JP2012232312A - Welding current control method during short circuit period - Google Patents

Welding current control method during short circuit period Download PDF

Info

Publication number
JP2012232312A
JP2012232312A JP2011100324A JP2011100324A JP2012232312A JP 2012232312 A JP2012232312 A JP 2012232312A JP 2011100324 A JP2011100324 A JP 2011100324A JP 2011100324 A JP2011100324 A JP 2011100324A JP 2012232312 A JP2012232312 A JP 2012232312A
Authority
JP
Japan
Prior art keywords
current
value
welding
short circuit
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011100324A
Other languages
Japanese (ja)
Other versions
JP5802048B2 (en
Inventor
Akihiro Ide
章博 井手
Tetsuo Era
哲生 恵良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2011100324A priority Critical patent/JP5802048B2/en
Priority to CN201210114992.1A priority patent/CN102756197B/en
Publication of JP2012232312A publication Critical patent/JP2012232312A/en
Application granted granted Critical
Publication of JP5802048B2 publication Critical patent/JP5802048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve favorable welding quality in arc welding of a consumable electrode even when an angle of advance of a welding torch is large.SOLUTION: When short circuit occurs, a welding current Iw is reduced and maintained at an initial current value Ii, and when an initial period Ti has elapsed, the welding current Iw is increased to a first slope K1, and, when the welding current Iw reaches a reference value Ic, the welding current Iw is increased until arc occurs again at a second slope K2 which is a value smaller than the first slope K1. A welding current value Ia at the time of occurrence of the short circuit is detected, a current difference integral value Si=∫(Ia-Iw)/dt in the initial period Ti is calculated, and the above reference value Ic is automatically set based on this current difference integral value Si. By this means, because the reference value Ic is adjusted to a proper value by the current difference integral value Si which correlates with a size of a droplet, it is possible to achieve favorable welding quality even when the angle of advance is large.

Description

本発明は、短絡期間とアーク期間とを交互に繰り返す消耗電極アーク溶接において、溶滴移行状態を良好にするための短絡期間の溶接電流制御方法に関するものである。   The present invention relates to a welding current control method for a short-circuit period for improving a droplet transfer state in consumable electrode arc welding in which a short-circuit period and an arc period are alternately repeated.

溶接ワイヤを定速で送給すると共に、シールドガスに炭酸ガス、アルゴンガス、炭酸ガスとアルゴンガスとの混合ガス等を使用して溶接を行う消耗電極アーク溶接は、高品質を得ることができ、自動化も容易であることから広く使用されている。このアーク溶接では、溶接ワイヤと母材との間で短絡期間とアーク期間とを交互に繰り返して溶接が行われる場合が多い。アーク期間中に溶接ワイヤの先端が溶融して溶滴を形成し、短絡期間中に溶滴が溶融池に移行する。良好な溶接ビードを形成し、かつ、スパッタの発生量を少なくするためには、短絡期間中の溶接電流を適正値に制御して、溶滴移行を円滑に行わせることが重要である。以下、従来技術における短絡期間の溶接電流制御方法について説明する(例えば、特許文献1参照)。   Consumable electrode arc welding, in which welding wire is fed at a constant speed and welding is performed using carbon dioxide gas, argon gas, a mixed gas of carbon dioxide gas and argon gas, etc. as the shielding gas, can achieve high quality. It is widely used because it is easy to automate. In this arc welding, welding is often performed by alternately repeating a short-circuit period and an arc period between a welding wire and a base material. During the arc period, the tip of the welding wire melts to form droplets, and during the short circuit period, the droplets move to the molten pool. In order to form a good weld bead and reduce the amount of spatter generated, it is important to control the welding current during the short-circuit period to an appropriate value so that droplet transfer can be performed smoothly. Hereinafter, the welding current control method in the short circuit period in the prior art will be described (for example, see Patent Document 1).

図3は、従来技術における消耗電極アーク溶接の電圧・電流波形図である。同図(A)は溶接ワイヤと母材との間に印加される溶接電圧Vwの時間変化を示し、同図(B)は溶接ワイヤから母材へと通電する溶接電流Iwの時間変化を示す。以下、同図を参照して説明する。   FIG. 3 is a voltage / current waveform diagram of consumable electrode arc welding in the prior art. FIG. 4A shows the change over time of the welding voltage Vw applied between the welding wire and the base material, and FIG. 4B shows the change over time of the welding current Iw energized from the welding wire to the base material. . Hereinafter, a description will be given with reference to FIG.

同図において、時刻t1〜t2は短絡期間Tsとなり、時刻t2〜t3はアーク期間となる。短絡期間Tsとアーク期間Taとは、交互に繰り返される。時刻t1において溶接ワイヤ先端に形成された溶滴が溶融池と接触すると短絡状態になる。短絡状態になると、同図(A)に示すように、溶接電圧Vwは数V程度の短絡電圧値に急降下する。溶接電流Iwは、同図(B)に示すように、予め定めた初期電流値Iiまで傾斜を有して減少し、時刻t1〜t11の予め定めた初期期間Ti中はその値を維持する。時刻t11において初期期間Tiが終了すると、同図(B)に示すように、溶接電流Iwは予め定めたピーク値まで急上昇し、アークが再発生する時刻t2までその値を維持する。   In the figure, time t1 to t2 is a short circuit period Ts, and time t2 to t3 is an arc period. The short circuit period Ts and the arc period Ta are alternately repeated. When the droplet formed at the tip of the welding wire comes into contact with the molten pool at time t1, a short-circuit state occurs. In the short circuit state, the welding voltage Vw rapidly drops to a short circuit voltage value of about several volts as shown in FIG. As shown in FIG. 5B, the welding current Iw decreases with a slope to a predetermined initial current value Ii, and maintains that value during a predetermined initial period Ti from time t1 to t11. When the initial period Ti ends at time t11, the welding current Iw rapidly rises to a predetermined peak value as shown in FIG. 5B, and maintains that value until time t2 when the arc is regenerated.

時刻t2においてアークが再発生すると、同図(A)に示すように、溶接電圧Vwは急上昇して数十V程度のアーク電圧値になる。溶接電流Iwは、同図(B)に示すように、アークが再発生した時点で少し急減した後に、次の短絡が発生するまで徐々に減少する。   When the arc is regenerated at time t2, the welding voltage Vw rapidly increases to an arc voltage value of about several tens of volts as shown in FIG. As shown in FIG. 5B, the welding current Iw decreases slightly until the next short-circuit occurs after it suddenly decreases slightly when the arc is regenerated.

次に、溶滴の移行状態について説明する。短絡が発生した時点から初期期間Tiの間は溶接電流Iwを小さな値の初期電流値Iiに維持している理由は、溶滴と溶融池との接触状態をより確実にするためである。短絡発生直後は溶滴の底部の一部が溶融池と接触している状態にあり、この状態で溶接電流Iwの値が大きいと、溶滴が移行することなく接触状態が解除されてアークが再発生することになり、安定した溶滴移行状態が阻害される。初期期間Tiが終了する時刻t11から溶接電流Iwを大きくすることによって溶滴にピンチ力を作用させて、溶滴上部にくびれを生じさせて溶滴を溶融池に円滑に移行させる。時刻t2においてアークが再発生した時点では、溶接ワイヤの先端は溶融していない。アーク期間Taが進行するのに伴い、溶接ワイヤの先端がアークからの熱及びジュール熱によって次第に溶融して溶滴を形成する。   Next, the transition state of the droplets will be described. The reason why the welding current Iw is maintained at a small initial current value Ii during the initial period Ti from the time when the short circuit occurs is to make the contact state between the droplet and the molten pool more reliable. Immediately after the occurrence of the short-circuit, a part of the bottom of the droplet is in contact with the molten pool. If the welding current Iw is large in this state, the contact state is released without the droplet moving and the arc is generated. It will occur again, and the stable droplet transfer state will be inhibited. By increasing the welding current Iw from the time t11 when the initial period Ti ends, a pinch force is applied to the droplet, causing a constriction at the upper portion of the droplet, and the droplet is smoothly transferred to the molten pool. At the time when the arc is regenerated at time t2, the tip of the welding wire is not melted. As the arc period Ta proceeds, the tip of the welding wire is gradually melted by heat from the arc and Joule heat to form droplets.

溶滴移行状態を安定化するためには、短絡期間Ts中の溶接電流Iwのピーク値の設定を適正化することは重要である。このピーク値が適正値よりも小さいと、溶滴に作用するピンチ力が弱くなるので溶滴を移行させる時間が長くなり、溶接状態が不安定になる。逆に、ピーク値が適正値よりも大きいと、スパッタの発生量が多くなる。したがって、ピーク値は、シールドガスの種類、溶接ワイヤの材質、直径、送給速度等に応じて、適正値に設定されている。   In order to stabilize the droplet transfer state, it is important to optimize the setting of the peak value of the welding current Iw during the short-circuit period Ts. If this peak value is smaller than the appropriate value, the pinch force acting on the droplets becomes weak, so the time for transferring the droplets becomes long and the welding state becomes unstable. Conversely, when the peak value is larger than the appropriate value, the amount of spatter generated increases. Therefore, the peak value is set to an appropriate value according to the type of shield gas, the material of the welding wire, the diameter, the feeding speed, and the like.

特公平4−407号公報Japanese Patent Publication No. 4-407

上述したように、溶滴移行状態を安定化するためには、短絡期間中の溶接電流のピーク値を溶接条件に応じて適正値に設定する必要がある。溶接トーチの前進角が0〜10°程度と小さいときには、このピーク値を溶接条件に応じて適正化することによって、スパッタ発生量を少なくして、かつ、良好な溶接ビードを形成することができる。しかし、ピーク値を前進角が小さいときのままとして、前進角を20°、30°と大きくすると、スパッタ発生量が増加する。スパッタ発生量を少なくするために、ピーク値を小さくすると、時々10msを超える長い短絡が発生するようになり、溶接状態が不安定になる。すなわち、前進角が20°以上と大きくなると、従来技術においてピーク値をどの値に設定しても、スパッタ発生量を少なくすることと溶接状態を安定に保つことを両立させることはできないという問題があった。したがって、従来技術では、スパッタ発生量を犠牲にして溶接状態の安定性を優先させるか、又は、スパッタ発生量が少ないことを優先して溶接状態の安定性を犠牲にするかを選択して、ピーク値を設定していた。   As described above, in order to stabilize the droplet transfer state, it is necessary to set the peak value of the welding current during the short circuit period to an appropriate value according to the welding conditions. When the advancing angle of the welding torch is as small as about 0 to 10 °, by optimizing this peak value according to the welding conditions, it is possible to reduce the amount of spatter generation and form a good weld bead. . However, if the advancing angle is increased to 20 ° or 30 ° with the peak value kept at a small advancing angle, the amount of spatter generated increases. If the peak value is reduced in order to reduce the amount of spatter generated, a long short circuit exceeding 10 ms sometimes occurs and the welding state becomes unstable. That is, when the advance angle is increased to 20 ° or more, there is a problem in that it is impossible to achieve both a reduction in spatter generation and a stable welding state regardless of the peak value set in the prior art. there were. Therefore, in the prior art, select whether to give priority to the stability of the welded state at the expense of the amount of spatter generated, or select whether to sacrifice the stability of the welded state to give priority to a small amount of spatter generated, The peak value was set.

そこで、本発明では、溶接トーチの前進角が大きいときでも、スパッタ発生量を少なくすることができ、かつ、溶接状態の安定性を良好に保つことができる短絡期間の溶接電流制御方法を提供することを目的とする。   Therefore, the present invention provides a welding current control method during a short-circuit period that can reduce the amount of spatter generated and maintain good welding state stability even when the advance angle of the welding torch is large. For the purpose.

上述した課題を解決するために、請求項1の発明は、溶接ワイヤを送給すると共に、短絡期間とアーク期間とを交互に繰り返すアーク溶接にあって、
短絡が発生すると溶接電流Iwを予め定めた初期電流値Iiまで減少させて維持し、前記短絡発生時点から予め定めた初期期間Tiが経過すると前記溶接電流を予め定めた第1傾斜で上昇させ、前記溶接電流が基準値Icに達すると前記溶接電流を前記第1傾斜よりも小さな値の予め定めた第2傾斜でアークが再発生するまで上昇させて溶接を行う短絡期間の溶接電流制御方法において、
前記短絡発生時点での溶接電流値Iaを検出し、前記初期期間Ti中の電流差積分値Si=∫(Ia−Iw)・dtを算出し、前記基準値Icをこの電流差積分値Siに基づいて自動設定する、
ことを特徴とする短絡期間の溶接電流制御方法である。
In order to solve the above-described problem, the invention of claim 1 is an arc welding in which a welding wire is fed and a short circuit period and an arc period are alternately repeated.
When a short circuit occurs, the welding current Iw is decreased and maintained to a predetermined initial current value Ii, and when a predetermined initial period Ti has elapsed from the time of the occurrence of the short circuit, the welding current is increased at a predetermined first slope, In the welding current control method for a short-circuit period in which welding is performed by increasing the welding current at a predetermined second slope having a value smaller than the first slope until the arc is regenerated when the welding current reaches a reference value Ic. ,
The welding current value Ia at the time of the occurrence of the short circuit is detected, the current difference integrated value Si = ∫ (Ia−Iw) · dt during the initial period Ti is calculated, and the reference value Ic is set to the current difference integrated value Si. Automatically set based on the
It is the welding current control method of the short circuit period characterized by this.

請求項2の発明は、前記基準値Icを所定範囲に制限する、
ことを特徴とする請求項1記載の短絡期間の溶接電流制御方法である。
The invention of claim 2 limits the reference value Ic to a predetermined range.
The welding current control method for a short circuit period according to claim 1.

請求項3の発明は、前記基準値Ic=G・Si(但し、Gは予め定めた定数)として自動設定する、
ことを特徴とする請求項1又は2記載の短絡期間の溶接電流制御方法である。
The invention of claim 3 is automatically set as the reference value Ic = G · Si (where G is a predetermined constant).
The welding current control method for a short circuit period according to claim 1 or 2.

請求項4の発明は、前記初期期間Ti中の溶接電流Iw=Iiであるとし、電流差積分値Si=∫(Ia−Ii)・dt=(Ia−Ii)・Tiとする、
ことを特徴とする請求項1〜3のいずれか1項に記載の短絡期間の溶接電流制御方法である。
In the invention of claim 4, it is assumed that the welding current Iw = Ii during the initial period Ti, and the current difference integral value Si = I (Ia−Ii) · dt = (Ia−Ii) · Ti,
It is a welding current control method of the short circuit period of any one of Claims 1-3 characterized by the above-mentioned.

請求項5の発明は、前記初期電流値Iiと前記初期期間Tiとの乗算値Ii・Ti=0であるとし、前記電流差積分値Si=(Ia−Ii)・Ti=Ia・Tiとする、
ことを特徴とする請求項4記載の短絡期間の溶接電流制御方法である。
According to a fifth aspect of the present invention, the multiplication value Ii · Ti = 0 of the initial current value Ii and the initial period Ti is set, and the current difference integral value Si = (Ia−Ii) · Ti = Ia · Ti. ,
The welding current control method for a short-circuit period according to claim 4.

本発明によれば、短絡状態になると、初期期間中は溶接電流を小さな値の初期電流値に減少させて維持し、その後は第1傾斜で溶接電流を上昇させ、溶接電流が基準値に達すると第1傾斜よりも緩やかな第2傾斜でアークが再発生するまで溶接電流を上昇させる。そして、上記の基準値を初期期間中の電流差積分値に基づいて自動設定する。これにより、溶接状態が定常状態にあるときは基準値が自動的に小さな値に設定されるので、スパッタ発生量が少なくなる。外乱により溶滴形成状態が変動すると、基準値が自動的に大きな値に設定されるので、溶接状態が不安定になるのを抑制することができる。したがって、溶接トーチの前進角が大きいときでも、スパッタ発生量が少なく、かつ、溶接状態の安定性も良好な溶接を行うことができる。   According to the present invention, when a short circuit occurs, the welding current is reduced and maintained at a small initial current value during the initial period, and thereafter the welding current is increased at the first slope, and the welding current reaches the reference value. Then, the welding current is increased until the arc is regenerated at a second slope that is gentler than the first slope. Then, the reference value is automatically set based on the current difference integral value during the initial period. Thereby, when the welding state is in a steady state, the reference value is automatically set to a small value, so that the amount of spatter generated is reduced. When the droplet formation state fluctuates due to a disturbance, the reference value is automatically set to a large value, so that the welding state can be prevented from becoming unstable. Therefore, even when the advancing angle of the welding torch is large, it is possible to perform welding with a small amount of spatter generation and good stability in the welding state.

本発明の実施の形態に係る短絡期間の溶接電流制御方法を示す電圧・電流波形図である。It is a voltage and current waveform diagram showing a welding current control method during a short circuit period according to an embodiment of the present invention. 本発明の実施の形態に係る短絡期間の溶接電流制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for enforcing the welding current control method of the short circuit period concerning embodiment of this invention. 従来技術における消耗電極アーク溶接の電圧・電流波形図である。It is a voltage and electric current waveform diagram of consumable electrode arc welding in a prior art.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態に係る短絡期間の溶接電流制御方法を示す電圧・電流波形図である。同図(A)は溶接電圧Vwの時間変化を示し、同図(Bは溶接電流Iwの時間変化を示す。同図は、上述した図3と対応している。したがって、図3と同一事項についての説明は省略する。以下、同図を参照して説明する。   FIG. 1 is a voltage / current waveform diagram showing a welding current control method during a short-circuit period according to an embodiment of the present invention. 3A shows the change over time of the welding voltage Vw, and FIG. 3B shows the change over time of the welding current Iw. This figure corresponds to FIG. 3 described above. A description of the above will be omitted and will be described below with reference to FIG.

同図において、時刻t1〜t2は短絡期間Tsを示し、時刻t2〜t3はアーク期間Taを示す。短絡期間Tsとアーク期間Taとは、交互に繰り返される。   In the figure, times t1 to t2 indicate a short circuit period Ts, and times t2 to t3 indicate an arc period Ta. The short circuit period Ts and the arc period Ta are alternately repeated.

時刻t1において溶接ワイヤ先端に形成された溶滴が溶融池と接触すると短絡状態になる。短絡状態になると、同図(A)に示すように、溶接電圧Vwは数V程度の短絡電圧値に急降下する。溶接電流Iwは、同図(B)に示すように、短絡発生時電流値Iaから予め定めた初期電流値Iiまで傾斜を有して減少し、時刻t1〜t11の予め定めた初期期間Ti中はその値を維持する。この溶接電流Iwが減少するときの傾斜は、溶接電流Iwの通電路の抵抗値及びインダクタンス値によって決まる。すなわち、傾斜は、溶接電源と溶接トーチ及び母材とを接続するケーブルの長さによって変化する。ケーブルが長くなるほど、傾斜は緩やかになる。また、上記の短絡発生時電流値Iaは、短絡発生前のアーク期間Taの長さに略比例している。これは、アーク期間Ta中の溶接電流Iwは、アーク期間Taが進行するのに伴い次第に小さくなるからである。アーク期間Ta中に形成される溶滴の大きさは、アーク期間Taの長さに略比例するので、溶滴の大きさは短絡発生時電流値Iaに略反比例すると言える。   When the droplet formed at the tip of the welding wire comes into contact with the molten pool at time t1, a short-circuit state occurs. In the short circuit state, the welding voltage Vw rapidly drops to a short circuit voltage value of about several volts as shown in FIG. As shown in FIG. 2B, the welding current Iw decreases with a slope from the current value Ia at the time of occurrence of a short circuit to a predetermined initial current value Ii, and during a predetermined initial period Ti from time t1 to t11. Maintains that value. The inclination when the welding current Iw decreases is determined by the resistance value and inductance value of the current path of the welding current Iw. That is, the inclination changes depending on the length of the cable connecting the welding power source, the welding torch, and the base material. The longer the cable, the slower the slope. Further, the current value Ia at the time of occurrence of the short circuit is substantially proportional to the length of the arc period Ta before the occurrence of the short circuit. This is because the welding current Iw during the arc period Ta gradually decreases as the arc period Ta proceeds. Since the size of the droplet formed during the arc period Ta is approximately proportional to the length of the arc period Ta, it can be said that the size of the droplet is approximately inversely proportional to the current value Ia when a short circuit occurs.

時刻t11において初期期間Tiが終了すると、同図(B)に示すように、溶接電流Iwは、予め定めた基準値Icまで予め定めた第1傾斜K1で上昇する。溶接電流Iwが上記の基準値Icに達すると、溶接電流Iwは、上記の第1傾斜K1よりも緩やかな値に予め定めた第2傾斜K2でアークが再発生する時刻t2まで上昇を継続する。上記の基準値Icの自動設定方法については、後述する。   When the initial period Ti ends at time t11, the welding current Iw rises at a predetermined first slope K1 to a predetermined reference value Ic, as shown in FIG. When the welding current Iw reaches the reference value Ic, the welding current Iw continues to rise until time t2 when the arc is regenerated at a second slope K2 that is set to a value that is gentler than the first slope K1. . The method for automatically setting the reference value Ic will be described later.

時刻t2においてアークが再発生すると、同図(A)に示すように、溶接電圧Vwは急上昇して数十V程度のアーク電圧値になる。溶接電流Iwは、同図(B)に示すように、アークが再発生した時点で少し急減した後に、次の短絡が発生するまで徐々に減少する。   When the arc is regenerated at time t2, the welding voltage Vw rapidly increases to an arc voltage value of about several tens of volts as shown in FIG. As shown in FIG. 5B, the welding current Iw decreases slightly until the next short-circuit occurs after it suddenly decreases slightly when the arc is regenerated.

同図においても、初期期間Tiを設けて溶接電流Iwを小さな値に維持する理由は、上述したように、短絡発生直後のアーク再発生を防止して確実な短絡状態に導くためである。初期期間Tiが終了した後は、溶接電流Iwは速い第1傾斜K1で基準値Icまで急上昇する。この基準値Icが、従来技術のピーク値に相当する。この基準値Icは、従来技術のピーク値よりも小さな値に設定される。その後は、溶接電流Iwは緩やかな第2傾斜K2で上昇する。この第2傾斜K2での上昇期間を設けているので、基準値Icは小さな値に設定することができる。   Also in this figure, the reason for maintaining the welding current Iw at a small value by providing the initial period Ti is to prevent arc re-occurrence immediately after the occurrence of a short circuit and lead to a reliable short circuit state. After the initial period Ti ends, the welding current Iw rapidly rises to the reference value Ic with the fast first slope K1. This reference value Ic corresponds to the peak value of the prior art. This reference value Ic is set to a value smaller than the peak value of the prior art. Thereafter, the welding current Iw increases with a gentle second slope K2. Since the rising period at the second slope K2 is provided, the reference value Ic can be set to a small value.

上記の基準値Icは、以下のようにして自動設定される。初期期間Ti中の電流差積分値Si(A・ms)を以下のように定義する。
Si=∫(Ia−Iw)・dt …(1)式
但し、積分は初期期間Ti(ms)中行う。Iaは短絡発生時電流値である。
そして、基準値Icを以下のようにして自動設定する。
Ic=G・Si …(2)式
ここで、Gは予め定めた定数である。
The reference value Ic is automatically set as follows. The current difference integral value Si (A · ms) during the initial period Ti is defined as follows.
Si = ∫ (Ia−Iw) · dt (1) where the integration is performed during the initial period Ti (ms). Ia is the current value when a short circuit occurs.
Then, the reference value Ic is automatically set as follows.
Ic = G · Si (2) where G is a predetermined constant.

基準値Icを電流差積分値Siに基づいて自動設定する理由は、以下のとおりである。上述したように基準値Icは従来技術のピーク値に相当しており、前進角が大きいときのスパッタ発生量を少なくするために、基準値Icはピーク値よりも小さな値になるように設定される。このために、溶接状態が不安定になる場合が生じる。溶接状態が不安定になる場合としては、短絡が発生した時点での溶滴の形成状態が十分ではないときであり、このようなときには短絡状態を安定して解除するために、基準値Icを大きくする必要がある。上述したように、短絡発生時電流値Iaと溶滴の大きさとは反比例する。短絡発生時電流値Iaが大きいと上記の電流差積分値Siも大きくなり、基準値Icも大きくなる。このことは、短絡が発生したときの溶滴の大きさに応じて基準値Icが適正化されていることになる。   The reason why the reference value Ic is automatically set based on the current difference integral value Si is as follows. As described above, the reference value Ic corresponds to the peak value of the prior art, and the reference value Ic is set to be smaller than the peak value in order to reduce the amount of spatter generated when the advance angle is large. The For this reason, the welding state may become unstable. The case where the welding state becomes unstable is when the droplet formation state is not sufficient at the time when the short circuit occurs. In such a case, the reference value Ic is set to release the short circuit state stably. It needs to be bigger. As described above, the current value Ia at the occurrence of a short circuit and the size of the droplet are inversely proportional. When the current value Ia at the time of occurrence of a short circuit is large, the current difference integrated value Si is also increased, and the reference value Ic is also increased. This means that the reference value Ic is optimized according to the size of the droplet when a short circuit occurs.

さらには、初期期間Ti中は溶接電流Iwが小さな値に維持されるために、溶滴の温度が低下することになる。したがって、短絡発生時電流値Iaをそのまま維持していたときに比べて、電流値を小さくしたことによって失われた熱量は、上記の電流差積分値Siに略比例することになる。そこで、初期期間Ti中に失われた仮想熱量が大きくなると、電流差積分値Siも大きくなり、その結果、基準値Icも大きくなる。このことは、初期期間Ti中に失われる仮想熱量に応じて基準値Icが適正化されていることになる。   Furthermore, since the welding current Iw is maintained at a small value during the initial period Ti, the temperature of the droplets is lowered. Therefore, compared with the case where the current value Ia at the time of occurrence of a short circuit is maintained as it is, the amount of heat lost by reducing the current value is substantially proportional to the current difference integral value Si. Therefore, when the amount of virtual heat lost during the initial period Ti increases, the current difference integral value Si also increases, and as a result, the reference value Ic also increases. This means that the reference value Ic is optimized according to the virtual heat amount lost during the initial period Ti.

短絡が発生した時点での溶滴の大きさの変動は、トーチ高さ、送給速度等の変動(外乱による変動)に起因して時々発生する。このような変動が生じたときに、溶接状態が不安定になるので、これを抑制するために基準値Icを電流差積分値Siに応じて適正化している。変動が生じていない定常状態では、短絡が発生した時点での溶滴の大きさは略一定の大きさとなる。このことから、短絡が発生した時点での溶滴の大きさが通常サイズであるときの基準値Icが従来技術のピーク値よりも小さくなるように上記(2)式における定数Gを決定している。   Variations in the size of the droplets at the time of occurrence of a short circuit sometimes occur due to variations in the torch height, feeding speed, etc. (variations due to disturbance). When such a change occurs, the welding state becomes unstable. Therefore, in order to suppress this, the reference value Ic is optimized according to the current difference integrated value Si. In a steady state in which no fluctuation occurs, the size of the droplet at the time when the short circuit occurs is substantially constant. From this, the constant G in the above equation (2) is determined so that the reference value Ic when the size of the droplet at the time of occurrence of the short circuit is the normal size is smaller than the peak value of the prior art. Yes.

同図(B)の時刻t1に示すように、溶接電流Iwは、短絡状態になると傾斜を有して初期電流値Iiまで減少する。上述したように、この溶接電流Iwが減少する傾斜は、通電路の抵抗値及びインダクタンス値によって定まる。したがって、溶接電源と溶接トーチ及び母材とを接続するケーブルが長くなるのに伴い、電流減少傾斜は緩やかになる。このケーブル長の合計値が10m以下の短い場合には、電流減少傾斜は急になる。このような場合には、初期期間Ti中の溶接電流Iw=Iiと見なすことができる。このときには、上記(1)式は、下式となる。
Si=∫(Ia−Iw)・dt=(Ia−Ii)・Ti …(11)式
さらに、初期電流値Iiの設定値が30A以下と小さい場合には、Ii=0と見なして、上式は下式となる。
Si=Ia・Ti …(12)式
したがって、電流差積分値Siを(1)式、(11)式又は(12)式によって算出することができる。
As shown at time t <b> 1 in FIG. 5B, the welding current Iw has a slope and decreases to the initial current value Ii when the short-circuit state is reached. As described above, the slope at which the welding current Iw decreases is determined by the resistance value and inductance value of the current path. Therefore, as the cable connecting the welding power source, the welding torch, and the base material becomes longer, the current decreasing slope becomes gentler. When the total value of the cable length is as short as 10 m or less, the current decreasing slope becomes steep. In such a case, it can be considered that the welding current Iw = Ii during the initial period Ti. At this time, the above equation (1) becomes the following equation.
Si = ∫ (Ia−Iw) · dt = (Ia−Ii) · Ti (11) Further, when the initial current value Ii is set to be as small as 30 A or less, it is assumed that Ii = 0, and the above equation Is as follows.
Si = Ia · Ti (12) Therefore, the current difference integral value Si can be calculated by the formula (1), the formula (11), or the formula (12).

上記(2)式において、算出された基準値Icを所定範囲内に制限するために、基準値Icの上限値及び下限値を設けても良い。また、(2)式の代わりに下式を用いるようにしても良い。
Ic=a・Si+b …(21)式
Ic=c・Si・Si+d・Si+e …(22)式
但し、a〜eは定数である。
In the above equation (2), an upper limit value and a lower limit value of the reference value Ic may be provided in order to limit the calculated reference value Ic within a predetermined range. Further, the following equation may be used instead of the equation (2).
Ic = a · Si + b (21) Formula Ic = c · Si · Si + d · Si + e (22) where a to e are constants.

上記の各設定値の数値例を挙げると以下のようになる。シールドガスに80%アルゴンガスと20%炭酸ガスとの混合ガスを使用するマグ溶接において、溶接ワイヤに直径1.2mmの鉄鋼ワイヤを使用し、送給速度が3.5m/min(平均溶接電流150A)の場合とする。各値は、初期期間Ti=1ms、初期電流Ii=50A、第1傾斜K1=200A/ms、第2傾斜K2=50A/ms、定数G=3となる。ここで、電流差積分値Siを、上記(11)式によって算出する場合を考える。トーチ高さ、送給速度等の変動がない場合には、溶滴の大きさは略一定しているので、短絡発生時電流値Ia=100A程度になる。すると、(11)式によって電流差積分値Si=(100−50)・1=50となる。これを(2)式に代入すると、基準値Ic=3・50=150Aとなる。従来技術のピーク値は400A程度であるので、この基準値Icが小さいことが分かる。次に、トーチ高さ、送給速度等の変動が発生して溶滴の大きさが小さくなり、短絡発生時電流値Ia=150Aと大きくなった場合、電流差積分値Si=(150−50)・1=100となる。この結果、基準値Ic=3・100=300Aとなり、短絡期間中の溶接電流Iwを大きくすることによって短絡期間が長くなるのを抑制して、溶接状態の安定性を維持するようにしている。また、トーチ高さ、送給速度等の変動が発生して溶滴の大きさが大きくなり、短絡発生時電流値Ia=70Aと小さくなった場合、電流差積分値Si=(70−50)・1=20となる。この結果、基準値Ic=3・20=60Aとなり、短絡期間中の溶接電流Iwを小さくする。これによって、溶滴が大きい場合に増加するスパッタの発生を抑制している。ここで、上限値を400Aに設定し、下限値を100Aに設定して、基準値Icの変化範囲を100〜400Aに制限しても良い。   Examples of numerical values of the above set values are as follows. In MAG welding using a mixed gas of 80% argon gas and 20% carbon dioxide gas as the shielding gas, a steel wire with a diameter of 1.2 mm is used as the welding wire, and the feeding speed is 3.5 m / min (average welding current) 150A). The values are as follows: initial period Ti = 1 ms, initial current Ii = 50 A, first slope K1 = 200 A / ms, second slope K2 = 50 A / ms, and constant G = 3. Here, consider a case where the current difference integral value Si is calculated by the above equation (11). When there is no change in the torch height, the feeding speed, etc., the size of the droplet is substantially constant, so that the current value Ia at the time of occurrence of a short circuit is about 100A. Then, the current difference integral value Si = (100−50) · 1 = 50 is obtained from the equation (11). Substituting this into equation (2) yields the reference value Ic = 3 · 50 = 150A. Since the peak value of the prior art is about 400 A, it can be seen that this reference value Ic is small. Next, when fluctuations in the torch height, feeding speed, etc. occur and the size of the droplets decreases and the current value Ia = 150 A at the occurrence of a short circuit increases, the current difference integral value Si = (150−50 ) · 1 = 100. As a result, the reference value Ic = 3 · 100 = 300 A, and by increasing the welding current Iw during the short-circuit period, the short-circuit period is prevented from becoming longer and the stability of the welding state is maintained. Further, when fluctuations in the torch height, feed speed, etc. occur and the size of the droplet increases and the current value Ia = 70 A when the short-circuit occurs, the current difference integral value Si = (70-50)・ 1 = 20. As a result, the reference value Ic = 3 · 20 = 60 A, and the welding current Iw during the short circuit period is reduced. This suppresses generation of spatter that increases when the droplet is large. Here, the upper limit value may be set to 400A, the lower limit value may be set to 100A, and the change range of the reference value Ic may be limited to 100 to 400A.

上記の各設定地、初期期間Ti、初期電流値Ii、第1傾斜K1、第2傾斜K2、定数G、基準値Icの上限値と下限値は、シールドガスの種類、溶接ワイヤの材質、直径、送給速度等に応じて、実験によって適正値に設定される。   Each of the above set locations, initial period Ti, initial current value Ii, first slope K1, second slope K2, constant G, and upper and lower limits of reference value Ic are the type of shield gas, the material of the welding wire, and the diameter. Depending on the feeding speed, etc., an appropriate value is set by experiment.

図2は、上述した本発明の実施の形態に係る短絡期間の溶接電流制御方法を実施するための溶接電源のブロック図である。以下、同図を参照して、各ブロックについて説明する。   FIG. 2 is a block diagram of a welding power source for implementing the above-described welding current control method during the short-circuit period according to the embodiment of the present invention. Hereinafter, each block will be described with reference to FIG.

電源主回路PMは、3相200V等の商用電源(図示は省略)を入力として、後述する誤差増幅信号Eaに従ってインバータ制御等の出力制御を行い、溶接電圧Vw及び溶接電流Iwを出力する。この電源主回路PMは、図示は省略するが、商用電源を整流する1次整流器、整流された直流を平滑する平滑コンデンサ、平滑された直流を高周波交流に変換するインバータ回路、高周波交流を溶接に適した電圧値に降圧する高周波変圧器、降圧された高周波交流を直流に整流する2次整流器、整流された直流を平滑するリアクトル、誤差増幅信号Eaを入力としてパルス幅変調制御を行う変調回路、パルス幅変調制御信を入力としてインバータ回路のスイッチング素子を駆動する駆動回路から構成される。   The power supply main circuit PM receives a commercial power supply (not shown) such as three-phase 200 V, performs output control such as inverter control according to an error amplification signal Ea described later, and outputs a welding voltage Vw and a welding current Iw. This power supply main circuit PM is omitted in the drawing, but a primary rectifier that rectifies commercial power, a smoothing capacitor that smoothes the rectified direct current, an inverter circuit that converts the smoothed direct current to high frequency alternating current, and high frequency alternating current for welding A high-frequency transformer that steps down to a suitable voltage value, a secondary rectifier that rectifies the stepped-down high-frequency alternating current into direct current, a reactor that smoothes the rectified direct current, a modulation circuit that performs pulse width modulation control using the error amplification signal Ea as an input, The drive circuit is configured to drive the switching element of the inverter circuit using the pulse width modulation control signal as an input.

溶接ワイヤ1は、送給モータ(図示は省略)に結合された送給ロール5の回転によって溶接トーチ4内を送給されて、母材2との間にアーク3が発生する。溶接ワイヤ1と母材2との間には溶接電圧Vwが印加し、アーク3中を溶接電流Iwが通電する。同図において、溶接ワイヤの送給を制御する回路については、図示は省略する。   The welding wire 1 is fed through the welding torch 4 by the rotation of a feeding roll 5 coupled to a feeding motor (not shown), and an arc 3 is generated between the welding wire 1 and the base material 2. A welding voltage Vw is applied between the welding wire 1 and the base material 2, and a welding current Iw is passed through the arc 3. In the figure, the circuit for controlling the feeding of the welding wire is not shown.

電流検出回路IDは、上記の溶接電流Iwを検出して、電流検出信号Idを出力する。電圧検出回路VDは、上記の溶接電圧Vwを検出して、電圧検出信号Vdを出力する。電圧設定回路VRは、予め定めた電圧設定信号Vrを出力する。   The current detection circuit ID detects the welding current Iw and outputs a current detection signal Id. The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd. The voltage setting circuit VR outputs a predetermined voltage setting signal Vr.

短絡判別回路SDは、上記の電圧検出信号Vdを入力として、その値が予め定めたしきい値未満であるときはHighレベルとなる短絡判別信号Sdを出力する。しきい値は、10V程度に設定される。初期期間設定回路TIRは、予め定めた初期期間設定信号Tirを出力する。初期電流設定回路IIRは、予め定めた初期電流設定信号Iirを出力する。第1傾斜設定回路KR1は、予め定めた第1傾斜設定信号Kr1を出力する。第2傾斜設定回路KR2は、予め定めた第2傾斜設定信号Kr2を出力する。定数設定回路GRは、予め定めた定数設定信号Grを出力する。   The short circuit determination circuit SD receives the voltage detection signal Vd as described above, and outputs a short circuit determination signal Sd that is at a high level when the value is less than a predetermined threshold value. The threshold is set to about 10V. The initial period setting circuit TIR outputs a predetermined initial period setting signal Tir. The initial current setting circuit IIR outputs a predetermined initial current setting signal Iir. The first inclination setting circuit KR1 outputs a predetermined first inclination setting signal Kr1. The second inclination setting circuit KR2 outputs a predetermined second inclination setting signal Kr2. The constant setting circuit GR outputs a predetermined constant setting signal Gr.

短絡発生時電流値検出回路IADは、上記の電流検出信号Id及び上記の短絡判別信号Sdを入力として、短絡判別信号SdがHighレベル(短絡)に変化した時点での電流検出信号Idの値を短絡発生時電流値検出信号Iadとして出力する。電流差積分回路SIは、この短絡発生時電流値検出信号Iad、上記の電流検出信号Id、上記の短絡判別信号Sd及び上記の初期期間設定信号Tirを入力として、上述した(1)式に基づいて、短絡判別信号SdがHighレベル(短絡)に変化した時点から初期期間設定信号Tirによって定まる期間中はSi=∫(Iad−Id)・dtの積分を行い、電流差積分信号Siとして出力する。(1)式の代わりに、上述したように、(11)式又は(12)式を使用して電流差積分信号Siを算出するようにしても良い。基準値設定回路ICRは、この電流差積分信号Si及び上記の定数設定信号Grを入力として、上述した(2)式に基づいて、基準値設定信号Icr=Gr・Siを算出して出力する。ここで、(2)式の代わりに、上述した(21)式又は(22)式を使用しても良い。   The short-circuit occurrence current value detection circuit IAD receives the current detection signal Id and the short-circuit determination signal Sd as inputs, and calculates the value of the current detection signal Id when the short-circuit determination signal Sd changes to a high level (short circuit). Output as a current value detection signal Iad when a short circuit occurs. The current difference integration circuit SI receives the current value detection signal Iad upon occurrence of a short circuit, the current detection signal Id, the short circuit determination signal Sd, and the initial period setting signal Tir as inputs, and is based on the above equation (1). Then, during the period determined by the initial period setting signal Tir from the time when the short circuit determination signal Sd changes to the High level (short circuit), Si = ∫ (Iad−Id) · dt is integrated and output as the current difference integration signal Si. . Instead of the equation (1), as described above, the current difference integration signal Si may be calculated using the equation (11) or the equation (12). The reference value setting circuit ICR receives the current difference integration signal Si and the constant setting signal Gr, and calculates and outputs the reference value setting signal Icr = Gr · Si based on the above-described equation (2). Here, instead of the expression (2), the above-described expression (21) or (22) may be used.

電流設定回路IRは、上記の初期期間設定信号Tir、上記の初期電流設定信号Iir、上記の第1傾斜設定信号Kr1、上記の第2傾斜設定信号Kr2、上記の基準値設定信号Icr及び上記の短絡判別信号Sdを入力として、下記の処理を行い、電流設定信号Irを出力する。
1)短絡判別信号SdがHighレベル(短絡)に変化した時点から初期期間設定信号Tirによって定まる期間中は、初期電流設定信号Iirを電流設定信号Irとして出力する。
2)その後は、電流設定信号Irの値を初期電流設定信号Iirの値から第1傾斜設定信号Kr1によって定まる傾斜で上昇させる。
3)電流設定信号Irの値が基準値設定信号Icrと等しくなると、第2傾斜設定信号Kr2によって定まる傾斜で電流設定信号Irの値を上昇させる。この上昇は、短絡判別信号SdがLowレベル(アーク)に変化するまで継続する。
4)短絡判別信号SdがLowレベル(アーク)に変化すると、その時点での電流設定信号Irの値を保持する。
The current setting circuit IR includes the initial period setting signal Tir, the initial current setting signal Iir, the first inclination setting signal Kr1, the second inclination setting signal Kr2, the reference value setting signal Icr, The following processing is performed with the short-circuit determination signal Sd as an input, and the current setting signal Ir is output.
1) The initial current setting signal Iir is output as the current setting signal Ir during a period determined by the initial period setting signal Tir from the time when the short circuit determination signal Sd changes to the High level (short circuit).
2) Thereafter, the value of the current setting signal Ir is increased from the value of the initial current setting signal Iir with a slope determined by the first slope setting signal Kr1.
3) When the value of the current setting signal Ir becomes equal to the reference value setting signal Icr, the value of the current setting signal Ir is increased at a slope determined by the second slope setting signal Kr2. This increase continues until the short circuit determination signal Sd changes to the low level (arc).
4) When the short circuit determination signal Sd changes to Low level (arc), the value of the current setting signal Ir at that time is held.

電流誤差増幅回路EIは、上記の電流設定信号Ir(+)と上記の電流検出信号Id(−)との誤差を増幅して、電流誤差増幅信号Eiを出力する。電圧誤差増幅回路EVは、上記の電圧設定信号Vr(+)と電圧検出信号Vd(−)との誤差を増幅して、電圧誤差増幅信号Evを出力する。制御切換回路SWは、上記の電流誤差増幅信号Ei、上記の電圧誤差増幅信号Ev及び上記の短絡判別信号Sdを入力として、短絡判別信号SdがHighレベル(短絡)のときは電流誤差増幅信号Eiを誤差増幅信号Eaとして出力し、Lowレベル(アーク)のときは電圧誤差増幅信号Evを誤差増幅信号Eaとして出力する。この回路により、短絡期間中は定電流制御となり、アーク期間中は定電圧制御となる。   The current error amplification circuit EI amplifies an error between the current setting signal Ir (+) and the current detection signal Id (−) and outputs a current error amplification signal Ei. The voltage error amplification circuit EV amplifies an error between the voltage setting signal Vr (+) and the voltage detection signal Vd (−) and outputs a voltage error amplification signal Ev. The control switching circuit SW receives the current error amplification signal Ei, the voltage error amplification signal Ev, and the short circuit determination signal Sd, and when the short circuit determination signal Sd is at a high level (short circuit), the current error amplification signal Ei. Is output as the error amplification signal Ea, and when the level is low (arc), the voltage error amplification signal Ev is output as the error amplification signal Ea. This circuit provides constant current control during the short circuit period and constant voltage control during the arc period.

上述した実施の形態によれば、短絡状態になると、初期期間中は溶接電流を小さな値の初期電流値に減少させて維持し、その後は第1傾斜で溶接電流を上昇させ、溶接電流が基準値に達すると第1傾斜よりも緩やかな第2傾斜でアークが再発生するまで溶接電流を上昇させる。そして、上記の基準値を初期期間中の電流差積分値に基づいて自動設定する。これにより、溶接状態が定常状態にあるときは基準値が自動的に小さな値に設定されるので、スパッタ発生量が少なくなる。外乱により溶滴形成状態が変動すると、基準値が自動的に大きな値に設定されるので、溶接状態が不安定になるのを抑制することができる。したがって、溶接トーチの前進角が大きいときでも、スパッタ発生量が少なく、かつ、溶接状態の安定性も良好な溶接を行うことができる。   According to the above-described embodiment, when a short-circuit state occurs, the welding current is decreased and maintained at a small initial current value during the initial period, and thereafter, the welding current is increased at the first slope, and the welding current becomes the reference value. When the value is reached, the welding current is increased until the arc is regenerated at a second slope that is gentler than the first slope. Then, the reference value is automatically set based on the current difference integral value during the initial period. Thereby, when the welding state is in a steady state, the reference value is automatically set to a small value, so that the amount of spatter generated is reduced. When the droplet formation state fluctuates due to a disturbance, the reference value is automatically set to a large value, so that the welding state can be prevented from becoming unstable. Therefore, even when the advancing angle of the welding torch is large, it is possible to perform welding with a small amount of spatter generation and good stability in the welding state.

1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
5 送給ロール
Ea 誤差増幅信号
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
EV 電圧誤差増幅回路
Ev 電圧誤差増幅信号
G 定数
GR 定数設定回路
Gr 定数設定信号
Ia 短絡発生時電流値
IAD 短絡発生時電流値検出回路
Iad 短絡発生時電流値検出信号
Ic 基準値
ICR 基準値設定回路
Icr 基準値設定信号
ID 電流検出回路
Id 電流検出信号
Ii 初期電流値
IIR 初期電流設定回路
Iir 初期電流設定信号
IR 電流設定回路
Ir 電流設定信号
Iw 溶接電流
K1 第1傾斜
K2 第2傾斜
KR1 第1傾斜設定回路
Kr1 第1傾斜設定信号
KR2 第2傾斜設定回路
Kr2 第2傾斜設定信号
PM 電源主回路
SD 短絡判別回路
Sd 短絡判別信号
SI 電流差積分回路
Si 電流差積分(値/信号)
SW 制御切換回路
Ta アーク期間
Ti 初期期間
TIR 初期期間設定回路
Tir 初期期間設定信号
Ts 短絡期間
VD 電圧検出回路
Vd 電圧検出信号
VR 電圧設定回路
Vr 電圧設定信号
Vw 溶接電圧
DESCRIPTION OF SYMBOLS 1 Welding wire 2 Base material 3 Arc 4 Welding torch 5 Feed roll Ea Error amplification signal EI Current error amplification circuit Ei Current error amplification signal EV Voltage error amplification circuit Ev Voltage error amplification signal G Constant GR Constant setting circuit Gr Constant setting signal Ia Current value IAD at occurrence of short circuit Current value detection circuit Iad at occurrence of short circuit Current value detection signal Ic at occurrence of short circuit Reference value ICR Reference value setting circuit Icr Reference value setting signal ID Current detection circuit Id Current detection signal Ii Initial current value IIR Initial current setting Circuit Iir Initial current setting signal IR Current setting circuit Ir Current setting signal Iw Welding current K1 First inclination K2 Second inclination KR1 First inclination setting circuit Kr1 First inclination setting signal KR2 Second inclination setting circuit Kr2 Second inclination setting signal PM Power supply main circuit SD Short circuit determination circuit Sd Short circuit determination signal SI Current difference integration circuit Si Current difference integration (value / signal)
SW control switching circuit Ta Arc period Ti Initial period TIR Initial period setting circuit Tir Initial period setting signal Ts Short circuit period VD Voltage detection circuit Vd Voltage detection signal VR Voltage setting circuit Vr Voltage setting signal Vw Welding voltage

Claims (5)

溶接ワイヤを送給すると共に、短絡期間とアーク期間とを交互に繰り返すアーク溶接にあって、
短絡が発生すると溶接電流Iwを予め定めた初期電流値Iiまで減少させて維持し、前記短絡発生時点から予め定めた初期期間Tiが経過すると前記溶接電流を予め定めた第1傾斜で上昇させ、前記溶接電流が基準値Icに達すると前記溶接電流を前記第1傾斜よりも小さな値の予め定めた第2傾斜でアークが再発生するまで上昇させて溶接を行う短絡期間の溶接電流制御方法において、
前記短絡発生時点での溶接電流値Iaを検出し、前記初期期間Ti中の電流差積分値Si=∫(Ia−Iw)・dtを算出し、前記基準値Icをこの電流差積分値Siに基づいて自動設定する、
ことを特徴とする短絡期間の溶接電流制御方法。
In the arc welding where the welding wire is fed and the short circuit period and the arc period are alternately repeated,
When a short circuit occurs, the welding current Iw is decreased and maintained to a predetermined initial current value Ii, and when a predetermined initial period Ti has elapsed from the time of the occurrence of the short circuit, the welding current is increased at a predetermined first slope, In the welding current control method for a short-circuit period in which welding is performed by increasing the welding current at a predetermined second slope having a value smaller than the first slope until the arc is regenerated when the welding current reaches a reference value Ic. ,
The welding current value Ia at the time of the occurrence of the short circuit is detected, the current difference integrated value Si = ∫ (Ia−Iw) · dt during the initial period Ti is calculated, and the reference value Ic is set to the current difference integrated value Si. Automatically set based on the
A method for controlling a welding current during a short-circuit period.
前記基準値Icを所定範囲に制限する、
ことを特徴とする請求項1記載の短絡期間の溶接電流制御方法。
Limiting the reference value Ic to a predetermined range;
The welding current control method for a short-circuit period according to claim 1.
前記基準値Ic=G・Si(但し、Gは予め定めた定数)として自動設定する、
ことを特徴とする請求項1又は2記載の短絡期間の溶接電流制御方法。
It is automatically set as the reference value Ic = G · Si (where G is a predetermined constant),
The welding current control method for a short circuit period according to claim 1 or 2.
前記初期期間Ti中の溶接電流Iw=Iiであるとし、電流差積分値Si=∫(Ia−Ii)・dt=(Ia−Ii)・Tiとする、
ことを特徴とする請求項1〜3のいずれか1項に記載の短絡期間の溶接電流制御方法。
The welding current Iw during the initial period Ti is assumed to be Ii, and the current difference integral value Si = ∫ (Ia−Ii) · dt = (Ia−Ii) · Ti,
The welding current control method for a short-circuit period according to any one of claims 1 to 3.
前記初期電流値Iiと前記初期期間Tiとの乗算値Ii・Ti=0であるとし、前記電流差積分値Si=(Ia−Ii)・Ti=Ia・Tiとする、
ことを特徴とする請求項4記載の短絡期間の溶接電流制御方法。
The product of the initial current value Ii and the initial period Ti is Ii · Ti = 0, and the current difference integral value Si = (Ia−Ii) · Ti = Ia · Ti.
The welding current control method for a short circuit period according to claim 4.
JP2011100324A 2011-04-28 2011-04-28 Welding current control method during short circuit period Active JP5802048B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011100324A JP5802048B2 (en) 2011-04-28 2011-04-28 Welding current control method during short circuit period
CN201210114992.1A CN102756197B (en) 2011-04-28 2012-04-18 Welding current control method during short circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011100324A JP5802048B2 (en) 2011-04-28 2011-04-28 Welding current control method during short circuit period

Publications (2)

Publication Number Publication Date
JP2012232312A true JP2012232312A (en) 2012-11-29
JP5802048B2 JP5802048B2 (en) 2015-10-28

Family

ID=47050973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011100324A Active JP5802048B2 (en) 2011-04-28 2011-04-28 Welding current control method during short circuit period

Country Status (2)

Country Link
JP (1) JP5802048B2 (en)
CN (1) CN102756197B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209631A (en) * 2014-09-02 2014-12-17 招商局重工(江苏)有限公司 Electrical arc welding control device of consumable electrode
JP2015036146A (en) * 2013-08-10 2015-02-23 株式会社ダイヘン Welding current control method during short circuit period
JP2017056487A (en) * 2015-09-18 2017-03-23 株式会社安川電機 Arc welding system and arc welding method
CN114571037A (en) * 2022-03-28 2022-06-03 深圳市爱达思技术有限公司 Welding process control method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319238B2 (en) * 2020-08-31 2023-08-01 株式会社神戸製鋼所 Arc welding control method, welding power source, welding system and detection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394977A (en) * 1989-09-08 1991-04-19 Osaka Denki Co Ltd Method and equipment for pulse arc welding
JP2000079479A (en) * 1998-09-04 2000-03-21 Daihen Corp Method for controlling current waveform in consumable electrode gas shielded arc welding and its welding equipment
JP2006026718A (en) * 2004-07-21 2006-02-02 Daihen Corp Method for detecting/controlling constriction in consumable electrode arc welding
JP2006247710A (en) * 2005-03-11 2006-09-21 Daihen Corp Electric current control method in detecting constriction in consumable electrode arc welding
JP2007253232A (en) * 2006-03-27 2007-10-04 Daihen Corp Method for detecting/controlling constriction in consumable electrode arc welding
JP2009148819A (en) * 2007-11-26 2009-07-09 Daihen Corp Method for detecting/controlling constriction in consumable electrode arc welding
WO2010116695A1 (en) * 2009-04-08 2010-10-14 パナソニック株式会社 Arc welding method and arc welding device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001842A1 (en) * 1989-08-02 1991-02-21 Mitsubishi Denki Kabushiki Kaisha Pulse welding apparatus
JP3898811B2 (en) * 1997-10-22 2007-03-28 中央精機株式会社 Method and apparatus for determining welding stability of arc welding steady state part
JP4855559B2 (en) * 1998-01-30 2012-01-18 株式会社ダイヘン Arc length control method for consumable electrode pulse arc welding
CN1289250C (en) * 2004-10-28 2006-12-13 上海交通大学 Whole digit time sequence accommodation method of CO#-[2] welding
JP4211793B2 (en) * 2006-02-17 2009-01-21 パナソニック株式会社 Arc welding control method and arc welding apparatus
JP5026289B2 (en) * 2008-01-15 2012-09-12 株式会社ダイヘン Short-circuit detection method for consumable electrode arc welding
JP5186227B2 (en) * 2008-02-01 2013-04-17 株式会社ダイヘン Output control method of welding power source

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394977A (en) * 1989-09-08 1991-04-19 Osaka Denki Co Ltd Method and equipment for pulse arc welding
JP2000079479A (en) * 1998-09-04 2000-03-21 Daihen Corp Method for controlling current waveform in consumable electrode gas shielded arc welding and its welding equipment
JP2006026718A (en) * 2004-07-21 2006-02-02 Daihen Corp Method for detecting/controlling constriction in consumable electrode arc welding
JP2006247710A (en) * 2005-03-11 2006-09-21 Daihen Corp Electric current control method in detecting constriction in consumable electrode arc welding
JP2007253232A (en) * 2006-03-27 2007-10-04 Daihen Corp Method for detecting/controlling constriction in consumable electrode arc welding
JP2009148819A (en) * 2007-11-26 2009-07-09 Daihen Corp Method for detecting/controlling constriction in consumable electrode arc welding
WO2010116695A1 (en) * 2009-04-08 2010-10-14 パナソニック株式会社 Arc welding method and arc welding device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7015001155; 日本溶接協会溶接棒部会: マグ・ミグ溶接の欠陥と防止対策 , 20080331, p.137-142, 産報出版 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036146A (en) * 2013-08-10 2015-02-23 株式会社ダイヘン Welding current control method during short circuit period
CN104209631A (en) * 2014-09-02 2014-12-17 招商局重工(江苏)有限公司 Electrical arc welding control device of consumable electrode
CN104209631B (en) * 2014-09-02 2016-03-30 招商局重工(江苏)有限公司 A kind of consumable electrode arc welding control device
JP2017056487A (en) * 2015-09-18 2017-03-23 株式会社安川電機 Arc welding system and arc welding method
CN114571037A (en) * 2022-03-28 2022-06-03 深圳市爱达思技术有限公司 Welding process control method and device
CN114571037B (en) * 2022-03-28 2024-03-19 深圳市爱达思技术有限公司 Welding process control method and device

Also Published As

Publication number Publication date
JP5802048B2 (en) 2015-10-28
CN102756197A (en) 2012-10-31
CN102756197B (en) 2016-04-13

Similar Documents

Publication Publication Date Title
KR102124223B1 (en) Output control method of pulse arc welding
US9296057B2 (en) Welding device and carbon dioxide gas shielded arc welding method
JP5840921B2 (en) Constriction detection control method for consumable electrode arc welding
JP2012006020A (en) Arc welding control method
JP5802048B2 (en) Welding current control method during short circuit period
JP2014024077A (en) Pulse arc welding control method
JP2009195952A (en) Method for discriminating short circuit in consumable electrode arc welding
JP6524412B2 (en) Arc welding control method
JP5557249B2 (en) Feed control method for arc welding with short circuit
JP5622230B2 (en) AC pulse arc welding control method
JP2014083571A (en) Welding current control method during short-circuit period
JP6144143B2 (en) Welding current control method during short circuit period
JP6245734B2 (en) Welding current control method during short circuit period
JP2011235348A (en) Method of controlling short-circuit current of mag welding
JP2016144826A (en) Output control method for pulse arc welding
JP5851798B2 (en) Current control method for constriction detection in consumable electrode arc welding
JP2009166069A (en) Method of discriminating short circuit of consumable electrode arc welding
JP2014034031A (en) Consumable electrode arc-weld controlling method
JP5943460B2 (en) Arc start control method for consumable electrode arc welding
JP2016026880A (en) Pulsed arc welding output control method
JP5888806B2 (en) Welding start method of 2-wire welding
JP5706710B2 (en) 2-wire welding control method
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP2016128186A (en) Output control method for pulse arc welding
JP2012110951A (en) Method of controlling pulsed arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150828

R150 Certificate of patent or registration of utility model

Ref document number: 5802048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250