JP2012231645A - Power conditioner - Google Patents

Power conditioner Download PDF

Info

Publication number
JP2012231645A
JP2012231645A JP2011099754A JP2011099754A JP2012231645A JP 2012231645 A JP2012231645 A JP 2012231645A JP 2011099754 A JP2011099754 A JP 2011099754A JP 2011099754 A JP2011099754 A JP 2011099754A JP 2012231645 A JP2012231645 A JP 2012231645A
Authority
JP
Japan
Prior art keywords
temperature
power
blower fan
air
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011099754A
Other languages
Japanese (ja)
Inventor
Masahiro Furuya
政弘 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011099754A priority Critical patent/JP2012231645A/en
Publication of JP2012231645A publication Critical patent/JP2012231645A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a power conditioner which suppresses power consumption and noise while efficiently cooling a heating part by changing the blast amount of a blower according to the temperature of the heating part and the temperature of the outer air.SOLUTION: A power conditioner 100 is attached to a wall surface and includes a DC-AC conversion circuit converting direct current power generated by solar cells into alternating current power. The power conditioner 100 includes: a body housing the DC-AC conversion circuit therein; a heating part provided in the body and generating heat; an outer air temperature detection part detecting the air temperature of the exterior of the body; a heating part temperature detection part detecting the temperature of the heating part; a blower fan flowing the air around the heating part in the body and cooling the heating part; and a control part controlling the blast amount of the blower fan on the basis of the outer air temperature detected by the outer air temperature detection part and the temperature of the heating part detected by the heating part temperature detection part.

Description

本発明は、太陽光発電システムに用いられ、太陽電池が発電する直流電力を交流電力に変換するパワーコンディショナに関する。   The present invention relates to a power conditioner that is used in a solar power generation system and converts DC power generated by a solar cell into AC power.

従来、太陽光発電システムに用いられ、太陽電池が発電する直流電力を交流電力に変換するパワーコンディショナが用いられている。パワーコンディショナは、直流電力を交流電力に変換するために直交変換回路を備えている。直交変換回路には、IGBT(Insulated Gate Bipolar Transistor)やリアクトルなどのパワー素子が設けられる。パワー素子は、パワーコンディショナの稼働中に発熱する。   Conventionally, a power conditioner that is used in a solar power generation system and converts DC power generated by a solar battery into AC power is used. The power conditioner includes an orthogonal transformation circuit for converting DC power into AC power. The orthogonal transform circuit is provided with a power element such as an IGBT (Insulated Gate Bipolar Transistor) or a reactor. The power element generates heat during operation of the power conditioner.

パワー素子は、発熱によって高温になりすぎると破壊されてしまうおそれがある。そのため、例えば特許文献1には、送風ファンを用いてパワー素子の周辺の空気を流動させて、パワー素子の冷却を図る技術が開示されている。   If the power element becomes too hot due to heat generation, it may be destroyed. Therefore, for example, Patent Document 1 discloses a technique for cooling the power element by flowing air around the power element using a blower fan.

特開2004−357474号公報JP 2004-357474 A

しかしながら、上記従来技術によれば、パワー素子の温度や外気の温度に関わらず送風ファンを運転することで、無駄に電力を消費したり、騒音が発生したりしてしまうという問題があった。   However, according to the above prior art, there is a problem in that power is wasted or noise is generated by operating the blower fan regardless of the temperature of the power element and the temperature of the outside air.

本発明は、上記に鑑みてなされたものであって、発熱部の温度や外気の温度に合わせて送風機の送風量を変化させることで、発熱部の効率的な冷却を図りつつ、消費電力や騒音を抑制することのできるパワーコンディショナを得ることを目的とする。   The present invention has been made in view of the above, and by changing the air flow rate of the blower in accordance with the temperature of the heat generating part and the temperature of the outside air, while efficiently cooling the heat generating part, It aims at obtaining the power conditioner which can suppress a noise.

上述した課題を解決し、目的を達成するために、本発明は、壁面に取り付けられて、太陽電池が発電する直流電力を交流電力に変換する直交変換回路を備えるパワーコンディショナであって、直交変換回路を内部に収容する本体と、本体の内部に設けられて発熱する発熱部と、本体の外部の気温を検知する外気温検知部と、発熱部の温度を検知する発熱部温度検知部と、本体の内部で発熱部周辺の空気を流動させて発熱部を冷却する送風ファンと、外気温検知部に検知された外部の気温と、発熱部温度検知部に検知された発熱部の温度とに基づいて、送風ファンによる送風量を制御する制御部と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is a power conditioner including an orthogonal transformation circuit that is attached to a wall surface and converts DC power generated by a solar cell into AC power. A main body that houses the conversion circuit, a heat generating part that is provided inside the main body and generates heat, an outside air temperature detecting part that detects the temperature outside the main body, and a heat generating part temperature detection part that detects the temperature of the heat generating part A blower fan that cools the heat generating part by causing the air around the heat generating part to flow inside the main body, the external air temperature detected by the outside air temperature detecting part, and the temperature of the heat generating part detected by the heat generating part temperature detecting part And a control unit that controls the amount of air blown by the blower fan.

本発明によれば、発熱部の温度や外気の温度に合わせて送風機の送風量を変化させることで、発熱部の効率的な冷却を図りつつ、消費電力や騒音を抑制することのできるパワーコンディショナを得ることができるという効果を奏する。   According to the present invention, by changing the air flow rate of the blower according to the temperature of the heat generating part and the temperature of the outside air, the power condition capable of suppressing power consumption and noise while efficiently cooling the heat generating part. There is an effect that na can be obtained.

図1は、本発明の実施の形態1にかかるパワーコンディショナの外観斜視図である。FIG. 1 is an external perspective view of a power conditioner according to a first embodiment of the present invention. 図2は、パワーコンディショナが備える直交変換回路を示す図である。FIG. 2 is a diagram illustrating an orthogonal transform circuit included in the power conditioner. 図3は、パワーコンディショナの内部構成を模式的に示した図である。FIG. 3 is a diagram schematically showing the internal configuration of the power conditioner. 図4は、制御回路と送風ファンとサーミスタとの接続例を示す図である。FIG. 4 is a diagram illustrating a connection example of the control circuit, the blower fan, and the thermistor. 図5は、パワー素子の温度と外部の気温の時間的推移を示す図である。FIG. 5 is a diagram showing the temporal transition of the temperature of the power element and the external temperature. 図6は、図5に示す温度の推移における送風ファンの運転状態を示す図である。FIG. 6 is a diagram showing an operating state of the blower fan in the temperature transition shown in FIG. 図7は、パワー素子の温度と外部の気温の時間的推移を他の例として示す図である。FIG. 7 is a diagram showing the time transition of the temperature of the power element and the external temperature as another example. 図8は、図7に示す温度の推移における送風ファンの運転状態を示す図である。FIG. 8 is a diagram showing an operating state of the blower fan in the temperature transition shown in FIG. 図9は、パワー素子の温度と外部の気温の時間的推移をさらに他の例として示す図である。FIG. 9 is a diagram showing a time transition of the temperature of the power element and the external temperature as yet another example. 図10は、図9に示す温度の推移における送風ファンの運転状態を示す図である。FIG. 10 is a diagram illustrating an operating state of the blower fan in the temperature transition illustrated in FIG. 9. 図11は、図9,10に示すように送風ファンの風量を制御する場合の手順を説明するフローチャートである。FIG. 11 is a flowchart illustrating a procedure for controlling the air volume of the blower fan as shown in FIGS.

以下に、本発明の実施の形態にかかるパワーコンディショナを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Below, the power conditioner concerning embodiment of this invention is demonstrated in detail based on drawing. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明の実施の形態1にかかるパワーコンディショナの外観斜視図である。図2は、パワーコンディショナが備える直交変換回路を示す図である。図3は、パワーコンディショナの内部構成を模式的に示した図である。図4は、制御回路と送風ファンとサーミスタとの接続例を示す図である。
Embodiment 1 FIG.
FIG. 1 is an external perspective view of a power conditioner according to a first embodiment of the present invention. FIG. 2 is a diagram illustrating an orthogonal transform circuit included in the power conditioner. FIG. 3 is a diagram schematically showing the internal configuration of the power conditioner. FIG. 4 is a diagram illustrating a connection example of the control circuit, the blower fan, and the thermistor.

パワーコンディショナ100は、本体1、直交変換回路3、外気温検知用サーミスタ(外気温検知部)7、発熱部温度検知サーミスタ(発熱部温度検知部)8、送風ファン9、制御回路10を備えて構成される。   The power conditioner 100 includes a main body 1, an orthogonal transformation circuit 3, an outside air temperature detection thermistor (outside air temperature detection unit) 7, a heat generation unit temperature detection thermistor (heat generation unit temperature detection unit) 8, a blower fan 9, and a control circuit 10. Configured.

本体1は、パワーコンディショナ100の外郭を構成する。本体1には、内部に外気を取り込むための取り入れ口1aと、内部の空気を外部に吐き出すための吐き出し口1bとが形成されている。本実施の形態では、本体1の側面と底面とに2つの取り入れ口1aが形成され、本体1の側面に1つの吐き出し口1bが形成されている。   The main body 1 constitutes the outline of the power conditioner 100. The main body 1 is formed with an intake port 1a for taking outside air into the inside and a discharge port 1b for discharging internal air to the outside. In the present embodiment, two intake ports 1 a are formed on the side surface and bottom surface of the main body 1, and one discharge port 1 b is formed on the side surface of the main body 1.

直交変換回路3は、本体1の内部に収容される。直交変換回路3は、昇圧部4、インバータ部5、フィルタ部6を有する。図2に示すように、太陽光発電用のパワーコンディショナ100は、太陽電池50の発電電圧を昇圧部4で昇圧し、インバータ部5で交流に変換し、フィルタ部6で波形を整えて商用系統に出力する。   The orthogonal transform circuit 3 is accommodated in the main body 1. The orthogonal transform circuit 3 includes a booster unit 4, an inverter unit 5, and a filter unit 6. As shown in FIG. 2, the power conditioner 100 for photovoltaic power generation boosts the power generation voltage of the solar cell 50 by the boosting unit 4, converts it to alternating current by the inverter unit 5, and adjusts the waveform by the filter unit 6 for commercial use. Output to the grid.

図3に示すように、直交変換回路3の一部には、IGBT(Insulated Gate Bipolar Transistor)やリアクトルなどのパワー素子(発熱部)2が用いられる。パワー素子2は、パワーコンディショナ100の稼働中に発熱し、高温になりすぎると破壊されてしまう場合がある。   As shown in FIG. 3, a power element (heat generating portion) 2 such as an IGBT (Insulated Gate Bipolar Transistor) or a reactor is used in a part of the orthogonal transformation circuit 3. The power element 2 generates heat during operation of the power conditioner 100 and may be destroyed if the temperature becomes too high.

外気温検知用サーミスタ7は、本体1の外部の気温を検知する。図3に示すように、外気温検知用サーミスタ7は、本体1の取り入れ口1aの近傍に設けられる。取り入れ口1aの近傍に外気温検知用サーミスタ7を設けることで、本体1に取り込まれる空気の温度を検知することができる。検知された外気の気温に関する情報は制御回路10に送られる。   The outside temperature detection thermistor 7 detects the temperature outside the main body 1. As shown in FIG. 3, the outside temperature detection thermistor 7 is provided in the vicinity of the intake 1 a of the main body 1. By providing the outside temperature detection thermistor 7 in the vicinity of the intake port 1a, the temperature of the air taken into the main body 1 can be detected. Information on the detected temperature of the outside air is sent to the control circuit 10.

発熱部温度検知サーミスタ8は、発熱部としてのパワー素子2の温度を検知する。例えば、パワー素子2に直接接触するように設けられて、パワー素子2の温度を検知する。検知されたパワー素子2の温度に関する情報は制御回路10に送られる。   The heat generating part temperature detection thermistor 8 detects the temperature of the power element 2 as a heat generating part. For example, it is provided so as to be in direct contact with the power element 2 and detects the temperature of the power element 2. Information on the detected temperature of the power element 2 is sent to the control circuit 10.

送風ファン9は、本体1の内部に設けられて、直交変換回路3(パワー素子2)の周囲の空気を流動させる。具体的には、本体1の取り入れ口1aから外気を取り入れて吐き出し口1bから吐き出させる。   The blower fan 9 is provided inside the main body 1 and causes the air around the orthogonal transformation circuit 3 (power element 2) to flow. Specifically, outside air is taken in from the intake port 1a of the main body 1 and discharged from the discharge port 1b.

直交変換回路3の周囲の空気を流動させることで、パワー素子2からの放熱効率の向上を図ることができ、熱源部としてのパワー素子2を冷却することができる。なお、パワー素子2の温度よりも外部の気温が低いほうが放熱効率が高まり、パワー素子2を冷却する効果も高まる。   By causing the air around the orthogonal transformation circuit 3 to flow, the heat dissipation efficiency from the power element 2 can be improved, and the power element 2 as the heat source unit can be cooled. In addition, the heat radiation efficiency increases as the outside air temperature is lower than the temperature of the power element 2, and the effect of cooling the power element 2 also increases.

送風ファン9は、制御回路10に制御されることで、送風量が小風量となる弱運転と、送風量が大風量となる強運転と、停止状態とに切替えられる。直交変換回路3の周囲の空気がより多く流動する強運転のほうが、弱運転よりもパワー素子2を冷却する効果が高くなる。   The blower fan 9 is controlled by the control circuit 10 to be switched between a weak operation in which the blown air volume is small, a strong operation in which the blown air volume is large, and a stopped state. The effect of cooling the power element 2 is higher in the strong operation in which more air around the orthogonal transformation circuit 3 flows than in the weak operation.

制御回路10は、本体1の内部に設けられる。制御回路10は、外気温検知用サーミスタ7に検知された外部の気温と、発熱部温度検知サーミスタ8に検知されたパワー素子2の温度とに基づいて、送風ファン9の運転を制御する。以下、制御回路10による送風ファン9の制御について、より具体的に説明する。   The control circuit 10 is provided inside the main body 1. The control circuit 10 controls the operation of the blower fan 9 based on the external air temperature detected by the outside temperature detection thermistor 7 and the temperature of the power element 2 detected by the heat generating portion temperature detection thermistor 8. Hereinafter, the control of the blower fan 9 by the control circuit 10 will be described more specifically.

図5は、パワー素子2の温度t1と外部の気温t0の時間的推移を示す図である。図6は、図5に示す温度の推移における送風ファンの運転状態を示す図である。図5に示す例では、パワー素子2の温度t1が時間の経過とともに上昇している。しかし、外部の気温t0が比較的高い温度で推移しているため、最初はパワー素子2の温度t1のほうが外部の気温t0よりも低く、時間の経過にしたがってパワー素子2の温度t1のほうが外部の気温t0よりも高くなる。このような温度の推移は、比較的温度の高い夏期に見られることが多い。   FIG. 5 is a diagram showing a temporal transition of the temperature t1 of the power element 2 and the external temperature t0. FIG. 6 is a diagram showing an operating state of the blower fan in the temperature transition shown in FIG. In the example shown in FIG. 5, the temperature t1 of the power element 2 rises with time. However, since the external temperature t0 is relatively high, the temperature t1 of the power element 2 is initially lower than the external temperature t0, and the temperature t1 of the power element 2 is external as time passes. It becomes higher than the temperature t0. Such a change in temperature is often seen in the summer when the temperature is relatively high.

そして、制御回路10は、外部の気温t0よりもパワー素子2の温度t1のほうが低い場合(図6に示すA領域)には、送風ファン9に小風量での運転をさせるか、または送風ファン9の運転を停止させる。   When the temperature t1 of the power element 2 is lower than the outside air temperature t0 (A region shown in FIG. 6), the control circuit 10 causes the blower fan 9 to operate with a small air volume or blower fan. The operation of 9 is stopped.

A領域では、パワー素子2の温度t1が低いので、パワー素子2の冷却の必要性が低い。また、外部の気温t0よりもパワー素子2の温度t1のほうが低いので、外気による冷却の効率が低い。そのため、送風ファン9に小風量での運転をさせるか、または送風ファン9の運転を停止させることで、パワー素子2の冷却よりも消費電力や騒音の抑制を優先させている。   In the region A, since the temperature t1 of the power element 2 is low, the necessity for cooling the power element 2 is low. Further, since the temperature t1 of the power element 2 is lower than the outside air temperature t0, the cooling efficiency by the outside air is low. For this reason, priority is given to suppression of power consumption and noise over cooling of the power element 2 by causing the blower fan 9 to operate with a small air volume or to stop the blower fan 9.

制御回路10は、外部の気温t0よりもパワー素子2の温度t1のほうが高い場合(図6に示すB領域)には、送風ファン9に大風量での運転をさせる。B領域では、パワー素子2の温度t1が高いので、パワー素子2を冷却する必要性が高い。また、外部の気温t0よりもパワー素子2の温度t1のほうが高いので、外気による冷却の効率も高くなる。そのため、送風ファン9に大風量での運転をさせて、パワー素子2の効率的な冷却を図っている。   When the temperature t1 of the power element 2 is higher than the external air temperature t0 (B region shown in FIG. 6), the control circuit 10 causes the blower fan 9 to operate with a large air volume. In the region B, since the temperature t1 of the power element 2 is high, the necessity for cooling the power element 2 is high. Moreover, since the temperature t1 of the power element 2 is higher than the outside air temperature t0, the cooling efficiency by the outside air is also increased. Therefore, the air fan 9 is operated with a large air volume to efficiently cool the power element 2.

図7は、パワー素子2の温度t1と外部の気温t0の時間的推移を他の例として示す図である。図8は、図7に示す温度の推移における送風ファンの運転状態を示す図である。図7に示す例では、パワー素子2の温度t1が時間の経過とともに上昇している。しかし、外部の気温t0が比較的低い温度で推移しているため、常にパワー素子2の温度t1のほうが外部の気温t0よりも高くなる。このような温度の推移は、比較的温度の低い冬期に見られることが多い。   FIG. 7 is a diagram showing the temporal transition of the temperature t1 of the power element 2 and the external temperature t0 as another example. FIG. 8 is a diagram showing an operating state of the blower fan in the temperature transition shown in FIG. In the example shown in FIG. 7, the temperature t1 of the power element 2 rises with time. However, since the external temperature t0 is changing at a relatively low temperature, the temperature t1 of the power element 2 is always higher than the external temperature t0. Such a change in temperature is often seen in the winter when the temperature is relatively low.

そして、制御回路10は、外部の気温t0とパワー素子2の温度t1との差が、予め定められた閾値x以下である場合(図8に示すC領域)には、送風ファン9に小風量での運転をさせるか、または送風ファン9の運転を停止させる。   When the difference between the external temperature t0 and the temperature t1 of the power element 2 is equal to or less than a predetermined threshold value x (C region shown in FIG. 8), the control circuit 10 The operation of the blower fan 9 is stopped.

C領域では、パワー素子2の温度t1が低いので、パワー素子2の冷却の必要性が低い。また、外部の気温t0がパワー素子2の温度t1よりも低いものの、外部の気温t0とパワー素子2の温度t1との差が小さいため、外気による冷却の効率が低い。そのため、送風ファン9に小風量での運転をさせるか、または送風ファン9の運転を停止させることで、パワー素子2の冷却よりも消費電力や騒音の抑制を優先させている。   In the C region, since the temperature t1 of the power element 2 is low, the necessity for cooling the power element 2 is low. Further, although the external temperature t0 is lower than the temperature t1 of the power element 2, the efficiency of cooling by the outside air is low because the difference between the external temperature t0 and the temperature t1 of the power element 2 is small. For this reason, priority is given to suppression of power consumption and noise over cooling of the power element 2 by causing the blower fan 9 to operate with a small air volume or to stop the blower fan 9.

制御回路10は、外部の気温t0とパワー素子2の温度t1との差が、予め定められた閾値xよりも大きい場合(図8に示すD領域)には、送風ファン9に大風量での運転をさせる。D領域では、パワー素子2の温度t1が高いので、パワー素子2を冷却する必要性が高い。また、外部の気温t0がパワー素子2の温度t1よりも低く、外部の気温t0とパワー素子2の温度t1との差が大きいため、外気による冷却の効率も高くなる。そのため、送風ファン9に大風量での運転をさせて、パワー素子2の効率的な冷却を図っている。   When the difference between the external temperature t0 and the temperature t1 of the power element 2 is larger than a predetermined threshold value x (area D shown in FIG. 8), the control circuit 10 Let's drive. In the D region, since the temperature t1 of the power element 2 is high, it is highly necessary to cool the power element 2. In addition, since the outside air temperature t0 is lower than the temperature t1 of the power element 2 and the difference between the outside air temperature t0 and the temperature t1 of the power element 2 is large, the efficiency of cooling by the outside air is also increased. Therefore, the air fan 9 is operated with a large air volume to efficiently cool the power element 2.

図9は、パワー素子の温度t1と外部の気温t0の時間的推移をさらに他の例として示す図である。図10は、図9に示す温度の推移における送風ファンの運転状態を示す図である。図9,図10では、図6,図8で示した制御を組み合わせて送風ファン9を制御する。   FIG. 9 is a diagram showing a time transition of the temperature t1 of the power element and the external temperature t0 as still another example. FIG. 10 is a diagram illustrating an operating state of the blower fan in the temperature transition illustrated in FIG. 9. 9 and 10, the blower fan 9 is controlled by combining the controls shown in FIGS. 6 and 8.

より具体的には、パワー素子2の温度t1が外部の気温t0よりも高い場合であっても、パワー素子2の温度t1と外部の気温t0との差が閾値x以下である場合(図10に示す領域E)には、制御回路10は、送風ファン9に小風量での運転をさせるか、または送風ファン9の運転を停止させる。すなわち、外部の気温t0とパワー素子2の温度t1との差が小さく、外気による冷却の効率が低い場合には、消費電力や騒音の抑制を優先させた制御を行っている。   More specifically, even when the temperature t1 of the power element 2 is higher than the external temperature t0, the difference between the temperature t1 of the power element 2 and the external temperature t0 is equal to or less than the threshold value x (FIG. 10). In the region E), the control circuit 10 causes the blower fan 9 to operate with a small air volume or stops the blower fan 9 from operating. That is, when the difference between the external temperature t0 and the temperature t1 of the power element 2 is small and the cooling efficiency by the outside air is low, control is performed with priority given to suppression of power consumption and noise.

なお、例えばパワー素子2の温度t1がパワー素子破壊温度上限値に所定値以上近づいた場合には、パワー素子2の温度t1と外部の気温t0との差に関わらず送風ファン9を大風量で運転させるように構成してもよい。パワー素子2の温度t1がパワー素子破壊温度上限値に所定値以上近づいた場合には、冷却の効率よりもパワー素子2を冷却することを最優先に送風ファン9を制御して、パワー素子2の破壊防止を図ることができる。   For example, when the temperature t1 of the power element 2 approaches the power element breakdown temperature upper limit value by a predetermined value or more, the blower fan 9 is set to a large air volume regardless of the difference between the temperature t1 of the power element 2 and the external temperature t0. You may comprise so that it may drive | operate. When the temperature t1 of the power element 2 approaches the upper limit value of the power element breakdown temperature, the power fan 2 is controlled with the highest priority given to cooling the power element 2 rather than the cooling efficiency. Can be prevented.

図11は、図9,10に示すように送風ファンの風量を制御する場合の手順を説明するフローチャートである。まず、パワー素子2の温度t1と外部の気温t0とを比較し(ステップS1)、パワー素子2の温度t1が外部の気温t0よりも低い場合には(ステップS2,No)、送風ファン9を小風量で運転させるか、運転を停止させる(ステップS3)。   FIG. 11 is a flowchart illustrating a procedure for controlling the air volume of the blower fan as shown in FIGS. First, the temperature t1 of the power element 2 is compared with the external temperature t0 (step S1). If the temperature t1 of the power element 2 is lower than the external temperature t0 (step S2, No), the blower fan 9 is turned on. The operation is performed with a small amount of air or the operation is stopped (step S3).

パワー素子2の温度t1が外部の気温t0よりも高い場合には(ステップS2,Yes)、パワー素子2の温度t1と外部の気温t0との差と閾値xとを比較する(ステップS4)。   When the temperature t1 of the power element 2 is higher than the external temperature t0 (step S2, Yes), the difference between the temperature t1 of the power element 2 and the external temperature t0 is compared with the threshold value x (step S4).

パワー素子2の温度t1と外部の気温t0との差が閾値x以下であれば(ステップS5,No)、送風ファン9を小風量で運転させるか、運転を停止させる(ステップS6)。パワー素子2の温度t1と外部の気温t0との差が閾値xよりも大きければ(ステップS5,Yes)、送風ファン9を大風量で運転させる(ステップS7)。   If the difference between the temperature t1 of the power element 2 and the external temperature t0 is equal to or less than the threshold value x (step S5, No), the blower fan 9 is operated with a small air volume or is stopped (step S6). If the difference between the temperature t1 of the power element 2 and the outside air temperature t0 is larger than the threshold value x (step S5, Yes), the blower fan 9 is operated with a large air volume (step S7).

以上説明したように、パワーコンディショナ100では、パワー素子2の温度t1と外部の気温t0とに基づいて、送風ファン9の送風量を制御することで、発熱部の効率的な冷却を図りつつ、消費電力や騒音の抑制を図ることができる。   As described above, in the power conditioner 100, the air blowing amount of the blower fan 9 is controlled based on the temperature t <b> 1 of the power element 2 and the external air temperature t <b> 0, thereby efficiently cooling the heat generating portion. In addition, power consumption and noise can be suppressed.

なお、パワーコンディショナ100に、夏期と冬期を設定するスイッチ(図示せず)を設けてもよい。この場合、ユーザーに設定された夏期、冬期の設定に基づいて、制御回路10は、図6に示す制御を行うか、図8に示す制御を行うかを決定するように構成すればよい。   The power conditioner 100 may be provided with a switch (not shown) for setting summer and winter. In this case, the control circuit 10 may be configured to determine whether to perform the control shown in FIG. 6 or the control shown in FIG. 8 based on the summer and winter settings set by the user.

以上のように、本発明にかかるパワーコンディショナは、太陽電池が発電する直流電力を交流電力に変換するパワーコンディショナに有用であり、特にパワー素子などの発熱部を備えるパワーコンディショナに適している。   As described above, the power conditioner according to the present invention is useful for a power conditioner that converts direct-current power generated by a solar cell into alternating-current power, and is particularly suitable for a power conditioner that includes a heating part such as a power element. Yes.

1 本体
1a 取り入れ口
1b 吐き出し口
2 パワー素子(発熱部)
3 直交変換回路
4 昇圧部
5 インバータ部
6 フィルタ部
7 外気温検知用サーミスタ(外気温検知部)
8 発熱部温度検知サーミスタ(発熱部温度検知部)
9 送風ファン
10 制御回路
50 太陽電池
100 パワーコンディショナ
DESCRIPTION OF SYMBOLS 1 Main body 1a Intake port 1b Outlet port 2 Power element (heat generating part)
3 Orthogonal transformation circuit 4 Booster unit 5 Inverter unit 6 Filter unit 7 Thermistor for detecting outside air temperature (outside air temperature detecting unit)
8 Heating part temperature detection thermistor (heating part temperature detection part)
9 Blower fan 10 Control circuit 50 Solar cell 100 Power conditioner

Claims (3)

壁面に取り付けられて、太陽電池が発電する直流電力を交流電力に変換する直交変換回路を備えるパワーコンディショナであって、
前記直交変換回路を内部に収容する本体と、
前記本体の内部に設けられて発熱する発熱部と、
前記本体の外部の気温を検知する外気温検知部と、
前記発熱部の温度を検知する発熱部温度検知部と、
前記本体の内部で前記発熱部周辺の空気を流動させて前記発熱部を冷却する送風ファンと、
前記外気温検知部に検知された外部の気温と、前記発熱部温度検知部に検知された前記発熱部の温度とに基づいて、前記送風ファンによる送風量を制御する制御部と、を備えることを特徴とするパワーコンディショナ。
A power conditioner that is attached to a wall surface and includes an orthogonal transformation circuit that converts DC power generated by a solar cell into AC power,
A main body for accommodating the orthogonal transformation circuit therein;
A heat generating part that is provided inside the main body and generates heat;
An outside air temperature detector for detecting the temperature outside the main body;
A heating part temperature detection part for detecting the temperature of the heating part;
A blower fan that cools the heat generating part by flowing air around the heat generating part inside the main body;
A controller that controls the amount of air blown by the blower fan based on the outside air temperature detected by the outside air temperature detector and the temperature of the heat generator detected by the heat generator temperature detector. Power conditioner characterized by
前記制御部は、前記外部の気温が前記発熱部の温度よりも高い場合に小風量で前記送風ファンを運転させ、前記外部の気温が前記発熱部の温度よりも低い場合に大風量で前記送風ファンを運転させることを特徴とする請求項1に記載のパワーコンディショナ。   The control unit operates the blower fan with a small amount of air when the external temperature is higher than the temperature of the heat generating unit, and the air with a large amount of air when the external temperature is lower than the temperature of the heat generating unit. The power conditioner according to claim 1, wherein the fan is operated. 前記制御部は、前記外部の気温が前記発熱部の温度よりも低い場合であって、前記外部の気温と前記発熱部の温度との差が予め定められた閾値よりも大きい場合に大風量で前記送風ファンを運転させることを特徴とする請求項1または2に記載のパワーコンディショナ。   The control unit has a large air volume when the external air temperature is lower than the temperature of the heat generating unit and the difference between the external air temperature and the temperature of the heat generating unit is larger than a predetermined threshold. The power conditioner according to claim 1 or 2, wherein the blower fan is operated.
JP2011099754A 2011-04-27 2011-04-27 Power conditioner Pending JP2012231645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099754A JP2012231645A (en) 2011-04-27 2011-04-27 Power conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099754A JP2012231645A (en) 2011-04-27 2011-04-27 Power conditioner

Publications (1)

Publication Number Publication Date
JP2012231645A true JP2012231645A (en) 2012-11-22

Family

ID=47432689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099754A Pending JP2012231645A (en) 2011-04-27 2011-04-27 Power conditioner

Country Status (1)

Country Link
JP (1) JP2012231645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072894A (en) * 2015-10-05 2017-04-13 富士通株式会社 Rotation control method, rotation control program, and information processor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047898A (en) * 1990-04-25 1992-01-13 Tokyo Electric Co Ltd Air-cooled apparatus of electronic equipment
JPH11122949A (en) * 1997-10-07 1999-04-30 Sanyo Electric Co Ltd Outdoor mounting structure of power device
JP2001193995A (en) * 1999-12-28 2001-07-17 Matsushita Seiko Co Ltd Cooler for heater containing box and its controlling method
JP2002076665A (en) * 2000-08-24 2002-03-15 Matsushita Electric Ind Co Ltd Rack device with cooler
JP2003289195A (en) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp Cooling device
JP2004312813A (en) * 2003-04-03 2004-11-04 Hitachi Ltd Cooling system and cooling control method of motorized device
JP2004357474A (en) * 2003-05-30 2004-12-16 Sharp Corp Outdoor installation power conditioner
JP2008172118A (en) * 2007-01-15 2008-07-24 Sharp Corp Cooler, cooling method and electric apparatus to be cooled by the cooler
JP2009213262A (en) * 2008-03-04 2009-09-17 Sharp Corp Power-converting apparatus and power-generating system using the same
JP2011035968A (en) * 2009-07-30 2011-02-17 Panasonic Corp Power generation system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047898A (en) * 1990-04-25 1992-01-13 Tokyo Electric Co Ltd Air-cooled apparatus of electronic equipment
JPH11122949A (en) * 1997-10-07 1999-04-30 Sanyo Electric Co Ltd Outdoor mounting structure of power device
JP2001193995A (en) * 1999-12-28 2001-07-17 Matsushita Seiko Co Ltd Cooler for heater containing box and its controlling method
JP2002076665A (en) * 2000-08-24 2002-03-15 Matsushita Electric Ind Co Ltd Rack device with cooler
JP2003289195A (en) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp Cooling device
JP2004312813A (en) * 2003-04-03 2004-11-04 Hitachi Ltd Cooling system and cooling control method of motorized device
JP2004357474A (en) * 2003-05-30 2004-12-16 Sharp Corp Outdoor installation power conditioner
JP2008172118A (en) * 2007-01-15 2008-07-24 Sharp Corp Cooler, cooling method and electric apparatus to be cooled by the cooler
JP2009213262A (en) * 2008-03-04 2009-09-17 Sharp Corp Power-converting apparatus and power-generating system using the same
JP2011035968A (en) * 2009-07-30 2011-02-17 Panasonic Corp Power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072894A (en) * 2015-10-05 2017-04-13 富士通株式会社 Rotation control method, rotation control program, and information processor

Similar Documents

Publication Publication Date Title
JP5914689B2 (en) Fan control device and power conditioner
JP2012200042A (en) Inverter controller and freezing/air conditioning device
JP6762683B2 (en) Electric compressor
JP5589141B2 (en) Operation control device for photovoltaic power generation system
JP6312851B2 (en) Electric motor drive device and air conditioner
JP2014107207A (en) Power supply device
JP6300785B2 (en) Inverter system
JP2016067164A (en) Power conditioner
JP2016146737A (en) Cooling apparatus
JP2012231645A (en) Power conditioner
JP2009188159A (en) Power converter
JP2010062004A (en) Fuel cell power generating system and cooling method for fuel cell power generating system
JP6146316B2 (en) Air conditioner
JP2010119236A (en) Solar power generation power supply apparatus
JP2013084648A (en) Cooling system
CN111447809B (en) Photovoltaic air conditioner, cooling assembly and control method of cooling assembly
CN113566381B (en) Household appliance and overheating protection control method, device and storage medium thereof
JP2019146374A (en) Electric power conversion device
KR101423824B1 (en) Water cooled inverter system and Method for controlling thereof
JP2012244825A (en) Electric power conversion apparatus
JP2015163013A (en) Compressor control device, power factor improvement circuit, heat radiation structure for electrical component, and electrical equipment
JP2012228062A (en) Power conditioner
JP6137452B2 (en) Electric vehicle cooling system
JP6568243B2 (en) Air conditioner
JP2011188593A (en) Cooling device for power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125