JP2012228826A - Two-layer shape-memory ribbon and method of producing the same - Google Patents

Two-layer shape-memory ribbon and method of producing the same Download PDF

Info

Publication number
JP2012228826A
JP2012228826A JP2011098776A JP2011098776A JP2012228826A JP 2012228826 A JP2012228826 A JP 2012228826A JP 2011098776 A JP2011098776 A JP 2011098776A JP 2011098776 A JP2011098776 A JP 2011098776A JP 2012228826 A JP2012228826 A JP 2012228826A
Authority
JP
Japan
Prior art keywords
shape memory
layer
alloy
ribbon
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011098776A
Other languages
Japanese (ja)
Inventor
Masato Enozono
正人 榎園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oita University
Original Assignee
Oita University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oita University filed Critical Oita University
Priority to JP2011098776A priority Critical patent/JP2012228826A/en
Publication of JP2012228826A publication Critical patent/JP2012228826A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Laminated Bodies (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two-layer shape-memory ribbon having both high magnetic properties and shape-memory performance.SOLUTION: The two-layer shape-memory ribbon has a two-layer laminated structure comprising a first layer which is soft magnetic alloy of which magnetostriction constant is approximately zero and a second layer which is non-magnetic shape-memory alloy. An element of which content (mass%) is largest in a component composition of the soft magnetic alloy and an element of which content (mass%) in a component composition of the non-magnetic shape-memory alloy are identical to each other.

Description

本発明は、十分な強磁性を有し、電気回路の複雑な制御系への応用が可能な二層形状記憶リボン、及びその製造方法に関する。   The present invention relates to a two-layer shape memory ribbon having sufficient ferromagnetism and capable of being applied to a complicated control system of an electric circuit, and a manufacturing method thereof.

従来、一般的な形状記憶合金としては、Ni−Ti系合金、Cu−Al−Zn系合金、Cu−Al−Ni系合金等がよく知られている。これらの形状記憶合金は、主に、管継手等に用いられる。これらの形状記憶合金は、非磁性である。   Conventionally, as a general shape memory alloy, a Ni—Ti alloy, a Cu—Al—Zn alloy, a Cu—Al—Ni alloy, and the like are well known. These shape memory alloys are mainly used for pipe joints and the like. These shape memory alloys are non-magnetic.

形状記憶合金が外部磁界に反応する程度の強磁性を有すれば、その用途は、磁気センサや小型アクチュエータへ拡大可能となる。すなわち、磁界を用いて形状記憶合金を操作することが可能であれば、電子回路やシーケンス回路等の電気信号を磁界に変換し、この磁界で形状記憶合金を変形させることにより、複雑な制御が可能になると期待される。   If the shape memory alloy has ferromagnetism that reacts to an external magnetic field, its application can be expanded to a magnetic sensor and a small actuator. In other words, if it is possible to manipulate a shape memory alloy using a magnetic field, it is possible to perform complicated control by converting an electrical signal of an electronic circuit, a sequence circuit, etc. into a magnetic field, and deforming the shape memory alloy with this magnetic field. Expected to be possible.

さらに、形状記憶合金の透磁率が高ければ、加熱効率が高くなるので、非接触の誘導加熱を用いて、変形前の形状に容易に回復できる。   Furthermore, if the magnetic permeability of the shape memory alloy is high, the heating efficiency becomes high. Therefore, the shape before deformation can be easily recovered using non-contact induction heating.

近年、形状記憶性に加え、強磁性を有する、鉄基形状記憶合金が提案されている。例えば、非特許文献1には、非磁性のFe−Mn−Si形状記憶合金に強磁性元素(Co、Ni)を添加した強磁性形状記憶合金が開示されている。その他、特許文献1〜5にも、鉄基形状記憶合金が開示されている。
In recent years, iron-based shape memory alloys having ferromagnetism in addition to shape memory properties have been proposed. For example, Non-Patent Document 1 discloses a ferromagnetic shape memory alloy in which a ferromagnetic element (Co, Ni) is added to a nonmagnetic Fe—Mn—Si shape memory alloy. In addition, Patent Documents 1 to 5 disclose iron-based shape memory alloys.

特開2005−146320号公報JP 2005-146320 A 特公平5−72464号公報Japanese Patent Publication No. 5-72464 特開昭61−201761号公報JP-A-61-201761 特開平2−190448号公報JP-A-2-190448 特開平2−77554号公報Japanese Patent Laid-Open No. 2-77554

戸高孝、佐藤勇太、榎園正人,Fe基強磁性形状記憶合金の磁気特性並びに形状記憶特性,日本AEM学会誌 VOL.16, No.2, 2008, PP.76-81Takashi Totaka, Yuta Sato, Masato Gion, Magnetic Properties and Shape Memory Properties of Fe-Based Ferromagnetic Shape Memory Alloy, Journal of AEM Society of Japan VOL.16, No.2, 2008, PP.76-81

非特許文献1には、強磁性形状記憶合金の磁気特性(飽和磁化)と形状記憶特性(Shape Memory Effect、以下「SME」という)は互いにトレードオフの関係があることが示されている。   Non-Patent Document 1 shows that magnetic properties (saturation magnetization) and shape memory properties (Shape Memory Effect, hereinafter referred to as “SME”) of ferromagnetic shape memory alloys have a trade-off relationship with each other.

非特許文献1に開示された強磁性形状記憶合金では、SMEが100%のときの飽和磁化は、20〜30emu/g程度である。また、飽和磁化が100emu/gのときのSMEは、10〜35%程度である。   In the ferromagnetic shape memory alloy disclosed in Non-Patent Document 1, the saturation magnetization when SME is 100% is about 20 to 30 emu / g. Further, the SME when the saturation magnetization is 100 emu / g is about 10 to 35%.

このように、従来の強磁性形状記憶合金は、磁気センサ、小型アクチュエータに用いるには、磁気特性、形状記憶性ともに、十分なものとはいえない。   As described above, conventional ferromagnetic shape memory alloys are not sufficient in both magnetic properties and shape memory properties for use in magnetic sensors and small actuators.

本発明は、上記の事情にかんがみてなされたものであって、従来にない高い磁気特性、形状記憶性を併せ持つ二層形状記憶リボンの提供を課題とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a two-layer shape memory ribbon having both high magnetic characteristics and shape memory properties that have not been conventionally available.

本発明者らは、高い磁気特性、形状記憶性を併せ持つ二層形状記憶リボンを得るべく、鋭意検討した。その結果、従来の技術とは全く異なる方法で、高い磁気特性、形状記憶性を併せ持つ二層形状記憶リボンを得ることに成功した。   The present inventors diligently studied to obtain a two-layer shape memory ribbon having both high magnetic properties and shape memory properties. As a result, the present inventors succeeded in obtaining a two-layer shape memory ribbon having both high magnetic properties and shape memory properties by a method completely different from the conventional technique.

すなわち、軟磁性合金の成分組成を有する溶融金属と、形状記憶合金の成分組成を有する溶融金属を、ノズルより噴射し、それぞれの溶融金属を、冷却ロールを用いて急速冷却することにより、軟磁性層と形状記憶層が層の境界で融着凝固した2層からなる2層積層構造のリボンを製造することができ、かつ、得られたリボンは、軟磁性と形状記憶性の特性を併せ持つことを見出した。   That is, a molten metal having a component composition of a soft magnetic alloy and a molten metal having a component composition of a shape memory alloy are jetted from a nozzle, and each molten metal is rapidly cooled using a cooling roll, thereby soft magnetism. A ribbon having a two-layer structure in which a layer and a shape memory layer are fused and solidified at the boundary between the layers can be manufactured, and the obtained ribbon has both characteristics of soft magnetism and shape memory. I found.

本発明は、上記の知見に基づきなされたものであって、その要旨は以下のとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)磁歪定数がほぼゼロの軟磁性合金である第1層、及び、非磁性の形状記憶合金である第2層からなる2層積層構造を有し、
上記第1層と第2層が層の境界で融着凝固されたことを特徴とする二層形状記憶リボン。
(1) having a two-layer laminated structure including a first layer that is a soft magnetic alloy having a magnetostriction constant of substantially zero and a second layer that is a nonmagnetic shape memory alloy;
A two-layer shape memory ribbon, wherein the first layer and the second layer are fused and solidified at a boundary between the layers.

(2)前記軟磁性合金がFe−Si系合金であり、前記形状記憶合金がFe−Mn−Si系合金であることを特徴とする前記(1)の二層形状記憶リボン。   (2) The two-layer shape memory ribbon according to (1), wherein the soft magnetic alloy is an Fe—Si based alloy, and the shape memory alloy is an Fe—Mn—Si based alloy.

(3)前記軟磁性合金がFe−Si−Al系合金であり、前記形状記憶合金がFe−Mn−Si系合金であることを特徴とする前記(1)の二層形状記憶リボン。   (3) The two-layer shape memory ribbon according to (1), wherein the soft magnetic alloy is an Fe—Si—Al alloy, and the shape memory alloy is an Fe—Mn—Si alloy.

(4)前記軟磁性合金がNi−Fe系合金であり、前記形状記憶合金がNi−Ti系合金であることを特徴とする前記(1)の二層形状記憶リボン。   (4) The two-layer shape memory ribbon according to (1), wherein the soft magnetic alloy is a Ni—Fe alloy, and the shape memory alloy is a Ni—Ti alloy.

(5)厚さが50〜100μmであることを特徴とする前記(1)〜(4)のいずれかの二層形状記憶リボン。   (5) The two-layer shape memory ribbon according to any one of (1) to (4), wherein the thickness is 50 to 100 μm.

(6)磁歪定数がほぼゼロの軟磁性合金の成分組成を有する溶融金属と、非磁性の形状記憶合金の成分組成を有する溶融金属を、それぞれノズルから溶融金属を回転する冷却ロールの冷却面に、同時に、連続的に噴射して、上記冷却面で急冷凝固させることにより、上記軟磁性合金からなる第1層と上記形状記憶合金からなる第2層が層の境界で融着凝固された2層積層構造を有するリボンを製造することを特徴とする二層形状記憶リボンの製造方法。   (6) Molten metal having a component composition of a soft magnetic alloy having a magnetostriction constant of almost zero and a molten metal having a component composition of a nonmagnetic shape memory alloy are respectively applied to the cooling surface of a cooling roll that rotates the molten metal from a nozzle. At the same time, the first layer made of the soft magnetic alloy and the second layer made of the shape memory alloy were fused and solidified at the boundary between the layers by continuously injecting and rapidly solidifying at the cooling surface. A method for producing a two-layer shape memory ribbon, comprising producing a ribbon having a layered structure.

本発明によれば、高い磁気特性、形状記憶性を併せ持つ二層形状記憶リボンを得ることができる。   According to the present invention, a two-layer shape memory ribbon having both high magnetic properties and shape memory properties can be obtained.

超急冷法による本発明の二層形状記憶リボンの製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the two-layer shape memory ribbon of this invention by a super quenching method. 本発明の二層形状記憶リボンの製造に用いることができる、ノズルの一例を示す図である。It is a figure which shows an example of a nozzle which can be used for manufacture of the two-layer shape memory ribbon of this invention. 本発明の二層形状記憶リボンの製造に用いることができる、ノズルの一例を示す図である。It is a figure which shows an example of a nozzle which can be used for manufacture of the two-layer shape memory ribbon of this invention. 形状記憶効果(SME)の評価方法を説明する図である。It is a figure explaining the evaluation method of a shape memory effect (SME). 本発明の実施例で作製した二層形状記憶リボンの表面のX線回折ピークを示す図である。It is a figure which shows the X-ray-diffraction peak of the surface of the double layer shape memory ribbon produced in the Example of this invention. 本発明の実施例で作製した二層形状記憶リボンの表面のX線回折ピークを示す図である。It is a figure which shows the X-ray-diffraction peak of the surface of the double layer shape memory ribbon produced in the Example of this invention.

以下、本発明の二層形状記憶リボンについて、詳細に説明する。以下、「%」は「質量%」を示すものとする。   Hereinafter, the two-layer shape memory ribbon of the present invention will be described in detail. Hereinafter, “%” indicates “% by mass”.

本発明の二層形状記憶リボンは、磁歪定数がほぼゼロの軟磁性合金である第1層、及び、非磁性の形状記憶合金である第2層からなる2層積層構造を有する。ここで、「磁歪定数がほぼゼロ」とは、磁歪定数が絶対値で1×10-6以下であることをいうものとする。 The two-layer shape memory ribbon of the present invention has a two-layer laminated structure including a first layer that is a soft magnetic alloy having a magnetostriction constant of substantially zero and a second layer that is a nonmagnetic shape memory alloy. Here, “the magnetostriction constant is almost zero” means that the magnetostriction constant is 1 × 10 −6 or less in absolute value.

単に、磁歪定数がほぼゼロの軟磁性合金、及び、非磁性の形状記憶合金を合金化したり、合金化した状態でリボン化したりしても、本発明の二層形状記憶リボンと同様の性質は得られない。すなわち、軟磁性合金からなる第1層、及び形状記憶合金からなる第2層に分かれ、第1層と第2層が層の境界で融着凝固した積層構造である点が、高い磁気特性及び形状記憶性を得る上で重要である。   Even if a soft magnetic alloy having a magnetostriction constant of almost zero and a nonmagnetic shape memory alloy are alloyed or ribboned in an alloyed state, the same properties as the two-layer shape memory ribbon of the present invention are obtained. I can't get it. That is, it is divided into a first layer made of a soft magnetic alloy and a second layer made of a shape memory alloy, and the first layer and the second layer have a laminated structure in which the first layer and the second layer are fused and solidified at the boundary between the layers. It is important for obtaining shape memory.

第1層と第2層の境界において、軟磁性合金、及び形状記憶合金の一部が合金化していてもかまわないが、合金化の割合は低いほうが、磁気特性、及び形状記憶特性が優れた二層形状記憶リボンが得られる。合金化した領域の割合は、全厚みの10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは1%以下である。   A part of the soft magnetic alloy and the shape memory alloy may be alloyed at the boundary between the first layer and the second layer, but the lower the rate of alloying, the better the magnetic characteristics and the shape memory characteristics. A two-layer shape memory ribbon is obtained. The ratio of the alloyed region is preferably 10% or less of the total thickness, more preferably 5% or less, and still more preferably 1% or less.

本発明の二層形状記憶リボンの第1層は、磁歪定数がほぼゼロの軟磁性合金からなり、この軟磁性合金の特性が、本発明の二層形状記憶リボンの磁気特性となる。磁歪定数がほぼゼロであることにより、リボンに圧力(張力)を加えても磁気特性が変化しないので、本発明の二層形状記憶リボンは、磁気センサや小型アクチュエータに好適である。   The first layer of the two-layer shape memory ribbon of the present invention is made of a soft magnetic alloy having a magnetostriction constant of substantially zero, and the characteristics of this soft magnetic alloy are the magnetic characteristics of the two-layer shape memory ribbon of the present invention. Since the magnetostriction constant is substantially zero, the magnetic characteristics do not change even when pressure (tension) is applied to the ribbon. Therefore, the two-layer shape memory ribbon of the present invention is suitable for a magnetic sensor or a small actuator.

磁歪定数がほぼゼロとなる磁性合金としては、例えば、Fe−Si系合金、Fe−Si−Al系合金、Ni−Fe系合金、Ni−Mn系合金などが知られており、目的に応じて、適宜、選択することができる。磁気特性の観点からは、第1層は、Fe−Si系合金、Fe−Si−Al系合金、又は、Ni−Fe系合金であることが好ましい。   As a magnetic alloy whose magnetostriction constant is almost zero, for example, an Fe—Si based alloy, an Fe—Si—Al based alloy, a Ni—Fe based alloy, a Ni—Mn based alloy, and the like are known. Can be appropriately selected. From the viewpoint of magnetic properties, the first layer is preferably an Fe—Si based alloy, an Fe—Si—Al based alloy, or a Ni—Fe based alloy.

Fe−Si系合金は、Siの含有量が6.5%前後で、残部が鉄からなる合金が、磁歪定数がほぼゼロとなることが知られている。Fe−Si−Al系合金は、Siの含有量が9.6%前後、Alの含有量が5.4%前後で、残部が鉄からなる合金が、磁歪定数がほぼゼロとなることが知られている。Ni−Fe系合金は、Niの含有量が81%前後で、磁歪定数がほぼゼロとなることが知られている。   It is known that the Fe—Si based alloy has a Si content of around 6.5%, and the remaining alloy of iron has a magnetostriction constant of almost zero. It is known that the Fe-Si-Al-based alloy has an Si content of around 9.6%, an Al content of around 5.4%, and the remaining alloy of iron has a magnetostriction constant of almost zero. It has been. It is known that the Ni-Fe alloy has a Ni content of around 81% and a magnetostriction constant of almost zero.

なお、本発明の二層形状記憶リボンの第1層の磁性合金は、磁歪定数がほぼゼロとなる磁性合金であれば、上に示した成分系に、さらにMo、B、Co等の元素を添加した、例えば5%Mo−79%Ni−16%Feのような合金であってもかまわない。   In addition, if the magnetic alloy of the first layer of the two-layer shape memory ribbon of the present invention is a magnetic alloy having a magnetostriction constant of almost zero, an element such as Mo, B, or Co is further added to the above component system. For example, an alloy such as 5% Mo-79% Ni-16% Fe may be added.

本発明の二層形状記憶リボンの第2層は、非磁性の形状記憶合金からなる。ここで、「非磁性」とは、磁性が全くない場合のほか、本発明の趣旨に影響しない程度の低い磁性であることを意味し、常温で常磁性、反強磁性、反磁性であるものを含む。   The second layer of the two-layer shape memory ribbon of the present invention is made of a nonmagnetic shape memory alloy. Here, “non-magnetic” means that there is no magnetism at all and that the magnetism is low enough not to affect the gist of the present invention, and is paramagnetic, antiferromagnetic, or diamagnetic at room temperature. including.

第2層の形状記憶合金が磁性を有すると、第1層から第2層へと磁束の一部が漏れ出るので、第1層の軟磁性合金が有する磁気特性を、本発明の二層形状記憶リボン全体として得ることができなくなる。   When the shape memory alloy of the second layer has magnetism, a part of the magnetic flux leaks from the first layer to the second layer. Therefore, the magnetic properties of the soft magnetic alloy of the first layer are represented by the two-layer shape of the present invention. The memory ribbon as a whole cannot be obtained.

また、第1層と第2層の組成を近いものとすることにより、層間の密着力を高めることが可能となり、実用上問題のない密着力を有する2層積層構造のリボンを得ることができる。   Moreover, by making the composition of the first layer and the second layer close, it becomes possible to increase the adhesion between the layers, and a ribbon having a two-layer laminated structure having an adhesion without any practical problem can be obtained. .

例えば、第1層が、Fe−Si系合金や、Fe−Si−Al系合金である場合は、第2層は、Fe−Mn−Si系の形状記憶合金が好適である。第1層が、Ni−Fe系合金である場合は、第2層は、Ni−Ti系の形状記憶合金が好適である。   For example, when the first layer is an Fe—Si based alloy or an Fe—Si—Al based alloy, the second layer is preferably an Fe—Mn—Si based shape memory alloy. In the case where the first layer is a Ni—Fe based alloy, the second layer is preferably a Ni—Ti based shape memory alloy.

これらの合金には、上に記載された元素の他に、酸化の防止や結晶粒の微細化を目的として、B、Mo、Cr、Co、Cuのような元素を適宜添加したものも含まれる。   These alloys include those added with elements such as B, Mo, Cr, Co and Cu as appropriate for the purpose of preventing oxidation and refining crystal grains in addition to the elements described above. .

Bは、結晶粒の微細化を目的として、1%以下の範囲で添加することができる。Mo及びCoは、透磁率の向上を目的として、それぞれ、6%以下、15%以下の範囲で添加することができる。Crは、耐酸化性の向上を目的として、12%以下の範囲で添加することができる。Cuは、透磁率の向上、及び延性の向上を目的として、6%以下の範囲で添加することができる。   B can be added in a range of 1% or less for the purpose of refining crystal grains. Mo and Co can be added in the range of 6% or less and 15% or less, respectively, for the purpose of improving the magnetic permeability. Cr can be added in a range of 12% or less for the purpose of improving oxidation resistance. Cu can be added in a range of 6% or less for the purpose of improving magnetic permeability and ductility.

好適な第1層、及び第2層の合金の具体的な例を、表1に示す。これらの組み合わせは例示であり、磁歪定数がほぼゼロの軟磁性合金と、非磁性の形状記憶合金の組み合わせであれば、他の合金を用いてもよい。   Specific examples of suitable first layer and second layer alloys are shown in Table 1. These combinations are examples, and other alloys may be used as long as they are a combination of a soft magnetic alloy having a magnetostriction constant of almost zero and a nonmagnetic shape memory alloy.

Figure 2012228826
Figure 2012228826

本発明の二層形状記憶リボンは、全体として軟磁性なので、透磁率が高く、加熱効率が高い。その結果、非接触の誘導加熱等により、変形前の形状に容易に回復させることができる。   Since the two-layer shape memory ribbon of the present invention is soft magnetic as a whole, the magnetic permeability is high and the heating efficiency is high. As a result, the shape before deformation can be easily recovered by non-contact induction heating or the like.

本発明の二層形状記憶リボンの厚さは、特に制限されるものではない。リボン全体として、高い磁気特性、及び形状記憶性を得るためには、50〜100μm程度が好ましい。厚さが50μm未満になると、リボンを安定して製造するのが難しくなる。厚さが100μmを超えると、リボンを安定して製造するのが難しくなり、さらにリボンがもろくなりやすくなる。   The thickness of the two-layer shape memory ribbon of the present invention is not particularly limited. In order to obtain high magnetic properties and shape memory properties as a whole ribbon, about 50 to 100 μm is preferable. When the thickness is less than 50 μm, it becomes difficult to stably manufacture the ribbon. When the thickness exceeds 100 μm, it is difficult to stably produce the ribbon, and the ribbon is fragile.

次に、本発明の二層形状記憶リボンの製造方法について説明する。   Next, the manufacturing method of the two-layer shape memory ribbon of this invention is demonstrated.

本発明の二層形状記憶リボンは、例えば、図1に示すような、溶融金属を噴射するノズル10と、冷却ロール20を有する、単ロール装置を用いて製造することができる。   The two-layer shape memory ribbon of the present invention can be manufactured using, for example, a single roll apparatus having a nozzle 10 for injecting molten metal and a cooling roll 20 as shown in FIG.

具体的には、第1層の軟磁性合金の成分組成を有する溶融金属と、第2層の形状記憶合金の成分組成を有する溶融金属を、それぞれ、互いの噴射口を所定の間隔をおいて接近させて配置した別々のノズルから、溶融金属を冷却ロールの冷却面に、同時に、連続的に噴射して、冷却面上で急冷凝固させる。   Specifically, the molten metal having the component composition of the soft magnetic alloy of the first layer and the molten metal having the component composition of the shape memory alloy of the second layer are respectively spaced apart from each other by a predetermined interval. From separate nozzles placed close together, molten metal is simultaneously and continuously jetted onto the cooling surface of the chill roll and rapidly solidified on the cooling surface.

特に限定されるものではないが、それぞれのノズルの噴射口の間隔は、2mm以下とするのが好ましい。また、特に限定されるものではないが、溶融金属は、冷却ロールの頂部からロール回転方向に±5〜6°程度の範囲の直上に位置させたノズルから噴射し凝固させるのが、リボンの製造が容易であり好ましい。   Although not particularly limited, the interval between the nozzles of each nozzle is preferably 2 mm or less. Although not particularly limited, the molten metal is solidified by being injected and solidified from a nozzle positioned in the range of about ± 5 to 6 ° in the roll rotation direction from the top of the cooling roll. Is easy and preferable.

ノズルから噴射する溶融金属は、噴射口の反対側のガス導入管(図示せず)から、例えばアルゴンガス等を導入して加圧し、噴射する。   The molten metal injected from the nozzle is injected by pressurizing, for example, introducing argon gas from a gas introduction pipe (not shown) on the opposite side of the injection port.

ノズルには、例えば、図2−1、図2−2に示すような、磁性体合金の成分組成を有する溶融金属と、形状記憶合金の成分組成を有する溶融金属とを、混合することなく注入可能とする隔壁11をノズル10の内部に備え、磁性体合金の成分組成を有する溶融金属を噴射する噴射口12aと、形状記憶合金の成分組成を有する溶融金属とを噴射する噴射口12bとを、備えるガラス製等の非金属製のノズルを用いることもできる。   For example, a molten metal having a magnetic alloy component composition and a molten metal having a shape memory alloy component composition as shown in FIGS. 2-1 and 2-2 are injected into the nozzle without mixing. A nozzle 11 is provided with a partition wall 11 to enable, and an injection port 12a for injecting a molten metal having a component composition of a magnetic alloy, and an injection port 12b for injecting a molten metal having a component composition of a shape memory alloy. A non-metallic nozzle made of glass or the like can also be used.

ノズルの形状は、特に限定するものではないが、図2−2の(e−1)、(e−2)に示す、スケアー形状のスリットノズルが、均等厚の薄リボンを製造する観点からは好適である。   The shape of the nozzle is not particularly limited, but from the viewpoint that the scar-shaped slit nozzle shown in (e-1) and (e-2) of FIG. Is preferred.

ノズル内の溶融金属を加圧するアルゴンガスの圧力、冷却ロールとノズルの間隔、冷却ロールの回転数等を制御することによって、リボンの厚みの制御を行うことができ、本発明の二層形状記憶リボンを得ることができる。   By controlling the pressure of the argon gas that pressurizes the molten metal in the nozzle, the interval between the cooling roll and the nozzle, the number of rotations of the cooling roll, etc., the ribbon thickness can be controlled, and the two-layer shape memory of the present invention A ribbon can be obtained.

本発明の二層形状記憶リボンの作製は、大気中、アルゴンガス雰囲気中、真空中等で行うことができる。また、上で説明した単ロール装置のほかに、双ロール装置、ドラムの内壁を使う延伸急冷装置、エンドレスタイプのベルトを使う装置等を用いても、本発明の二層形状記憶リボンを製造することができる。   The two-layer shape memory ribbon of the present invention can be produced in the air, in an argon gas atmosphere, in a vacuum, or the like. In addition to the single roll apparatus described above, the double-layer shape memory ribbon of the present invention can also be manufactured using a twin roll apparatus, a drawing and quenching apparatus using the inner wall of the drum, an apparatus using an endless belt, or the like. be able to.

リボンの一方の面側が軟磁性合金、他方の面側が形状記憶合金の構造を有することは、それぞれの面のX線回折を測定することで確認することができる。また、リボンの断面をTEM観察しても、リボンが2層積層構造を持つことを確認することができる。   It can be confirmed by measuring the X-ray diffraction of each surface that one surface of the ribbon has a soft magnetic alloy and the other surface has a shape memory alloy. Moreover, even if the cross section of the ribbon is observed with a TEM, it can be confirmed that the ribbon has a two-layer laminated structure.

図1に示した超急冷装置、及び図2−1、図2−2に示したノズルを用いて、磁歪定数がほぼゼロの軟磁性合金(6.5%Si−93.1%Fe−0.4%B)、及び非磁性の形状記憶合金(57.8%Fe−26%Mn−10%Cr−6%Si−0.2%B)の2層からなる二層形状記憶リボンを作製した。冷却ロールは、銅製の、直径20cm、冷却周面の幅20mmのロールを用いた。   Using the ultra-quenching apparatus shown in FIG. 1 and the nozzles shown in FIGS. 2-1 and 2-2, a soft magnetic alloy (6.5% Si-93.1% Fe-0) having a magnetostriction constant of almost zero. .4% B) and a non-magnetic shape memory alloy (57.8% Fe-26% Mn-10% Cr-6% Si-0.2% B) in a two-layer shape memory ribbon. did. As the cooling roll, a copper roll having a diameter of 20 cm and a cooling peripheral surface width of 20 mm was used.

軟磁性合金、及び形状記憶合金は、内部分割式のノズル内にそれぞれ収容し、同時に溶融し、容器下部のノズルから、回転する冷却ロールの頂部から回転方向に2°程度ずらした位置に、同時に噴射して急冷し、軟磁性合金からなる第1層と形状記憶合金からなる第2層が融着凝固された2層積層構造を有するリボンを製造した。   The soft magnetic alloy and the shape memory alloy are respectively housed in an internally divided nozzle, melted at the same time, and simultaneously shifted from the nozzle at the bottom of the container to a position shifted about 2 ° from the top of the rotating cooling roll. A ribbon having a two-layer structure in which a first layer made of a soft magnetic alloy and a second layer made of a shape memory alloy were fused and solidified was produced by jetting and quenching.

ノズルの噴射口の位置は、冷却ロールの頂部から回転方向に2°程度ずらした位置の直上において、ロール回転方向の上流側と下流側に各々配列した。軟磁性合金及び形状記憶合金を、それぞれ、このノズルの噴射口の上・下流側のどちら側から噴射するかは、リボン製造に影響を及ぼさない。   The positions of the nozzle injection ports were arranged on the upstream side and the downstream side in the roll rotation direction immediately above the position shifted about 2 ° in the rotation direction from the top of the cooling roll. Whether the soft magnetic alloy and the shape memory alloy are sprayed from the upstream side or the downstream side of the nozzle nozzle does not affect the ribbon production.

本例では上流側に形状記憶合金用の噴出口を下流側に軟磁性合金用の噴出口を配置して、形状記憶合金が先に冷却ロール周面に接触し凝固するようにしてある。   In this example, a shape memory alloy jet outlet is arranged on the upstream side, and a soft magnetic alloy jet outlet is arranged on the downstream side so that the shape memory alloy first contacts the cooling roll peripheral surface and solidifies.

リボンの作製は、大気中と、アルゴンガス中で行った。ノズルからの金属の噴射は、ノズル内の溶融金属をアルゴンガスで加圧して行った。アルゴンガスの噴射圧、冷却ロールとノズル先端の間隔、冷却ロールの回転数、ロールの周速度は、表2の条件とした。また冷却ロールの周囲は空気巻き込みによる噴射溶融金属の酸化を防止するためアルゴンガスパージしてある。   The ribbon was produced in the air and in argon gas. The metal was injected from the nozzle by pressurizing the molten metal in the nozzle with argon gas. The conditions shown in Table 2 were used for the argon gas injection pressure, the distance between the cooling roll and the nozzle tip, the number of rotations of the cooling roll, and the peripheral speed of the roll. The periphery of the cooling roll is purged with argon gas to prevent oxidation of the injected molten metal due to air entrainment.

Figure 2012228826
Figure 2012228826

作製したリボンの評価は、飽和磁化、キュリー温度、形状記憶効果の測定により行った。   The produced ribbon was evaluated by measuring saturation magnetization, Curie temperature, and shape memory effect.

飽和磁化は、印加磁界10kOeの下で、振動試料型磁力計(以下「VSM」という)により測定したM−H曲線から算出した。   The saturation magnetization was calculated from an MH curve measured with a vibrating sample magnetometer (hereinafter referred to as “VSM”) under an applied magnetic field of 10 kOe.

キュリー温度は、印加磁界20Oeの下で、VSMにより測定したM−T曲線から算出した。   The Curie temperature was calculated from an MT curve measured by VSM under an applied magnetic field of 20 Oe.

形状記憶効果は、図3に示すように、はじめにリボンを形状記憶処理により直線状に形状記憶させ(a)、次いで、室温で45°に曲げ(b)、その後、マッフル炉で300℃で10秒間加熱し、回復角度αを測定した(c)。曲げは、軟磁性層側、形状記憶層側に曲げ、それぞれの場合について、回復角度を測定した。   As shown in FIG. 3, the shape memory effect is such that the ribbon is first memorized linearly by shape memory processing (a), then bent to 45 ° at room temperature (b), and then 10 ° C. at 300 ° C. in a muffle furnace. After heating for 2 seconds, the recovery angle α was measured (c). The bending was bent toward the soft magnetic layer side and the shape memory layer side, and the recovery angle was measured for each case.

形状記憶効果SMEは、下記式(1)で算出した。
SME[%]=(45°−α[°])/45°×100 …(1)
The shape memory effect SME was calculated by the following formula (1).
SME [%] = (45 ° −α [°]) / 45 ° × 100 (1)

形状記憶処理は、リボンを、1000℃で40秒間加熱し、その後、約20℃の水で急冷する条件で行った。   The shape memory treatment was performed under the condition that the ribbon was heated at 1000 ° C. for 40 seconds and then quenched with water at about 20 ° C.

結果を、表3に示す。試料No.21、22は、それぞれ、軟磁性合金、形状記憶合金の単層からなるリボンである。表2中のノズルの表記で、「a」等は、それぞれ、図2−1、図2−2の(a−1)、(a−2)等に示した形状であることを示す。また、「通常」は、1種類の溶融金属を1つの噴射口から噴射するタイプのノズルであることを示す。   The results are shown in Table 3. Sample No. Reference numerals 21 and 22 denote ribbons made of a single layer of a soft magnetic alloy and a shape memory alloy, respectively. In the notation of nozzles in Table 2, “a” and the like indicate the shapes shown in FIGS. 2-1 and 2-2 (a-1) and (a-2), respectively. “Normal” indicates that the nozzle is a type that ejects one type of molten metal from one ejection port.

ノズルの大きさは、aは、外形28.6mm、噴射口径0.5mm、bは、外形28.6mm、噴射口径0.4mm、c、dは、外形15mm、噴射口径0.5mmである。また、通常のノズルは、外形15mm、噴射口径0.5mmである。   As for the size of the nozzle, a has an outer shape of 28.6 mm and an injection port diameter of 0.5 mm, b has an outer shape of 28.6 mm, an injection port diameter of 0.4 mm, and c and d have an outer shape of 15 mm and an injection port diameter of 0.5 mm. Moreover, a normal nozzle has an outer diameter of 15 mm and an injection port diameter of 0.5 mm.

Figure 2012228826
Figure 2012228826

ノズルa、b、cを用いて製造した試料No.1〜3は、形状記憶層側の形状記憶効果が100%であり、かつ、飽和磁化が80emu/g以上、高いものでは170emu/gと、従来の強磁性形状記憶合金と比べ、高い磁気特性、形状記憶性を併せ持つことが確認できた。   Sample No. manufactured using nozzles a, b and c 1 to 3, the shape memory effect on the shape memory layer side is 100%, and the saturation magnetization is 80 emu / g or higher, and higher is 170 emu / g, which is a high magnetic property compared to conventional ferromagnetic shape memory alloys. It was confirmed that it also has shape memory properties.

ノズルdを用いて製造した試料No.4は、ノズルの隔壁が短いので、2種類の合金が噴射前に混合され、2層積層構造とならなかった比較例である。試料No.4は、磁気特性は他の試料と変わらないが、形状記憶効果が32%と、高い形状記憶効果が得られなかった。   Sample No. manufactured using nozzle d. No. 4 is a comparative example in which the partition wall of the nozzle is short, so that two types of alloys are mixed before jetting to form a two-layer laminated structure. Sample No. In No. 4, the magnetic characteristics were not different from those of other samples, but the shape memory effect was 32%, and a high shape memory effect was not obtained.

図4−1、図4−2に、作製したリボンの表面のX線回折を測定した結果を示す。(1−1)は試料No.1の磁性層側のX線回折ピーク、(1−2)は試料No.1の形状記憶層側のX線回折ピークである。試料No.2、3についても同様である。試料No.1〜3は、測定した面により回折ピークが異なっており、2層積層構造となっていることが確認できた。   FIGS. 4A and 4B show the results of measuring the X-ray diffraction of the surface of the manufactured ribbon. (1-1) is Sample No. X-ray diffraction peak on the magnetic layer side of FIG. 1 is an X-ray diffraction peak on the shape memory layer side. Sample No. The same applies to 2 and 3. Sample No. 1 to 3 have different diffraction peaks depending on the measured surface, and it was confirmed that a two-layer laminated structure was obtained.

試料No.4は、どちらの面からの測定結果も、図4−2の(4)に示す同じ結果となり、2層積層構造とならなかったことが確認できた。   Sample No. For No. 4, the measurement results from either side were the same as shown in (4) of FIG. 4-2, and it was confirmed that the two-layer laminated structure was not obtained.

本発明によれば、高い磁気特性及び形状記憶特性を併せ持つ二層形状記憶リボンを得ることができ、磁気センサや小型アクチュエータに適用することができるので、産業上の利用可能性は大きい。   According to the present invention, a two-layer shape memory ribbon having both high magnetic characteristics and shape memory characteristics can be obtained, and the present invention can be applied to a magnetic sensor and a small actuator. Therefore, industrial applicability is great.

1 二層形状記憶リボン
10 ノズル
11 隔壁
12a、12b 噴射口
20 冷却ロール
30 ヒーター
DESCRIPTION OF SYMBOLS 1 Double layer shape memory ribbon 10 Nozzle 11 Partition 12a, 12b Injection port 20 Cooling roll 30 Heater

Claims (6)

磁歪定数がほぼゼロの軟磁性合金である第1層、及び、非磁性の形状記憶合金である第2層からなる2層積層構造を有し、
上記第1層と第2層が層の境界で融着凝固されたことを特徴とする二層形状記憶リボン。
It has a two-layer laminated structure consisting of a first layer that is a soft magnetic alloy having a magnetostriction constant of substantially zero and a second layer that is a nonmagnetic shape memory alloy,
A two-layer shape memory ribbon, wherein the first layer and the second layer are fused and solidified at a boundary between the layers.
前記軟磁性合金がFe−Si系合金であり、前記形状記憶合金がFe−Mn−Si系合金であることを特徴とする請求項1の記載の二層形状記憶リボン。   The two-layer shape memory ribbon according to claim 1, wherein the soft magnetic alloy is an Fe-Si alloy, and the shape memory alloy is an Fe-Mn-Si alloy. 前記軟磁性合金がFe−Si−Al系合金であり、前記形状記憶合金がFe−Mn−Si系合金であることを特徴とする請求項1の記載の二層形状記憶リボン。   The double-layer shape memory ribbon according to claim 1, wherein the soft magnetic alloy is an Fe-Si-Al alloy, and the shape memory alloy is an Fe-Mn-Si alloy. 前記軟磁性合金がNi−Fe系合金であり、前記形状記憶合金がNi−Ti系合金であることを特徴とする請求項1の記載の二層形状記憶リボン。   The two-layer shape memory ribbon according to claim 1, wherein the soft magnetic alloy is a Ni-Fe alloy, and the shape memory alloy is a Ni-Ti alloy. 厚さが50〜100μmであることを特徴とする請求項1〜4のいずれか1項に記載の二層形状記憶リボン。   The two-layer shape memory ribbon according to any one of claims 1 to 4, wherein the thickness is 50 to 100 µm. 磁歪定数がほぼゼロの軟磁性合金の成分組成を有する溶融金属と、非磁性の形状記憶合金の成分組成を有する溶融金属を、それぞれ、互いに接近して配置された2つの噴射口から溶融金属を回転する冷却ロールの冷却面に、同時に、連続的に噴射して、上記冷却面で急冷凝固させることにより、上記軟磁性合金からなる第1層と上記形状記憶合金からなる第2層が層の境界で融着凝固された2層積層構造を有するリボンを製造することを特徴とする二層形状記憶リボンの製造方法。   A molten metal having a component composition of a soft magnetic alloy having a magnetostriction constant of almost zero and a molten metal having a component composition of a nonmagnetic shape memory alloy are respectively supplied from two injection holes arranged close to each other. A first layer made of the soft magnetic alloy and a second layer made of the shape memory alloy are layered by spraying continuously on the cooling surface of the rotating cooling roll and rapidly solidifying by cooling on the cooling surface. A manufacturing method of a two-layer shape memory ribbon, characterized by manufacturing a ribbon having a two-layer laminated structure fused and solidified at a boundary.
JP2011098776A 2011-04-26 2011-04-26 Two-layer shape-memory ribbon and method of producing the same Withdrawn JP2012228826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011098776A JP2012228826A (en) 2011-04-26 2011-04-26 Two-layer shape-memory ribbon and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011098776A JP2012228826A (en) 2011-04-26 2011-04-26 Two-layer shape-memory ribbon and method of producing the same

Publications (1)

Publication Number Publication Date
JP2012228826A true JP2012228826A (en) 2012-11-22

Family

ID=47430803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011098776A Withdrawn JP2012228826A (en) 2011-04-26 2011-04-26 Two-layer shape-memory ribbon and method of producing the same

Country Status (1)

Country Link
JP (1) JP2012228826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104443264A (en) * 2014-12-02 2015-03-25 常熟市华阳机械制造厂 Corrosion resistant marine wheel carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104443264A (en) * 2014-12-02 2015-03-25 常熟市华阳机械制造厂 Corrosion resistant marine wheel carrier

Similar Documents

Publication Publication Date Title
Ouyang et al. Review of Fe-6.5 wt% Si high silicon steel—A promising soft magnetic material for sub-kHz application
Parsons et al. Soft magnetic properties of rapidly-annealed nanocrystalline Fe-Nb-B-(Cu) alloys
KR101162080B1 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
KR101835139B1 (en) Austenitic iron/nickel/chromium/copper alloy
Inoue et al. Production methods and properties of engineering glassy alloys and composites
KR102282630B1 (en) Fe-BASED SOFT MAGNETIC ALLOY RIBBON AND MAGNETIC CORE COMPRISING SAME
CN109716463A (en) The manufacturing method of nanometer crystal alloy magnetic core, core assembly and nanometer crystal alloy magnetic core
JP2015127436A (en) High magnetic flux density soft-magnetic iron base amorphous alloy having high extensibility and workability
JP2007182594A (en) Amorphous alloy thin strip, nano-crystalline soft magnetic alloy, and magnetic core composed of nano-crystalline soft magnetic alloy
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
JP2008231533A (en) Soft magnetic thin band, magnetic core, magnetic component, and method for producing soft magnetic thin band
JP2008196006A (en) Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT
JP2015127436A5 (en)
JP2008231533A5 (en)
TW200936782A (en) Fe-Si-La alloy having excellent magnetocaloric properties
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
CN107154299A (en) A kind of high magnetic saturation intensity iron base amorphous magnetically-soft alloy, its preparation method and application
BR112019023220A2 (en) SWEET MAGNETIC ALLOY, METHOD FOR MANUFACTURING A STEEL ALLOY PRODUCT FROM A SWEET MAGNETIC ALLOY AND FINE BITOLA ITEM
Byerly et al. Magnetostrictive loss reduction through stress relief annealing in an FeNi-based metal amorphous nanocomposite
CN103228805B (en) amorphous metal alloy
CN108277325B (en) A kind of heat treatment method of amorphous alloy
JP6313956B2 (en) Nanocrystalline alloy ribbon and magnetic core using it
Jafari et al. Microstructural and magnetic properties study of Fe–P rolled sheet alloys
CN109983550A (en) The Magnaglo used under high frequency and the magnetic resin composition containing it
GB2129440A (en) Magnetically soft ferritic fe-cr-ni alloys

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701