012232949A
Authority
JP
Japan
Prior art keywords
acid
liposome
responsive
mglu
dex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011103692A
Other languages
Japanese (ja)
Other versions
JP5866724B2 (en
Inventor
Hideji Yumiba
英司 弓場
Naoki Tajima
直樹 田島
Kenji Kono
健司 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University PUC
Original Assignee
Osaka University NUC
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University PUC filed Critical Osaka University NUC
Priority to JP2011103692A priority Critical patent/JP5866724B2/en
Publication of JP2012232949A publication Critical patent/JP2012232949A/en
Application granted granted Critical
Publication of JP5866724B2 publication Critical patent/JP5866724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liposome capable of releasing its contents in response to pH and furthermore efficiently delivering a target substance to cell cytoplasm.SOLUTION: There is provided a pH-responsive liposome characterized by retaining to a liposomal membrane a pH-responsive substance having a portion of carboxyl group-containing polysaccharide containing at least one carboxyl group and a hydrophobic portion.

Description

本発明は、中性以上のpH条件下では安定であるが、穏やかな酸性条件下で膜融合性となって内包物を放出できるpH応答性リポソームに関する。   The present invention relates to a pH-responsive liposome that is stable under pH conditions of neutral or higher but can become membrane-fusible and release inclusions under mild acidic conditions.

樹状細胞(Dendritic Cell: DC)は免疫系の司令細胞であり、取り込んだ外来物質(抗原)を他の免疫系の細胞に伝え、獲得免疫反応を起動させる役割(抗原提示)を果たしている。
近年、このDCを利用した免疫療法が注目を集めている。DCは、次の2種類の免疫を誘導できる。内在性抗原がプロセシングを受け、MHC(主要組織適合複合体)クラスI上に提示されて誘導される細胞性免疫と、外来性抗原がエンドソーム系でプロセシングを受け、MHCクラスII上に提示されて誘導される液性免疫である。
免疫療法の成功のためには細胞性免疫を誘導することが必要であるが、多くの場合、抗原タンパク質をDCに導入してもMHCクラスII上に提示されてしまう。
したがって、細胞性免疫を誘導するために、DCの細胞質へ抗原タンパク質を送達できる方法の開発が望まれている。
Dendritic cells (Dendritic cells: DC) are the commander cells of the immune system, and play a role (antigen presentation) in which foreign substances (antigens) taken in are transmitted to cells of other immune systems to initiate acquired immune responses.
In recent years, immunotherapy using DC has attracted attention. DC can induce two types of immunity: Cellular immunity induced by endogenous antigen being processed and presented on MHC (major histocompatibility complex) class I, and exogenous antigen processed in endosomal system and presented on MHC class II It is induced humoral immunity.
In order to succeed in immunotherapy, it is necessary to induce cellular immunity, but in many cases, antigenic proteins are introduced into DCs and are presented on MHC class II.
Therefore, in order to induce cellular immunity, development of a method capable of delivering an antigen protein to the cytoplasm of DC is desired.

DCの細胞質へタンパク質を効率的に送達する方法として、pH応答性リポソームを用いることが知られている。この原理は、次のとおりである。細胞へのリポソームの取り込み経路がエンドサイトーシスであることが知られている。よって、細胞にリポソームが取り込まれると、リポソームはエンドソーム(エンドサイトーシスにより形成されるリソソームへの運搬小胞)に捕捉される。エンドソーム内は穏やかな酸性環境であるので、酸性条件下で膜融合性となり得るpH応答性リポソームを用いれば、リポソームがエンドソーム及びリソソームを不安定化するか及び/又はエンドソーム及びリソソームと融合して、リポソーム内容物を放出できる。   As a method for efficiently delivering a protein to the cytoplasm of DC, it is known to use a pH-responsive liposome. This principle is as follows. It is known that the liposome uptake route into cells is endocytosis. Thus, when liposomes are taken into cells, the liposomes are trapped in endosomes (transport vesicles to lysosomes formed by endocytosis). Since the endosome has a mild acidic environment, using pH-responsive liposomes that can become membrane-fusible under acidic conditions, the liposomes destabilize and / or fuse with endosomes and lysosomes, Liposome contents can be released.

本発明者らは、以前に、サクシニル化ポリグリシドール(SucPG)、及びより疎水性の高い側鎖構造を有する3-メチルグルタリル化ポリグリシドール(MGluPG)などを有する修飾リポソームによる内包物の細胞内導入について検討を行ってきた(非特許文献1及び2)。SucPG及びMGluPGは、弱酸性条件下において側鎖カルボキシル基がプロトン化されることで疎水化し、膜融合性となるため、SucPG又はMGluPGで修飾したリポソームは、細胞内のエンドソームにおいて膜融合した。
実際に、モデルタンパク質としてオブアルブミン(OVA)を封入したMGluPGリポソームは、マウス樹状細胞由来株DC2.4細胞の細胞質にOVAを効率良く導入し、さらにMGluPGリポソームを用いて経粘膜免疫を行ったマウスからは、極めて高い細胞性免疫が誘導された(非特許文献3)。
The present inventors have previously described the intracellular inclusion of modified liposomes having succinylated polyglycidol (SucPG) and 3-methylglutarylated polyglycidol (MGluPG) having a more hydrophobic side chain structure. The introduction has been studied (Non-Patent Documents 1 and 2). Since SucPG and MGluPG are hydrophobized by protonation of the side chain carboxyl group under mildly acidic conditions and become membrane-fusogenic, liposomes modified with SucPG or MGluPG were membrane-fused in intracellular endosomes.
In fact, MGluPG liposomes with ovalbumin (OVA) encapsulated as a model protein efficiently introduced OVA into the cytoplasm of mouse dendritic cell-derived strain DC2.4 cells, and further performed transmucosal immunization using MGluPG liposomes. Extremely high cellular immunity was induced from mice (Non-patent Document 3).

しかし、ポリグリシドールは合成高分子であり、生体への応用を考えた場合に、好ましくない場合がある。   However, polyglycidol is a synthetic polymer and may not be preferable when applied to living organisms.

K. Konoら、Biochimica et Biophysica Acta、1325、1997年、143〜154頁K. Kono et al., Biochimica et Biophysica Acta, 1325, 1997, pp. 143-154 N. Sakaguchiら、Bioconjugate Chem.、2008年、19、1040〜1048頁N. Sakaguchi et al., Bioconjugate Chem., 2008, 19, 1040-1048 E. Yubaら、Biomaterials、31、2010年、943〜951頁E. Yuba et al., Biomaterials, 31, 2010, 943-951.

そこで、本発明者らは、ポリグリシドールの代わりに、生体由来高分子である多糖を用いて生体適合性の高いpH応答性リポソームを創製できるのではないかと考えた。
DCはマンノースレセプターなどの糖鎖認識レセプター(レクチン)を有しているので、多糖を用いることによりDCへのリポソームの取り込み効率の向上が期待できる。さらに、リポソームのpH応答能によって、DCへの取り込み機能と、細胞質送達機能との2つの機能を併せ持つ新規機能性分子が開発できる。
Therefore, the present inventors thought that a pH-responsive liposome having high biocompatibility could be created using a polysaccharide which is a biological polymer instead of polyglycidol.
Since DC has a sugar chain recognition receptor (lectin) such as a mannose receptor, the use of a polysaccharide can be expected to improve the efficiency of liposome incorporation into DC. Furthermore, a novel functional molecule having both a DC uptake function and a cytoplasmic delivery function can be developed by the pH response ability of the liposome.

したがって、本発明は、生体適合性がより高く、DCの細胞質へ効率良く抗原を送達できるpH応答性リポソームを提供することを目的とする。   Accordingly, an object of the present invention is to provide a pH-responsive liposome that has higher biocompatibility and can efficiently deliver an antigen to the cytoplasm of DC.

よって、本発明は、少なくとも1つのカルボキシル基を有するカルボキシル基含有多糖由来部分と疎水性部分とを有するpH応答性物質をリポソーム膜に保持してなるpH応答性リポソームである。
また、本発明は、上記のpH応答性リポソームと薬剤とからなるpH応答性薬剤放出システムも提供する。
Therefore, the present invention is a pH-responsive liposome in which a pH-responsive substance having a carboxyl group-containing polysaccharide-derived portion having at least one carboxyl group and a hydrophobic portion is held in a liposome membrane.
The present invention also provides a pH-responsive drug release system comprising the above pH-responsive liposome and a drug.

本発明のpH応答性リポソームは、生体由来高分子である多糖をリポソーム膜表面に有するので、生体に投与した場合であっても、生体内で望ましくない反応を引き起こす可能性が低い。また、本発明のpH応答性リポソームは、pH応答性の特性を有するので、細胞内のエンドソームでの弱酸性条件下でエンドソーム及びリソソームを不安定化するか及び/又はエンドソーム及びリソソームの膜と融合して、リポソーム膜内に保持された内包物を放出し、よって内包物を細胞質(サイトソル)へと効率よく送達できる。よって、樹状細胞の細胞質への抗原の特異的な送達を実現できる。   Since the pH-responsive liposome of the present invention has a polysaccharide which is a living body-derived polymer on the surface of the liposome membrane, it is less likely to cause an undesirable reaction in the living body even when administered to the living body. In addition, since the pH-responsive liposome of the present invention has pH-responsive properties, it destabilizes endosomes and lysosomes and / or fuses with endosomal and lysosomal membranes under weakly acidic conditions in intracellular endosomes. Thus, the inclusions held in the liposome membrane are released, and thus the inclusions can be efficiently delivered to the cytosol. Thus, specific delivery of antigen to the cytoplasm of dendritic cells can be realized.

メチルグルタリル化デキストランA(MGlu-Dex)の1H-NMRチャートである(400 MHz、D2O+NaOD)。 1 is a 1 H-NMR chart of methylglutarylated dextran A (MGlu-Dex) (400 MHz, D 2 O + NaOD). メチルグルタリル化デキストランB(MGlu-Dex)の1H-NMRチャートである(400 MHz、D2O+NaOD)。 1 is a 1 H-NMR chart of methylglutarylated dextran B (MGlu-Dex) (400 MHz, D 2 O + NaOD). pH応答性物質A(MGlu70-Dex-C10)の1H-NMRチャートである(400 MHz、D2O+NaOD)。 1 is a 1 H-NMR chart of pH-responsive substance A (MGlu 70 -Dex-C 10 ) (400 MHz, D 2 O + NaOD). pH応答性物質B(MGlu24-Dex-C10)の1H-NMRチャートである(400 MHz、D2O+NaOD)。 1 is a 1 H-NMR chart of pH-responsive substance B (MGlu 24 -Dex-C 10 ) (400 MHz, D 2 O + NaOD). メチルグルタリル化マンナンC(MGlu-Man)の1H-NMRチャートである(400 MHz、D2O+NaOD)。 1 is a 1 H-NMR chart of methylglutarylated mannan C (MGlu-Man) (400 MHz, D 2 O + NaOD). メチルグルタリル化マンナンD(MGlu-Man)の1H-NMRチャートである(400 MHz、D2O+NaOD)。 1 is a 1 H-NMR chart of methylglutarylated mannan D (MGlu-Man) (400 MHz, D 2 O + NaOD). pH応答性物質C(MGlu57-Man-C10)の1H-NMRチャートである(400 MHz、D2O+NaOD)。 1 is a 1 H-NMR chart of pH-responsive substance C (MGlu 57 -Man-C 10 ) (400 MHz, D 2 O + NaOD). pH応答性物質D(MGlu68-Man-C10)の1H-NMRチャートである(400 MHz、D2O+NaOD)。It is a 1 H-NMR chart of pH-responsive substance D (MGlu 68 -Man-C 10 ) (400 MHz, D 2 O + NaOD). 対照のリポソームのパイラニン放出率の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the pyranin release rate of a control liposome. 脂質:pH応答性物質の重量比が8:2のpH応答性リポソーム(実施例1)のパイラニン放出率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the pyranin release rate of the pH-responsive liposome (Example 1) whose weight ratio of lipid: pH-responsive substance is 8: 2. 脂質:pH応答性物質の重量比が7:3のpH応答性リポソーム(実施例2)のパイラニン放出率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the pyranin release rate of the pH-responsive liposome (Example 2) whose weight ratio of lipid: pH-responsive substance is 7: 3. 脂質:pH応答性物質の重量比が6:4のpH応答性リポソーム(実施例3)のパイラニン放出率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the pyranin release rate of the pH-responsive liposome (Example 3) whose weight ratio of lipid: pH-responsive substance is 6: 4. 脂質:pH応答性物質の重量比が5:5のpH応答性リポソーム(実施例4)のパイラニン放出率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the pyranin release rate of the pH-responsive liposome (Example 4) whose weight ratio of lipid: pH-responsive substance is 5: 5. 脂質:pH応答性物質の重量比が8:2のpH応答性リポソーム(実施例5)のパイラニン放出率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the pyranin release rate of the pH-responsive liposome (Example 5) whose weight ratio of lipid: pH-responsive substance is 8: 2. 脂質:pH応答性物質の重量比が7:3のpH応答性リポソーム(実施例6)のパイラニン放出率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the pyranin release rate of the pH-responsive liposome (Example 6) whose weight ratio of lipid: pH-responsive substance is 7: 3. 脂質:pH応答性物質の重量比が6:4のpH応答性リポソーム(実施例7)のパイラニン放出率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the pyranin release rate of the pH-responsive liposome (Example 7) whose weight ratio of lipid: pH-responsive substance is 6: 4. 10分間のインキュベーション後のMGlu70-Dexリポソームからのパイラニン放出率(%)をpHに対してプロットしたグラフである。FIG. 5 is a graph plotting the percent release of pyranin from MGlu 70 -Dex liposomes after 10 minutes incubation versus pH. 10分間のインキュベーション後のMGlu24-Dexリポソームからのパイラニン放出率(%)をpHに対してプロットしたグラフである。FIG. 5 is a graph plotting the percent release of pyranin from MGlu 24 -Dex liposomes after 10 minutes incubation versus pH. 脂質:pH応答性物質の重量比が1:5のpH応答性リポソーム(実施例8)のパイラニン放出率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the pyranin release rate of the pH-responsive liposome (Example 8) whose weight ratio of lipid: pH-responsive substance is 1: 5. 脂質:pH応答性物質の重量比が1:5のpH応答性リポソーム(実施例9)のパイラニン放出率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the pyranin release rate of the pH-responsive liposome (Example 9) whose weight ratio of lipid: pH-responsive substance is 1: 5. 10分間のインキュベーション後の実施例8及び9のリポソームからのパイラニン放出率(%)をpHに対してプロットしたグラフである。FIG. 10 is a graph plotting the percent release of pyranin from the liposomes of Examples 8 and 9 after 10 minutes of incubation against pH. ローダミン-PE (Rh-PE)で標識し、パイラニンを内包するMGlu70-Dex-C10リポソームとインキュベートしたDC2.4細胞の共焦点レーザー顕微鏡(CLSM)画像である。脂質(赤色)又はパイラニン(緑色)の細胞内の局在をCLSMにより決定した。DICは、微分干渉顕微鏡による画像を示す。It is a confocal laser scanning microscope (CLSM) image of DC2.4 cells labeled with rhodamine-PE (Rh-PE) and incubated with MGlu 70 -Dex-C 10 liposomes encapsulating pyranin. The intracellular localization of lipid (red) or pyranin (green) was determined by CLSM. DIC shows the image by a differential interference microscope. ローダミン-PE (Rh-PE)で標識し、パイラニンを内包するMGlu24-Dex-C10リポソームとインキュベートしたDC2.4細胞のCLSM画像である。脂質(赤色)又はパイラニン(緑色)の細胞内の局在をCLSMにより決定した。DICは、微分干渉顕微鏡による画像を示す。It is a CLSM image of DC2.4 cells labeled with rhodamine-PE (Rh-PE) and incubated with MGlu 24 -Dex-C 10 liposomes encapsulating pyranin. The intracellular localization of lipid (red) or pyranin (green) was determined by CLSM. DIC shows the image by a differential interference microscope. ローダミン-PE (Rh-PE)で標識し、パイラニンを内包するMGlu70-Dex-C10リポソームとインキュベートしたDC2.4細胞の蛍光強度を、Rh-PE及びパイラニンについてフローサイトメーターにより測定し、対照リポソームについての蛍光強度を1とした場合の相対値として示すグラフである。The fluorescence intensity of DC2.4 cells labeled with rhodamine-PE (Rh-PE) and incubated with MGlu 70- Dex-C 10 liposomes encapsulating pyranin was measured with a flow cytometer for Rh-PE and pyranin, and a control. It is a graph shown as a relative value when the fluorescence intensity about a liposome is set to 1. ローダミン-PE (Rh-PE)で標識し、パイラニンを内包するMGlu24-Dex-C10リポソームとインキュベートしたDC2.4細胞の蛍光強度を、Rh-PE及びパイラニンについてフローサイトメーターにより測定し、対照リポソームについての蛍光強度を1とした場合の相対値として示すグラフである。The fluorescence intensity of DC2.4 cells labeled with rhodamine-PE (Rh-PE) and incubated with MGlu 24 -Dex-C 10 liposomes encapsulating pyranin was measured with a flow cytometer for Rh-PE and pyranin, and a control. It is a graph shown as a relative value when the fluorescence intensity about a liposome is set to 1. リポソームを投与しなかったE.G7-OVA細胞接種マウス(n=4)における腫瘍サイズの変化を示すグラフである。4匹のマウスのそれぞれの結果を示す。It is a graph which shows the change of the tumor size in the E.G7-OVA cell inoculation mouse | mouth (n = 4) which did not administer a liposome. The results for each of the 4 mice are shown. OVAを内包する対照のEYPCリポソームを投与したE.G7-OVA細胞接種マウス(n=4)における腫瘍サイズの変化を示すグラフである。4匹のマウスのそれぞれの結果を示す。It is a graph which shows the change of the tumor size in the E.G7-OVA cell inoculation mouse | mouth (n = 4) which administered the control EYPC liposome which includes OVA. The results for each of the 4 mice are shown. OVAを内包するMGlu70-Dex-C10リポソームを投与したE.G7-OVA細胞接種マウス(n=4)における腫瘍サイズの変化を示すグラフである。4匹のマウスのそれぞれの結果を示す。Is a graph showing the change in tumor size in E.G7-OVA cells inoculated mice treated with MGlu 70 -Dex-C 10 liposome encapsulating the OVA (n = 4). The results for each of the 4 mice are shown. OVAを内包するMGlu24-Dex-C10リポソームを投与したE.G7-OVA細胞接種マウス(n=4)における腫瘍サイズの変化を示すグラフである。4匹のマウスのそれぞれの結果を示す。Is a graph showing the change in tumor size in E.G7-OVA cells inoculated mice treated with MGlu 24 -Dex-C 10 liposome encapsulating the OVA (n = 4). The results for each of the 4 mice are shown. 処置なし、OVAを内包する対照のEYPCリポソーム、OVAを内包するMGlu70-Dex-C10リポソーム及びOVAを内包するMGlu24-Dex-C10リポソームをそれぞれ投与したE.G7-OVA細胞接種マウスにおける腫瘍サイズの変化を比較するグラフである。各群の結果は、4匹のマウスにおける腫瘍サイズの平均値を示す。In E.G7-OVA cell-inoculated mice that received no treatment, control EYPC liposomes containing OVA, MGlu 70- Dex-C 10 liposomes containing OVA, and MGlu 24- Dex-C 10 liposomes containing OVA, respectively. It is a graph which compares the change of tumor size. The results for each group show the average tumor size in 4 mice.

本明細書において、「pH応答性リポソーム」とは、中性以上のpH条件下では安定であるが、弱酸性以下のpH条件下で、リポソーム膜で囲まれた閉鎖空間に内包された物質の一部又は全部をリポソーム膜外に放出できるリポソームのことをいう。この内包物の放出は、リポソーム膜自体を不安定化するリポソームの能力、リポソーム膜が別の脂質二重膜などと融合することによるリポソームの膜融合性の増加のいずれか又は両方によるものであると考えられる。   In the present specification, the “pH-responsive liposome” is a substance that is stable under a neutral pH or higher, but is enclosed in a closed space surrounded by a liposome membrane under a weakly acidic pH. This refers to a liposome that can be partially or wholly released from the liposome membrane. The release of the inclusion is due to either or both of the ability of the liposome to destabilize the liposome membrane itself, the increase in membrane fusion of the liposome by fusing the liposome membrane with another lipid bilayer, etc. it is conceivable that.

本明細書において、「弱酸性以下のpH条件」とは、pH6.9以下、より好ましくはpH6.7以下、さらにより好ましくはpH6.6以下、さらにより好ましくはpH6.5以下、さらにより好ましくはpH6.4以下、さらにより好ましくはpH6.3以下、さらにより好ましくはpH6.2以下、さらにより好ましくはpH6.1以下、さらにより好ましくはpH6.0以下のことをいう。また、本発明のリポソームが内包物を放出できるpH条件の下限としては、特に限定されないが、生体内で生じ得るpH条件が考えられ、それは、通常、pH4以上、より好ましくはpH4.5以上である。   In the present specification, “pH condition of weakly acidic or lower” means pH 6.9 or lower, more preferably pH 6.7 or lower, even more preferably pH 6.6 or lower, even more preferably pH 6.5 or lower, even more preferably Means pH 6.4 or less, still more preferably pH 6.3 or less, even more preferably pH 6.2 or less, even more preferably pH 6.1 or less, and even more preferably pH 6.0 or less. In addition, the lower limit of the pH condition at which the liposome of the present invention can release inclusions is not particularly limited, but a pH condition that can occur in vivo is conceivable, and is usually pH 4 or more, more preferably pH 4.5 or more. is there.

本明細書において、「内包物の一部」とは、リポソーム膜で囲まれた閉鎖空間に内包された物質の少なくとも10%、より好ましくは少なくとも15%、さらにより好ましくは少なくとも20%、さらにより好ましくは少なくとも30%、さらにより好ましくは少なくとも40%、さらにより好ましくは少なくとも50%、さらにより好ましくは少なくとも60%、さらにより好ましくは少なくとも70%、さらにより好ましくは少なくとも80%、さらにより好ましくは少なくとも90%、さらにより好ましくは少なくとも95%、最も好ましくは少なくとも99%のことである。   As used herein, “part of inclusion” means at least 10%, more preferably at least 15%, even more preferably at least 20%, and even more of the substance enclosed in the enclosed space surrounded by the liposome membrane. Preferably at least 30%, even more preferably at least 40%, even more preferably at least 50%, even more preferably at least 60%, even more preferably at least 70%, even more preferably at least 80%, even more preferably It is at least 90%, even more preferably at least 95%, most preferably at least 99%.

本明細書において、「リポソーム膜に保持する」とは、保持される成分の少なくとも一部分がリポソーム膜を構成する膜脂質成分中に疎水性相互作用などにより埋め込まれている状態のことをいう。
本明細書において、「生体(に)由来(する)」とは、天然に生体内で見出されることをいう。
In the present specification, “retained in the liposome membrane” means a state in which at least a part of the retained component is embedded in the membrane lipid component constituting the liposome membrane by hydrophobic interaction or the like.
In the present specification, “derived from (being) a living body” means being naturally found in the living body.

<pH応答性物質>
本発明のpH応答性リポソームは、少なくとも1つのカルボキシル基を有するカルボキシル基含有多糖由来部分と疎水性部分とを有するpH応答性物質をリポソーム膜に保持する。pH応答性物質は、カルボキシル基含有多糖由来部分が有するカルボキシル基が弱酸性以下のpHでプロトン化されて多糖が脂質二重膜と相互作用することが可能になる。よって、弱酸性以下のpHでは、pH応答性リポソーム膜が不安定化され、かつ/又はpH応答性リポソームが取り込まれたエンドソーム及びリソソームの膜構造を不安定化でき、かつ/又はエンドソーム及びリソソームの膜とpH応答性リポソームの膜とが融合することが可能になる。また、pH応答性物質は、疎水性部分の少なくとも一部分がリポソームの脂質二重膜と疎水性相互作用などにより結合することにより、リポソーム膜に保持される。
<PH responsive substance>
The pH-responsive liposome of the present invention retains a pH-responsive substance having a carboxyl group-containing polysaccharide-derived portion having at least one carboxyl group and a hydrophobic portion on the liposome membrane. In the pH-responsive substance, the carboxyl group of the carboxyl group-containing polysaccharide-derived moiety is protonated at a pH of weakly acidic or lower, and the polysaccharide can interact with the lipid bilayer membrane. Therefore, at a pH of weakly acidic or lower, the pH-responsive liposome membrane is destabilized and / or the endosomal and lysosomal membrane structure into which the pH-responsive liposome is incorporated can be destabilized and / or the endosomal and lysosomal membranes can be destabilized. The membrane and the membrane of the pH-responsive liposome can be fused. Further, the pH-responsive substance is held on the liposome membrane by binding at least a part of the hydrophobic portion to the lipid bilayer membrane of the liposome by hydrophobic interaction or the like.

カルボキシル基含有多糖由来部分は、カルボキシル基を有する生体に由来する多糖及び生体由来多糖を用いて得られるカルボキシル基含有半合成多糖から選択されるカルボキシル基含有多糖に由来する。カルボキシル基含有生体由来多糖としては、グルクロン酸、ガラクツロン酸、マンヌロン酸などのウロン酸を分子内に持つ化合物、例えばヒアルロン酸、コンドロイチン、ペクチン、ヘパリン、キサンタンガム、アラビアゴム、グアーガム、へパラン硫酸、アルギン酸及びそれらの誘導体が挙げられる。カルボキシル基含有半合成多糖は、多糖が有するヒドロキシ基にエーテル結合によりカルボキシル基を導入したもの(例えばカルボキシメチルセルロース、カルボキシメチルキチン、カルボキシメチルデンプン、カルボキシメチルデキストランなど)、ヒドロキシ基にエステル結合によりカルボキシル基を導入したもの(例えば、多糖とジカルボン酸とのアシル化反応生成物)、ヒドロキシ基にウレタン結合やカーボネート結合によりカルボキシル基を導入したものなどが挙げられる。カルボキシル基の量を調整できる点で、カルボキシル基含有多糖は、カルボキシル基含有半合成多糖が好ましい。   The carboxyl group-containing polysaccharide-derived portion is derived from a carboxyl group-containing polysaccharide selected from a polysaccharide derived from a living body having a carboxyl group and a carboxyl group-containing semisynthetic polysaccharide obtained using the living body-derived polysaccharide. Examples of the carboxyl-containing biological polysaccharide include compounds having uronic acid in the molecule such as glucuronic acid, galacturonic acid, mannuronic acid, such as hyaluronic acid, chondroitin, pectin, heparin, xanthan gum, gum arabic, guar gum, heparan sulfate, alginic acid. And their derivatives. Carboxyl group-containing semi-synthetic polysaccharides are those in which a carboxyl group is introduced into the hydroxy group of the polysaccharide by an ether bond (eg, carboxymethylcellulose, carboxymethylchitin, carboxymethyl starch, carboxymethyldextran, etc.) (For example, an acylation reaction product of a polysaccharide and a dicarboxylic acid) and those obtained by introducing a carboxyl group into a hydroxy group through a urethane bond or a carbonate bond. The carboxyl group-containing polysaccharide is preferably a carboxyl group-containing semisynthetic polysaccharide in that the amount of the carboxyl group can be adjusted.

カルボキシル基含有半合成多糖が由来する多糖は、単糖(ポリヒドロキシアルデヒド及びポリヒドロキシケトン)又はその誘導体(例えばアセチルグルコサミン)がグリコシド結合で連結された構造を有する分子であれば特に限定されず、ホモ多糖及びヘテロ多糖のいずれであってもよい。多糖は、好ましくは、生体由来多糖又はその派生物である。生体由来多糖としては、例えばデンプン、アミロース、アミロペクチン、ペクチン、キシラン、マンナン、ガラクタン、デキストラン、デキストリン、シクロデキストリン、キチン、ヒアルロン酸、コンドロイチン、ペプチドグリカン類、アルギン酸、プルラン、グリコーゲン、βグルカン(セルロース、レンチナン、ラミナラン、カロース、カードラン、シゾフィラン)などが挙げられる。生体由来多糖の派生物としては、例えばこれらの多糖の分解産物などが挙げられる。   The polysaccharide from which the carboxyl group-containing semisynthetic polysaccharide is derived is not particularly limited as long as it is a molecule having a structure in which monosaccharides (polyhydroxyaldehyde and polyhydroxyketone) or derivatives thereof (for example, acetylglucosamine) are linked by glycosidic bonds, Either a homopolysaccharide or a heteropolysaccharide may be used. The polysaccharide is preferably a biologically derived polysaccharide or a derivative thereof. Examples of the biological polysaccharide include starch, amylose, amylopectin, pectin, xylan, mannan, galactan, dextran, dextrin, cyclodextrin, chitin, hyaluronic acid, chondroitin, peptidoglycan, alginic acid, pullulan, glycogen, β-glucan (cellulose, lentinan). , Laminaran, callose, curdlan, schizophyllan). Examples of derivatives of biological polysaccharides include degradation products of these polysaccharides.

多糖としてマンナンを用いる場合、細胞がマンノースレセプターを有するので、このようなpH応答性物質で修飾されたリポソームは、細胞により認識されて取り込みが促進されると考えられる。よって、マンナンは、本発明において好ましい多糖の1つである。同様の理由から、細胞がそれに対する認識レセプターを有すると考えられる多糖を用いると、リポソームの取り込みが促進されると考えられるので、このような実施形態が好ましい。また、カードランやシゾフィランは、アジュバント効果(免疫賦活化効果)を有することが知られているので、このような多糖を用いる実施形態は、本発明のリポソームをワクチンとして用いる場合に好ましい。   When mannan is used as the polysaccharide, since the cell has a mannose receptor, it is considered that the liposome modified with such a pH-responsive substance is recognized by the cell and promotes its uptake. Therefore, mannan is one of the preferred polysaccharides in the present invention. For similar reasons, such an embodiment is preferred because it is believed that the use of a polysaccharide that the cell is believed to have a recognition receptor for will promote liposome uptake. Further, since curdlan and schizophyllan are known to have an adjuvant effect (immunostimulatory effect), an embodiment using such a polysaccharide is preferable when the liposome of the present invention is used as a vaccine.

カルボキシル基含有多糖部分の分子量は、特に限定されないが、取り扱い及び入手が容易な点で、1,000〜40,000,000であり、より好ましくは5,000〜250,000である。   The molecular weight of the carboxyl group-containing polysaccharide moiety is not particularly limited, but is 1,000 to 40,000,000, more preferably 5,000 to 250,000 in terms of easy handling and availability.

カルボキシル基含有半合成多糖において、多糖が有する全てのヒドロキシ基の数に対するカルボキシル基と結合したヒドロキシ基の数を表すカルボキシル基結合率(%)は、100%が好ましいが、上限は95%であってもよく、例えば90%であってもよく、80%であってもよい。また、下限は、10%であってもよく、20%であってもよく、30%であってもよい。このような結合率は、実施例に示すように、1H-NMRを用いて決定できる。
以下の実施例に示すように、カルボキシル基結合率を調節することにより、pH応答性リポソームが内包物を放出するpHを調節できると考えられる。
In the carboxyl group-containing semi-synthetic polysaccharide, the carboxyl group binding ratio (%) representing the number of hydroxy groups bonded to the carboxyl group with respect to the number of all hydroxy groups of the polysaccharide is preferably 100%, but the upper limit is 95%. For example, it may be 90% or 80%. Further, the lower limit may be 10%, 20%, or 30%. Such a bonding rate can be determined using 1 H-NMR as shown in the Examples.
As shown in the following examples, it is considered that the pH at which the pH-responsive liposomes release the inclusions can be adjusted by adjusting the carboxyl group binding rate.

多糖のヒドロキシ基にエステル結合によりカルボキシル基を導入したカルボキシル基含有半合成多糖としては、多糖とジカルボン酸無水物又はハロゲン化ジカルボン酸とのアシル化反応生成物が挙げられる。用い得るジカルボン酸は、HOOC−R1−COOH(R1は、結合手、主鎖部分の炭素数が1〜10で直鎖状若しくは分岐鎖状であってよいアルキレン基(分岐鎖の炭素数は1〜4である)、環状部分の炭素数が3〜10で、置換されていてもよいシクロアルキレン基(置換基は炭素数1〜4のアルキル基である)、炭素数1〜4のアルキル基で置換されていてもよいフェニレン基、炭素数1〜4のアルキル基で置換されていてもよいフェニルアルキレン基(フェニルアルキレン基のアルキル部分の炭素数は1〜4である)で表されるジカルボン酸である。このようなジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、2-若しくは3-メチルグルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、o−、m−若しくはp−フタル酸、1,2-、1,3-若しくは1,4-シクロヘキサンジカルボン酸、及び不飽和結合を持つジカルボン酸(マレイン酸、フマル酸、シトラコン酸、メサコン酸、2−ペンテン二酸、メチレンコハク酸、アリルマロン酸、イソプロピリデンコハク酸、2,4−ヘキサジエン二酸、アセチレンジカルボン酸など)などが挙げられる。 Examples of the carboxyl group-containing semisynthetic polysaccharide in which a carboxyl group is introduced into the hydroxy group of the polysaccharide by an ester bond include acylation reaction products of the polysaccharide and a dicarboxylic anhydride or a halogenated dicarboxylic acid. The dicarboxylic acid that can be used is HOOC-R 1 —COOH (R 1 is a bond, an alkylene group having 1 to 10 carbon atoms in the main chain portion, which may be linear or branched) Is a cycloalkylene group having 3 to 10 carbon atoms in the cyclic portion, which may be substituted (the substituent is an alkyl group having 1 to 4 carbon atoms), and having 1 to 4 carbon atoms. It is represented by a phenylene group which may be substituted with an alkyl group, a phenylalkylene group which may be substituted with an alkyl group having 1 to 4 carbon atoms (the alkyl portion of the phenylalkylene group has 1 to 4 carbon atoms). Examples of such dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, 2- or 3-methylglutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, -, M- or p-phthalic acid, 1,2-, 1,3- or 1,4-cyclohexanedicarboxylic acid, and dicarboxylic acids having an unsaturated bond (maleic acid, fumaric acid, citraconic acid, mesaconic acid, 2 -Pentenedioic acid, methylene succinic acid, allyl malonic acid, isopropylidene succinic acid, 2,4-hexadiene diacid, acetylenedicarboxylic acid, etc.).

多糖のヒドロキシ基にエーテル結合によりカルボキシル基を導入したカルボキシル基含有半合成多糖も、当該技術において公知の方法により製造できる。また、このような物質は、工業的にも製造されているので、市販品をカルボキシル基含有多糖として本発明において用いることもできる。   A carboxyl group-containing semi-synthetic polysaccharide in which a carboxyl group is introduced into the hydroxy group of the polysaccharide by an ether bond can also be produced by a method known in the art. Moreover, since such a substance is manufactured also industrially, a commercial item can also be used in this invention as a carboxyl group-containing polysaccharide.

pH応答性物質が有する疎水性部分は、pH応答性物質をリポソーム膜に保持するように機能する部分である。
よって、疎水性部分は、脂質二重膜に保持され得る疎水性基であればよい。脂質二重膜に保持され得る疎水性基としては、例えば主鎖の炭素数が6〜22で直鎖状又は分岐鎖状の脂肪族基、環状部分の炭素数が合計で19〜29、好ましくは19〜27の脂環式基(これらの脂肪族基及び脂環式基は、窒素原子、酸素原子などのヘテロ原子を有してもよく、不飽和結合を含んでいてもよい)、リン脂質に由来する基などが挙げられる。
上記の脂肪族基としては、主鎖の炭素数が6〜22の直鎖状又は分岐鎖状のアルキル基、主鎖の炭素数が6〜22で1〜4個の不飽和結合を有する直鎖状又は分岐鎖状のアルケニル又はアルキニル基などが挙げられる。上記の脂環式基としては、ステロール骨格を有する基(例えばコレステリル基)が挙げられる。リン脂質に由来する基としては、ホスファチジルエタノールアミン、ホスファチジルコリン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジルグリセロールなどのリン脂質に由来する基が挙げられる。これらのリン脂質の構成脂肪酸としては、ミリスチン酸、パルミチン酸、ステアリン酸、アラキドン酸、オレイン酸、リノール酸、リノレン酸などが挙げられる。
The hydrophobic part of the pH-responsive substance is a part that functions to retain the pH-responsive substance in the liposome membrane.
Therefore, the hydrophobic part should just be a hydrophobic group which can be hold | maintained at a lipid bilayer membrane. Examples of the hydrophobic group that can be retained in the lipid bilayer include a linear or branched aliphatic group having 6 to 22 carbon atoms in the main chain and a total of 19 to 29 carbon atoms in the cyclic portion, preferably Is an alicyclic group of 19 to 27 (these aliphatic groups and alicyclic groups may have a hetero atom such as a nitrogen atom or an oxygen atom, and may contain an unsaturated bond), phosphorus Examples include groups derived from lipids.
Examples of the aliphatic group include a linear or branched alkyl group having 6 to 22 carbon atoms in the main chain, and a straight chain having 1 to 4 unsaturated bonds having 6 to 22 carbon atoms in the main chain. Examples thereof include a chain or branched alkenyl or alkynyl group. Examples of the alicyclic group include groups having a sterol skeleton (for example, a cholesteryl group). Examples of groups derived from phospholipids include groups derived from phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol. Examples of fatty acids constituting these phospholipids include myristic acid, palmitic acid, stearic acid, arachidonic acid, oleic acid, linoleic acid, and linolenic acid.

疎水性部分は、カルボキシル基含有多糖のヒドロキシ基に結合してもよく(すなわち多糖の主鎖に結合する)、カルボキシル基含有多糖のカルボキシル基に結合してもよい(すなわち多糖の側鎖に結合する)。
よって、疎水性部分とカルボキシル基含有多糖由来部分との間の結合は、エーテル結合、ウレタン結合、尿素結合、エステル結合、アミド結合及びカーボネート結合から選択できる。
The hydrophobic moiety may be bound to the hydroxyl group of the carboxyl group-containing polysaccharide (ie, bound to the main chain of the polysaccharide), or may be bound to the carboxyl group of the carboxyl group-containing polysaccharide (ie, bound to the side chain of the polysaccharide). To do).
Therefore, the bond between the hydrophobic moiety and the carboxyl group-containing polysaccharide-derived moiety can be selected from an ether bond, a urethane bond, a urea bond, an ester bond, an amide bond, and a carbonate bond.

pH応答性物質は、カルボキシル基含有多糖と、疎水性基を有する物質とを、当業者に公知の反応により反応させて上記のいずれかの結合を形成させることにより得ることができる。   The pH-responsive substance can be obtained by reacting a carboxyl group-containing polysaccharide with a substance having a hydrophobic group by a reaction known to those skilled in the art to form any of the above-mentioned bonds.

カルボキシル基含有多糖が有するカルボキシル基の全数に対する疎水性部分と結合したカルボキシル基の数で表されるアンカー率(%)は、1〜20%が好ましく、5〜15%がより好ましい。このような結合率は、実施例に示すように、1H-NMRを用いて決定できる。 The anchor ratio (%) represented by the number of carboxyl groups bonded to the hydrophobic portion relative to the total number of carboxyl groups of the carboxyl group-containing polysaccharide is preferably 1 to 20%, more preferably 5 to 15%. Such a bonding rate can be determined using 1 H-NMR as shown in the Examples.

上記の反応において、反応させるカルボキシル基含有多糖と疎水性基を有する物質との重量比は、pH応答性物質に導入される疎水性基の所望の量に応じて、適宜選択できる。   In the above reaction, the weight ratio between the carboxyl group-containing polysaccharide to be reacted and the substance having a hydrophobic group can be appropriately selected according to the desired amount of the hydrophobic group introduced into the pH-responsive substance.

<pH応答性リポソーム>
本発明のpH応答性リポソームは、上記のpH応答性物質を保持してなる。
pH応答性リポソームの粒径は、動的光散乱(25℃及び40℃)により測定して、0.03〜10μmが好ましく、より好ましくは0.05〜0.2μm、さらにより好ましくは0.05〜0.15μmである。
pH応答性リポソームは、上記の範囲の粒径を有していれば、一層の脂質二重膜からなる単層リポソーム、又は複数の脂質二重層からなる多重層リポソームのいずれであってもよい。
<PH-responsive liposome>
The pH-responsive liposome of the present invention retains the above pH-responsive substance.
The particle size of the pH-responsive liposome is preferably 0.03 to 10 μm, more preferably 0.05 to 0.2 μm, still more preferably 0.05 to 0.15 μm, as measured by dynamic light scattering (25 ° C. and 40 ° C.).
As long as the pH-responsive liposome has a particle size in the above range, it may be either a monolayer liposome composed of a single lipid bilayer membrane or a multilamellar liposome composed of a plurality of lipid bilayers.

pH応答性リポソームを構成するリポソーム膜構成脂質は、リポソームに通常用いられる両親媒性の脂質を用いることができる。このような脂質としては、例えばホスファチジン酸、ホスファチジルエタノールアミン、ホスファチジルコリン、ホスファチジルセリン、ホスファチジルグリセロール、ホスファチジルイノシトール、カルジオリピン、スフィンゴミエリン、大豆ホスファチジルコリン、卵黄ホスファチジルコリンなどのリン脂質が挙げられる。これらのリン脂質の構成脂肪酸としては、ミリスチン酸、パルミチン酸、ステアリン酸、アラキドン酸、オレイン酸、リノール酸、リノレン酸などが挙げられる。これらは単独で又は2種以上組み合わせて使用できる。特に、ホスファチジルコリン、ホスファチジルエタノールアミンが好ましい。   As the liposome membrane-constituting lipid constituting the pH-responsive liposome, an amphiphilic lipid usually used for liposomes can be used. Examples of such lipids include phospholipids such as phosphatidic acid, phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, cardiolipin, sphingomyelin, soybean phosphatidylcholine, and egg yolk phosphatidylcholine. Examples of fatty acids constituting these phospholipids include myristic acid, palmitic acid, stearic acid, arachidonic acid, oleic acid, linoleic acid, and linolenic acid. These can be used alone or in combination of two or more. In particular, phosphatidylcholine and phosphatidylethanolamine are preferable.

また、リポソーム膜構成脂質としては、上記のリン脂質の他に、公知のカチオン性の合成脂質を用いることもできる。このようなカチオン性の合成脂質としては、例えばN−(α−トリメチルアンモニオアセチル)−ジドデシルグルタメート、N−〔1−(2,3−ジオレイルオキシ)プロピル〕−N,N,N−トリメチルアンモニウムクロリド及び1,2−ビス(オレオイルオキシ)−3−(トリメチルアンモニオ)プロパンなどの第4級アンモニウム塩が挙げられる。これらの脂質は、単独で又は2種以上組み合わせて用いることができる。
リポソーム膜構成脂質には、コレステロール、ラノステロール、エルゴステロールなどのステロールが含まれていてもよい。
In addition to the above-described phospholipids, known cationic synthetic lipids can also be used as the liposome membrane-constituting lipid. Examples of such cationic synthetic lipids include N- (α-trimethylammonioacetyl) -didodecylglutamate, N- [1- (2,3-dioleyloxy) propyl] -N, N, N- And quaternary ammonium salts such as trimethylammonium chloride and 1,2-bis (oleoyloxy) -3- (trimethylammonio) propane. These lipids can be used alone or in combination of two or more.
The liposome membrane-constituting lipid may contain sterols such as cholesterol, lanosterol and ergosterol.

本発明のpH応答性リポソームにおいて、リポソームの膜構成脂質とpH応答性物質との重量比は、1:0.01〜10が好ましく、より好ましくは1:0.05〜9であり、さらにより好ましくは1:0.1〜1である。   In the pH-responsive liposome of the present invention, the weight ratio of the liposome membrane constituent lipid to the pH-responsive substance is preferably 1: 0.01 to 10, more preferably 1: 0.05 to 9, and still more preferably 1: It is 0.1-1.

pH応答性リポソームは、そのpH応答性が損なわれないことを条件として、上記の膜構成脂質以外のリポソームの構成成分として通常用い得る成分を含むこともできる。リポソームの構成成分として通常用い得る成分としては、例えばポリエチレングリコール脂質、ガングリオシドのような糖脂質などが挙げられる。   The pH-responsive liposome can also contain components that can be normally used as a constituent component of the liposome other than the membrane-constituting lipid, provided that the pH-responsiveness is not impaired. Examples of components that can usually be used as the components of liposomes include glycolipids such as polyethylene glycol lipids and gangliosides.

pH応答性リポソームは、上記のpH応答性物質とリポソーム膜構成脂質と所望により上記のリポソームの構成成分として通常用い得る成分とを用いて、それ自体公知のリポソームの製造方法により得ることができる。
それ自体公知のリポソームの製造方法としては、エクストルーダー法、超音波法、フレンチプレス法などが挙げられる。
The pH-responsive liposome can be obtained by a liposome production method known per se, using the above-mentioned pH-responsive substance, liposome membrane-constituting lipid, and optionally a component that can usually be used as a constituent of the above-mentioned liposome.
Examples of known liposome production methods include an extruder method, an ultrasonic method, and a French press method.

例えば、エクストルーダー法によりpH応答性リポソームを製造する方法について説明する。所定量のリポソーム膜構成脂質を、クロロホルム、メタノール、ヘキサンなどの適当な有機溶媒に溶解させた溶液をエバポレーターに入れて溶媒を除去し、容器壁に薄膜を形成させる。ここに、pH応答性物質を上記のような適当な有機溶媒に溶解させた溶液を入れ、エバポレーターで溶媒を除去し、混合薄膜を形成させる。この膜は、さらに3〜12時間程度真空乾燥させることが好ましい。次いで、この容器内に緩衝液などの適当な溶液を投入し、超音波処理又はボルテックスミキサーなどを用いて強く攪拌することによりリポソームを形成させることができる。得られたリポソーム分散液をエクストルーダーに通し、そのフィルタ孔径を適宜設定することにより、リポソームの粒径を調節することができる。   For example, a method for producing pH-responsive liposomes by the extruder method will be described. A solution in which a predetermined amount of liposome membrane-constituting lipid is dissolved in an appropriate organic solvent such as chloroform, methanol, hexane or the like is placed in an evaporator to remove the solvent, and a thin film is formed on the container wall. A solution in which a pH-responsive substance is dissolved in an appropriate organic solvent as described above is added, and the solvent is removed with an evaporator to form a mixed thin film. This film is preferably further vacuum-dried for about 3 to 12 hours. Next, a suitable solution such as a buffer solution is put into the container, and liposomes can be formed by vigorous stirring using an ultrasonic treatment or a vortex mixer. By passing the obtained liposome dispersion through an extruder and appropriately setting the filter pore size, the particle size of the liposome can be adjusted.

上記のようにして得られたリポソーム分散液から、リポソームに含まれなかったリポソーム膜構成脂質などを、ゲルろ過法、超遠心法、透析法などにより除去することができる。除去したい物質が電荷を有する場合には、イオン交換クロマトグラフィーを用いることもできる。   From the liposome dispersion obtained as described above, liposome membrane-constituting lipids not contained in the liposome can be removed by gel filtration, ultracentrifugation, dialysis, or the like. If the substance to be removed has a charge, ion exchange chromatography can be used.

また、リポソーム膜構成成分を用いて上記のようなエクストルーダー法などにより予めリポソームを形成させた後に、pH応答性物質の溶液を加えて、pH応答性物質をリポソーム膜に保持させることもできる。   In addition, after forming liposomes in advance by the extruder method as described above using liposome membrane components, a solution of pH-responsive substance can be added to hold the pH-responsive substance on the liposome membrane.

<pH応答性薬剤放出システム>
上記のpH応答性リポソームと薬剤とからなるpH応答性薬剤放出システムも、本発明の一つである。
上記の薬剤は、親水性物質及び疎水性物質のいずれであってもよい。親水性物質である場合は、薬剤は、pH応答性リポソームの内部の閉鎖空間の親水性領域に内包され、疎水性物質である場合は、pH応答性リポソーム膜に保持されることとなる。
<PH-responsive drug release system>
A pH-responsive drug release system comprising the pH-responsive liposome and the drug is also one aspect of the present invention.
The drug may be a hydrophilic substance or a hydrophobic substance. In the case of a hydrophilic substance, the drug is encapsulated in the hydrophilic region of the closed space inside the pH-responsive liposome, and in the case of a hydrophobic substance, the drug is held on the pH-responsive liposome membrane.

上記の薬剤は、抗癌剤、サイトカイン、抗生物質、抗ウイルス剤、抗炎症剤、核酸、抗原(免疫原、ワクチン)など、リポソームを用いて送達し得る薬剤であれば特に限定されない。特に、本発明のpH応答性リポソームの特性を考慮すると、樹状細胞の細胞質へ特異的に送達して細胞性免疫を誘導するための抗原(免疫原、ワクチン)であることが有利である。
このような抗原は、当該技術において知られている疾患を予防及び/又は治療するための抗原であってよく、例えば癌抗原(例えば癌胎児抗原(CEA)、WT1、HER2、MAGE、MART-1、gp100、チロシナーゼ、α−フェトプロテイン(AFP)、AFPレクチン分画(AFP-L3%)、ヒト絨毛性ゴナドトロピン(hCG)、塩基性フェトプロテイン(BFP)、扁平上皮癌関連抗原(SCC抗原)、BCA225、CA15-3、CA19-9、CA50、CA54/61、CA72-4、CA125、CA130、CA602、シアリルLex抗原(CSLEX)、膵癌関連糖タンパク抗原(DUPAN-2)、KMO-1、NCC-ST-439、シアリルLex-i抗原(SLX)、Span-1、シアリルTn抗原(STN)、サイトケラチン19フラグメント(CYFRA)、組織ポリペプチド抗原(TPA)、免疫抑制酸性タンパク質(IAP)、I型コラーゲンCテロペプチド(ICTP)、I型コラーゲン架橋Cテロペプチド(CTx)、膀胱腫瘍抗原(BTA)、核マトリクスプロテイン22 (NMP22)、PIVKA-II、前立腺特異抗原(PSA)、妊娠特異タンパク(SP1)、神経特異エノラーゼ(NSE)、フェリチン、エラスターゼ1、p53抗体、ガストリン放出ペプチド前駆体(ProGRP)、前立腺酸性ホスファターゼ(PAP)、アルカリホスファターゼ(ALP)、胎盤性ALP (PL-ALP)、癌関連ガラクトース転移酵素(GAT)、乳酸脱水素酵素(LDH)、ペプシノゲン(PG) I/II比、erbB-2、γ−セミノプロテイン(γ-Sm)、Dpyr、ポリアミン、カテコールアミン、バニリルマンデル酸(VMA)、BJPなど)、感染疾患治療用の抗原(例えば感染性細菌、真菌及びウイルス由来の抗原など)などが挙げられる。
The above drugs are not particularly limited as long as they can be delivered using liposomes such as anticancer drugs, cytokines, antibiotics, antiviral drugs, anti-inflammatory drugs, nucleic acids, antigens (immunogens, vaccines). In particular, in consideration of the properties of the pH-responsive liposome of the present invention, it is advantageous to be an antigen (immunogen, vaccine) for specifically delivering to the cytoplasm of dendritic cells to induce cellular immunity.
Such an antigen may be an antigen for preventing and / or treating a disease known in the art, such as a cancer antigen (for example, carcinoembryonic antigen (CEA), WT1, HER2, MAGE, MART-1 , Gp100, tyrosinase, α-fetoprotein (AFP), AFP lectin fraction (AFP-L3%), human chorionic gonadotropin (hCG), basic fetoprotein (BFP), squamous cell carcinoma associated antigen (SCC antigen), BCA225, CA15-3, CA19-9, CA50, CA54 / 61, CA72-4, CA125, CA130, CA602, sialyl Le x antigen (CSLEX), pancreatic cancer-related glycoprotein antigen (DUPAN-2), KMO- 1, NCC-ST -439, sialyl Le x -i antigen (SLX), Span-1, sialyl Tn antigen (STN), cytokeratin 19 fragment (CYFRA), tissue polypeptide antigen (TPA), immunosuppressive acidic protein (IAP), type I Collagen C telopeptide (ICTP), type I collagen cross-linked C telopeptide (CTx), bladder tumor antigen (BTA), nuclear matrix protein 22 (N MP22), PIVKA-II, prostate specific antigen (PSA), pregnancy specific protein (SP1), nerve specific enolase (NSE), ferritin, elastase 1, p53 antibody, gastrin releasing peptide precursor (ProGRP), prostate acid phosphatase (PAP) ), Alkaline phosphatase (ALP), placental ALP (PL-ALP), cancer-related galactose transferase (GAT), lactate dehydrogenase (LDH), pepsinogen (PG) I / II ratio, erbB-2, γ-semi Noprotein (γ-Sm), Dpyr, polyamine, catecholamine, vanillylmandelic acid (VMA), BJP, etc.), antigens for treating infectious diseases (for example, antigens derived from infectious bacteria, fungi and viruses) and the like.

上記の抗癌剤としては、シスプラチン、カルボプラチン、テトラプラチン、イプロプラチンなどの金属錯体;アドリアマイシン(ADR)、マイトマイシン、アクチノマイシン、アンサマイトシン、ブレオマイシン、Ara-C、ダウノマイシンなどの制癌抗生物質;5-FU、メトトレキセート、TAC-788などの代謝拮抗剤;BCNU、CCNUなどのアルキル化剤;インターフェロン(α、β、γ)、各種インターロイキンなどのリンホカインなどが挙げられる。また、抗炎症剤としては、プレドニン、リンデロン、セレスタミンなどが挙げられる。   Examples of the anticancer agents include metal complexes such as cisplatin, carboplatin, tetraplatin, and iproplatin; anticancer antibiotics such as adriamycin (ADR), mitomycin, actinomycin, ansamitocin, bleomycin, Ara-C, and daunomycin; 5-FU And antimetabolites such as methotrexate and TAC-788; alkylating agents such as BCNU and CCNU; lymphokines such as interferons (α, β and γ) and various interleukins. Examples of anti-inflammatory agents include predonin, Linderon, and Celestamine.

上記の核酸としては、例えば、重症複合型免疫不全症の治療のためのアデノシンデアミナーゼ遺伝子、家族性高コレステロール血症の治療のためのLDL受容体遺伝子、癌治療のためのインターフェロン(IFN)−α、β又はγ遺伝子、顆粒球マクロファージコロニー刺激因子(GM-CSF)遺伝子、各種インターロイキン(IL)遺伝子、腫瘍壊死因子(TNF)−α遺伝子、リンホトキシン(LT)−β遺伝子、顆粒球コロニー刺激因子(G-CSF)遺伝子、T細胞活性化共刺激因子遺伝子などが挙げられる。その他、アルツハイマー病、脊椎損傷、パーキンソン病、動脈硬化症、糖尿病、高血圧症などの治療のための遺伝子も挙げられる。
上記の薬剤の量は特に限定されず、薬剤の種類などにより適宜選択することができる。
Examples of the nucleic acid include an adenosine deaminase gene for the treatment of severe combined immunodeficiency, an LDL receptor gene for the treatment of familial hypercholesterolemia, and interferon (IFN) -α for the treatment of cancer. , Β or γ genes, granulocyte macrophage colony stimulating factor (GM-CSF) gene, various interleukin (IL) genes, tumor necrosis factor (TNF) -α gene, lymphotoxin (LT) -β gene, granulocyte colony stimulating factor (G-CSF) gene, T cell activation costimulatory gene and the like. In addition, genes for the treatment of Alzheimer's disease, spinal cord injury, Parkinson's disease, arteriosclerosis, diabetes, hypertension and the like can be mentioned.
The amount of the drug is not particularly limited, and can be appropriately selected depending on the type of drug.

上記のpH応答性薬剤放出システムの製造において、pH応答性リポソームに薬剤を含有させる方法としては、薬剤の種類に応じて公知の方法を用いることができる。該方法としては限定されないが、例えば上記のpH応答性リポソームの製造方法に従ってpH応答性リポソームを形成させた後に、薬剤を含む溶液に該リポソームを浸漬させて薬剤をリポソームの内部に取り込ませる方法、上記のpH応答性リポソームの製造方法において薄膜が形成された容器内に、薬剤を含む溶液を投入した後にリポソーム膜構造を形成させて薬剤を封入する方法などが挙げられる。   In the production of the above-described pH-responsive drug release system, a known method can be used as a method for containing a drug in the pH-responsive liposome according to the type of drug. Although it is not limited as this method, for example, after forming pH-responsive liposomes according to the above-described method for producing pH-responsive liposomes, the liposomes are immersed in a solution containing the drug, and the drug is taken into the liposome, Examples of the method for producing pH-responsive liposomes include a method in which a solution containing a drug is placed in a container in which a thin film is formed, and then a liposome membrane structure is formed to encapsulate the drug.

本発明のpH応答性薬剤放出システムは、さらに少なくとも1種の医薬添加剤を含むのが好ましい。該pH応答性薬剤放出システムは、錠剤、粉末、カプセルなどの固形製剤の形態、注射製剤、点眼剤、点鼻薬のような液体製剤の形態、パッチ、パスタ剤、ゲルのような塗布/貼付製剤の形態などのいずれであってもよい。該液体製剤は、用時に水又は他の適切な賦形剤で再生する乾燥製品として提供してもよい。   The pH-responsive drug release system of the present invention preferably further comprises at least one pharmaceutical additive. The pH-responsive drug release system is in the form of solid preparations such as tablets, powders, capsules, liquid preparations such as injection preparations, eye drops, and nasal drops, and application / patch preparations such as patches, pastes, and gels. Any of these forms may be used. The liquid formulation may be provided as a dry product that is regenerated with water or other suitable excipients at the time of use.

上記の錠剤及びカプセルは、通常の方法により腸溶コーティングを施すことが望ましい。腸溶コーティングとしては、当該分野において通常用いられるものを利用できる。また、カプセルは粉末又は液体のいずれを含有することもできる。   The above tablets and capsules are desirably enteric-coated by a usual method. As the enteric coating, those normally used in this field can be used. Capsules can also contain either powder or liquid.

上記のpH感受性薬剤放出システムが液体製剤である場合、医薬添加剤は、担体(例えば生理食塩水、滅菌水、緩衝液など)、膜安定剤(例えばコレステロールなど)、等張化剤(例えば塩化ナトリウム、グルコース、グリセリンなど)、抗酸化剤(例えばトコフェロール、アスコルビン酸、グルタチオンなど)、防腐剤(例えばクロルブタノール、パラベンなど)などを含み得る。上記の担体は、pH応答性リポソームを製造する際に用いる溶媒であり得る。   When the pH sensitive drug release system is a liquid formulation, the pharmaceutical additive can be a carrier (eg, saline, sterile water, buffer, etc.), a membrane stabilizer (eg, cholesterol), an isotonic agent (eg, chloride). Sodium, glucose, glycerin, etc.), antioxidants (eg, tocopherol, ascorbic acid, glutathione, etc.), preservatives (eg, chlorbutanol, parabens, etc.), and the like. The carrier can be a solvent used when producing pH-responsive liposomes.

上記のpH応答性薬剤放出システムが固形製剤である場合、医薬添加剤は、賦形剤(例えば乳糖、ショ糖のような糖類、トウモロコシデンプンのようなデンプン類、結晶セルロースのようなセルロース類、アラビアゴム、メタケイ酸アルミン酸マグネシウム、リン酸カルシウムなど)、滑沢剤(例えばステアリン酸マグネシウム、タルク、ポリエチレングリコールなど)、結合剤(例えばマンニトール、ショ糖のような糖類、結晶セルロース、ポリビニルピロリドン、ヒドロキシプロピルメチルセルロースなど)、崩壊剤(例えば馬鈴薯澱粉のようなデンプン類、カルボキシメチルセルロースのようなセルロース類、架橋ポリビニルピロリドンなど)、着色剤、矯味矯臭剤などを含み得る。   When the pH-responsive drug release system is a solid formulation, the pharmaceutical additive includes excipients (e.g., sugars such as lactose, sucrose, starches such as corn starch, celluloses such as crystalline cellulose, Gum arabic, magnesium aluminate metasilicate, calcium phosphate, etc.), lubricant (eg, magnesium stearate, talc, polyethylene glycol, etc.), binder (eg, sugars such as mannitol, sucrose, crystalline cellulose, polyvinylpyrrolidone, hydroxypropyl) Methyl cellulose, etc.), disintegrating agents (eg, starches such as potato starch, celluloses such as carboxymethyl cellulose, cross-linked polyvinyl pyrrolidone, etc.), coloring agents, flavoring agents and the like.

上記のpH応答性薬剤放出システムが塗布/貼付製剤である場合、医薬添加剤は、溶剤(例えば水、グリセリン、アルコールなど)、基剤(例えばアルギン酸ナトリウムのような親水性ポリマーなど)、乳化剤(例えば界面活性剤など)などを含み得る。   When the above pH-responsive drug release system is an application / patch formulation, the pharmaceutical additive includes a solvent (eg, water, glycerin, alcohol, etc.), a base (eg, a hydrophilic polymer such as sodium alginate), an emulsifier ( For example, a surfactant or the like may be included.

上記のpH応答性薬剤放出システムは、上記の薬剤を含むpH応答性リポソームをそのまま、又は凍結乾燥させて、上記の医薬添加剤と混合することにより製造することができる。薬剤を含むpH応答性リポソームを凍結乾燥する場合、凍結乾燥する前に適当な賦形剤を添加しておくのがよい。   The pH-responsive drug release system can be produced by mixing the pH-responsive liposome containing the drug with or without lyophilization and mixing with the pharmaceutical additive. When freeze-drying a pH-responsive liposome containing a drug, an appropriate excipient should be added before lyophilization.

上述したように、本発明のpH応答性リポソームは、弱酸性以下のpHでその内包物を放出できるので、例えば細胞性免疫を誘導するために特に樹状細胞の細胞質へ目的の抗原を送達することができる。
よって、本発明は、対象者に、上記のpH応答性薬剤放出システムの有効量を投与することを含む、対象者に細胞性免疫を誘導する方法も提供する。
上記の対象者は、哺乳動物が好ましく、特に好ましくはヒトである。
細胞性免疫を誘導する対象者としては、細胞性免疫を誘導することにより治療され得る免疫疾患に罹患した対象者又は免疫疾患を予防することを意図する対象者が好ましい。このような免疫疾患としては、癌、ウイルス感染などが挙げられる。
As described above, the pH-responsive liposome of the present invention can release its inclusion at a pH of weak acid or less, and thus delivers the antigen of interest specifically to the cytoplasm of dendritic cells, for example, to induce cellular immunity. be able to.
Thus, the present invention also provides a method for inducing cellular immunity in a subject comprising administering to the subject an effective amount of the pH-responsive drug release system described above.
The subject is preferably a mammal, particularly preferably a human.
A subject who induces cellular immunity is preferably a subject suffering from an immune disease that can be treated by inducing cellular immunity or a subject intended to prevent an immune disease. Examples of such immune diseases include cancer and viral infection.

上記のpH応答性薬剤放出システムは、非経口及び経口経路のいずれによっても投与することができる。非経口経路としては、当該技術において公知の非経口経路による投与を用いることができ、静脈注射、経皮投与、経鼻投与などが挙げられる。
上記のpH応答性薬剤放出システムの投与量は、対象者の疾患の重篤度及びリポソームに含有される薬剤の量に応じて適宜選択することができる。
The pH responsive drug release system described above can be administered by either parenteral or oral routes. As the parenteral route, administration by a parenteral route known in the art can be used, and intravenous injection, transdermal administration, nasal administration and the like can be mentioned.
The dose of the pH-responsive drug release system can be appropriately selected according to the severity of the subject's disease and the amount of drug contained in the liposome.

本発明を、以下の実施例を用いてより詳細に説明するが、本発明は以下の実施例により何ら限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

1.pH応答性物質の製造
多糖としてデキストラン又はマンナンを用い、ジカルボン酸として3-メチルグルタリル酸を用い、疎水性基としてデシル基を用いて、以下のような手順でpH応答性物質を製造した。
1-1.試薬
デキストラン(デキストラン70)及びn-デシルアミンは東京化成工業から購入した。マンナン(マンナン、Saccharomyces cerevisiae由来)及び3-メチルグルタリル酸無水物はSigmaから購入した。LiClはナカライテスクから購入した。4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロライドn-水和物(DMT-MM)、ジメチルホルムアミド(DMF)、炭酸水素ナトリウム及びリン酸水素二ナトリウムは和光純薬工業から購入した。透析膜はSpectra/Por 6 (分画分子量 10000, FE-0526-33)をSpectrum Laboratories Inc.から購入した。
1. Production of pH-responsive substance Using dextran or mannan as the polysaccharide, 3-methylglutaric acid as the dicarboxylic acid, and decyl group as the hydrophobic group, a pH-responsive substance was produced by the following procedure.
1-1. Reagents Dextran (dextran 70) and n-decylamine were purchased from Tokyo Chemical Industry. Mannan (from Mannan, Saccharomyces cerevisiae) and 3-methylglutaryl anhydride were purchased from Sigma. LiCl was purchased from Nacalai Tesque. 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride n-hydrate (DMT-MM), dimethylformamide (DMF), sodium bicarbonate and Disodium hydrogen phosphate was purchased from Wako Pure Chemical Industries. The dialysis membrane was purchased from Spectrum Laboratories Inc. with Spectra / Por 6 (fractionated molecular weight 10000, FE-0526-33).

1-2.合成
1-2-1.デキストランとジカルボン酸無水物との反応
デキストラン(分子量(Mw):70000)とLiClをDMFに溶解させ、そこに3-メチルグルタリル酸無水物を加え、120℃、アルゴン雰囲気下で24時間撹拌を行った。ロータリーエバポレーターにより溶媒を減圧留去した後、炭酸水素ナトリウム水溶液で中和し、3日間透析することで未反応の3-メチルグルタリル酸を除去し、一晩凍結乾燥して白色固体を得た。化合物の同定は1H-NMRによって行った。用いた試薬の量は、以下の表1に記載する。
得られた化合物を、メチルグルタリル化デキストラン、MGlu-Dexと称する。
1-2.Synthesis
1-2-1. Reaction between dextran and dicarboxylic acid anhydride Dextran (molecular weight (Mw): 70000) and LiCl are dissolved in DMF, and 3-methylglutaric acid anhydride is added to the solution, at 120 ° C in an argon atmosphere. Stirring was carried out for 24 hours. After the solvent was distilled off under reduced pressure by a rotary evaporator, neutralized with an aqueous sodium hydrogen carbonate solution and dialyzed for 3 days to remove unreacted 3-methylglutaric acid and freeze-dried overnight to obtain a white solid. . The compound was identified by 1 H-NMR. The amounts of reagents used are listed in Table 1 below.
The resulting compound is referred to as methylglutarylated dextran, MGlu-Dex.

1-2-2.疎水性基との反応
得られたMGlu-Dexを蒸留水に溶解させ、そこにn-デシルアミンを加えた。1.0M HCl溶液を用いてpHを7.4に調整した。ここにDMT-MMを加え、アルゴン雰囲気下、室温遮光下で3日間撹拌した。pHを7.4に調整して透析により精製し、一晩凍結乾燥して白色固体を得た。化合物の同定は1H-NMRによって行った。用いた試薬の量を、以下の表2に記載する。
得られた化合物を、MGlu-Dex-C10と称する。
1-2-2. Reaction with hydrophobic group The obtained MGlu-Dex was dissolved in distilled water, and n-decylamine was added thereto. The pH was adjusted to 7.4 using 1.0 M HCl solution. DMT-MM was added thereto, and the mixture was stirred for 3 days under an argon atmosphere and protected from light at room temperature. The pH was adjusted to 7.4, purified by dialysis, and lyophilized overnight to give a white solid. The compound was identified by 1 H-NMR. The amounts of reagents used are listed in Table 2 below.
The resulting compound is referred to as MGlu-Dex-C 10 .

1-2-3.マンナンとジカルボン酸無水物との反応
マンナン(Mw:55000)とLiClをDMFに溶解させ、そこに3-メチルグルタリル酸無水物を加え、120℃、アルゴン雰囲気下で24時間撹拌を行った。ロータリーエバポレーターにより溶媒を減圧留去した後、炭酸水素ナトリウム水溶液で中和し、3日間透析することで未反応の3-メチルグルタリル酸を除去し、一晩凍結乾燥して白色固体を得た。化合物の同定は1H-NMRによって行った。用いた試薬の量を、以下の表3に記載する。
得られた化合物を、メチルグルタリル化マンナン、MGlu-Manと称する。
1-2-3. Reaction of Mannan with Dicarboxylic Anhydride Mannan (Mw: 55000) and LiCl are dissolved in DMF, and 3-methylglutaric anhydride is added to the solution. Stir for hours. After the solvent was distilled off under reduced pressure by a rotary evaporator, neutralized with an aqueous sodium hydrogen carbonate solution and dialyzed for 3 days to remove unreacted 3-methylglutaric acid and freeze-dried overnight to obtain a white solid. . The compound was identified by 1 H-NMR. The amounts of reagents used are listed in Table 3 below.
The resulting compound is referred to as methylglutarylated mannan, MGlu-Man.

1-2-4.疎水性基との反応
得られたMGlu-Manを蒸留水に溶解させ、そこにn-デシルアミンを加えた。1.0M HCl溶液を用いてpHを8.0に調整した。ここにDMT-MMを加え、アルゴン雰囲気下、室温遮光下で3日間撹拌した。pHを8.0に調整して透析により精製し、一晩凍結乾燥して白色固体を得た。化合物の同定は1H-NMRによって行った。用いた試薬の量を、以下の表4に記載する。
得られた化合物を、MGlu-Man-C10と称する。
1-2-4. Reaction with hydrophobic group The obtained MGlu-Man was dissolved in distilled water, and n-decylamine was added thereto. The pH was adjusted to 8.0 using 1.0 M HCl solution. DMT-MM was added thereto, and the mixture was stirred for 3 days under an argon atmosphere and protected from light at room temperature. The pH was adjusted to 8.0 and purified by dialysis, and lyophilized overnight to give a white solid. The compound was identified by 1 H-NMR. The amounts of reagents used are listed in Table 4 below.
The resulting compound is referred to as MGlu-Man-C 10 .

1-3.分析
1-3-1.デキストランを用いたpH応答性物質の分析
まず、MGlu-Dexの合成について、用いた試薬の量、収量、収率及びMGlu基の導入率を以下の表1に示す。
3-メチルグルタリル酸無水物の量を調整することで、MGlu基の導入率の異なる2種類の多糖を合成できたことがわかる。
化合物の同定を行った1H-NMRチャートを、表1のAのものを図1Aに、表1のBのものを図1Bにそれぞれ示す。ピークa〜fは、デキストランがもつプロトンのピークである。これに、MGlu基の持つプロトンのピークg及びhが併せて存在することから、多糖がメチルグルタリル化されたことが確認できる。
なお、MGlu基の導入率については、b〜fの積分値を基準にとり、その値に対するg及びhの積分値から算出した。すなわち、これは、多糖が有するヒドロキシル基の何%にメチルグルタリル基が導入されたかを表す。
1-3.Analysis
1-3-1. Analysis of pH-responsive substance using dextran First, the amount, yield, yield, and MGlu group introduction rate of reagents used for the synthesis of MGlu-Dex are shown in Table 1 below.
It can be seen that by adjusting the amount of 3-methylglutaryl anhydride, two types of polysaccharides with different MGlu group introduction rates could be synthesized.
1 H-NMR charts for identifying the compounds are shown in FIG. 1A for A in Table 1 and in FIG. 1B for B in Table 1. Peaks a to f are proton peaks of dextran. Since the proton peaks g and h of the MGlu group are also present, it can be confirmed that the polysaccharide is methylglutarylated.
The MGlu group introduction rate was calculated from the integrated values of g and h with respect to the integrated values of b to f. That is, this represents what percentage of the hydroxyl group that the polysaccharide has introduced the methylglutaryl group.

次に、MGlu-Dex-C10の合成について、用いた試薬の量、収量、収率、並びにMGlu基及び疎水性基(以下、アンカーともいう)の導入率を以下の表2に示す。
表1で示した2種類のMGlu-DexA、Bに、それぞれアンカーを導入した。
化合物の同定を行った1H-NMRチャートを、表2のAのものを図2Aに、表2のBのものを図2Bに示す。
デキストランのもつプロトンのピーク(a〜f)、MGlu基のピーク(g、h)に加え、新たにi〜kのデシル鎖に由来するプロトンのピークが確認されたことから、アンカーが導入されたことが確認できた。
なお、アンカーの導入率は、MGlu基のピーク(g、h)の積分値を基準にとり、その値に対するi〜kの積分値から算出した。すなわち、これは、メチルグルタリル酸に由来するカルボキシル基の何%に疎水性基が導入されたかを表す。
以下において、表2のAのpH応答性物質をMGlu70-Dex-C10、BのものをMGlu24-Dex-C10と称する。
Next, the synthesis of MGlu-Dex-C 10, the amount of reagents used, the yield, the yield, and mGlu group and a hydrophobic group shows the introduction ratio (hereinafter, also referred to as anchors) in Table 2 below.
Anchors were introduced into the two types of MGlu-Dex A and B shown in Table 1, respectively.
A 1 H-NMR chart for identifying the compounds is shown in FIG. 2A for A in Table 2 and in FIG. 2B for B in Table 2.
In addition to the proton peaks (af) and MGlu group peaks (g, h) of dextran, the proton peaks derived from the decyl chains of i to k were confirmed, and the anchor was introduced. I was able to confirm.
The anchor introduction rate was calculated from the integrated values of i to k with respect to the integrated value of the peak (g, h) of the MGlu group. That is, this represents what percentage of the carboxyl group derived from methylglutaric acid was introduced with a hydrophobic group.
In the following, the pH-responsive substance of A in Table 2 is referred to as MGlu 70 -Dex-C 10 , and the one of B is referred to as MGlu 24 -Dex-C 10 .

1-3-2.マンナンを用いたpH応答性物質の分析
MGlu-Manの合成について、用いた試薬の量、収量、収率及びMGlu基の導入率を以下の表3に示す。
1-3-1と同様に、3-メチルグルタリル酸無水物の量を調整することで、MGlu基の導入率の異なる2種類の多糖を合成できたことがわかる。
化合物の同定を行った1H-NMRチャートを、表3のCのものを図3Aに、表3のDのものを図3Bにそれぞれ示す。ピークa〜fは、マンナンのもつプロトンのピークである。これに、MGlu基の持つプロトンのピークg及びhが併せて存在することから、多糖がメチルグルタリル化されたことが確認できる。
なお、MGlu基の導入率については、上記と同様に、b〜fの積分値を基準にとり、その値に対するg及びhの積分値から算出した。
1-3-2. Analysis of pH-responsive substances using mannan
For the synthesis of MGlu-Man, the amount, yield, yield, and MGlu group introduction rate of the reagents used are shown in Table 3 below.
Similar to 1-3-1, it was found that by adjusting the amount of 3-methylglutaryl anhydride, two types of polysaccharides with different MGlu group introduction rates could be synthesized.
A 1 H-NMR chart for identifying compounds is shown in FIG. 3A for Table 3C and in FIG. 3B for Table D. Peaks a to f are proton peaks of mannan. Since the proton peaks g and h of the MGlu group are also present, it can be confirmed that the polysaccharide is methylglutarylated.
The MGlu group introduction rate was calculated from the integrated values of g and h with respect to the integrated values of b to f, as described above, in the same manner as described above.

次に、MGlu-Man-C10の合成について、用いた試薬の量、収量、収率並びにMGlu基及びアンカーの導入率を以下の表4に示す。
表4で示した2種類のMGlu-ManA、Bに、それぞれアンカーを導入した。
化合物の同定を行った1H-NMRチャートを、表4のCのものを図4Aに、表4のDのものを表4Bに示す。
これに関しても1-3-1と同様に、マンナンのもつプロトンのピーク(a〜f)、MGlu基のピーク(g、h)に加え、新たにi〜kのデシル鎖に由来するプロトンのピークが確認されたことから、アンカーが導入されたことが確認できた。
なお、アンカーの導入率は、MGlu基のピーク(g、h)の積分値を基準にとり、その値に対するi〜kの積分値から算出した。
以下において、表4のCのものをMGlu57-Man-C10、DのものをMGlu68-Man-C10と称する。
Next, the synthesis of MGlu-Man-C 10, showing the amount of reagent used, the yield, the introduction rate of yield and mGlu group and the anchor in Table 4 below.
Anchors were introduced into the two types of MGlu-Man A and B shown in Table 4, respectively.
A 1 H-NMR chart for identifying the compounds is shown in FIG. 4A for Table 4C and in Table 4B for Table 4D.
Similarly to 1-3-1, in addition to proton peaks (af) and MGlu groups (g, h) of mannan, new proton peaks derived from decyl chains of i to k. It was confirmed that the anchor was introduced.
The anchor introduction rate was calculated from the integrated values of i to k with respect to the integrated value of the peak (g, h) of the MGlu group.
In the following, C in Table 4 is referred to as MGlu 57 -Man-C 10 and D is referred to as MGlu 68 -Man-C 10 .

2.pH応答性リポソームの製造及び分析
1.で作製したpH応答性物質を用いて、pH応答性リポソームを以下のような手順で製造した。また、製造したpH応答性リポソームのpH応答性を評価し、DC2.4細胞内での挙動を検討した。さらに、モデル抗原を内包したpH応答性リポソームをマウスに投与して、生体内での免疫誘導を試みた。
2. Production and analysis of pH-responsive liposomes Using the pH-responsive substance prepared in Step 1, pH-responsive liposomes were produced by the following procedure. Moreover, the pH responsiveness of the produced pH responsive liposome was evaluated, and the behavior in DC2.4 cells was examined. Furthermore, pH-responsive liposomes encapsulating model antigens were administered to mice to try to induce immunity in vivo.

2-1.試薬
卵黄ホスファチジルコリン(EYPC、COATSOME NC-50)は日本油脂より提供された。ローダミン-PE (Rh-PE)はAvanti Polar Lipid社から購入した。パイラニン(Pyranine)は東京化成工業から購入した。DPX (p-キシレン-ビス(N-ピリジニウムブロミド))はInvitrogenから購入した。リン酸水素二ナトリウム(12水和物) (Na2HPO4・12H2O)、Triton X-100はキシダ化学株式会社から購入した。ベンジルペニシリンカリウム、ストレプトマイシン硫酸塩は和光純薬工業より購入した。RPMI-1640液体培地はSigmaより、ウシ胎児血清(FBS)はMP Biomedical, Inc.から購入した。2-メルカプトエタノール、ピルビン酸ナトリウム溶液、Minimum Essential Medium非必須アミノ酸溶液はGIBCOより購入した。OVA(オブアルブミン)、MPL(モノホスホリルリピッドA)はSigmaより購入した。
2-1. Reagents Egg yolk phosphatidylcholine (EYPC, COATSOME NC-50) was provided by Nippon Oil. Rhodamine-PE (Rh-PE) was purchased from Avanti Polar Lipid. Pyranine was purchased from Tokyo Chemical Industry. DPX (p-xylene-bis (N-pyridinium bromide)) was purchased from Invitrogen. Disodium hydrogen phosphate (12 hydrate) (Na 2 HPO 4 · 12H 2 O) and Triton X-100 were purchased from Kishida Chemical Co., Ltd. Benzylpenicillin potassium and streptomycin sulfate were purchased from Wako Pure Chemical Industries. RPMI-1640 liquid medium was purchased from Sigma and fetal bovine serum (FBS) was purchased from MP Biomedical, Inc. 2-mercaptoethanol, sodium pyruvate solution, and Minimum Essential Medium non-essential amino acid solution were purchased from GIBCO. OVA (obalbumin) and MPL (monophosphoryl lipid A) were purchased from Sigma.

2-2.マウス
C57BL/6Nマウスはオリエンタル酵母工業(株)より購入し、通常の施設にて飼育及び維持した。動物実験は、大阪府立大学動物実験規定に基づき行った。
2-2.Mouse
C57BL / 6N mice were purchased from Oriental Yeast Co., Ltd., reared and maintained in normal facilities. The animal experiment was conducted based on the Osaka Prefecture University animal experiment regulations.

2-3.pH応答性リポソームの製造とそのpH応答性評価
2-3-1.MGlu-Dex-C10を保持するpH応答性リポソームの製造
EYPC(10 mg/ml)クロロホルム溶液を所定量採り、ロータリーエバポレーターにより溶媒を除去し薄膜を形成した。MGlu-Dex-C10(10 mg/ml)メタノール溶液を所定量加え、ロータリーエバポレーターにより溶媒を除去し混合薄膜を形成した。その後、4時間真空乾燥することで溶媒を完全に除去した。薄膜の脂質量1.25×10-5molに対して、組成がパイラニン35 mM、DPX 50 mM、Na2HPO4 25 mM、pH 7.4の溶液を480μl加え分散し、バス型超音波照射装置により超音波を2分間照射して薄膜を剥がした。NaOH及びHClを用いてpH7.4に調整した。凍結融解を5回行い、エクストルーダーに膜孔100 nmの膜を挟み、リポソーム溶液を15回通すことによって、リポソーム粒径を100 nmにそろえた。リポソームを、Sepharose4Bを充填させたカラムにより精製した。外相にはPBS溶液pH7.4を使用した。
2-3. Production of pH-responsive liposomes and evaluation of their pH responsiveness
2-3-1. Production of pH-responsive liposomes bearing MGlu-Dex-C 10
A predetermined amount of EYPC (10 mg / ml) chloroform solution was taken, and the solvent was removed by a rotary evaporator to form a thin film. A predetermined amount of MGlu-Dex-C 10 (10 mg / ml) methanol solution was added, and the solvent was removed by a rotary evaporator to form a mixed thin film. Thereafter, the solvent was completely removed by vacuum drying for 4 hours. Add 480 μl of a solution of pyranin 35 mM, DPX 50 mM, Na 2 HPO 4 25 mM, pH 7.4 to the amount of lipid in the thin film of 1.25 x 10 -5 mol and disperse it. Was irradiated for 2 minutes to peel off the thin film. The pH was adjusted to 7.4 using NaOH and HCl. Freezing and thawing were performed 5 times, a membrane with a membrane pore of 100 nm was sandwiched between the extruders, and the liposome solution was passed 15 times to adjust the liposome particle size to 100 nm. Liposomes were purified by a column packed with Sepharose 4B. A PBS solution pH 7.4 was used for the external phase.

2-3-2. MGlu-Man-C10を保持するpH応答性リポソームの製造
2-3-2-1. EYPCリポソームの作製
EYPC(10 mg/ml)クロロホルム溶液を所定量採り、ロータリーエバポレーターにより溶媒を除去し薄膜を形成した。その後、4時間真空乾燥することで溶媒を完全に除去した。薄膜の脂質量1.25×10-5molに対して、組成がパイラニン35 mM、DPX 50 mM、Na2HPO4 25 mM、pH 7.4の溶液を480μl加え分散し、バス型超音波照射装置により超音波を2分間照射し薄膜を剥がした。NaOH及びHClを用いてpH7.4に調製した。凍結融解を5回行い、エクストルーダーに膜孔100 nmの膜を挟み、リポソーム溶液を15回通すことによって、リポソーム粒径を100 nmにそろえた。リポソームを、Sepharose4Bを充填させたカラムにより精製した。外相にはPBS溶液pH7.4を使用した。
2-3-2. Production of pH-responsive liposomes retaining MGlu-Man-C 10
2-3-2-1. Preparation of EYPC liposomes
A predetermined amount of EYPC (10 mg / ml) chloroform solution was taken, and the solvent was removed by a rotary evaporator to form a thin film. Thereafter, the solvent was completely removed by vacuum drying for 4 hours. Add 480 μl of a solution of pyranin 35 mM, DPX 50 mM, Na 2 HPO 4 25 mM, pH 7.4 to the amount of lipid in the thin film of 1.25 x 10 -5 mol and disperse it. Was irradiated for 2 minutes to peel off the thin film. The pH was adjusted to 7.4 using NaOH and HCl. Freezing and thawing were performed 5 times, a membrane with a membrane pore of 100 nm was sandwiched between the extruders, and the liposome solution was passed 15 times to adjust the liposome particle size to 100 nm. Liposomes were purified by a column packed with Sepharose 4B. A PBS solution pH 7.4 was used for the external phase.

2-3-2-2. MGlu-Man-C10を保持するリポソームの製造
上記のEYPCリポソーム1mmolに対してMGlu-Man-C10が7.82×10-2 mmolとなるように加えて、pH8.5のPBS 溶液中で1時間静置した。その後、混合溶液を、Sepharose4Bを充填させたカラムで精製した。外相にはPBS溶液pH8.5を使用した。
2-3-2-2. MGlu-Man-C 10 MGlu-Man-C 10 with respect EYPC liposomes 1mmol of Production of liposomes for holding is added to a 7.82 × 10 -2 mmol, pH8. It was left to stand in 5 PBS solution for 1 hour. Thereafter, the mixed solution was purified with a column packed with Sepharose 4B. For the external phase, PBS solution pH 8.5 was used.

2-3-3.脂質の定量
リン脂質の定量は、リン脂質Cテストワコー(和光純薬工業)を用いて、コリンオキシターゼ・DAOS(N-エチル-N-(2-ヒドロキシ-3-スルホプロリル)-3,5-ジメトキシアニリンナトリウム)法によって行った。試料溶液(リポソ―ム溶液)、ブランク溶液及び標準溶液をそれぞれ発色溶液と混合し、37℃で5分間インキュベートした。波長600 nmで試料溶液の吸光度を日本分光(株)製V-560型紫外・可視光光度計を用いて測定し、得られた吸光度から試料溶液中のリン脂質の濃度を決定した。
2-3-3. Determination of lipids Phospholipids can be determined using phospholipid C test Wako (Wako Pure Chemical Industries), choline oxidase DAOS (N-ethyl-N- (2-hydroxy-3-sulfoprolyl)) -3,5-dimethoxyaniline sodium) method. The sample solution (liposome solution), blank solution and standard solution were mixed with the coloring solution and incubated at 37 ° C. for 5 minutes. The absorbance of the sample solution was measured at a wavelength of 600 nm using a V-560 type ultraviolet / visible photometer manufactured by JASCO Corporation, and the phospholipid concentration in the sample solution was determined from the obtained absorbance.

2-3-4.リポソームのpH応答性評価
上記のようにして製造したパイラニン内包pH応答性リポソームから放出されるパイラニンを416 nmの光で励起し、発せられる蛍光を512 nmで測定することにより、pH応答性リポソームのpH及び温度応答性の評価を行った。
石英セル内に、各pHに調製したPBS溶液を加え、蛍光分光光度計内に設置した。表示温度が37℃になったことを確認した後、蛍光分光光度計で石英セル内の脂質濃度が0.02 mMとなるようにリポソーム溶液を各pHに調整したPBSに加えた(最終体積2.5 ml)。10分間インキュベーションした時のパイラニンの放出量を調べた。最後に10%Triton X-100を25μl加えてリポソームを破壊した。そのときの蛍光強度を100%として、各リポソームからの内包物の放出割合を求めた。
蛍光強度の測定は、分光蛍光光度計(JASCO製 FP-6200、FP-6500)及び温度コントローラ(JASCO製 ETC-272T)を用いて37℃で行った。
2-3-4. Evaluation of pH response of liposomes Pyranin released from the pyranin-encapsulated pH-responsive liposomes produced as described above is excited with 416 nm light, and the emitted fluorescence is measured at 512 nm. The pH and temperature responsiveness of the pH responsive liposomes were evaluated.
A PBS solution adjusted to each pH was added to the quartz cell and placed in a fluorescence spectrophotometer. After confirming that the indicated temperature was 37 ° C, the liposome solution was added to PBS adjusted to each pH so that the lipid concentration in the quartz cell was 0.02 mM with a fluorescence spectrophotometer (final volume 2.5 ml). . The amount of pyranin released after 10 minutes of incubation was examined. Finally, 25 μl of 10% Triton X-100 was added to break the liposomes. The fluorescence intensity at that time was taken as 100%, and the release rate of inclusions from each liposome was determined.
The fluorescence intensity was measured at 37 ° C. using a spectrofluorometer (FP-6200 and FP-6500 manufactured by JASCO) and a temperature controller (ETC-272T manufactured by JASCO).

2-4. MGlu-Dex-C10を保持するpH応答性リポソームのDC2.4細胞への取り込み評価
2-4-1.細胞培養
マウス由来の樹状細胞の細胞培養株であるDC2.4細胞は、Dr. Rock (Harvard Medical School, USA)及びDr. Kadowaki (Kyoto University, Japan)から提供され、10% FBS、0.1 mg/mlベンジルペニシリンカリウム、0.1 mg/mlストレプトマイシン硫酸塩、2 mM L-グルタミン、0.1 mM MEM非必須アミノ酸溶液及び0.55 mM 2-メルカプトエタノールを含むRPMI-1640培地中、CO2インキュベーター内で、CO2濃度5%、37℃で培養した。
2-4. Evaluation of uptake of pH-responsive liposomes carrying MGlu-Dex-C 10 into DC2.4 cells
2-4-1. Cell culture DC2.4 cells, a cell culture strain of dendritic cells derived from mice, were provided by Dr. Rock (Harvard Medical School, USA) and Dr. Kadowaki (Kyoto University, Japan), CO 2 in RPMI-1640 medium containing 10% FBS, 0.1 mg / ml potassium benzylpenicillin, 0.1 mg / ml streptomycin sulfate, 2 mM L-glutamine, 0.1 mM MEM non-essential amino acid solution and 0.55 mM 2-mercaptoethanol The cells were cultured in an incubator at a CO 2 concentration of 5% at 37 ° C.

2-4-2.パイラニン内包Rh-PEラベル化リポソームの作製
上記と同様のリポソームの製造工程において、ローダミン-PE(0.5 mg/ml)クロロホルム溶液を、各リポソーム構成膜脂質の全脂質量に対して0.1モル%加え、ロータリーエバポレーターで溶媒を除去し薄膜を形成させ、4時間真空乾燥することで溶媒を完全に除去した。それぞれの薄膜の脂質量1.25×10-5molに対して、組成がパイラニン47.5mM、Na2HPO4 25mM、pH7.4の溶液を960μl加え分散し、バス型超音波照射装置により超音波を2分間照射し薄膜を剥がした。凍結融解を5回行い、エクストルーダーに膜孔100 nmの膜を挟み、リポソーム溶液を15回通すことによって、リポソーム粒径を100 nmにそろえた。リポソームを、Sepharose4Bを充填させたカラムにより精製した。外相にはPBS溶液pH7.4を使用した。
2-4-2. Preparation of Pyranine-Encapsulated Rh-PE Labeled Liposomes In the same liposome manufacturing process as above, rhodamine-PE (0.5 mg / ml) chloroform solution was added to the total lipid content of each liposome component membrane lipid. 0.1 mol% was added, and the solvent was removed by a rotary evaporator to form a thin film, followed by vacuum drying for 4 hours to completely remove the solvent. Add 960 μl of a solution of 47.5 mM Pyranin, 25 mM Na 2 HPO 4 and pH 7.4 to the amount of lipid in each thin film of 1.25 x 10 -5 mol. Disperse the ultrasonic waves with a bath-type ultrasonic irradiation device. The thin film was peeled off by irradiation for minutes. Freezing and thawing were performed 5 times, a membrane with a membrane pore of 100 nm was sandwiched between the extruders, and the liposome solution was passed 15 times to adjust the liposome particle size to 100 nm. Liposomes were purified by a column packed with Sepharose 4B. A PBS solution pH 7.4 was used for the external phase.

2-4-3.共焦点レーザー顕微鏡によるリポソームの細胞内挙動の観察
pH応答性リポソームのDC2.4細胞内での動態を、レーザー共焦点顕微鏡にて観察した。DC2.4細胞を松並ガラスボトムディッシュ1穴当たり2×105個になるように撒き、血清含有RPMI培地(2ml)中、37℃で二晩培養した。その後、HBSS (Hanks' Balanced Salt Solution)で細胞を2回洗浄し、血清含有RPMI培地を、リポソーム溶液添加後の全量が2mlとなるように加え、そこへリポソーム溶液を脂質濃度が0.5 mMとなるように加えた(全量2ml)。37℃で4時間インキュベーションすることで、リポソームを細胞に取り込ませた。HBSSで3回洗浄することで、細胞に取り込まれていないリポソームを除去し、新たにHBSSを加えてレーザー共焦点顕微鏡LSM 5 EXCITER(Carl Zeiss)による観察を行った。
2-4-3. Observation of intracellular behavior of liposomes using confocal laser microscope The dynamics of pH-responsive liposomes in DC2.4 cells were observed using a laser confocal microscope. DC2.4 cells were seeded at 2 × 10 5 per well of Matsunami glass bottom dish and cultured in serum-containing RPMI medium (2 ml) at 37 ° C. overnight. Thereafter, the cells were washed twice with HBSS (Hanks' Balanced Salt Solution), and serum-containing RPMI medium was added so that the total volume after addition of the liposome solution was 2 ml, and the liposome solution was added with a lipid concentration of 0.5 mM. (Total volume 2 ml). By incubating at 37 ° C. for 4 hours, the liposome was incorporated into the cells. By washing 3 times with HBSS, liposomes that were not taken up by the cells were removed, HBSS was newly added, and observation was performed with a laser confocal microscope LSM 5 EXCITER (Carl Zeiss).

2-4-2.フローサイトメトリーによるリポソームの細胞への取り込み量の測定
DC2.4細胞を1×105/ウェルとなるように24ウェルプレートに播き、二晩培養した。HBSSで2回洗浄した後、血清含有RPMI培地をリポソーム溶液添加後の全量が1mlとなるように加え、そこへリポソーム溶液を脂質濃度が0.5mMとなるように加えた(全量1ml)。37℃で4時間インキュベーションすることで、リポソームを細胞に取り込ませた。HBSSで3回洗浄したのち、1穴につき300μlのトリプシン水溶液(トリプシン(DIFCO)250 mg、エチレンジアミン四酢酸二ナトリウム(EDTA)1mg、PBS 100 ml)を用いて細胞を剥離し、フローサイトメーター用のチューブに回収した。回収した細胞溶液について、フローサイトメーターBeckman Coulter.XLを用いて細胞の蛍光強度を測定し、細胞へのリポソームの取り込み量を評価した。
2-4-2. Measurement of liposome uptake by flow cytometry
DC2.4 cells were seeded in a 24-well plate at 1 × 10 5 / well and cultured overnight. After washing twice with HBSS, serum-containing RPMI medium was added so that the total amount after addition of the liposome solution was 1 ml, and the liposome solution was added thereto so that the lipid concentration was 0.5 mM (total amount 1 ml). By incubating at 37 ° C. for 4 hours, the liposome was incorporated into the cells. After washing 3 times with HBSS, the cells were detached using 300 μl trypsin aqueous solution (trypsin (DIFCO) 250 mg, ethylenediaminetetraacetate disodium (EDTA) 1 mg, PBS 100 ml) per well, and used for a flow cytometer. Collected in a tube. With respect to the collected cell solution, the fluorescence intensity of the cells was measured using a flow cytometer Beckman Coulter.XL, and the amount of liposomes taken into the cells was evaluated.

2.5. MGlu-Dex-C10を保持するリポソームのマウスへの皮下投与による抗腫瘍効果
2-5-1.抗原内包リポソームの調製
抗原としてオブアルブミン(OVA)を内包するpH応答性リポソーム及び対照のリポソームを調製した。
EYPC(10 mg/ml)クロロホルム溶液を所定量採り、脂質1mol当たり4gのモノホスホリルリピッドA(MPL)をアジュバントとして加え、ロータリーエバポレーターにより溶媒を除去し薄膜を形成した。MGlu-Dex-C10(10 mg/ml)メタノール溶液を所定量加え、ロータリーエバポレーターにより溶媒を除去し混合薄膜を形成した。その後、4時間真空乾燥することで溶媒を完全に除去した。
対照としてのEYPCリポソームについて、EYPC(10 mg/ml)クロロホルム溶液を所定量加え、さらに脂質1mol当たり4gのMPLをアジュバントとして加え、ロータリーエバポレーターで溶媒を除去し薄膜を形成した。その後、4時間真空乾燥することで溶媒を完全に除去した。
それぞれの薄膜に、4mg/mlのオブアルブミン(OVA)のPBS溶液を適量加え、超音波照射によって脂質膜を剥がした。凍結融解を5回行い、Sepharose4Bカラムにより抗原内封リポソームの精製を行った。脂質の定量はテストワコーにより行った。
2.5. Antitumor effects of liposomes bearing MGlu-Dex-C 10 administered subcutaneously to mice
2-5-1. Preparation of antigen-encapsulated liposomes A pH-responsive liposome encapsulating ovalbumin (OVA) as an antigen and a control liposome were prepared.
A predetermined amount of EYPC (10 mg / ml) chloroform solution was taken, 4 g of monophosphoryl lipid A (MPL) per 1 mol of lipid was added as an adjuvant, and the solvent was removed by a rotary evaporator to form a thin film. A predetermined amount of MGlu-Dex-C 10 (10 mg / ml) methanol solution was added, and the solvent was removed by a rotary evaporator to form a mixed thin film. Thereafter, the solvent was completely removed by vacuum drying for 4 hours.
For EYPC liposomes as a control, a predetermined amount of EYPC (10 mg / ml) chloroform solution was added, and 4 g of MPL per 1 mol of lipid was added as an adjuvant, and the solvent was removed with a rotary evaporator to form a thin film. Thereafter, the solvent was completely removed by vacuum drying for 4 hours.
An appropriate amount of 4 mg / ml ovalbumin (OVA) in PBS was added to each thin film, and the lipid film was peeled off by ultrasonic irradiation. Freezing and thawing was performed 5 times, and the antigen-encapsulated liposome was purified using a Sepharose 4B column. Lipid quantification was performed by Test Wako.

2-5-2.マウスへのリポソームの皮下注射による腫瘍退縮実験
マウス1匹当たりに、OVAを抗原として発現する癌細胞であるE.G7-OVA細胞を1×106個、マウス左側部に担癌した。癌細胞の接種から7日後に100μgのOVAを含む各リポソームをマウス右側部に皮下投与し(各群4匹のマウス)、癌細胞の接種から14日後にも同様にOVAを含む各リポソームをマウス右側部に皮下投与した。その間、腫瘍サイズを測定した。
2-5-2. Tumor regression experiment by subcutaneous injection of liposomes into mice For each mouse, 1 × 10 6 E.G7-OVA cells, which are cancer cells expressing OVA as an antigen, on the left side of the mouse I took cancer. Seven days after cancer cell inoculation, each liposome containing 100 μg of OVA was subcutaneously administered to the right side of the mouse (4 mice in each group), and each liposome containing OVA was similarly administered 14 days after cancer cell inoculation. It was administered subcutaneously on the right side. Meanwhile, tumor size was measured.

2-6.結果
2-6-1.MGlu-Dex-C10を保持するpH応答性リポソームのpH応答性の評価
MGlu70-Dex-C10及びMGlu24-Dex-C10を保持し、パイラニンを内包するpH応答性リポソーム(以下、それぞれMGlu70-Dexリポソーム、MGlu24-Dexリポソームともいう)のパイラニン放出に対するpHの影響について検討した。
製造したMGlu70-Dexリポソーム及びMGlu24-Dexリポソームは、脂質とpH応答性物質との重量比(w/w)が以下のものである。
対照:EYPC/ MGlu70-Dex-C10 =10/0
実施例1:EYPC/ MGlu70-Dex-C10 =8/2
実施例2:EYPC/ MGlu70-Dex-C10 =7/3
実施例3:EYPC/ MGlu70-Dex-C10 =6/4
実施例4:EYPC/ MGlu70-Dex-C10 =5/5
実施例5:EYPC/ MGlu24-Dex-C10 =8/2
実施例6:EYPC/ MGlu24-Dex-C10 =7/3
実施例7:EYPC/ MGlu24-Dex-C10 =6/4
2-6.Result
2-6-1. Evaluation of pH responsiveness of pH-responsive liposomes bearing MGlu-Dex-C 10
PH for release of pyranin of pH-responsive liposomes that retain MGlu 70 -Dex-C 10 and MGlu 24 -Dex-C 10 and encapsulate pyranin (hereinafter also referred to as MGlu 70 -Dex liposome and MGlu 24 -Dex liposome, respectively) The effect of was examined.
The produced MGlu 70 -Dex liposome and MGlu 24 -Dex liposome have the following weight ratio (w / w) of lipid to pH-responsive substance.
Control: EYPC / MGlu 70 -Dex-C 10 = 10/0
Example 1: EYPC / MGlu 70- Dex-C 10 = 8/2
Example 2: EYPC / MGlu 70- Dex-C 10 = 7/3
Example 3: EYPC / MGlu 70- Dex-C 10 = 6/4
Example 4: EYPC / MGlu 70- Dex-C 10 = 5/5
Example 5: EYPC / MGlu 24 -Dex-C 10 = 8/2
Example 6: EYPC / MGlu 24 -Dex-C 10 = 7/3
Example 7: EYPC / MGlu 24 -Dex-C 10 = 6/4

上記の対照、MGlu70-Dexリポソーム及びMGlu24-Dexリポソームを各pHにおいて37℃で10分間インキュベーションしたときのパイラニン放出率の経時変化を、図5A〜Hに示す(それぞれ、順に対照及び実施例1〜7に対応する)。
なお、測定における脂質濃度は、2×10-5Mであった。
The changes over time in the release rate of pyranin when the above control, MGlu 70 -Dex liposome and MGlu 24 -Dex liposome were incubated at 37 ° C. for 10 minutes at each pH are shown in FIGS. 1 to 7).
The lipid concentration in the measurement was 2 × 10 −5 M.

pH応答性物質を保持していない対照のリポソーム(EYPCリポソーム)では、pHが変化しても内包物がリポソームから放出されない。このことから、リポソーム自体はpH応答性能がないことが分かる。
一方、pH応答性物質を保持するpH応答性リポソームはそれぞれ、高pH条件下では内包物が放出されないのに対し、pHが低下するとリポソームからの内包物の放出が見られる。これは、リポソーム表面のMGlu鎖のカルボキシル基がpH低下に伴いプロトン化することで、リポソーム膜の不安定化が誘起され、内包物の放出が起こったと考えられる。
また、MGlu70-DexリポソームとMGlu24-Dexリポソームにおいて、同じ脂質:pH応答性物質の重量比のものでは、MGlu70-Dexリポソームのほうがより高いpHにおいて内包物が放出されることがわかる。これは、リポソームを修飾しているカルボキシル基の量の違いによるか、又はMGlu70-DexリポソームとMGlu24-Dexリポソームの側鎖のカルボキシル基のpKa値が異なっていることによるのではないかと考えられる。
In the control liposome (EYPC liposome) that does not retain the pH-responsive substance, the inclusion is not released from the liposome even when the pH changes. This shows that the liposome itself has no pH response performance.
On the other hand, each of the pH-responsive liposomes holding the pH-responsive substance does not release the inclusions under high pH conditions, whereas the inclusion is released from the liposomes when the pH is lowered. This is thought to be because the carboxyl group of the MGlu chain on the liposome surface was protonated as the pH decreased, leading to destabilization of the liposome membrane and release of the inclusion.
In addition, in the MGlu 70 -Dex liposome and the MGlu 24 -Dex liposome having the same weight ratio of lipid: pH responsive substance, it can be seen that the inclusion is released at a higher pH in the MGlu 70 -Dex liposome. This may be due to the difference in the amount of carboxyl groups modifying the liposome, or due to the difference in the pKa values of the side chain carboxyl groups of MGlu 70 -Dex liposome and MGlu 24 -Dex liposome. It is done.

次に、それぞれのリポソームの10分後のパイラニン放出率(%)をpHに対してプロットし、各リポソームのpH応答性を比較した。そのグラフを図6A及びBに示す。図6AがMGlu70-Dexリポソーム、図6BがMGlu24-Dexリポソームについてのグラフである。
なお、測定における脂質濃度は、2×10-5Mであった。
この結果から、リポソーム膜脂質に対するMGlu-Dex-C10の割合を変化させることで、得られるリポソームが内包物を放出し始めるpHが異なることが分かる。これは、リポソームに存在するカルボキシル基の量が異なるので、リポソーム膜を不安定化できるpH領域が違うからだと考えられる。
Next, the pyranin release rate (%) after 10 minutes of each liposome was plotted against pH, and the pH responsiveness of each liposome was compared. The graphs are shown in FIGS. 6A and 6B. FIG. 6A is a graph for MGlu 70 -Dex liposomes, and FIG. 6B is a graph for MGlu 24 -Dex liposomes.
The lipid concentration in the measurement was 2 × 10 −5 M.
This result, by changing the proportion of MGlu-Dex-C 10 for the liposome membrane lipids, the resulting pH liposomes start to release the inclusions differing be seen. This is presumably because the amount of carboxyl groups present in the liposomes is different, so that the pH range in which the liposome membrane can be destabilized is different.

2-6-2. MGlu-Man-C10を保持するpH応答性リポソームのpH応答性の評価
MGlu57-Man-C10及びMGlu68-Man-C10を保持するパイラニン内包リポソーム(以下、それぞれMGlu57-Manリポソーム及びMGlu68-Manリポソームともいう)のパイラニン放出に対するpHの影響について検討した。
製造したMGlu57-Manリポソーム及びMGlu68-Manリポソームは、脂質とpH応答性物質との重量比(w/w)が以下のものである。
対照:EYPC/ MGlu57-Man-C10 =10/0
実施例8:EYPC/ MGlu57-Man-C10 =1/5
実施例9:EYPC/ MGlu68-Man-C10 =1/5
2-6-2. Evaluation of pH responsiveness of pH-responsive liposomes bearing MGlu-Man-C 10
The effect of pH on the pyranin release of pyranin-encapsulated liposomes retaining MGlu 57 -Man-C 10 and MGlu 68 -Man-C 10 (hereinafter also referred to as MGlu 57 -Man liposome and MGlu 68 -Man liposome, respectively) was examined.
The manufactured MGlu 57 -Man liposome and MGlu 68 -Man liposome have the following weight ratio (w / w) of lipid to pH-responsive substance.
Control: EYPC / MGlu 57 -Man-C 10 = 10/0
Example 8: EYPC / MGlu 57- Man-C 10 = 1/5
Example 9: EYPC / MGlu 68- Man-C 10 = 1/5

上記のMGlu57-Manリポソーム及びMGlu68-Manリポソームを各pHにおいて37℃で10分インキュベーションしたときのパイラニン放出率の経時変化を、図7A及びBにそれぞれ示す。
なお、測定における脂質濃度は、2×10-5Mであった。
FIGS. 7A and 7B show the changes over time in the release rate of pyranin when the above MGlu 57 -Man liposome and MGlu 68 -Man liposome were incubated at 37 ° C. for 10 minutes at each pH.
The lipid concentration in the measurement was 2 × 10 −5 M.

pH応答性物質を保持するpH応答性リポソームはそれぞれ高pH条件下では内包物が放出されないのに対し、pHが低下するとリポソームからの内包物の放出が見られる。これは、2-6-1でも述べたように、リポソーム表面のMGlu鎖のカルボキシル基がpH低下に伴いプロトン化することで、リポソーム膜の不安定化が誘起され、内包物の放出が起こったと考えられる。   Each of the pH-responsive liposomes retaining the pH-responsive substance does not release the inclusion under high pH conditions, whereas the inclusion is released from the liposome when the pH is lowered. As described in 2-6-1, this is because the carboxyl group of the MGlu chain on the liposome surface is protonated as the pH decreases, leading to instability of the liposome membrane and the release of inclusions. Conceivable.

次に、それぞれのリポソームの10分後のパイラニン放出率(%)をpHに対してプロットし、各リポソームのpH応答性を比較した。その結果を図8に示す。MGlu57-Manリポソーム及びMGlu68-Manリポソームは、それぞれのpHによって、その放出率に大きな変化は見られず、どちらもpH6付近で内包物の放出が見られ始めた。どちらのリポソームも、カルボキシル基のプロトン化によって同程度の疎水度を持つためだと考えられる。   Next, the pyranin release rate (%) after 10 minutes of each liposome was plotted against pH, and the pH responsiveness of each liposome was compared. The result is shown in FIG. MGlu57-Man liposomes and MGlu68-Man liposomes did not show any significant changes in the release rate depending on their pH, and both began to release inclusions at around pH 6. Both liposomes are thought to have the same degree of hydrophobicity due to protonation of the carboxyl group.

2-6-3. MGlu-Dex-C10を保持するpH応答性リポソームのDC2.4細胞内での挙動
2-6-1のMGlu-Dex-C10リポソームのpH応答性評価の結果から、細胞内エンドソームのpH領域であるpH5〜6付近で本発明のリポソームがpH応答性を示すことが明らかになった。そこで、DC2.4細胞を用いて、モデル低分子薬物であるパイラニンの細胞質内への輸送について調べた。
2-6-3. Behavior of pH-responsive liposomes carrying MGlu-Dex-C 10 in DC2.4 cells
From the results of the pH responsiveness evaluation of MGlu-Dex-C 10 liposome of 2-6-1, it is clarified that the liposome of the present invention exhibits pH responsiveness in the vicinity of pH 5-6 which is the pH region of intracellular endosome. It was. Therefore, we investigated the transport of pyranin, a model small molecule drug, into the cytoplasm using DC2.4 cells.

パイラニンを内包した種々のRh-PEラベル化リポソームを作製し、DC2.4細胞の培養液に加えて、その取り込みを共焦点レーザー顕微鏡で観察した。また、フローサイトメーターによりリポソームの取り込み量を評価した。
なお、作製したRh-PEラベル化リポソームの脂質とpH応答性物質との重量比(w/w)は、次のとおりである:
対照(EYPC):EYPC/ MGlu70-Dex-C10 =10/0
EYPC/ MGlu70-Dex-C10又はMGlu24-Dex-C10 =9/1
EYPC/ MGlu70-Dex-C10又はMGlu24-Dex-C10 =8/2
EYPC/ MGlu70-Dex-C10又はMGlu24-Dex-C10 =7/3
EYPC/ MGlu70-Dex-C10又はMGlu24-Dex-C10 =6/4
EYPC/ MGlu70-Dex-C10又はMGlu24-Dex-C10 =5/5
EYPC/ MGlu24-Dex-C10又はMGlu24-Dex-C10 =8/2
EYPC/ MGlu24-Dex-C10又はMGlu24-Dex-C10 =7/3
EYPC/ MGlu24-Dex-C10又はMGlu24-Dex-C10 =6/4
Various Rh-PE-labeled liposomes encapsulating pyranin were prepared and added to the culture solution of DC2.4 cells, and the uptake thereof was observed with a confocal laser microscope. In addition, the amount of liposome uptake was evaluated using a flow cytometer.
The weight ratio (w / w) between the lipid and pH-responsive substance of the prepared Rh-PE labeled liposome is as follows:
Control (EYPC): EYPC / MGlu 70 -Dex-C 10 = 10/0
EYPC / MGlu 70 -Dex-C 10 or MGlu 24 -Dex-C 10 = 9/1
EYPC / MGlu 70 -Dex-C 10 or MGlu 24 -Dex-C 10 = 8/2
EYPC / MGlu 70 -Dex-C 10 or MGlu 24 -Dex-C 10 = 7/3
EYPC / MGlu 70 -Dex-C 10 or MGlu 24 -Dex-C 10 = 6/4
EYPC / MGlu 70 -Dex-C 10 or MGlu 24 -Dex-C 10 = 5/5
EYPC / MGlu 24 -Dex-C 10 or MGlu 24 -Dex-C 10 = 8/2
EYPC / MGlu 24 -Dex-C 10 or MGlu 24 -Dex-C 10 = 7/3
EYPC / MGlu 24 -Dex-C 10 or MGlu 24 -Dex-C 10 = 6/4

対照のEYPCリポソームと各MGlu70-Dex-C10リポソーム、及び対照のEYPCリポソームと各MGlu24-Dex-C10リポソームの共焦点レーザー顕微鏡での観察結果を、それぞれ図9A及びBに示す。
Rh-PEの蛍光については、いずれのリポソームで処理した細胞においても蛍光が輝点状に観察される。このことから、すべてのリポソームがDC2.4細胞内に取り込まれたことが示唆される。
次に、パイラニンの蛍光は、細胞全体に広がって見える。特に、MGlu-Dex-C10リポソームとインキュベートした細胞では、対照リポソームとインキュベートした細胞よりも強い蛍光が観察される。これはリポソームに内包されたパイラニンがエンドソーム内から細胞質中に放出されたことを示しており、MGlu-Dex-C10リポソームが、対照リポソームと比較して、より効率良く内包物を運搬していると考えられる。
FIGS. 9A and 9B show the observation results of the control EYPC liposome and each MGlu 70 -Dex-C 10 liposome, and the control EYPC liposome and each MGlu 24 -Dex-C 10 liposome with a confocal laser microscope, respectively.
Regarding the fluorescence of Rh-PE, the fluorescence is observed in the form of bright spots in cells treated with any liposome. This suggests that all liposomes were taken up into DC2.4 cells.
The pyranin fluorescence then appears to spread throughout the cell. In particular, stronger fluorescence is observed in cells incubated with MGlu-Dex-C 10 liposomes than in cells incubated with control liposomes. This indicates that the pyranin encapsulated in the liposomes was released from the endosome into the cytoplasm, and the MGlu-Dex-C 10 liposomes carry the inclusion more efficiently than the control liposomes. it is conceivable that.

図10Aは、対照のEYPCリポソームと上記の各MGlu70-Dex-C10リポソームの細胞取込み量を、図10Bは、対照のEYPCリポソームと上記の各MGlu24-Dex-C10リポソームの細胞取込み量を、それぞれフローサイトメーターを用いて調べた結果であり、EYPCリポソームでの平均蛍光強度を基準として相対値を示す。
Rh-PEの蛍光強度は、どのMGlu-Dex-C10リポソームにおいても1以上の値を示している。このことから、MGlu-Dex-C10リポソームは、EYPCリポソームと比較してより多く細胞に取り込まれたことが示唆される。これは、MGlu-Dex-C10の側鎖のカルボキシル基が、DC2.4細胞上に発現している負電荷を認識するスカベンジャーレセプターに認識され、取り込みが促進されたのではないかと考えられる。
また、MGlu-Dex-C10リポソームは、pH応答性物質の含有率が増えると、細胞への取り込み量が増大した。これは、リポソーム表面にカルボキシル基が多くなったため、よりレセプターに認識されやすくなり、取り込み量が増大したからではないかと考えられる。
FIG. 10A shows the amount of cellular uptake of the control EYPC liposome and each of the above MGlu 70 -Dex-C 10 liposomes, and FIG. 10B shows the amount of cellular uptake of the control EYPC liposome and each of the above MGlu 24 -Dex-C 10 liposomes. Are the results of examining each using a flow cytometer, and show relative values based on the average fluorescence intensity in EYPC liposomes.
The fluorescence intensity of Rh-PE shows a value of 1 or more in any MGlu-Dex-C 10 liposome. Therefore, MGlu-Dex-C 10 liposomes, suggesting taken into more cells as compared to EYPC liposomes. This carboxyl group of the side chain of MGlu-Dex-C 10 is recognized in the recognizing scavenger receptor negative charge expressed on DC2.4 cells is believed that it would be incorporation was promoted.
Further, MGlu-Dex-C 10 liposome, the content of the pH-responsive substance is increased, uptake into cells was increased. This is thought to be because the amount of carboxyl groups on the liposome surface is more easily recognized by the receptor and the amount of uptake is increased.

2-6-4. MGlu-Dex-C10を保持するpH応答性リポソームのマウスへの皮下注射による腫瘍の退縮
モデル抗原としてオボアルブミンを内包させたMGlu-Dex-C10リポソームを、OVA発現癌細胞を接種したC57BL/6マウスに投与することで、実際に免疫が誘導されるかどうかを調べた。癌細胞を播種した日を0日目とし、7日目及び14日目に所定量のリポソームを皮下投与した。その間、腫瘍サイズの大きさを観察した。種々のリポソームを投与した場合の腫瘍退縮実験の結果を、図11A〜Dに示す。
図11Aは、リポソームを投与しなかった癌細胞接種マウスにおける腫瘍サイズの変化を示す。図11Bは、OVAを内包する対照のEYPCリポソーム、図11Cは、OVAを内包するMGlu70-Dex-C10リポソーム、図11Dは、OVAを内包するMGlu24-Dex-C10リポソームをそれぞれ投与した場合の癌細胞接種マウスにおける腫瘍サイズの変化を示す。
2-6-4. Tumor regression by subcutaneous injection of MGlu-Dex-C 10- retaining liposomes into mice MGlu-Dex-C 10 liposomes encapsulating ovalbumin as a model antigen It was examined whether immunity was actually induced by administration to C57BL / 6 mice inoculated with cells. The day when the cancer cells were seeded was defined as day 0, and a predetermined amount of liposome was administered subcutaneously on days 7 and 14. Meanwhile, the size of the tumor was observed. The results of tumor regression experiments when various liposomes are administered are shown in FIGS.
FIG. 11A shows the change in tumor size in cancer cell inoculated mice that did not receive liposomes. FIG. 11B is a control EYPC liposome containing OVA, FIG. 11C is a MGlu 70 -Dex-C 10 liposome containing OVA, and FIG. 11D is a MGlu 24 -Dex-C 10 liposome containing OVA. The change of the tumor size in the cancer cell inoculated mouse of the case is shown.

何も処理をしなかったマウスは日ごとに腫瘍体積の増大がみられた(図11A)。また、EYPCリポソームを投与したマウスでは、一時的に腫瘍の抑制がみられたが、再度腫瘍体積の増大が確認された(図11B)。
一方、MGlu70-Dex-C10リポソーム及びMGlu24-Dex-C10リポソームを投与したマウスでは、投与後に明らかな腫瘍の縮退が確認され、中には腫瘍が消失したマウスもいることが分かる(図11C及びD)。この腫瘍成長抑制効果のメカニズムについては、これらのリポソームが抗原タンパク質を細胞質内に送達したことで、MHCクラスIを介してキラーT細胞の活性化が起こり、OVAを発現した腫瘍細胞の成長を阻害したことによる細胞性免疫の効果だと考えられる。また液性免疫だけでなく細胞性免疫も活性化されたことによる効果も考えられる。
Mice that received no treatment showed an increase in tumor volume from day to day (FIG. 11A). In addition, in mice administered with EYPC liposomes, tumor suppression was temporarily observed, but an increase in tumor volume was confirmed again (FIG. 11B).
On the other hand, in the mice administered with MGlu 70 -Dex-C10 liposome and MGlu 24 -Dex-C10 liposome, it was confirmed that the tumor was clearly degenerated after the administration, and some of the mice disappeared (FIG. 11C). And D). Regarding the mechanism of this tumor growth-inhibiting effect, these liposomes delivered antigen proteins into the cytoplasm, leading to activation of killer T cells via MHC class I and inhibiting the growth of tumor cells that expressed OVA. This is thought to be the effect of cellular immunity. Moreover, the effect by having activated not only humoral immunity but cellular immunity is also considered.

これらのデータをまとめたものを図12に示す。OVAを内包するMGlu70-Dex-C10リポソーム及びMGlu24-Dex-C10リポソームを投与したマウスの腫瘍の退縮はほぼ同じ時期に起こったので、これらのリポソームが同程度の作用を及ぼしていることがわかる。MGlu70-Dex-C10リポソームとMGlu24-Dex-C10リポソームとでは内包物の放出が起こるpH領域は異なるものの、in vivoでは内包物が十分に細胞質内に放出されると考えられる。 A summary of these data is shown in FIG. Tumor regression in mice administered MGlu 70 -Dex-C 10 liposomes and MGlu 24 -Dex-C 10 liposomes encapsulating OVA occurred at approximately the same time, so these liposomes have similar effects I understand that. Although the pH region where the inclusion is released differs between the MGlu 70 -Dex-C 10 liposome and the MGlu 24 -Dex-C 10 liposome, it is considered that the inclusion is sufficiently released into the cytoplasm in vivo.

これらの結果から、本発明のpH応答性リポソームは、pH応答性を示し、弱酸性環境において内包物を放出することが確認できた。また、本発明のpH応答性リポソームは、樹状細胞に効率的に取り込まれ、内包物を効率よく細胞内に送達すること、及び抗原タンパク質を内包した本発明のpH応答性リポソームは、癌化したマウスに投与することで、免疫誘導により腫瘍を退縮させることがわかった。   From these results, it was confirmed that the pH-responsive liposome of the present invention exhibited pH responsiveness and released inclusions in a weakly acidic environment. Further, the pH-responsive liposome of the present invention is efficiently taken up by dendritic cells to efficiently deliver inclusions into the cell, and the pH-responsive liposome of the present invention encapsulating an antigen protein is cancerated. It was found that the tumor was regressed by inducing immunity when administered to mice.

Claims (7)

少なくとも1つのカルボキシル基を有するカルボキシル基含有多糖由来部分と疎水性部分とを有するpH応答性物質をリポソーム膜に保持してなるpH応答性リポソーム。   A pH-responsive liposome comprising a pH-responsive substance having a carboxyl group-containing polysaccharide-derived portion having at least one carboxyl group and a hydrophobic portion held in a liposome membrane. カルボキシル基含有多糖由来部分が、生体由来多糖を用いて得られるカルボキシル基含有半合成多糖に由来し、生体由来多糖が、デンプン、アミロース、アミロペクチン、セルロース、ペクチン、キシラン、マンナン、ガラクタン、デキストラン、デキストリン、シクロデキストリン、キチン、ヒアルロン酸、コンドロイチン、ペプチドグリカン類、アルギン酸、プルラン、グリコーゲン、レンチナン、ラミナラン、カロース、カードラン、シゾフィランとそれらの派生物からなる群より選択される生体由来多糖である請求項1に記載のリポソーム。   The carboxyl group-containing polysaccharide-derived portion is derived from a carboxyl group-containing semi-synthetic polysaccharide obtained by using a biological polysaccharide, and the biological polysaccharide is starch, amylose, amylopectin, cellulose, pectin, xylan, mannan, galactan, dextran, dextrin. 2. A polysaccharide derived from a living body selected from the group consisting of cyclodextrin, chitin, hyaluronic acid, chondroitin, peptidoglycan, alginic acid, pullulan, glycogen, lentinan, laminaran, callose, curdlan, schizophyllan and derivatives thereof. The liposome according to 1. カルボキシル基含有多糖由来部分が、生体由来多糖とジカルボン酸とから得られ、ジカルボン酸が、シュウ酸、マロン酸、コハク酸、グルタル酸、2-若しくは3-メチルグルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、o−、m−若しくはp−フタル酸、1,2-、1,3-若しくは1,4-シクロヘキサンジカルボン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、2−ペンテン二酸、メチレンコハク酸、アリルマロン酸、イソプロピリデンコハク酸、2,4−ヘキサジエン二酸及びアセチレンジカルボン酸からなる群より選択される請求項1又は2に記載のリポソーム。   The carboxyl group-containing polysaccharide-derived moiety is obtained from a biological polysaccharide and dicarboxylic acid, and the dicarboxylic acid is oxalic acid, malonic acid, succinic acid, glutaric acid, 2- or 3-methylglutaric acid, adipic acid, pimelic acid, Suberic acid, azelaic acid, sebacic acid, o-, m- or p-phthalic acid, 1,2-, 1,3- or 1,4-cyclohexanedicarboxylic acid, maleic acid, fumaric acid, citraconic acid, mesaconic acid, The liposome according to claim 1 or 2, which is selected from the group consisting of 2-pentenedioic acid, methylene succinic acid, allyl malonic acid, isopropylidene succinic acid, 2,4-hexadiene diacid and acetylenedicarboxylic acid. 疎水性部分が、主鎖の炭素数が6〜22で直鎖状又は分岐鎖状の脂肪族基、及び環状部分の炭素数が合計で19〜29の脂環式基(これらの脂肪族基及び脂環式基は、窒素原子、酸素原子などのヘテロ原子を有してもよく、不飽和結合を含有していてもよい)及びリン脂質に由来する基からなる群より選択される請求項1〜3のいずれか1項に記載のリポソーム。   Hydrophobic part is a linear or branched aliphatic group having 6 to 22 carbon atoms in the main chain, and an alicyclic group having a total of 19 to 29 carbon atoms in the cyclic part (these aliphatic groups And the alicyclic group may have a heteroatom such as a nitrogen atom or an oxygen atom and may contain an unsaturated bond) and a group derived from a phospholipid. The liposome according to any one of 1 to 3. リポソームの膜を構成する脂質とpH応答性物質との重量比が、1:0.01〜10である請求項1〜4のいずれか1項に記載のリポソーム。   The liposome according to any one of claims 1 to 4, wherein the weight ratio of the lipid constituting the membrane of the liposome and the pH-responsive substance is 1: 0.01 to 10. 請求項1〜5のいずれか1項に記載のリポソームと、薬剤とからなるpH応答性薬剤放出システム。   A pH-responsive drug release system comprising the liposome according to any one of claims 1 to 5 and a drug. 薬剤が、抗原である請求項6に記載のpH応答性薬剤放出システム。   The pH-responsive drug release system according to claim 6, wherein the drug is an antigen.
JP2011103692A 2011-05-06 2011-05-06 pH-responsive liposome Active JP5866724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011103692A JP5866724B2 (en) 2011-05-06 2011-05-06 pH-responsive liposome

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011103692A JP5866724B2 (en) 2011-05-06 2011-05-06 pH-responsive liposome

Publications (2)

Publication Number Publication Date
JP2012232949A true JP2012232949A (en) 2012-11-29
JP5866724B2 JP5866724B2 (en) 2016-02-17

Family

ID=47433651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011103692A Active JP5866724B2 (en) 2011-05-06 2011-05-06 pH-responsive liposome

Country Status (1)

Country Link
JP (1) JP5866724B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204925A (en) * 2013-03-28 2013-07-17 江南大学 Synthetic method of general artificial antigen of phthalate plasticizers for immunodetection
JPWO2015079952A1 (en) * 2013-11-29 2017-03-16 テルモ株式会社 Adjuvant composition, vaccine composition containing the same, and method for producing them
JP2019019059A (en) * 2017-07-12 2019-02-07 公立大学法人大阪府立大学 pH-RESPONSIVE LIPOSOME
JP2022073946A (en) * 2020-10-30 2022-05-17 広東丸美生物技術股▲フン▼有限公司 Schizophyllan liposome, and method for preparing and use of the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169801A (en) * 1984-09-12 1986-04-10 Junzo Sunamoto Derivative of naturally occurring polysaccharide and its production
JPS61501897A (en) * 1984-04-19 1986-09-04 ユニバ−シティ・オブ・テネシ−・リサ−チ・コ−ポレ−ション Fusion liposomes and acid-induced fusion method of liposomes
JPH01197431A (en) * 1988-01-30 1989-08-09 Lederle Japan Ltd Liposome including antibiotic
WO1992004887A1 (en) * 1990-09-25 1992-04-02 Kyowa Hakko Kogyo Co., Ltd. Induction of cytotoxic t cell
JPH07126185A (en) * 1993-10-29 1995-05-16 Tonen Corp Liposome having oligosaccharide on surface
WO2006104199A1 (en) * 2005-03-29 2006-10-05 Tokai University Educational System Liposome composition for induction of immunity
JP2007153787A (en) * 2005-12-02 2007-06-21 Otsuka Chemical Co Ltd Sugar chain-modified liposome
JP2009143879A (en) * 2007-12-18 2009-07-02 Konica Minolta Holdings Inc Liposome and x-ray contrast medium
JP2010513354A (en) * 2006-12-19 2010-04-30 ノヴォソム アクチェンゲゼルシャフト Lipids and lipid aggregates containing transfection enhancer elements

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501897A (en) * 1984-04-19 1986-09-04 ユニバ−シティ・オブ・テネシ−・リサ−チ・コ−ポレ−ション Fusion liposomes and acid-induced fusion method of liposomes
JPS6169801A (en) * 1984-09-12 1986-04-10 Junzo Sunamoto Derivative of naturally occurring polysaccharide and its production
JPH01197431A (en) * 1988-01-30 1989-08-09 Lederle Japan Ltd Liposome including antibiotic
WO1992004887A1 (en) * 1990-09-25 1992-04-02 Kyowa Hakko Kogyo Co., Ltd. Induction of cytotoxic t cell
JPH07126185A (en) * 1993-10-29 1995-05-16 Tonen Corp Liposome having oligosaccharide on surface
WO2006104199A1 (en) * 2005-03-29 2006-10-05 Tokai University Educational System Liposome composition for induction of immunity
JP2007153787A (en) * 2005-12-02 2007-06-21 Otsuka Chemical Co Ltd Sugar chain-modified liposome
JP2010513354A (en) * 2006-12-19 2010-04-30 ノヴォソム アクチェンゲゼルシャフト Lipids and lipid aggregates containing transfection enhancer elements
JP2009143879A (en) * 2007-12-18 2009-07-02 Konica Minolta Holdings Inc Liposome and x-ray contrast medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015000367; Journal of controlled release Vol. 130, No. 1, 2008, pp. 77-83 *
JPN6015000368; Drug Delivery System Vol. 23,No. 6, 2008, p.644-653 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204925A (en) * 2013-03-28 2013-07-17 江南大学 Synthetic method of general artificial antigen of phthalate plasticizers for immunodetection
CN103204925B (en) * 2013-03-28 2014-03-26 江南大学 Synthetic method of general artificial antigen of phthalate plasticizers for immunodetection
JPWO2015079952A1 (en) * 2013-11-29 2017-03-16 テルモ株式会社 Adjuvant composition, vaccine composition containing the same, and method for producing them
JP2019019059A (en) * 2017-07-12 2019-02-07 公立大学法人大阪府立大学 pH-RESPONSIVE LIPOSOME
JP2022073946A (en) * 2020-10-30 2022-05-17 広東丸美生物技術股▲フン▼有限公司 Schizophyllan liposome, and method for preparing and use of the same
JP7186268B2 (en) 2020-10-30 2022-12-08 広東丸美生物技術股▲フン▼有限公司 Schizophyllan liposome and its preparation method and use

Also Published As

Publication number Publication date
JP5866724B2 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
Liu et al. Hyaluronic acid-modified cationic lipid–PLGA hybrid nanoparticles as a nanovaccine induce robust humoral and cellular immune responses
Chang et al. Effects of ovalbumin protein nanoparticle vaccine size and coating on dendritic cell processing
Moon et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses
Li et al. Investigation of archaeosomes as carriers for oral delivery of peptides
Espuelas et al. Influence of ligand valency on the targeting of immature human dendritic cells by mannosylated liposomes
Tang et al. Soft materials as biological and artificial membranes
Miura et al. Antigen delivery to antigen-presenting cells for adaptive immune response by self-assembled anionic polysaccharide nanogel vaccines
Kapadia et al. Reduction sensitive PEG hydrogels for codelivery of antigen and adjuvant to induce potent CTLs
CN105792843B (en) Adjuvant composition, vaccine composition containing same, and method for producing same
ES2640060T3 (en) Process to produce a coated fine particle
US9617562B2 (en) Nonviral targeted nanoparticle system for gene transfer and drug delivery
JP5866724B2 (en) pH-responsive liposome
Kapadia et al. Role of linker length and antigen density in nanoparticle peptide vaccine
EP1870091A1 (en) Liposome composition for induction of immunity
JP5069920B2 (en) Mannose 6-phosphate-polyethylene glycol conjugate
Son et al. Recent progress in nanomedicine-mediated cytosolic delivery
Liu et al. A simple self-adjuvanting biomimetic nanovaccine self-assembled with the conjugate of phospholipids and nucleotides can induce a strong cancer immunotherapeutic effect
WO2011025036A1 (en) Particle composition and medicinal composition comprising same
Yan et al. The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome
US20130195962A1 (en) Lipid membrane structure
Berti et al. Reduction-sensitive protein nanogels enhance uptake of model and tumor lysate antigens in vitro by mouse-and human-derived dendritic cells
WO2005089928A1 (en) Kit for extemporaneous preparation of coated fine particles
WO2014157606A1 (en) Crosslinked hydrophobized-polysaccharide nanogel particles and manufacturing method therefor
JP6901127B2 (en) pH responsive liposome
JP2018070539A (en) Particulate carrier comprising positive charge lipid and polysaccharide derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151218

R150 Certificate of patent or registration of utility model

Ref document number: 5866724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250