JP2012228192A - Heat exchanger for liquid - Google Patents

Heat exchanger for liquid Download PDF

Info

Publication number
JP2012228192A
JP2012228192A JP2011097565A JP2011097565A JP2012228192A JP 2012228192 A JP2012228192 A JP 2012228192A JP 2011097565 A JP2011097565 A JP 2011097565A JP 2011097565 A JP2011097565 A JP 2011097565A JP 2012228192 A JP2012228192 A JP 2012228192A
Authority
JP
Japan
Prior art keywords
liquid
peripheral surface
heat exchanger
secondary side
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011097565A
Other languages
Japanese (ja)
Inventor
Shigeki Tamura
茂樹 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2011097565A priority Critical patent/JP2012228192A/en
Publication of JP2012228192A publication Critical patent/JP2012228192A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To make cleaning and maintenance easy, to always maintain good hygienic condition, and reduce a cost and a manufacturing cost.SOLUTION: A heat exchanger for liquid has a cylindrical body part 2 having a heat exchanging cylindrical part 2p having an outer peripheral surface 2po and an inner peripheral surface 2pi in at least a part of the same, a liquid housing chamber Sw where the primary fluid Wf fed from the primary side feeding part 3s can come into contact with the whole surface of the outer peripheral surface 2po in the head exchanging cylindrical part 2p, further has the primary side fluid treating part 3 where the primary side fluid Wf in which heat is exchanged is discharged from the primary side discharging part 3e, and the secondary side liquid treating part 4 where the secondary side liquid Ls can come into contact with the whole surface the inner peripheral surface 2pi in the heat exchanging cylindrical part 2p by the secondary side liquid Ls fed from the secondary side feeding part 4s on the surface of the inner peripheral surface 2pi in the head exchanging cylindrical part 2p from above and the secondary side liquid Ls in which heat is exchanged is discharged from the secondary side discharging part 4e.

Description

本発明は、一次側流体と二次側液体の熱交換を行う乳処理システムにおける生乳の予備冷却等に用いて好適な液体用熱交換器に関する。   The present invention relates to a liquid heat exchanger suitable for use in, for example, precooling raw milk in a milk processing system that performs heat exchange between a primary fluid and a secondary fluid.

一般に、搾乳機により搾乳された生乳は、集乳が行われるまで冷却装置が付設された貯乳タンクに一時的に貯留される。この貯乳タンクは、バルククーラと呼ばれ、搾乳後の生乳は、送乳配管を経由して、このバルククーラに収容される。しかし、この場合、温かい生乳をそのままバルククーラに供給しても冷却されるまでに時間がかかるため、バルククーラに収容される直前に、移送させる生乳を熱交換器で予備冷却することにより、バルククーラの稼働時間を節約し、省エネルギ性及びランニングコストの低減を図るとともに、生乳の品質劣下が生じないように考慮している。   Generally, raw milk milked by a milking machine is temporarily stored in a milk storage tank provided with a cooling device until milk collection is performed. This milk storage tank is called a bulk cooler, and raw milk after milking is accommodated in this bulk cooler via a feeding pipe. However, in this case, it takes time to cool even if warm raw milk is supplied to the bulk cooler as it is. Time is saved, energy saving and running cost are reduced, and the quality of raw milk is not degraded.

従来、このような予備冷却に用いる熱交換器としては、特許文献1に開示される熱交換器が知られており、同文献1には、冷却水を作るアイスビルダーから冷却水をその外周の冷却ジャケットに循環させ、内部に貯えた牛乳を冷却保冷する貯乳タンクを備えるバルククーラにおいて、搾乳室からの送乳を受けるバランスタンクと、アイスビルダーから冷却水を循環させるプレートクーラ(熱交換器)と、バランスタンクから順次にプレートクーラ及び流量調整バルブを介在させ、貯乳タンクに延設する牛乳搬送手段とを備えたバルククーラにおける冷却保冷システムが開示されている。プレートクーラは、通常、順序よく並べたステンレス素材等により形成した複数のプレートをフレームにより挟むとともに、各プレートを互い違いに組合わせて流体経路を形成し、この経路をシーリング部材により仕切って構成したものであり、一方の経路に生乳を流し、かつ他方の経路に冷却水を流せば、プレートを介して熱交換が行われ、生乳は数℃程度まで冷却される。   Conventionally, as a heat exchanger used for such pre-cooling, a heat exchanger disclosed in Patent Document 1 is known. In the same document 1, cooling water is supplied from an ice builder that produces cooling water to the outer periphery thereof. In a bulk cooler equipped with a storage tank that circulates through the cooling jacket and cools and cools the milk stored inside, a balance tank that receives the milk from the milking room and a plate cooler that circulates cooling water from the ice builder (heat exchanger) In addition, a cooling and cooling system in a bulk cooler is disclosed that includes a plate cooler and a flow rate adjusting valve sequentially from a balance tank and a milk conveying means extending to the milk storage tank. A plate cooler is usually configured by sandwiching a plurality of plates made of stainless steel, etc. arranged in order in a frame, forming a fluid path by alternately combining the plates, and partitioning this path with a sealing member. Yes, if raw milk is allowed to flow in one path and cooling water is allowed to flow in the other path, heat exchange is performed through the plate, and the raw milk is cooled to about several degrees Celsius.

特開平10−215718号公報JP-A-10-215718

しかし、上述した予備冷却に用いる従来の熱交換器(プレートクーラ)は、次のような問題点があった。   However, the conventional heat exchanger (plate cooler) used for the preliminary cooling described above has the following problems.

第一に、この種の熱交換器は、搾乳後の生乳を予備冷却する目的で使用するため、冷却能力の確保が重要であることは勿論のこと、良好な衛生状態を常に維持することも重要な課題となるが、従来のプレートクーラは、その構造上、狭い隙間の流路が組合わさるため、汚れが付着しやすく、かつ蓄積しやすいとともに、洗浄やメンテナンスが容易でない。しかも、内部の汚れ状態を容易に確認できないなど、良好な衛生状態を確保し、かつ維持する観点からは必ずしも望ましいものではない。   First, since this type of heat exchanger is used for the purpose of precooling raw milk after milking, it is important not only to secure cooling capacity but also to maintain good hygiene at all times. Although it becomes an important subject, since the conventional plate cooler is combined with a flow path of a narrow gap due to its structure, dirt easily adheres and accumulates, and cleaning and maintenance are not easy. Moreover, it is not always desirable from the viewpoint of ensuring and maintaining a good hygiene state, such as the fact that the internal dirt state cannot be easily confirmed.

第二に、構造が複雑化し部品点数が多くなることによるコストアップ、更には製造工数の増大によるコストアップを招き、製品価格の上昇が避けられない。しかも、狭い流路を流す必要があることから、生乳を通過させる際の流量抵抗が大きくなる。結局、流量抵抗を考慮した大型の送乳ポンプが必要となるなど、省エネルギ性の観点及びランニングコストの観点からも更なる改善の余地があった。   Secondly, the cost is increased due to the complicated structure and the increased number of parts, and further, the cost is increased due to an increase in the number of manufacturing steps, and an increase in product price is inevitable. And since it is necessary to flow through a narrow flow path, the flow resistance at the time of allowing raw milk to pass through becomes large. Eventually, there was room for further improvement from the viewpoints of energy saving and running costs, such as the need for a large-scale breast pump considering flow resistance.

本発明は、このような背景技術に存在する課題を解決した液体用熱交換器の提供を目的とするものである。   The object of the present invention is to provide a liquid heat exchanger that solves the problems in the background art.

本発明は、上述した課題を解決するため、一次側流体Wfと二次側液体Lsの熱交換を行う液体用熱交換器1を構成するに際して、外周面2poと内周面2piを有する熱交換筒部2pを少なくとも一部に有する筒状体部2と、一次側供給部3sから供給された一次側流体Wfが熱交換筒部2pにおける外周面2po(又は内周面2pi)の全面に対して接触可能な流体収容室Swを有し、かつ熱交換された一次側流体Wfが一次側排出部3eから排出される一次側流体処理部3と、二次側供給部4sから供給された二次側液体Lsが熱交換筒部2pにおける内周面2pi(又は外周面2po)の表面を上から流れ落ちることにより当該熱交換筒部2pにおける内周面2pi(又は外周面2po)の全面に対して接触可能にし、かつ熱交換された二次側液体Lsが二次側排出部4eから排出される二次側液体処理部4とを備えることを特徴とする。   In order to solve the above-described problems, the present invention provides a heat exchanger having an outer peripheral surface 2po and an inner peripheral surface 2pi when configuring the liquid heat exchanger 1 that performs heat exchange between the primary fluid Wf and the secondary liquid Ls. The cylindrical body part 2 having at least a part of the cylindrical part 2p, and the primary side fluid Wf supplied from the primary side supply part 3s with respect to the entire outer peripheral surface 2po (or inner peripheral surface 2pi) of the heat exchange cylindrical part 2p A primary side fluid treatment unit 3 that has a fluid storage chamber Sw that can be contacted with each other and that is subjected to heat exchange and is supplied from a secondary side supply unit 4s. The secondary liquid Ls flows down from the top surface of the inner peripheral surface 2pi (or outer peripheral surface 2po) of the heat exchange tube portion 2p to the entire inner peripheral surface 2pi (or outer peripheral surface 2po) of the heat exchange tube portion 2p. Heat-exchangeable Secondary side liquid Ls is characterized in that it comprises a secondary liquid treatment unit 4, which is discharged from the secondary discharge portion 4e.

この場合、発明の好適な態様により、一次側流体Wfには、少なくとも、水,溶液,蒸気又は空気の一つを含ませることができるとともに、二次側液体Lsには、搾乳された生乳を適用することができる。一方、筒状体部2における熱交換筒部2pは、円柱形状Fs又は円錐形状Fcに形成することができる。また、筒状体部2は、一体に構成してもよいし、或いは軸方向Daに分割した複数の分割筒体部2a,2b,2cの組合わせにより構成してもよい。さらに、二次側液体処理部4の二次側供給部4sは、二次側液体Lsを、熱交換筒部2pの内周面2pi(又は外周面2po)に対して鉛直方向Dvに供給可能に構成してもよいし、或いは螺旋方向Dsに供給可能に構成してもよい。   In this case, according to a preferred aspect of the invention, the primary fluid Wf can contain at least one of water, solution, steam or air, and the secondary liquid Ls contains milk that has been milked. Can be applied. On the other hand, the heat exchange cylinder part 2p in the cylindrical body part 2 can be formed in a columnar shape Fs or a conical shape Fc. Moreover, the cylindrical body part 2 may be constituted integrally, or may be constituted by a combination of a plurality of divided cylindrical body parts 2a, 2b, 2c divided in the axial direction Da. Furthermore, the secondary side supply unit 4s of the secondary side liquid processing unit 4 can supply the secondary side liquid Ls in the vertical direction Dv with respect to the inner peripheral surface 2pi (or the outer peripheral surface 2po) of the heat exchange cylinder unit 2p. Alternatively, it may be configured to be able to supply in the spiral direction Ds.

このような構成を有する本発明に係る液体用熱交換器1によれば、次のような顕著な効果を奏する。   The liquid heat exchanger 1 according to the present invention having such a configuration has the following remarkable effects.

(1) 二次側液体処理部4により、二次側供給部4sから供給された二次側液体Lsが、熱交換筒部2pの内周面2pi(又は外周面2po)の表面を上から流れ落ちることにより当該熱交換筒部2pにおける内周面2pi(又は外周面2po)の全面に対して接触可能にしたため、熱交換機能を有する熱交換筒部2pは、極めて単純な形状(経路)により形成することができ、洗浄及びメンテナンスを容易に行うことができる。しかも、二次側液体Lsは、内周面2pi(又は外周面2po)の表面を上から流し落ちるため、汚れが付着しにくく、かつ蓄積しにくいとともに、筒状体部2を少なくとも一部を透明素材により形成すれば、内部の汚れ状態等を容易に確認できるなど、常に良好な衛生状態を維持可能となる。   (1) The secondary-side liquid Ls supplied from the secondary-side supply unit 4s by the secondary-side liquid processing unit 4 causes the surface of the inner peripheral surface 2pi (or outer peripheral surface 2po) of the heat exchange cylinder portion 2p to be viewed from above. Since it is possible to contact the entire inner peripheral surface 2pi (or outer peripheral surface 2po) of the heat exchanging cylinder portion 2p by flowing down, the heat exchanging cylinder portion 2p having a heat exchanging function has an extremely simple shape (path). It can be formed and can be easily cleaned and maintained. In addition, since the secondary liquid Ls flows down the surface of the inner peripheral surface 2pi (or the outer peripheral surface 2po) from above, it is difficult for dirt to adhere and accumulate, and at least a part of the cylindrical body portion 2 is removed. If it is made of a transparent material, it is possible to maintain a good hygiene condition at all times, for example, the internal dirt state can be easily confirmed.

(2) 液体用熱交換器1における全体構造の単純化に伴って部品点数を飛躍的に削減できる。したがって、部品コストの低減、更には製造工数の低減によるコストダウンを図れるなど、製品の低廉化を図れる。しかも、狭い流路を流す必要がないため、二次側液体Lsを通過させる際の流量抵抗をほとんど無視することができ、流量抵抗を考慮した大型の送液ポンプが不要になるなど、省エネルギ性の観点及びランニングコストの観点からも有利になる。加えて、二次側液体Lsの流量が変動しても影響が少なく、二次側液体Lsを安定に冷却することができる。   (2) With the simplification of the overall structure of the liquid heat exchanger 1, the number of parts can be drastically reduced. Therefore, the cost of the product can be reduced, for example, the cost of parts can be reduced and the cost can be reduced by reducing the number of manufacturing steps. In addition, since there is no need to flow through a narrow flow path, the flow resistance when the secondary liquid Ls is allowed to pass can be almost ignored, and a large liquid pump considering the flow resistance is not required. This is also advantageous from the viewpoint of safety and running cost. In addition, even if the flow rate of the secondary side liquid Ls fluctuates, there is little influence, and the secondary side liquid Ls can be cooled stably.

(3) 好適な態様により、一次側流体Wfには、少なくとも、水,溶液,蒸気又は空気の一つを含ませることができるため、熱交換筒部2pの単純形状ゆえに各種媒体の利用が可能になる。したがって、一次側流体Wfを選定する観点からの設計自由度及び汎用性を高めることができる。   (3) According to a preferred embodiment, the primary fluid Wf can contain at least one of water, solution, steam, or air, so various media can be used because of the simple shape of the heat exchange tube portion 2p. become. Therefore, the design freedom and versatility from the viewpoint of selecting the primary fluid Wf can be enhanced.

(4) 好適な態様により、二次側液体(Ls)に、搾乳された生乳Lsを適用すれば、特に、流動抵抗が大きくなりやすい生乳Lsを予備冷却する際に用いて最適となるとともに、副次的な効果として、送乳配管や送乳ポンプ等を通過して発生した泡を取除く効果も期待できる。   (4) According to a preferred embodiment, when milked raw milk Ls is applied to the secondary liquid (Ls), it is optimally used for precooling raw milk Ls that tends to have a large flow resistance, As a secondary effect, an effect of removing bubbles generated by passing through a breast feeding pipe or a breast feeding pump can be expected.

(5) 好適な態様により、筒状体部2における熱交換筒部2pは、円柱形状Fs又は円錐形状Fcに形成できるため、熱交換筒部2pの形状を選定すれば、二次側液体Lsの冷却に熱交換筒部2pの内周面2piを用いるか又は外周面2poを用いるかの選定をはじめ、筒状体部2を各種形態により実施できるなど、多様性及び多機能性の向上に寄与できるとともに、全体のサイズ変更も比較的容易に実現できる。   (5) According to a preferred embodiment, the heat exchange tube portion 2p in the tubular body portion 2 can be formed in a columnar shape Fs or a conical shape Fc. Therefore, if the shape of the heat exchange tube portion 2p is selected, the secondary side liquid Ls In order to improve versatility and multifunctionality, such as selecting whether to use the inner peripheral surface 2pi or the outer peripheral surface 2po of the heat exchange cylindrical portion 2p for cooling the cylindrical body portion 2 in various forms In addition to making contributions, the overall size can be changed relatively easily.

(6) 好適な態様により、筒状体部2を、軸方向Daに分割した複数の分割筒体部2a,2b,2cの組合わせにより構成すれば、筒状体部2に対する組立及び分解を容易に行うことができるため、更なる洗浄性及びメンテナンス性の向上に寄与できる。   (6) If the cylindrical body part 2 is constituted by a combination of a plurality of divided cylindrical body parts 2a, 2b, 2c divided in the axial direction Da according to a preferred embodiment, the cylindrical body part 2 can be assembled and disassembled. Since it can be performed easily, it can contribute to the improvement of the further cleaning property and maintenance property.

(7) 好適な態様により、二次側液体処理部4の二次側供給部4sは、二次側液体Lsを、熱交換筒部2pの内周面2pi(又は外周面2po)に対して鉛直方向Dvに供給可能に構成してもよいし、或いは螺旋方向Dsに供給可能に構成してもよいため、二次側液体Lsの供給方向の選定により、熱交換性能等も含め、設計自由度をより高めることができる。   (7) According to a preferred aspect, the secondary side supply unit 4s of the secondary side liquid processing unit 4 supplies the secondary side liquid Ls to the inner peripheral surface 2pi (or the outer peripheral surface 2po) of the heat exchange cylinder unit 2p. Since it may be configured to be able to supply in the vertical direction Dv, or may be configured to be able to supply in the spiral direction Ds, the design freedom including heat exchange performance etc. can be selected by selecting the supply direction of the secondary side liquid Ls. The degree can be increased.

本発明の好適実施形態に係る液体用熱交換器の断面正面図、A cross-sectional front view of a liquid heat exchanger according to a preferred embodiment of the present invention, 同液体用熱交換器の断面平面図、Sectional plan view of the heat exchanger for the liquid, 同液体用熱交換器の作用説明図、Action explanatory diagram of the liquid heat exchanger, 同液体用熱交換器を備える乳処理システムの概要図、Schematic diagram of a milk processing system comprising the liquid heat exchanger, 本発明の変更実施形態に係る液体用熱交換器の外観正面図、An external front view of a liquid heat exchanger according to a modified embodiment of the present invention, 本発明の他の変更実施形態に係る液体用熱交換器の外観正面図、The external appearance front view of the heat exchanger for liquids concerning other change embodiments of the present invention, 本発明の他の変更実施形態に係る液体用熱交換器の断面正面図、Sectional front view of a heat exchanger for liquid according to another modified embodiment of the present invention, 本発明の他の変更実施形態に係る液体用熱交換器の一部断面正面図、A partial cross-sectional front view of a liquid heat exchanger according to another modified embodiment of the present invention,

次に、本発明に係る好適実施形態を挙げ、図面に基づき詳細に説明する。   Next, preferred embodiments according to the present invention will be given and described in detail with reference to the drawings.

まず、本実施形態に係る液体用熱交換器1の理解を容易にするため、液体用熱交換器1を使用する乳処理システム50の概要について、図4を参照して説明する。   First, in order to facilitate understanding of the liquid heat exchanger 1 according to the present embodiment, an outline of a milk processing system 50 using the liquid heat exchanger 1 will be described with reference to FIG.

乳処理システム50は、処理室80の内部に設けられ、不図示の搾乳機により搾乳された生乳Lsは受乳配管51を介して処理室80に導入される。処理室80には受乳装置52が設置され、受乳配管51により供給された生乳Lsは、一旦、受乳装置52に貯留される。受乳装置52が満杯になれば、送乳ポンプ53が作動し、生乳Lsは、送乳配管54(54a,54b)を通して処理室80に設置されたバルククーラ55に供給されるという基本的な構成を備えている。   The milk processing system 50 is provided inside the processing chamber 80, and raw milk Ls milked by a milking machine (not shown) is introduced into the processing chamber 80 via the milk receiving pipe 51. A milk receiving device 52 is installed in the processing chamber 80, and the raw milk Ls supplied through the milk receiving pipe 51 is temporarily stored in the milk receiving device 52. When the breast-feeding device 52 becomes full, the breast feeding pump 53 is activated, and the raw milk Ls is supplied to the bulk cooler 55 installed in the processing chamber 80 through the breast feeding pipe 54 (54a, 54b). It has.

本実施形態に係る液体用熱交換器1は、送乳配管54の中途、即ち、上流側配管54aと下流側配管54b間に接続して使用する。これにより、温かい生乳Lsは、液体用熱交換器1により数℃程度まで予備冷却され、この後、バルククーラ55に供給される。即ち、温かい生乳Lsをそのままバルククーラ55に供給しても冷却されるまでに時間がかかるため、バルククーラ55に収容される直前に、移送させる生乳Lsを、本実施形態に係る液体用熱交換器1で予備冷却することにより、バルククーラ55の稼働時間を節約し、省エネルギ性及びランニングコストの低減を図るとともに、生乳Lsの品質劣下が生じないようにする。   The liquid heat exchanger 1 according to the present embodiment is used in the middle of the milk feeding pipe 54, that is, connected between the upstream pipe 54a and the downstream pipe 54b. Accordingly, the warm raw milk Ls is precooled to about several degrees C. by the liquid heat exchanger 1 and then supplied to the bulk cooler 55. That is, even if the warm raw milk Ls is supplied to the bulk cooler 55 as it is, it takes time to cool the raw milk Ls, so that the raw milk Ls to be transferred immediately before being stored in the bulk cooler 55 is the liquid heat exchanger 1 according to this embodiment. By pre-cooling, the operation time of the bulk cooler 55 is saved, energy saving and running cost are reduced, and quality deterioration of the raw milk Ls is prevented from occurring.

この場合、液体用熱交換器1は、基本構造として、一次側流体処理部3と二次側液体処理部4を備えるため、一次側流体処理部3の一次側供給部3sは、給水管62を介して外部の冷却水供給源61の給水口に接続するとともに、一次側流体処理部3の一次側排出部3eは、排水管63を介して冷却水供給源61の戻り口に接続する。これにより、冷却水(一次側流体)Wfが一次側流体処理部3に対して循環供給される一次側熱交換系が構成される。また、二次側液体処理部4の二次側供給部4sは、前述した上流側配管54aを介して送乳ポンプ53の吐出口に接続するとともに、二次側液体処理部4の二次側排出部4eは、下流側配管54bを介してバルククーラ55の給入口に接続する。これにより、送乳ポンプ53により送り出された乳(二次側液体)Lsが二次側液体処理部4により予備冷却された後、バルククーラ55に供給される二次側熱交換系が構成される。なお、64は給水管62の中途に接続した電磁開閉弁を示すとともに、65は洗浄槽を示し、洗浄時における洗浄水は、下流側配管54bを介して当該洗浄槽65に収容される。   In this case, since the liquid heat exchanger 1 includes the primary side fluid processing unit 3 and the secondary side liquid processing unit 4 as a basic structure, the primary side supply unit 3 s of the primary side fluid processing unit 3 includes a water supply pipe 62. The primary side discharge part 3e of the primary side fluid processing part 3 is connected to the return port of the cooling water supply source 61 via the drain pipe 63. Thereby, the primary side heat exchange system by which the cooling water (primary side fluid) Wf is circulated and supplied with respect to the primary side fluid processing part 3 is comprised. The secondary side supply unit 4s of the secondary side liquid processing unit 4 is connected to the discharge port of the breast feeding pump 53 via the upstream pipe 54a described above, and the secondary side of the secondary side liquid processing unit 4 The discharge part 4e is connected to the inlet of the bulk cooler 55 through the downstream pipe 54b. Thereby, after the milk (secondary side liquid) Ls delivered by the breast feeding pump 53 is precooled by the secondary side liquid processing unit 4, a secondary side heat exchange system supplied to the bulk cooler 55 is configured. . In addition, while 64 shows the electromagnetic on-off valve connected to the middle of the water supply pipe 62, 65 shows a washing tank, The washing water at the time of washing | cleaning is accommodated in the said washing tank 65 via the downstream piping 54b.

次に、本実施形態に係る液体用熱交換器1の具体的な構成について、図1及び図2を参照して説明する。   Next, a specific configuration of the liquid heat exchanger 1 according to the present embodiment will be described with reference to FIGS. 1 and 2.

液体用熱交換器1は、図1及び図2に示すように、外周面2poと内周面2piを有する熱交換筒部2pを少なくとも一部に有する筒状体部2を備える。例示の筒状体部2は、上部に位置する上ガイド筒部2pu,中間部に位置する円筒形の熱交換筒部2p及び下部に位置する下ガイド筒部2pdを一体に構成する。この場合、熱交換筒部2pは、上下に同径の円柱形状Fsに形成するとともに、上ガイド筒部2puは熱交換筒部2pの上端から上方へ漸次小径となるように円錐状に延設形成し、かつ下ガイド筒部2pdは熱交換筒部2pの下端から下方へ漸次小径となるように逆円錐状に延設形成する。また、上ガイド筒部2pu,熱交換筒部2p及び下ガイド筒部2pdは、同一素材により一体形成してもよいし、異なる素材により形成した上ガイド筒部2pu,熱交換筒部2p及び下ガイド筒部2pdを組合わせて一体化してもよい。組合わせた場合には、例えば、熱交換筒部2pを、熱伝導性の良好な素材により形成するとともに、上ガイド筒部2pu及び下ガイド筒部2pdは、内部を視認できる透明な素材により形成することも可能となり、この際には、特に、上ガイド筒部2puを通して、熱交換筒部2pにおける内部の汚れ状態等を容易に確認できる利点がある。   As shown in FIGS. 1 and 2, the liquid heat exchanger 1 includes a cylindrical body portion 2 having at least a portion of a heat exchange cylinder portion 2p having an outer peripheral surface 2po and an inner peripheral surface 2pi. The illustrated cylindrical body part 2 integrally includes an upper guide cylinder part 2pu located at the upper part, a cylindrical heat exchange cylinder part 2p located at the middle part, and a lower guide cylinder part 2pd located at the lower part. In this case, the heat exchange cylinder part 2p is formed in a columnar shape Fs having the same diameter in the vertical direction, and the upper guide cylinder part 2pu extends in a conical shape so that the diameter gradually decreases from the upper end of the heat exchange cylinder part 2p. The lower guide cylinder portion 2pd is formed to extend in an inverted conical shape so that the diameter gradually decreases from the lower end of the heat exchange cylinder portion 2p. Further, the upper guide tube portion 2pu, the heat exchange tube portion 2p and the lower guide tube portion 2pd may be integrally formed of the same material, or the upper guide tube portion 2pu, the heat exchange tube portion 2p and the lower material formed of different materials. The guide tube portion 2pd may be combined and integrated. When combined, for example, the heat exchange tube portion 2p is formed of a material having good thermal conductivity, and the upper guide tube portion 2pu and the lower guide tube portion 2pd are formed of a transparent material that allows the inside to be visually confirmed. In this case, in particular, there is an advantage that an internal dirt state or the like in the heat exchange tube portion 2p can be easily confirmed through the upper guide tube portion 2pu.

また、熱交換筒部2pの内周面2piを含む筒状体部2の内部側は、二次側液体処理部4として構成する。二次側液体処理部4は、上ガイド筒部2puの上端に設けた二次側供給部4sを備える。二次側供給部4sは、前述した上流側配管54aが接続され、生乳Lsが流入する接続口11と、この接続口11から流入した生乳Lsを整流する第一の整流手段となる整流室12と、この整流室12の真下に位置し、かつ整流室12から落下した生乳Lsを360゜の全放射方向にガイドし、上ガイド筒部2puの内周面2puiに当たるように傘形に形成した第二の整流手段となる整流盤13を備える。なお、例示の整流盤13は、周方向に所定間隔おきに配した複数本のステー13s…により支持される。一方、二次側液体処理部4は、下ガイド筒部2pdの下端に設けた二次側排出部4eを備える。この二次側排出部4eは、前述した下流側配管54bが接続され、生乳Lsを流出する接続口14を備える。   Moreover, the inner side of the cylindrical body part 2 including the inner peripheral surface 2pi of the heat exchange cylinder part 2p is configured as a secondary side liquid treatment part 4. The secondary side liquid processing unit 4 includes a secondary side supply unit 4s provided at the upper end of the upper guide cylinder 2pu. The secondary-side supply unit 4s is connected to the upstream pipe 54a described above, the connection port 11 into which the raw milk Ls flows, and the rectification chamber 12 serving as a first rectification unit that rectifies the raw milk Ls that flows in from the connection port 11. The raw milk Ls that is located directly below the rectifying chamber 12 and that has fallen from the rectifying chamber 12 is guided in the entire radial direction of 360 °, and is formed in an umbrella shape so as to hit the inner peripheral surface 2pui of the upper guide cylinder portion 2pu. A rectifying board 13 serving as a second rectifying means is provided. The illustrated rectifier 13 is supported by a plurality of stays 13s arranged at predetermined intervals in the circumferential direction. On the other hand, the secondary side liquid processing part 4 includes a secondary side discharge part 4e provided at the lower end of the lower guide cylinder part 2pd. This secondary side discharge part 4e is connected to the downstream side pipe 54b described above and includes a connection port 14 through which the raw milk Ls flows out.

他方、熱交換筒部2pの外周面2poには、一次側流体処理部3を付設する。一次側流体処理部3は、熱交換筒部2pよりも大径に形成し、外周面2poに対して所定の隙間を介在させた外筒板部15m,この外筒板部15mの上下端から中心方向に延設して隙間の上下を閉塞するリング形の上端板部15u及び下端板部15dからなる一次側流体収容部15を備え、この一次側流体収容部15の内部に流体収容室Swが設けられる。また、外筒板部15mの下側には、前述した図4に示す給水管62が接続され、冷却水Wfが流入する接続口16を用いた一次側供給部3sを設けるとともに、外筒板部15mの上側であって、一次側供給部3sに対して、例えば180゜反対側の位置には、前述した図4に示す排水管63が接続され、一次側流体処理部3により熱交換された冷却水Wfが流出する接続口17を用いた一次側排出部3eを設けて構成する。   On the other hand, the primary side fluid treatment part 3 is attached to the outer peripheral surface 2po of the heat exchange cylinder part 2p. The primary side fluid processing unit 3 is formed to have a larger diameter than the heat exchange cylinder part 2p, and an outer cylinder plate part 15m having a predetermined gap interposed between the outer peripheral surface 2po and the upper and lower ends of the outer cylinder plate part 15m. A primary-side fluid storage portion 15 including a ring-shaped upper end plate portion 15u and a lower end plate portion 15d that extends in the center direction and closes the upper and lower sides of the gap is provided, and a fluid storage chamber Sw is provided inside the primary-side fluid storage portion 15. Is provided. Further, the water supply pipe 62 shown in FIG. 4 is connected to the lower side of the outer cylindrical plate portion 15m, and the primary side supply portion 3s using the connection port 16 into which the cooling water Wf flows is provided. The drain pipe 63 shown in FIG. 4 is connected to the primary side supply unit 3s, for example, at a position opposite to the primary side supply unit 3s by 180 °, and heat exchange is performed by the primary side fluid treatment unit 3. The primary side discharge part 3e using the connection port 17 through which the cooling water Wf flows out is provided.

次に、本実施形態に係る液体用熱交換器1の機能(作用)及び使用方法について、図1〜図4を参照して説明する。   Next, the function (action) and method of use of the liquid heat exchanger 1 according to the present embodiment will be described with reference to FIGS.

まず、本実施形態に係る液体用熱交換器1は、図4に示すように、乳処理システム50における送乳ポンプ53とバルククーラ55を接続する送乳配管54の中途に接続して使用する。この場合、液体用熱交換器1は、二次側供給部4sの接続口11を、上流側送乳配管54aに接続し、かつ二次側排出部4eの接続口14を、下流側送乳配管54bに接続するとともに、一次側供給部3sの接続口16を、給水管62に接続し、かつ一次側排出部3eの接続口17を、排水管63に接続する。   First, as shown in FIG. 4, the liquid heat exchanger 1 according to the present embodiment is used by being connected to the middle of a breast feeding pipe 54 that connects a breast feeding pump 53 and a bulk cooler 55 in the milk processing system 50. In this case, the liquid heat exchanger 1 connects the connection port 11 of the secondary side supply unit 4s to the upstream milk feeding pipe 54a, and connects the connection port 14 of the secondary side discharge unit 4e to the downstream side milk feeding. While connecting to the piping 54b, the connection port 16 of the primary side supply part 3s is connected to the water supply pipe 62, and the connection port 17 of the primary side discharge part 3e is connected to the drain pipe 63.

これにより、外部の冷却水供給源61から、給水管62を通して冷却水Wfが供給される。そして、図3に示すように、供給された冷却水Wfは、液体用熱交換器1の一次側供給部3s(接続口16)を通して、流体収容室Swの下側に流入する。流体収容室Swの全体形状は円筒形となるため、冷却水Wfも円筒形の層となり、熱交換筒部2pにおける外周面2poの全面に接触可能となる。また、流体収容室Swの下側に流入した冷却水Wfは、徐々に上方へ移動する。この際、熱交換筒部2pの外周面2poは冷却水Wfにより冷却される。そして、流体収容室Swの上側に移動し、熱交換された冷却水Wfは、一次側排出部3e(接続口17)を通して排出され、さらに、排水管63を通して冷却水供給源61における戻り口に戻される。例示の冷却水供給源61は循環タイプであり、戻り口に戻された冷却水Wfは、再度冷却され、新たな冷却水Wfとして用いられる。   Thus, the cooling water Wf is supplied from the external cooling water supply source 61 through the water supply pipe 62. Then, as shown in FIG. 3, the supplied cooling water Wf flows into the lower side of the fluid storage chamber Sw through the primary side supply unit 3 s (connection port 16) of the liquid heat exchanger 1. Since the entire shape of the fluid storage chamber Sw is cylindrical, the cooling water Wf is also a cylindrical layer, and can contact the entire outer peripheral surface 2po of the heat exchange cylinder portion 2p. Further, the cooling water Wf that has flowed into the lower side of the fluid storage chamber Sw gradually moves upward. At this time, the outer peripheral surface 2po of the heat exchange tube portion 2p is cooled by the cooling water Wf. Then, the cooling water Wf that has moved to the upper side of the fluid storage chamber Sw and subjected to heat exchange is discharged through the primary side discharge portion 3 e (connection port 17), and further through the drain pipe 63 to the return port in the cooling water supply source 61. Returned. The illustrated cooling water supply source 61 is a circulation type, and the cooling water Wf returned to the return port is cooled again and used as new cooling water Wf.

他方、上流側送乳配管54aを通して送られた生乳Lsは、二次側供給部4s(接続口11)に流入する。この際、横方向から流入する生乳Lsは、一旦、整流室12に流入し、この整流室12から下方へ落下する。この場合、整流盤13の略中央に落下し、この後、生乳Lsは、傘形に形成した整流盤13の上面を360゜の全放射方向に流れる。整流盤13を流れた生乳Lsは、上ガイド筒部2puの内周面2puiに当たり、生乳Lsは内周面2puiの表面を伝って流れ落ちるとともに、さらに、熱交換筒部2pの内周面2piの表面を伝って流れ落ちる。したがって、生乳Lsは、内周面2piの表面を上から流れ落ちることにより当該内周面2piの全面に接触可能となるとともに、外周面2poの全面が冷却水Wfにより冷却されているため、生乳Lsは内周面2piの表面に接触することにより、冷却(熱交換)される。この場合、冷却水Wfの温度等を選定し、生乳Lsの温度を数℃程度まで予備冷却することが目標となる。   On the other hand, the raw milk Ls sent through the upstream milk feeding pipe 54a flows into the secondary supply section 4s (connection port 11). At this time, the raw milk Ls flowing in from the lateral direction once flows into the rectifying chamber 12 and falls downward from the rectifying chamber 12. In this case, it falls to the approximate center of the rectifier 13 and then the raw milk Ls flows in the 360 ° total radial direction on the upper surface of the rectifier 13 formed in an umbrella shape. The raw milk Ls that has flowed through the rectifier 13 hits the inner peripheral surface 2pui of the upper guide tube portion 2pu, and the raw milk Ls flows down along the surface of the inner peripheral surface 2pui, and further, the raw milk Ls flows on the inner peripheral surface 2pi of the heat exchange tube portion 2p. Flows down the surface. Accordingly, the raw milk Ls can come into contact with the entire inner peripheral surface 2pi by flowing down the surface of the inner peripheral surface 2pi from above, and the entire outer peripheral surface 2po is cooled by the cooling water Wf. Is cooled (heat exchanged) by contacting the surface of the inner peripheral surface 2pi. In this case, the target is to select the temperature of the cooling water Wf and the like, and to precool the temperature of the raw milk Ls to about several degrees Celsius.

この後、生乳Lsは、下ガイド筒部2pdの内周面2pdiの表面を流れ、二次側排出部4e(接続口14)を通して排出される。そして、排出された生乳Lsは下流側配管54bを通ってバルククーラ55に供給される。図3に、冷却水Wfの流通経路を点線矢印により示すとともに、生乳Lsの流通経路を実線矢印により示す。また、図3には、同一符号となるLsを用いて、生乳が各内周面2pui…の表面を流れ落ちる状態を模式的に示す。   Thereafter, the raw milk Ls flows on the inner peripheral surface 2pdi of the lower guide cylinder portion 2pd and is discharged through the secondary discharge portion 4e (connection port 14). The discharged raw milk Ls is supplied to the bulk cooler 55 through the downstream pipe 54b. In FIG. 3, the flow path of the cooling water Wf is indicated by a dotted line arrow, and the flow path of the raw milk Ls is indicated by a solid line arrow. FIG. 3 schematically shows a state in which raw milk flows down the surface of each inner peripheral surface 2 ui... Using Ls having the same sign.

よって、このような本実施形態に係る液体用熱交換器1によれば、二次側液体処理部4により、二次側供給部4sから供給された生乳(二次側液体)Lsが、熱交換筒部2pの内周面2piの表面を上から流れ落ちることにより当該熱交換筒部2pにおける内周面2piの全面に対して接触可能にしたため、熱交換機能を有する熱交換筒部2pは、極めて単純な形状(経路)により形成することができ、洗浄及びメンテナンスを容易に行うことができる。しかも、生乳Lsは、内周面2piの表面を上から流し落ちるため、汚れが付着しにくく、かつ蓄積しにくいとともに、筒状体部2を少なくとも一部を透明素材により形成すれば、内部の汚れ状態等を容易に確認できるなど、常に良好な衛生状態を維持可能となる。   Therefore, according to the liquid heat exchanger 1 according to this embodiment, the raw milk (secondary liquid) Ls supplied from the secondary side supply unit 4s by the secondary side liquid processing unit 4 is heated. Since the surface of the inner peripheral surface 2pi of the exchange cylinder portion 2p flows down from above, the heat exchange cylinder portion 2p having the heat exchange function can be brought into contact with the entire inner peripheral surface 2pi of the heat exchange cylinder portion 2p. It can be formed with a very simple shape (path), and cleaning and maintenance can be easily performed. Moreover, since the raw milk Ls flows down from the surface of the inner peripheral surface 2pi from above, dirt is difficult to adhere and accumulate, and if the cylindrical body portion 2 is formed at least partially from a transparent material, A good hygiene condition can be maintained at all times, such as easily confirming the dirty condition.

また、液体用熱交換器1における全体構造の単純化に伴って部品点数を飛躍的に削減できる。したがって、部品コストの低減、更には製造工数の低減によるコストダウンを図れるなど、製品の低廉化を図れる。しかも、狭い流路を流す必要がないため、生乳Lsを通過させる際の流量抵抗をほとんど無視することができ、流量抵抗を考慮した大型の送乳ポンプが不要になるなど、省エネルギ性の観点及びランニングコストの観点からも有利になる。加えて、生乳Lsの流量が変動しても影響が少なく、生乳Lsを安定に冷却することができる。特に、本実施形態に係る液体用熱交換器1では、二次側液体(Ls)として、搾乳された生乳Lsを適用したため、流動抵抗が大きくなりやすい生乳Lsを予備冷却する際に用いて最適となるとともに、副次的な効果として、送乳配管54や送乳ポンプ53等を通過して発生した泡を取除く効果も期待できる。   Moreover, the number of parts can be drastically reduced with the simplification of the overall structure of the liquid heat exchanger 1. Therefore, the cost of the product can be reduced, for example, the cost of parts can be reduced and the cost can be reduced by reducing the number of manufacturing steps. In addition, since there is no need to flow through a narrow flow path, the flow resistance when the raw milk Ls is passed can be almost ignored, and a large breast feeding pump that takes flow resistance into consideration is not required, and the viewpoint of energy saving. In addition, it is advantageous from the viewpoint of running cost. In addition, even if the flow rate of the raw milk Ls fluctuates, there is little influence and the raw milk Ls can be cooled stably. In particular, in the liquid heat exchanger 1 according to the present embodiment, since the milked raw milk Ls is applied as the secondary side liquid (Ls), it is optimally used for precooling the raw milk Ls that tends to have a large flow resistance. As a secondary effect, an effect of removing bubbles generated by passing through the breast feeding pipe 54 and the breast feeding pump 53 can be expected.

なお、図5〜図8には、本発明の変更実施形態に係る各種液体用熱交換器1…を示す。図5は、筒状体部2の変更、即ち、筒状体部2を、軸方向Daに分割した複数の分割筒体部2a,2b,2cの組合わせにより構成したものである。例示の場合、図1に示した、上部に位置する上ガイド筒部2pu,中間部に位置する熱交換筒部2p,下部に位置する下ガイド筒部2pd,をそれぞれ別体となる独立した部品として形成した。即ち、図5に示すように、上ガイド筒部2puの下端にフランジ31を一体に設けて分割筒体部2aとし、また、熱交換筒部2pの上端と下端にフランジ32と33をそれぞれ一体に設けて分割筒体部2bとし、さらに、下ガイド筒部2pdの上端にフランジ34を一体に設けて分割筒体部2cとした。これにより、対向する各フランジ31と32、33と34を図示を省略したボルトナット等の固定具により着脱可能(分解組立可能)に構成することができる。このような変更実施形態に係る液体用熱交換器1によれば、筒状体部2を、軸方向Daに分割した複数の分割筒体部2a,2b,2cの組合わせにより構成した場合であっても、筒状体部2に対する組立及び分解を容易に行うことができ、更なる洗浄性及びメンテナンス性の向上に寄与できる。   5 to 8 show various liquid heat exchangers 1... According to a modified embodiment of the present invention. FIG. 5 shows a modification of the cylindrical body portion 2, that is, a combination of a plurality of divided cylindrical body portions 2a, 2b, 2c obtained by dividing the cylindrical body portion 2 in the axial direction Da. In the case of the example, the independent parts in which the upper guide cylinder part 2pu located in the upper part, the heat exchange cylinder part 2p located in the middle part, and the lower guide cylinder part 2pd located in the lower part shown in FIG. Formed as. That is, as shown in FIG. 5, the flange 31 is integrally provided at the lower end of the upper guide cylinder portion 2pu to form the divided cylinder portion 2a, and the flanges 32 and 33 are respectively integrated at the upper end and the lower end of the heat exchange cylinder portion 2p. The divided cylindrical body portion 2b is provided, and the flange 34 is integrally provided at the upper end of the lower guide cylindrical portion 2pd to form the divided cylindrical body portion 2c. Thereby, each flange 31 and 32, 33, and 34 which oppose can be comprised so that attachment or detachment (disassembly and assembly) is possible with fixing tools, such as a volt | bolt nut which abbreviate | omitted illustration. According to the liquid heat exchanger 1 according to such a modified embodiment, the cylindrical body portion 2 is configured by a combination of a plurality of divided cylindrical body portions 2a, 2b, and 2c divided in the axial direction Da. Even if it exists, the assembly and decomposition | disassembly with respect to the cylindrical body part 2 can be performed easily, and it can contribute to the improvement of the further washing | cleaning property and maintenance property.

図6は、二次側液体処理部4における二次側供給部4sを変更したものである。図1に示した二次側供給部4sは、整流室12及び整流盤13を設けることにより、流入した生乳Lsを熱交換筒部2pの内周面2piに対して鉛直方向Dvに供給できるようにしたが、図6に示す二次側供給部4sは、接続口11を熱交換筒部2pの上端付近の周面に直接設け、生乳Lsを熱交換筒部2pの内周面2piに対して横方向、即ち、螺旋方向Dsに供給できるようにした。これにより、接続口11から流入した生乳Lsは、熱交換筒部2pの内周面2piを螺旋方向Dsに流れ落ちる。したがって、この場合には、図1における上ガイド筒部2puは不要となる。このように、二次側液体処理部4の二次側供給部4sは、生乳Lsを、図1に示すように、熱交換筒部2pの内周面2piに対して、鉛直方向Dvに供給可能に構成してもよいし、或いは図6に示すように、螺旋方向Dsに供給可能に構成してもよく、二次側液体Lsの供給方向の選定により、熱交換性能等も含め、設計自由度をより高めることができる。   FIG. 6 shows a modification of the secondary supply unit 4 s in the secondary liquid processing unit 4. The secondary side supply unit 4s shown in FIG. 1 can supply the raw milk Ls that has flowed in the vertical direction Dv with respect to the inner peripheral surface 2pi of the heat exchange cylinder part 2p by providing the rectification chamber 12 and the rectification board 13. However, the secondary side supply unit 4s shown in FIG. 6 is provided with the connection port 11 directly on the peripheral surface near the upper end of the heat exchange cylinder part 2p, and the raw milk Ls is applied to the inner peripheral surface 2pi of the heat exchange cylinder part 2p. Thus, it can be supplied in the lateral direction, that is, the spiral direction Ds. Thereby, the raw milk Ls flowing in from the connection port 11 flows down in the spiral direction Ds on the inner peripheral surface 2pi of the heat exchange tube portion 2p. Therefore, in this case, the upper guide tube portion 2pu in FIG. 1 is not necessary. As described above, the secondary supply unit 4s of the secondary liquid processing unit 4 supplies the raw milk Ls in the vertical direction Dv with respect to the inner peripheral surface 2pi of the heat exchange cylinder unit 2p as shown in FIG. As shown in FIG. 6, it may be configured to be able to supply in the spiral direction Ds, and the design including the heat exchange performance etc. by selecting the supply direction of the secondary side liquid Ls The degree of freedom can be further increased.

図7は、液体用熱交換器1の全体レイアウトを変更したものである。図1に示した液体用熱交換器1は、熱交換筒部2pの内周面2piに生乳Lsを供給し、外周面2poに冷却水Wfを供給する場合を例示したが、図7に示す液体用熱交換器1は、熱交換筒部2pの内周面2piに冷却水Wfを供給し、外周面2poに生乳Lsを供給するようにしたものである。このように、熱交換筒部2pの外周面2poと内周面2piは、それぞれ一次側流体処理部3と二次側液体処理部4のいずれにも用いることができる。また、図7は、筒状体部2における熱交換筒部2pは円錐形状Fcに形成した。これにより、生乳Lsが接触する面は傾斜面となるため、生乳Lsは表面を伝って安定に流れ落ちることが可能になる。このように、筒状体部2における熱交換筒部2pは、図1に示すような円柱形状Fs又は図7に示すような円錐形状Fcのいずれにも形成できるため、熱交換筒部2pの形状を選定すれば、二次側液体Lsの冷却に熱交換筒部2pの内周面2piを用いるか又は外周面2poを用いるかの選定をはじめ、筒状体部2を各種形態により実施できるなど、多様性及び多機能性の向上に寄与できるとともに、全体のサイズ変更も容易に実現できる。なお、図7において、41は保護カバー、41dは保護カバー41における傾斜した底面部を示す。   FIG. 7 shows a change in the overall layout of the liquid heat exchanger 1. The liquid heat exchanger 1 shown in FIG. 1 exemplifies a case where the raw milk Ls is supplied to the inner peripheral surface 2pi of the heat exchange cylinder portion 2p and the cooling water Wf is supplied to the outer peripheral surface 2po. The liquid heat exchanger 1 supplies the cooling water Wf to the inner peripheral surface 2pi of the heat exchange cylinder portion 2p and supplies the raw milk Ls to the outer peripheral surface 2po. Thus, the outer peripheral surface 2po and the inner peripheral surface 2pi of the heat exchange cylinder portion 2p can be used for both the primary side fluid processing unit 3 and the secondary side liquid processing unit 4, respectively. Moreover, in FIG. 7, the heat exchange cylinder part 2p in the cylindrical body part 2 was formed in the conical shape Fc. Thereby, since the surface which the raw milk Ls contacts becomes an inclined surface, the raw milk Ls can flow down stably along the surface. Thus, since the heat exchange cylinder part 2p in the cylindrical body part 2 can be formed in either the columnar shape Fs as shown in FIG. 1 or the conical shape Fc as shown in FIG. 7, the heat exchange cylinder part 2p If the shape is selected, the cylindrical body portion 2 can be implemented in various forms including selection of whether the inner peripheral surface 2pi of the heat exchange cylindrical portion 2p or the outer peripheral surface 2po is used for cooling the secondary side liquid Ls. Thus, it is possible to contribute to the improvement of diversity and multifunctionality, and the entire size can be easily changed. In FIG. 7, reference numeral 41 denotes a protective cover, and 41 d denotes an inclined bottom surface portion of the protective cover 41.

図8は、二次側液体処理部4における二次側供給部4sを変更したものである。即ち、上ガイド筒部2puを半球状のドーム形に形成するとともに、二次側供給部4sにおける接続口11を上ガイド筒部2puの内部に延設し、接続口11の内端を、上ガイド筒部2puの内部における天面中央に対向させて配したものであり、これにより、生乳Lsが接続口11を通して供給されれば、比較的簡単な構成により実施できる。その他、図5〜図8において、図1〜図3と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。   FIG. 8 shows a modification of the secondary side supply unit 4 s in the secondary side liquid processing unit 4. That is, the upper guide tube portion 2pu is formed in a hemispherical dome shape, and the connection port 11 in the secondary supply portion 4s extends inside the upper guide tube portion 2pu, and the inner end of the connection port 11 is If the raw milk Ls is supplied through the connection port 11, it can be implemented with a relatively simple configuration. In addition, in FIGS. 5-8, the same code | symbol is attached | subjected to FIGS. 1-3, and the same code | symbol is clarified, and the detailed description is abbreviate | omitted.

以上、好適実施形態(変更実施形態)について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。例えば、各実施形態では、一次側流体(Wf)として、冷却水Wfを使用した場合を示したが、その他、冷却溶液,冷却蒸気又は冷却空気等であってもよい。このように、一次側流体Wfには、少なくとも、水,溶液,蒸気又は空気の一つを含ませることができ、熱交換筒部2pの単純形状ゆえに各種媒体の利用が可能になる。したがって、一次側流体Wfを選定する観点からの設計自由度及び汎用性を高めることができる。また、搾乳した生乳Lsを予備冷却する用途を示したが、他の用途によっては加温(加熱)も可能である。したがって、この場合には、冷却水Wfの代わりに熱湯を用いることができ、一次側流体Wfは、一般的に、水,溶液,蒸気又は空気等を利用できる。さらに、二次側液体Lsも生乳Lsをはじめ、各種の液体を適用できる。   The preferred embodiment (modified embodiment) has been described in detail above, but the present invention is not limited to such an embodiment, and the present invention is not limited to such a configuration, shape, material, quantity, numerical value, and the like. Any change, addition, or deletion can be made without departing from the scope of the above. For example, in each embodiment, although the case where the cooling water Wf was used as a primary side fluid (Wf) was shown, cooling solution, cooling steam, cooling air, etc. may be sufficient. Thus, the primary fluid Wf can contain at least one of water, solution, steam, or air, and various media can be used because of the simple shape of the heat exchange cylinder portion 2p. Therefore, the design freedom and versatility from the viewpoint of selecting the primary fluid Wf can be enhanced. Moreover, although the use which pre-cools milked raw milk Ls was shown, heating (heating) is also possible depending on other uses. Therefore, in this case, hot water can be used instead of the cooling water Wf, and water, a solution, steam, air, or the like can be generally used as the primary fluid Wf. Furthermore, the secondary side liquid Ls can apply various liquids including raw milk Ls.

本発明に係る液体用熱交換器1は、例示した生乳の予備冷却をはじめ、各種液体の冷却や加温、即ち、醤油等の食品用液体,薬液,オイル,クーラント液,化学溶液等の各種液体の冷却又は加温に利用できる。   The liquid heat exchanger 1 according to the present invention includes various types of liquids such as soy sauce and other food liquids, chemicals, oils, coolants, chemical solutions, etc. It can be used for cooling or heating liquids.

1:液体用熱交換器,2:筒状体部,2p:熱交換用筒部,2po:熱交換用筒部の外周面,2pi:熱交換用筒部の内周面,2a:分割筒体部,2b:分割筒体部,2c:分割筒体部,3:一次側流体処理部,3s:一次側供給部,3e:一次側排出部,4:二次側液体処理部,4s:二次側供給部,4e:二次側排出部,Wf:一次側流体(冷却水),Ls:二次側液体(生乳),Fs:円柱形状,Fc:円錐形状,Da:軸方向,Dv:鉛直方向,Ds:螺旋方向,Sw:流体収容室   DESCRIPTION OF SYMBOLS 1: Liquid heat exchanger, 2: Cylindrical body part, 2p: Heat exchange cylinder part, 2po: Outer peripheral surface of heat exchange cylinder part, 2pi: Inner peripheral surface of heat exchange cylinder part, 2a: Divided cylinder Body part, 2b: Split cylinder part, 2c: Split cylinder part, 3: Primary fluid treatment part, 3s: Primary supply part, 3e: Primary discharge part, 4: Secondary liquid process part, 4s: Secondary side supply unit, 4e: secondary side discharge unit, Wf: primary side fluid (cooling water), Ls: secondary side liquid (raw milk), Fs: cylindrical shape, Fc: conical shape, Da: axial direction, Dv : Vertical direction, Ds: Spiral direction, Sw: Fluid storage chamber

Claims (6)

一次側流体と二次側液体の熱交換を行う液体用熱交換器であって、外周面と内周面を有する熱交換筒部を少なくとも一部に有する筒状体部と、一次側供給部から供給された一次側流体が前記熱交換筒部における外周面(又は内周面)の全面に対して接触可能な流体収容室を有し、かつ熱交換された一次側流体が一次側排出部から排出される一次側流体処理部と、二次側供給部から供給された二次側液体が前記熱交換筒部における内周面(又は外周面)の表面を上から流れ落ちることにより当該熱交換筒部における内周面(又は外周面)の全面に対して接触可能に構成し、かつ熱交換された二次側液体が二次側排出部から排出される二次側液体処理部とを備えることを特徴とする液体用熱交換器。   A liquid heat exchanger for exchanging heat between a primary side fluid and a secondary side liquid, a cylindrical body part having at least a part of a heat exchange cylinder part having an outer peripheral surface and an inner peripheral surface, and a primary side supply unit The primary side fluid supplied from the heat exchange cylinder portion has a fluid storage chamber that can contact the entire outer peripheral surface (or inner peripheral surface) of the heat exchange tube portion, and the heat exchanged primary side fluid is the primary side discharge portion. The primary-side fluid treatment unit discharged from the secondary-side liquid and the secondary-side liquid supplied from the secondary-side supply unit flow down from the upper surface of the inner peripheral surface (or outer peripheral surface) of the heat-exchange tube unit, thereby exchanging the heat. A secondary side liquid processing unit configured to be able to contact the entire inner peripheral surface (or outer peripheral surface) of the cylindrical portion and from which the heat-exchanged secondary side liquid is discharged from the secondary side discharge unit. A liquid heat exchanger. 前記一次側流体には、少なくとも、水,溶液,蒸気又は空気の一つを含むことを特徴とする請求項1記載の液体用熱交換器。   The liquid heat exchanger according to claim 1, wherein the primary side fluid includes at least one of water, a solution, steam, and air. 前記二次側液体は、搾乳された生乳であることを特徴とする請求項1又は2記載の液体用熱交換器。   The liquid heat exchanger according to claim 1, wherein the secondary liquid is milk that has been milked. 前記筒状体部における熱交換筒部は、円柱形状又は円錐形状に形成することを特徴とする請求項1,2又は3記載の液体用熱交換器。   The heat exchanger for liquid according to claim 1, 2 or 3, wherein the heat exchange cylinder part in the cylindrical body part is formed in a columnar shape or a conical shape. 前記筒状体部は、一体に構成し,又は軸方向に分割した複数の分割筒体部の組合わせにより構成することを特徴とする請求項1〜4のいずれかに記載の液体用熱交換器。   The liquid heat exchange according to any one of claims 1 to 4, wherein the cylindrical body portion is configured integrally or by a combination of a plurality of divided cylindrical body portions divided in the axial direction. vessel. 前記二次側液体処理部の二次側供給部は、前記二次側液体を、前記熱交換筒部の内周面(又は外周面)に対して鉛直方向に供給可能又は螺旋方向に供給可能に構成することを特徴とする請求項1〜5のいずれかに記載の液体用熱交換器。   The secondary side supply unit of the secondary side liquid processing unit can supply the secondary side liquid in a vertical direction or in a spiral direction with respect to the inner peripheral surface (or outer peripheral surface) of the heat exchange tube unit. The liquid heat exchanger according to claim 1, wherein the liquid heat exchanger is configured as follows.
JP2011097565A 2011-04-25 2011-04-25 Heat exchanger for liquid Withdrawn JP2012228192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097565A JP2012228192A (en) 2011-04-25 2011-04-25 Heat exchanger for liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011097565A JP2012228192A (en) 2011-04-25 2011-04-25 Heat exchanger for liquid

Publications (1)

Publication Number Publication Date
JP2012228192A true JP2012228192A (en) 2012-11-22

Family

ID=47430335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097565A Withdrawn JP2012228192A (en) 2011-04-25 2011-04-25 Heat exchanger for liquid

Country Status (1)

Country Link
JP (1) JP2012228192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020031363A1 (en) * 2018-08-10 2021-08-02 オリオン機械株式会社 Milk collection system and milk collection processing method
WO2024157992A1 (en) * 2023-01-25 2024-08-02 株式会社MARS Company Cooling device and transport method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020031363A1 (en) * 2018-08-10 2021-08-02 オリオン機械株式会社 Milk collection system and milk collection processing method
JP6999040B2 (en) 2018-08-10 2022-02-10 オリオン機械株式会社 Milk collection system
WO2024157992A1 (en) * 2023-01-25 2024-08-02 株式会社MARS Company Cooling device and transport method

Similar Documents

Publication Publication Date Title
EP3171700B1 (en) Infusion plant
US4351271A (en) Refrigerated receiver
US8839713B2 (en) System for pasteurizing animal food
JP2012228192A (en) Heat exchanger for liquid
US4013043A (en) Milking apparatus
EP2453194B1 (en) Drain provided with a heat exchanger, and shower tray or shower cubicle provided with such a drain
JP4701022B2 (en) Mold temperature controller
CN204757738U (en) Circulative cooling tower
WO2017126148A1 (en) Multiple tube-type heat exchanger and heat transfer tube cleaning method for same
KR20160131787A (en) Cooling Device For Water Purifier By Using Direct Contact Method
EP3332653A1 (en) Tubular heat exchanger
CN103759554B (en) Semi-closed spray cooler
CN208887421U (en) A kind of efficient heat exchanger
CA2267249A1 (en) Apparatus and cooling system
RU2446678C2 (en) Tank milk precooler
JP5829770B1 (en) Shell and tube heat exchanger
EP2877799A1 (en) An improved tubular heat exchanger
RU120541U1 (en) PASTERIZATION INSTALLATION
CN219722852U (en) Multistage cooling reaction kettle
RU180643U1 (en) FAST PASTEASER IN STREAM
CN201617137U (en) Heat exchanger
JP6155125B2 (en) Multi-tube heat exchanger
RU2186496C2 (en) Milk pasteurizing apparatus
RU2257246C1 (en) Film-type evaporator
RU2436292C1 (en) High efficiency high-speed milk cooler

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701