JP2012228183A - Biological activity measuring device and method for estimating minimum growth inhibiting concentration - Google Patents

Biological activity measuring device and method for estimating minimum growth inhibiting concentration Download PDF

Info

Publication number
JP2012228183A
JP2012228183A JP2011096640A JP2011096640A JP2012228183A JP 2012228183 A JP2012228183 A JP 2012228183A JP 2011096640 A JP2011096640 A JP 2011096640A JP 2011096640 A JP2011096640 A JP 2011096640A JP 2012228183 A JP2012228183 A JP 2012228183A
Authority
JP
Japan
Prior art keywords
electromotive force
concentration
unit
measurement
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011096640A
Other languages
Japanese (ja)
Inventor
Katsutada Takahashi
克忠 高橋
Masatoshi Semi
正敏 蝉
Yoshiichi Ishii
芳一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAISEN ELECTRONICS INDUSTRIAL CO Ltd
NPO KEIHANNA BUNKA GAKUJUTSU KYOKAI
Ulvac Riko Inc
Original Assignee
DAISEN ELECTRONICS INDUSTRIAL CO Ltd
NPO KEIHANNA BUNKA GAKUJUTSU KYOKAI
Ulvac Riko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAISEN ELECTRONICS INDUSTRIAL CO Ltd, NPO KEIHANNA BUNKA GAKUJUTSU KYOKAI, Ulvac Riko Inc filed Critical DAISEN ELECTRONICS INDUSTRIAL CO Ltd
Priority to JP2011096640A priority Critical patent/JP2012228183A/en
Publication of JP2012228183A publication Critical patent/JP2012228183A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biological activity measuring device capable of quickly eliminating heat (hot heat or cold heat) carried from the outside along with the installation of samples into the device and capable of shortening a time required for measuring a metabolic activity or a proliferating activity of the biological cells principled by detecting the metabolic heat of biological cells.SOLUTION: The heat (hot heat or cold heat) taken into a constant temperature chamber 10 when installing a sample container 17 can be quickly eliminated by heating/cooling the sample container 17 by applying DC current to a sensor 7 such that the temperature difference between the sample chamber 17 and a constant temperature container 13 becomes small based on a temperature measuring result of the sensor 7 (peltiert element) installed while being sandwiched by the sample container 17 and the constant temperature container 13. Consequently, The measurement of metabolic heat shown by microorganism cells can be dramatically quickly carried out compared to a conventional method.

Description

本発明は、生物細胞の代謝活動に伴って発生する熱の測定を原理とする生物活性測定装置に関するものであり、特に、測定に要する時間を短縮できる生物活性測定装置に関するものである。   The present invention relates to a biological activity measuring device based on the principle of measuring heat generated with the metabolic activity of biological cells, and more particularly to a biological activity measuring device that can shorten the time required for measurement.

従来より、微生物の増殖を追跡する手段として(1)光学的方法、(2)インピーダンス測定法、(3)寒天平板培養法などが知られている。上記の内、(1)の光学的方法は光を透過する試料に限定され、(2)のインピーダンス測定法は電気伝導性のある試料に限定されるという制約があり、また、いずれの方法も計測可能な微生物濃度、すなわちダイナミックレンジに一定の制約がある。そのため、一般には、200年前にドイツのロベルト・コッホにより創始された(3)の寒天平板培養法が採用されている。しかし、シャーレ上での微生物の培養を基本とする寒天平板培養法は、膨大な量のプラスチックシャーレを消費し、また、培養のための時間が非常に長い(通常24時間もしくは48時間)ため、微生物の培養ために要する労力の点においてあまりにも浪費が多いという問題がある。   Conventionally, (1) optical method, (2) impedance measurement method, (3) agar plate culture method, etc. are known as means for tracking the growth of microorganisms. Among the above, the optical method (1) is limited to a sample that transmits light, and the impedance measurement method (2) is limited to a sample having electrical conductivity. There are certain restrictions on the concentration of microorganisms that can be measured, that is, the dynamic range. Therefore, in general, the agar plate culture method (3), which was founded 200 years ago by Robert Koch, Germany, is employed. However, the agar plate culture method based on the culture of microorganisms on a petri dish consumes an enormous amount of plastic petri dishes, and the culture time is very long (usually 24 hours or 48 hours). There is a problem that it is too wasteful in terms of labor required for culturing microorganisms.

上記のような従来の微生物活性の測定方法における問題を解決するものとして、下記の特許文献1に記載される装置が知られている。この装置は、微生物細胞の代謝活動により発生する熱の検出を原理としており、微生物細胞の代謝活性を忠実に定量化した信頼性の高い情報を得ることができる。また、シャーレを大量に使用する(3)の寒天平板培養法に比べて極めて簡易に測定を行うことができる。   As a device for solving the problems in the conventional method for measuring microbial activity as described above, an apparatus described in Patent Document 1 below is known. This device is based on the detection of heat generated by metabolic activity of microbial cells, and can obtain highly reliable information that faithfully quantifies the metabolic activity of microbial cells. In addition, the measurement can be carried out very easily as compared with the agar plate culture method (3) using a large amount of petri dish.

特許第1903288号明細書Japanese Patent No. 1903288

ところで、上記特許文献1に示すように微生物細胞の代謝熱を検出する装置を用いるには、目的とする微生物細胞の試料を準備・調製した上で、それを装置内に導入・設置する必要がある。その際、微生物細胞試料とともに外部から装置内へ持ち込まれる熱(温熱もしくは冷熱)によって、装置内の熱平衡状態が乱されことは避けられない。すなわち、微生物細胞が示す代謝熱の検出を原理とする測定装置でありながら、持ち込まれた熱が完全になくならない限り、測定装置が示す装置シグナルは微生物細胞のみに由来する代謝熱を反映していないことになり、その限りにおいて正確な微生物細胞の代謝活性を示していないことになる。通常は、試料を設置してから短い場合でも3時間ぐらい、長い場合は10時間程の時間を置き、外部から持ちこまれた熱が完全に消失するのを待って測定を開始するというのが現状である。この時間は、試料の状態や性質、試料を設置する測定装置の材質や構造などの要因に依存する。   By the way, in order to use an apparatus for detecting metabolic heat of microbial cells as shown in Patent Document 1, it is necessary to prepare and prepare a target microbial cell sample and then introduce and install it in the apparatus. is there. At that time, it is inevitable that the thermal equilibrium state in the apparatus is disturbed by heat (hot or cold) brought into the apparatus from the outside together with the microorganism cell sample. That is, as long as the introduced heat does not completely disappear even though the measurement device is based on the detection of metabolic fever exhibited by microbial cells, the device signal displayed by the measurement device reflects the metabolic fever derived only from microbial cells. In other words, it does not show the exact metabolic activity of microbial cells. Usually, it takes about 3 hours even if it is short after the sample is installed, and about 10 hours if it is long, and the measurement is started after the heat brought in from the outside is completely lost. It is. This time depends on factors such as the state and properties of the sample, and the material and structure of the measuring apparatus on which the sample is installed.

本発明はかかる事情に鑑みてなされたものであり、その目的は、装置内への試料の設置等に伴って外部から持ち込まれる熱(温熱若しくは冷熱)を速やかに消去し、生物細胞の代謝熱の検出を原理とする生物細胞の代謝活性あるいは増殖活性の測定に要する時間を短縮できる生物活性測定装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to quickly erase heat (hot or cold) brought in from the outside when a sample is placed in the apparatus, etc. It is an object of the present invention to provide a biological activity measuring apparatus capable of shortening the time required for measuring the metabolic activity or proliferation activity of a biological cell based on the principle of detection.

本発明の第1の観点は、試料に含まれる生物細胞が発生した熱を測定する生物活性測定装置に関する。この生物活性測定装置は、恒温槽と、前記恒温槽の中に配置され、高熱伝導性材のブロックにより形成され、測定対象の試料が入れられた試料容器を収容する複数の測定セルが設けられた恒温容器と、前記複数の測定セルの各内部において前記恒温容器と前記試料容器との間に挟まれて設置され、前記恒温容器に接触する第1の面と前記試料容器に接触する第2の面との温度差に応じた起電力をそれぞれ発生する複数の熱電素子と、前記複数の熱電素子が発生した前記起電力をそれぞれ測定する測定部と、前記複数の熱電素子に印加するための直流電圧をそれぞれ出力する電圧出力部と、前記複数の熱電素子を、それぞれ前記測定部又は前記電圧出力部に接続するスイッチ部と、前記熱電素子を前記測定部と前記電圧出力部とへ交互に接続するように前記スイッチ部を制御し、前記熱電素子と前記測定部とを接続した期間に前記起電力を測定するように前記測定部を制御し、前記測定部において測定された起電力が前記恒温容器と比べて前記試料容器の温度が低いことを示す場合、前記熱電素子と前記電圧出力部とを接続した期間に前記第2の面から熱を放出させる極性の直流電圧を出力するように前記電圧出力部を制御し、前記測定された起電力が前記恒温容器と比べて前記試料容器の温度が高いことを示す場合、前記熱電素子と前記電圧出力部とを接続した期間に前記第2の面で熱を吸収させる極性の直流電圧を出力するように前記電圧出力部を制御する一連の熱制御処理を、前記複数の熱電素子のそれぞれについて行う制御部とを有する。   A first aspect of the present invention relates to a biological activity measurement apparatus that measures heat generated by biological cells contained in a sample. This biological activity measurement device is provided with a thermostat and a plurality of measurement cells that are arranged in the thermostat, are formed by a block of a high thermal conductivity material, and contain a sample container in which a sample to be measured is placed. A constant temperature container, a first surface that contacts the constant temperature container, and a second surface that is in contact with the constant temperature container and is disposed between the constant temperature container and the sample container inside each of the plurality of measurement cells. A plurality of thermoelectric elements each generating an electromotive force according to a temperature difference from the surface, a measuring unit for measuring each electromotive force generated by the plurality of thermoelectric elements, and applying to the plurality of thermoelectric elements A voltage output unit that outputs each DC voltage, a switch unit that connects the plurality of thermoelectric elements to the measurement unit or the voltage output unit, and the thermoelectric element alternately to the measurement unit and the voltage output unit Connect Controlling the switch unit, controlling the measurement unit to measure the electromotive force during a period in which the thermoelectric element and the measurement unit are connected, and the electromotive force measured in the measurement unit is the thermostatic container If the temperature of the sample container is lower than the voltage, the voltage is output so as to output a DC voltage having a polarity that releases heat from the second surface during a period in which the thermoelectric element and the voltage output unit are connected. When the output unit is controlled and the measured electromotive force indicates that the temperature of the sample container is higher than that of the thermostatic container, the second surface is connected during a period in which the thermoelectric element and the voltage output unit are connected. And a control unit that performs a series of thermal control processes for controlling the voltage output unit so as to output a DC voltage having a polarity that absorbs heat in each of the plurality of thermoelectric elements.

好適に、前記制御部は、前記測定部において測定された起電力のレベルに応じて、前記電圧出力部から出力する前記直流電圧のレベル、前記熱電素子と前記電圧出力部とを接続する時間間隔、及び、前記熱電素子と前記電圧出力部とを接続した期間に前記電圧出力部から前記直流電圧を出力する時間の長さ、の少なくとも1つを調節する。   Preferably, the control unit determines the level of the DC voltage output from the voltage output unit according to the level of the electromotive force measured by the measurement unit, and the time interval connecting the thermoelectric element and the voltage output unit. And at least one of the lengths of time during which the DC voltage is output from the voltage output unit during a period in which the thermoelectric element and the voltage output unit are connected.

好適に、前記制御部は、前記測定部において測定された起電力が前記恒温容器と前記試料容器との温度差が十分に小さいことを示す所定の範囲内に入った場合に前記熱制御処理を終了する。   Preferably, the control unit performs the thermal control process when the electromotive force measured in the measurement unit falls within a predetermined range indicating that the temperature difference between the constant temperature container and the sample container is sufficiently small. finish.

好適に、前記制御部は、前記熱制御処理を終了してから所定の時間が経過すると、前記複数の熱電素子をそれぞれ前記測定部と接続するように前記スイッチ部を制御するとともに、前記複数の熱電素子の前記起電力を測定するように前記測定部を制御する。
好適に、上記生物活性測定装置は、前記所定の時間の経過後に測定された前記複数の熱電素子の前記起電力を示す一群の起電力データと、前記複数の測定セルに収容される複数の試料容器中の試料にそれぞれ添加された抗微生物作用を示す物質の濃度を示す一群の濃度データとに基づいて、前記熱電素子の起電力と前記物質の濃度との関係を表す所定の関数の係数を回帰分析法により算出する回帰分析部と、前記回帰分析部において算出された前記係数を持つ前記所定の関数において、前記起電力がゼロとなる場合の前記物質の濃度を算出する濃度算出部とを有する。
Preferably, the control unit controls the switch unit to connect the plurality of thermoelectric elements to the measurement unit when a predetermined time elapses after the thermal control process is completed, and The measurement unit is controlled to measure the electromotive force of the thermoelectric element.
Preferably, the biological activity measuring device includes a group of electromotive force data indicating the electromotive force of the plurality of thermoelectric elements measured after the lapse of the predetermined time, and a plurality of samples accommodated in the plurality of measurement cells. Based on a group of concentration data indicating the concentration of the substance having antimicrobial action added to each sample in the container, a coefficient of a predetermined function representing a relationship between the electromotive force of the thermoelectric element and the concentration of the substance is calculated. A regression analysis unit that is calculated by a regression analysis method; and a concentration calculation unit that calculates the concentration of the substance when the electromotive force is zero in the predetermined function having the coefficient calculated by the regression analysis unit. Have.

好適に、前記制御部は、前記熱制御処理を終了してから複数の所定の時間が経過する度に、前記一群の起電力データが得られるように前記スイッチ部と前記測定部を制御し、前記回帰分析部は、前記複数の所定の時間が経過する度に得られる前記一群の起電力データと前記一群の濃度データとに基づいて、前記複数の所定の時間のそれぞれについて前記係数を算出し、前記濃度算出部は、前記複数の所定の時間のそれぞれについて前記回帰分析部により算出された前記係数に基づいて、前記起電力がゼロとなる場合の前記物質の濃度を算出し、当該算出した複数の濃度に基づいて当該濃度の平均値を更に算出する。   Preferably, the control unit controls the switch unit and the measurement unit so that the group of electromotive force data is obtained each time a plurality of predetermined times have elapsed after the thermal control process is completed, The regression analysis unit calculates the coefficient for each of the plurality of predetermined times based on the group of electromotive force data and the group of concentration data obtained each time the plurality of predetermined times elapses. The concentration calculation unit calculates the concentration of the substance when the electromotive force is zero based on the coefficient calculated by the regression analysis unit for each of the plurality of predetermined times, and calculates the concentration. Based on the plurality of concentrations, an average value of the concentrations is further calculated.

本発明の第2の観点は、抗微生物作用を示す物質が微生物の生育を阻止するために必要な最小の濃度を推定する最小生育阻止濃度推定方法に関するものである。この最小生育阻止濃度推定方法は、それぞれ異なる濃度の前記物質が添加された複数の微生物培養試料を準備し、当該複数の微生物培養試料が入られた複数の試料容器を恒温槽の内部に配置する工程と、前記恒温槽内部の前記複数の試料容器に接して配置された複数の熱電素子にそれぞれ発生する、前記試料容器の温度に応じた起電力を測定する工程と、前記測定された前記複数の熱電素子の前記起電力を示す一群の起電力データと、前記複数の微生物培養試料中にそれぞれ添加された前記物質の濃度を示す一群の濃度データとに基づいて、前記熱電素子の起電力と前記物質の濃度との関係を表す所定の関数の係数を回帰分析法により算出する工程と、前記算出された前記係数を持つ前記所定の関数において、前記起電力がゼロとなる場合の前記物質の濃度を算出する工程とを有する。   The second aspect of the present invention relates to a minimum growth inhibition concentration estimation method for estimating the minimum concentration required for a substance exhibiting antimicrobial activity to inhibit the growth of microorganisms. This minimum growth inhibition concentration estimation method prepares a plurality of microorganism culture samples to which the substances of different concentrations are added, and arranges a plurality of sample containers containing the plurality of microorganism culture samples inside a thermostatic chamber. Measuring the electromotive force according to the temperature of the sample container respectively generated in a plurality of thermoelectric elements disposed in contact with the plurality of sample containers inside the thermostat, and the plurality of the measured plurality Based on the group of electromotive force data indicating the electromotive force of the thermoelectric element, and the group of concentration data indicating the concentration of the substance added to each of the plurality of microorganism culture samples, A step of calculating a coefficient of a predetermined function representing a relationship with the concentration of the substance by a regression analysis method, and the predetermined function having the calculated coefficient when the electromotive force is zero And a step of calculating the concentration of the serial material.

本発明によれば、試料容器と恒温容器との温度差を測定するために設置した熱電素子に直流電圧を印加し、試料容器と恒温容器との温度差が小さくなるように試料容器を加熱若しくは冷却することにより、装置内への試料の設置等に伴って外部から持ち込まれる熱(温熱若しくは冷熱)を速やかに消去して、測定に要する時間を短縮できる。   According to the present invention, a DC voltage is applied to a thermoelectric element installed to measure the temperature difference between the sample container and the thermostatic container, and the sample container is heated or reduced so that the temperature difference between the sample container and the thermostatic container is reduced. By cooling, it is possible to quickly erase the heat (hot or cold) brought in from the outside when the sample is installed in the apparatus, and the time required for measurement can be shortened.

生物活性測定装置の全体的な構成の一例を示す図である。It is a figure which shows an example of the whole structure of a biological activity measuring apparatus. 上側から見た恒温容器の外観の一例を示す平面図である。It is a top view which shows an example of the external appearance of the thermostat container seen from the upper side. スイッチ部、電圧出力部及び測定部の構成の一例を示す図である。It is a figure which shows an example of a structure of a switch part, a voltage output part, and a measurement part. 恒温槽に測定対象試料を入れた直後からのセンサによる測定値の時間変化を表す図である。It is a figure showing the time change of the measured value by the sensor from immediately after putting a measuring object sample in a thermostat. 抗微生物物質の濃度が異なる10個の微生物培養試料について図1に示す生物活性測定装置により行った代謝熱の測定値の時間的な変化の例を示した図である。It is the figure which showed the example of the time change of the measured value of the metabolic fever performed by the biological activity measuring apparatus shown in FIG. 1 about ten microorganism culture samples from which the density | concentration of an antimicrobial substance differs. 図5に示すグラフにおける12時間目の測定値と培養試料に含まれる抗微生物物質の濃度との関係を表した図である。It is the figure showing the relationship between the measured value of the 12th hour in the graph shown in FIG. 5, and the density | concentration of the antimicrobial substance contained in a culture sample. 図5に示すグラフにおける10時間目の測定値と培養試料に含まれる抗微生物物質の濃度との関係を表した図である。It is the figure showing the relationship between the measured value of the 10th hour in the graph shown in FIG. 5, and the density | concentration of the antimicrobial substance contained in a culture sample. 図5に示すグラフにおける8時間目の測定値と培養試料に含まれる抗微生物物質の濃度との関係を表した図である。It is the figure showing the relationship between the measured value of the 8th hour in the graph shown in FIG. 5, and the density | concentration of the antimicrobial substance contained in a culture sample. 図6〜図8に示す回帰曲線を1つにまとめて表した図である。It is the figure which put together and represented the regression curve shown in FIGS. 6-8.

<第1の実施形態>
まず、本発明の第1の実施形態に係る生物活性測定装置の概要を説明する。
本実施形態に係る生物活性測定装置は、微生物細胞が増殖過程で放出する代謝熱を、熱検出体であるセンサ(熱電素子)が示すゼーベック効果により連続的に検出することによって、微生物細胞の増殖活性を定量的に測定する。この測定を開始するにあたって微生物培養試料を装置内に設置すると、外部から余分な熱(温熱または冷熱)が装置内に持ち込まれてしまうが、本実施形態に係る生物活性測定装置は、上記のセンサが示すペルチエ効果を利用して、外部から持ち込まれた熱を消去する。これにより、目的とする微生物細胞の代謝活動に由来する熱だけをセンサのゼーベック効果によって速やかに検出することが可能となる。
<First Embodiment>
First, an outline of the biological activity measurement apparatus according to the first embodiment of the present invention will be described.
The biological activity measuring apparatus according to the present embodiment continuously detects metabolic heat released by microbial cells during the growth process by the Seebeck effect exhibited by a sensor (thermoelectric element) that is a heat detector, thereby proliferating microbial cells. Activity is measured quantitatively. When a microorganism culture sample is installed in the apparatus for starting this measurement, extra heat (hot or cold) is brought into the apparatus from the outside. However, the biological activity measuring apparatus according to the present embodiment uses the above sensor. Using the Peltier effect shown by, the heat brought in from the outside is erased. This makes it possible to quickly detect only the heat derived from the metabolic activity of the target microbial cell by the Seebeck effect of the sensor.

本実施形態に係る生物活性測定装置は、試料容器に接したセンサ(熱電素子)がゼーベック効果により発生する起電力(ゼーベック電圧)を測定する回路と、ペルチェ効果により試料容器が加熱若しくは冷却されるようにセンサへ電圧を出力する回路とを備えており、これらの回路をスイッチ回路により切り替えてセンサに接続する。生物活性測定装置は、微生物細胞試料が装置内に導入・設置された後、試料温度と基準温度との差に応じたセンサのゼーベック電圧を繰り返し測定する。生物活性測定装置は、この測定の合間にセンサの接続先を測定回路から電圧出力回路に切り替えてセンサに直流電圧を出力し、センサのペルチェ効果により試料容器を加熱または冷却する。   In the biological activity measuring apparatus according to this embodiment, the sensor (thermoelectric element) in contact with the sample container measures the electromotive force (Seebeck voltage) generated by the Seebeck effect, and the sample container is heated or cooled by the Peltier effect. And a circuit for outputting a voltage to the sensor. These circuits are switched by a switch circuit and connected to the sensor. The biological activity measuring apparatus repeatedly measures the Seebeck voltage of the sensor according to the difference between the sample temperature and the reference temperature after the microbial cell sample is introduced and installed in the apparatus. The biological activity measurement apparatus switches the connection destination of the sensor from the measurement circuit to the voltage output circuit during this measurement, outputs a DC voltage to the sensor, and heats or cools the sample container by the Peltier effect of the sensor.

センサに接触する試料容器の温度が基準温度より高い場合、生物活性測定装置は、試料容器に接する面がペルチェ効果によって熱を吸収するように直流電圧の極性を設定してセンサに出力し、試料の温度を降下させる。逆に、試料容器の温度が基準温度より低い場合、生物活性測定装置は、上記と逆極性の直流電圧をセンサに出力し、試料の温度を上昇させる。また、生物活性測定装置は、センサに出力する直流電圧のレベルや、センサに直流電圧を出力する時間間隔、電圧を出力する時間の長さなどを、測定したゼーベック電圧(試料容器の温度と基準温度との差)に応じて調節する。   When the temperature of the sample container in contact with the sensor is higher than the reference temperature, the biological activity measuring device sets the polarity of the DC voltage so that the surface in contact with the sample container absorbs heat by the Peltier effect and outputs it to the sensor. Reduce the temperature. On the other hand, when the temperature of the sample container is lower than the reference temperature, the biological activity measuring device outputs a DC voltage having the opposite polarity to the above to the sensor to increase the temperature of the sample. In addition, the biological activity measuring device measures the Seebeck voltage (the temperature of the sample container and the reference) by measuring the level of the DC voltage output to the sensor, the time interval for outputting the DC voltage to the sensor, the length of time for outputting the voltage, etc. Adjust according to temperature difference.

生物活性測定装置は、試料容器の温度と基準温度との差が十分小さくなるまで上記の制御を繰り返すことにより、微生物細胞試料の装置内への設置に際して微生物試料とともに持ち込まれた熱(温熱あるいは冷熱)を消去する。また生物活性測定装置は、試料容器の温度と基準温度との差が速やかに小さくなるように、センサに与える直流電圧のレベルや、直流電圧を印加する時間間隔、直流電圧を印加する時間の長さなどを、測定したゼーベック電圧に応じて適切に調節する。これにより、基準温度とは異なる温度を持つ試料が装置内に設置された場合でも、速やかにこれらの温度差を消去できるので、試料本来の代謝熱にもとづく温度の測定を短時間で開始することが可能になる。   The biological activity measurement apparatus repeats the above control until the difference between the temperature of the sample container and the reference temperature is sufficiently small, so that the heat (hot or cold) brought together with the microbial sample when the microbial cell sample is installed in the apparatus. ). In addition, the biological activity measurement device is designed to reduce the difference between the temperature of the sample container and the reference temperature quickly, the level of the DC voltage applied to the sensor, the time interval for applying the DC voltage, and the length of time for applying the DC voltage. Adjust the thickness appropriately according to the measured Seebeck voltage. As a result, even if a sample with a temperature different from the reference temperature is installed in the device, these temperature differences can be quickly eliminated, so that measurement of the temperature based on the original metabolic heat can be started in a short time. Is possible.

次に、本実施形態に係る生物活性測定装置について、図面を参照して詳しく説明する。   Next, the biological activity measurement apparatus according to the present embodiment will be described in detail with reference to the drawings.

図1は、本実施形態に係る生物活性測定装置の全体的な構成の一例を示す図である。
図1に示す生物活性測定装置は、恒温槽10と、恒温容器13と、複数のセンサSと、スイッチ部20と、電圧出力部30と、測定部40と、システム制御装置50とを有する。
FIG. 1 is a diagram illustrating an example of the overall configuration of the biological activity measurement apparatus according to the present embodiment.
The biological activity measuring device shown in FIG. 1 includes a thermostatic bath 10, a thermostatic container 13, a plurality of sensors S, a switch unit 20, a voltage output unit 30, a measuring unit 40, and a system control device 50.

恒温槽10は、内部の温度を一定に保つ装置である。例えば恒温槽10は、外側が断熱材によって覆われており、内側には液体(水等)を循環する機構(パイプ等)が廻らされている。加熱・冷却装置によって温度が調節された流体を循環機構へ供給することにより、恒温槽10の内部は所望の温度に調節される。図1の例において、恒温槽10は、内部に空間が設けられた箱体12と、その上側の開口部を密閉する蓋部11を有する。   The thermostat 10 is a device that keeps the internal temperature constant. For example, the thermostatic chamber 10 is covered with a heat insulating material on the outside, and a mechanism (pipe or the like) for circulating a liquid (water or the like) is turned inside. By supplying the fluid whose temperature is adjusted by the heating / cooling device to the circulation mechanism, the inside of the thermostatic chamber 10 is adjusted to a desired temperature. In the example of FIG. 1, the thermostatic chamber 10 includes a box body 12 having a space therein and a lid portion 11 that seals an opening on the upper side.

恒温容器13は、熱伝導性の高い材料(例えばアルミニウム等の金属)のブロックにより形成された容器であり、測定対象の試料が入れられた試料容器17を収容するための複数の小室(測定セル)が設けられている。恒温容器13は、恒温槽10の中に配置され、その全体が一定の温度に保たれる。   The thermostatic container 13 is a container formed of a block of a material having high thermal conductivity (for example, a metal such as aluminum), and includes a plurality of small chambers (measuring cells) for accommodating a sample container 17 in which a sample to be measured is placed. ) Is provided. The thermostatic container 13 is disposed in the thermostatic bath 10, and the whole is kept at a constant temperature.

図2は、上側から見た恒温容器13の外観の一例を示す平面図である。図2の例において、恒温容器13のブロックには、試料容器17を収容する17個の筒型の測定セル(C1〜C16,CR)が穿設されている。これらの測定セルは、恒温容器13のブロックの中心に対して対称な位置に配置されている。測定セルの上側の開口部は、試料容器17を配置した後、蓋部14によって塞がれる。
中央の測定セルCRには、他の測定対象の試料と温度を比較するための基準物質を入れた試料容器を収容することができる。
FIG. 2 is a plan view showing an example of the appearance of the thermostatic container 13 as viewed from above. In the example of FIG. 2, 17 cylindrical measurement cells (C1 to C16, CR) for accommodating the sample container 17 are formed in the block of the thermostatic container 13. These measurement cells are arranged at symmetrical positions with respect to the center of the block of the thermostatic container 13. The upper opening of the measurement cell is closed by the lid 14 after the sample container 17 is arranged.
The central measurement cell CR can accommodate a sample container containing a reference material for comparing the temperature with another sample to be measured.

センサSは、熱エネルギーと電気エネルギーを交換する機能を持った熱電素子であり、複数の測定セル(C1〜C16,CR)の各内部に設置される。センサSは、試料容器17と恒温容器13との間に挟まれて設置される。図1の例において、センサSは測定セルの内底部に敷設され、その上に試料容器17が載置される。センサSは、恒温容器13に接触する面(第1の面)と試料容器17に接触する面(第2の面)との温度差に応じた起電力を発生する(ゼーベック効果)。   The sensor S is a thermoelectric element having a function of exchanging heat energy and electric energy, and is installed in each of the plurality of measurement cells (C1 to C16, CR). The sensor S is placed between the sample container 17 and the constant temperature container 13. In the example of FIG. 1, the sensor S is laid on the inner bottom of the measurement cell, and the sample container 17 is placed thereon. The sensor S generates an electromotive force according to the temperature difference between the surface (first surface) that contacts the thermostatic container 13 and the surface (second surface) that contacts the sample container 17 (Seebeck effect).

スイッチ部20は、システム制御部50の制御に従って、複数のセンサSをそれぞれ測定部40又は電圧出力部30に接続する。
電圧出力部30は、システム制御装置50の制御に従って、複数のセンサSに印加するための直流電圧をそれぞれ出力する。
測定部40は、システム制御装置50の制御に従って、複数のセンサSが発生したゼーベック効果による起電力をそれぞれ測定する。
The switch unit 20 connects the plurality of sensors S to the measurement unit 40 or the voltage output unit 30 according to the control of the system control unit 50.
The voltage output unit 30 outputs DC voltages to be applied to the plurality of sensors S according to the control of the system control device 50.
The measurement unit 40 measures the electromotive force due to the Seebeck effect generated by the plurality of sensors S according to the control of the system control device 50.

図3は、スイッチ部20、電圧出力部30及び測定部40の構成の一例を示す図である。
図3において、符号S1,S2,S3…は、恒温容器13の複数の測定セルに配置された個々のセンサSを区別して表す符号である。センサS1,S2,S3…は、それぞれ異なる測定セル内に配置され、それぞれ1つの試料の温度を検出する。
FIG. 3 is a diagram illustrating an example of the configuration of the switch unit 20, the voltage output unit 30, and the measurement unit 40.
In FIG. 3, reference signs S <b> 1, S <b> 2, S <b> 3. Sensors S1, S2, S3,... Are arranged in different measurement cells, and each detects the temperature of one sample.

電圧測定回路40−i(i=1,2,3…)は、測定部40に属する回路であり、センサSiにおいてゼーベック効果により生じた起電力を測定し、その測定結果をシステム制御装置50に出力する。
電圧測定回路40−iは、例えば図2に示すように、センサSiが発生する微小な起電力(ゼーベック電圧)を増幅する増幅回路41と、この増幅回路41の出力信号をデジタル信号に変換するアナログ−デジタル変換回路42を含む。アナログ−デジタル変換回路42は、例えばシステム制御装置50の制御に従って、アナログ−デジタル変換動作を実行する。
The voltage measurement circuit 40-i (i = 1, 2, 3...) Is a circuit belonging to the measurement unit 40, measures the electromotive force generated by the Seebeck effect in the sensor Si, and sends the measurement result to the system controller 50. Output.
For example, as shown in FIG. 2, the voltage measurement circuit 40-i amplifies a minute electromotive force (Seebeck voltage) generated by the sensor Si, and converts an output signal of the amplification circuit 41 into a digital signal. An analog-digital conversion circuit 42 is included. The analog-digital conversion circuit 42 performs an analog-digital conversion operation according to the control of the system control device 50, for example.

電圧出力回路30−i(i=1,2,3…)は、電圧出力部30に属する回路であり、システム制御装置50の制御に従ってセンサSiに直流電圧を出力する。センサSiは、電圧出力回路30−iによって電圧を印加されると、ペルチェ効果によって試料容器17を加熱若しくは冷却する。センサSiの熱流の方向(放熱/吸熱)は、電圧出力回路30−iの出力電圧の極性に応じて決まる。電圧出力回路30−iにおける出力電圧のレベルや極性、電圧の出力間隔や出力時間は、システム制御装置50によって制御される。
電圧出力回路30−iは、例えば図2に示すように、システム制御装置50から供給されたデジタル信号をアナログ信号に変換するデジタル−アナログ変換回路32と、そのアナログ信号を増幅し、正または負の直流電圧として出力する増幅回路31を含む。
The voltage output circuit 30-i (i = 1, 2, 3...) Is a circuit belonging to the voltage output unit 30, and outputs a DC voltage to the sensor Si according to the control of the system control device 50. When a voltage is applied by the voltage output circuit 30-i, the sensor Si heats or cools the sample container 17 by the Peltier effect. The direction of heat flow (heat dissipation / heat absorption) of the sensor Si is determined according to the polarity of the output voltage of the voltage output circuit 30-i. The system control device 50 controls the level and polarity of the output voltage, the voltage output interval, and the output time in the voltage output circuit 30-i.
For example, as shown in FIG. 2, the voltage output circuit 30-i includes a digital-analog conversion circuit 32 that converts a digital signal supplied from the system control device 50 into an analog signal, and amplifies the analog signal so as to be positive or negative. The amplifying circuit 31 is output as a direct current voltage.

スイッチ回路20−i(i=1,2,3…)は、スイッチ部20に属する回路であり、システム制御装置50の制御に従って電圧測定回路40−iの入力端子又は電圧出力回路30−iの出力端子をセンサSiの端子(+,−)に接続する。   The switch circuit 20-i (i = 1, 2, 3,...) Is a circuit belonging to the switch unit 20, and is controlled by the system control device 50 according to the input terminal of the voltage measurement circuit 40-i or the voltage output circuit 30-i. Connect the output terminal to the terminal (+,-) of the sensor Si.

システム制御装置50は、生物活性測定装置の動作を統括的に制御する装置であり、例えばプログラムに従って処理を実行するコンピュータを含んで構成される。システム制御装置50のコンピュータは、例えば、プログラムのコードを格納するメモリ、メモリに格納されたプログラムコードを順次読み込んで処理を実行するプロセッサ、プロセッサとメモリを接続するバス、バスを制御するバスコントローラ、プロセッサとメモリの間に介在するキャッシュメモリなどを含む。また、システム制御装置50は、ハードディスク装置70やディスプレイ装置60などの周辺装置とコンピュータがデータをやり取りするための種々のデバイスコントローラや、ネットワークを介して他の装置と通信を行うためのネットワークインターフェース回路を含んでもよい。   The system control device 50 is a device that comprehensively controls the operation of the biological activity measurement device, and includes, for example, a computer that executes processing according to a program. The computer of the system controller 50 includes, for example, a memory that stores program codes, a processor that sequentially reads program codes stored in the memory and executes processing, a bus that connects the processor and the memory, a bus controller that controls the bus, A cache memory interposed between the processor and the memory is included. The system control device 50 also includes various device controllers for the computer to exchange data with peripheral devices such as the hard disk device 70 and the display device 60, and a network interface circuit for communicating with other devices via the network. May be included.

システム制御装置50は、コンピュータ等のハードウェアとプログラムとの協働による構成要素として、制御部51を有する。
制御部51は、センサS1,S2,S3…のそれぞれについて、試料容器17と恒温容器13との温度差がゼロに近付くように電圧測定と電圧印加とを交互に繰り返す処理(熱制御処理)を行う。
すなわち、制御部51は、センサSi(i=1,2,3…)を電圧測定回路40−iと電圧出力回路30−iとへ交互に接続するようにスイッチ回路20−iを制御する。センサSiと電圧測定回路40−iとを接続した期間において、制御部51は、センサSiの起電力(ゼーベック電圧)を測定するように電圧測定回路40−iを制御する。電圧測定回路40−iにおいて測定された起電力が恒温容器13と比べて試料容器17の温度が低いことを示す場合、制御部51は、センサSiと電圧出力回路30−iとを接続した期間において、試料容器17との接触面(第2の面)でセンサSiが熱を放出する極性の直流電圧を出力するように電圧出力回路30−iを制御する。一方、電圧測定回路40−iにおいて測定された起電力が恒温容器13と比べて試料容器17の温度が高いことを示す場合、制御部51は、センサSiと電圧出力回路30−iとを接続した期間において、試料容器17との接触面(第2の面)でセンサSiが熱を吸収する極性の直流電圧を出力するように電圧出力回路30−iを制御する。
The system control device 50 includes a control unit 51 as a component by cooperation between hardware such as a computer and a program.
The control unit 51 performs a process (thermal control process) of alternately repeating voltage measurement and voltage application so that the temperature difference between the sample container 17 and the thermostatic container 13 approaches zero for each of the sensors S1, S2, S3. Do.
That is, the control unit 51 controls the switch circuit 20-i so that the sensor Si (i = 1, 2, 3,...) Is alternately connected to the voltage measurement circuit 40-i and the voltage output circuit 30-i. In a period in which the sensor Si and the voltage measurement circuit 40-i are connected, the control unit 51 controls the voltage measurement circuit 40-i so as to measure the electromotive force (Seebeck voltage) of the sensor Si. When the electromotive force measured in the voltage measurement circuit 40-i indicates that the temperature of the sample container 17 is lower than that of the constant temperature container 13, the control unit 51 is a period in which the sensor Si and the voltage output circuit 30-i are connected. , The voltage output circuit 30-i is controlled so that the sensor Si outputs a direct current voltage that releases heat at the contact surface (second surface) with the sample container 17. On the other hand, when the electromotive force measured in the voltage measurement circuit 40-i indicates that the temperature of the sample container 17 is higher than that of the thermostatic container 13, the control unit 51 connects the sensor Si and the voltage output circuit 30-i. During this period, the voltage output circuit 30-i is controlled such that the sensor Si outputs a direct current voltage that absorbs heat at the contact surface (second surface) with the sample container 17.

この熱制御処理を行う場合、制御部51は、電圧測定回路40−iにおいて測定されたセンサSiの起電力のレベルに応じて、電圧出力回路30−iから出力する直流電圧のレベルや、センサSiと電圧出力回路30−iとを接続する時間間隔(すなわちセンサSiへの電圧出力の時間間隔)、センサSiと電圧出力回路30−iとを接続した期間に電圧出力回路30−iから直流電圧を出力する時間の長さなどを適切に調節し、試料容器17と恒温容器13との温度差が速やかにゼロへ近付くようにする。例えば、制御部51は、試料容器17と恒温容器13との温度差が大きいほど、直流電圧のレベルを高くしたり、センサSiへの電圧出力の時間間隔を短くしたり、直流電圧の出力時間を長くしたりすることで、センサSiによる加熱若しくは冷却の度合いを高めて、温度差が速く小さくなるようにする。   When performing this thermal control process, the control unit 51 determines the level of the DC voltage output from the voltage output circuit 30-i, the sensor according to the level of the electromotive force of the sensor Si measured in the voltage measurement circuit 40-i, A time interval for connecting Si and the voltage output circuit 30-i (that is, a time interval for voltage output to the sensor Si), and a direct current from the voltage output circuit 30-i during a period of connecting the sensor Si and the voltage output circuit 30-i. The length of time for which the voltage is output is appropriately adjusted so that the temperature difference between the sample container 17 and the thermostatic container 13 quickly approaches zero. For example, the control unit 51 increases the DC voltage level, shortens the time interval of voltage output to the sensor Si, or outputs the DC voltage output time as the temperature difference between the sample container 17 and the thermostatic container 13 increases. The temperature difference is increased quickly by increasing the degree of heating or cooling by the sensor Si.

また、制御部51は、電圧測定回路40−iにおいて測定されたセンサSiの起電力が、恒温容器13と試料容器17との温度差が十分に小さいことを示す所定の範囲内に入った場合、センサSiに関する熱制御処理を終了する。全てのセンサ(S1,S2,S3…)の熱制御処理が終了すると、外部から持ち込まれた余分な熱が消去されたとみなされるので、制御部51は、試料に含まれる微生物細胞の代謝活性に関わる発熱を調べる本来の測定を開始する。すなわち、制御部51は、各センサをスイッチ部20によって測定部40に接続し、各々の起電力の測定を開始する。   In addition, the controller 51 detects that the electromotive force of the sensor Si measured in the voltage measurement circuit 40-i falls within a predetermined range indicating that the temperature difference between the thermostatic container 13 and the sample container 17 is sufficiently small. Then, the thermal control process for the sensor Si is terminated. When the thermal control processing of all the sensors (S1, S2, S3...) Is completed, it is considered that the extra heat brought in from the outside has been erased. Therefore, the control unit 51 determines the metabolic activity of the microbial cells contained in the sample. Start the original measurement to examine the fever involved. That is, the control part 51 connects each sensor to the measurement part 40 by the switch part 20, and starts the measurement of each electromotive force.

ここで、上述した構成を有する図1に示す生物活性測定装置において、測定開始前に装置内に持ち込まれた余分な熱(温熱,冷熱)を消去する動作について説明する。   Here, in the biological activity measuring apparatus shown in FIG. 1 having the above-described configuration, an operation for erasing excess heat (hot and cold) brought into the apparatus before the start of measurement will be described.

まず利用者は、蓋部11を開けて恒温容器13の各測定セルに試料容器17を配置し、蓋部11を閉めて恒温槽10の内部を密閉させる。次いで、利用者は、システム制御部50の図示しない入力装置(スイッチ、ボタン、キーボード等)を操作して、恒温槽10内部に持ち込まれた余分な熱を消去するための熱制御処理を実行させる。   First, the user opens the lid 11, arranges the sample container 17 in each measurement cell of the thermostatic container 13, closes the lid 11, and seals the inside of the thermostatic chamber 10. Next, the user operates an input device (switch, button, keyboard, etc.) (not shown) of the system control unit 50 to execute a heat control process for erasing excess heat brought into the thermostat 10. .

制御部51は、熱制御処理の開始指示を受けると、センサSi(i=1,2,3…)を電圧測定回路40−iと電圧出力回路30−iとへ交互に接続するようにスイッチ回路20−iを制御する。制御部51は、センサSiと電圧測定回路40−iとを接続した期間において、センサSiに発生した起電力(ゼーベック電圧)を測定するように電圧測定回路40−iを制御する。試料容器17と恒温容器13との温度差に応じて発生したセンサSiの起電力は、増幅回路41において増幅された後、アナログ−デジタル変換回路42によりデジタル信号に変換されて、制御部51に取得される。制御部51は、電圧測定回路40−iから起電力のデータを取得すると、測定された起電力の極性に基づいて、試料容器17の温度が恒温容器13の温度より高いか低いかを判定する。   When the control unit 51 receives an instruction to start the thermal control process, the switch 51 switches the sensors Si (i = 1, 2, 3,...) Alternately to the voltage measurement circuit 40-i and the voltage output circuit 30-i. The circuit 20-i is controlled. The control unit 51 controls the voltage measurement circuit 40-i so as to measure an electromotive force (Seebeck voltage) generated in the sensor Si during a period in which the sensor Si and the voltage measurement circuit 40-i are connected. The electromotive force of the sensor Si generated according to the temperature difference between the sample container 17 and the constant temperature container 13 is amplified by the amplifier circuit 41, then converted into a digital signal by the analog-digital conversion circuit 42, and sent to the control unit 51. To be acquired. When acquiring the electromotive force data from the voltage measurement circuit 40-i, the control unit 51 determines whether the temperature of the sample container 17 is higher or lower than the temperature of the thermostatic container 13 based on the measured polarity of the electromotive force. .

試料容器17の温度が恒温容器13の温度より低い場合、制御部51は、センサSiと電圧出力回路30−iとを接続した期間において、センサSiから試料容器17へ熱が放出されるように極性が設定された直流電圧を電圧出力回路30−iから出力させる。電圧出力回路30−iの直流電圧を印加されたセンサSiは、ペルチェ効果によって恒温容器13との接触面(第1の面)から熱を吸収し、試料容器17との接触面(第2の面)において熱を放出する。センサSiによって試料容器17が加熱されることにより、外部から持ち込まれた試料容器17の冷熱の一部が消去され、試料容器17と恒温容器13との温度差が小さくなる。
一方、試料容器17の温度が恒温容器13の温度より高い場合、制御部51は、センサSiと電圧出力回路30−iとを接続した期間において、試料容器17の熱がセンサSiによって吸収されるように極性が設定された直流電圧を電圧出力回路30−iから出力させる。電圧出力回路30−iの直流電圧を印加されたセンサSiは、ペルチェ効果によって試料容器17との接触面(第2の面)から熱を吸収し、恒温容器13との接触面(第1の面)において熱を放出する。センサSiによって試料容器17が冷却されることにより、外部から持ち込まれた試料容器17の温熱の一部が消去され、試料容器17と恒温容器13との温度差が小さくなる。
When the temperature of the sample container 17 is lower than the temperature of the thermostatic container 13, the control unit 51 causes heat to be released from the sensor Si to the sample container 17 during a period in which the sensor Si and the voltage output circuit 30-i are connected. A DC voltage having a set polarity is output from the voltage output circuit 30-i. The sensor Si to which the DC voltage of the voltage output circuit 30-i is applied absorbs heat from the contact surface (first surface) with the constant temperature container 13 by the Peltier effect, and contacts with the sample container 17 (second surface). Heat is released at the surface). When the sample container 17 is heated by the sensor Si, part of the cold heat of the sample container 17 brought in from the outside is erased, and the temperature difference between the sample container 17 and the thermostatic container 13 is reduced.
On the other hand, when the temperature of the sample container 17 is higher than the temperature of the thermostatic container 13, the control unit 51 absorbs the heat of the sample container 17 by the sensor Si during the period in which the sensor Si and the voltage output circuit 30-i are connected. In this way, a DC voltage with the polarity set is output from the voltage output circuit 30-i. The sensor Si to which the DC voltage of the voltage output circuit 30-i is applied absorbs heat from the contact surface (second surface) with the sample container 17 by the Peltier effect, and contacts with the constant temperature container 13 (first surface). Heat is released at the surface). When the sample container 17 is cooled by the sensor Si, a part of the heat of the sample container 17 brought in from the outside is erased, and the temperature difference between the sample container 17 and the constant temperature container 13 is reduced.

実際には、熱の移動は瞬時に行われるのでなく、常にある時間がかかるため、センサSiによる1回の加熱若しくは冷却によって外部から持ち込まれた熱が全て相殺されることはない。そのため、制御部51は、上述した熱制御処理によって、センサSiのゼーベック効果を利用した温度測定とペルチェ効果を利用した加熱・冷却とを交互に繰り返し、試料容器17と恒温容器13との温度差が徐々に小さくなるようにする。   Actually, the heat transfer is not performed instantaneously but always takes a certain time, so that the heat brought in from the outside is not offset by one heating or cooling by the sensor Si. Therefore, the control unit 51 alternately repeats the temperature measurement using the Seebeck effect of the sensor Si and the heating / cooling using the Peltier effect by the thermal control process described above, and the temperature difference between the sample container 17 and the thermostatic container 13. Is gradually reduced.

なお、制御部51は、この熱制御処理において電圧出力回路30−iからセンサSiへ出力する直流電圧のレベルや、直流電圧を出力する時間間隔、一回当たりの直流電圧の出力時間を、電圧測定回路40−iによる温度差の測定結果に応じて調節してもよい。
例えば、制御部51は、電圧測定回路40−iにおいて測定されるセンサSiの起電力が大きい場合に(温度差が大きい場合に)直流電圧を大きくし、起電力が小さくなるにつれて(温度差が小さくなるにつれて)直流電圧が小さくなるように、電圧出力回路30−iの出力レベルを調節してもよい。
また、制御部51は、電圧測定回路40−iにおいて測定されるセンサSiの起電力が大きい場合に、一回あたりの直流電圧の出力時間が長くなり、起電力が小さくなるにつれて出力時間が短くなるように、スイッチ回路20−iや電圧出力回路30−iを制御してもよい。
あるいは、制御部51は、電圧測定回路40−iにおいて測定されるセンサSiの起電力が大きい場合に、直流電圧を出力する時間間隔が短くなり、起電力が小さくなるにつれてこの時間間隔が長くなるように、スイッチ回路20−iや電圧出力回路30−iを制御してもよい。
制御部51は、これらの制御を適切に行うことによって、試料容器17を必要以上に加熱若しくは冷却することを防止しつつ、試料容器17と恒温容器13との温度差を迅速にゼロ付近へ収束させる。
In this thermal control process, the control unit 51 determines the level of the DC voltage output from the voltage output circuit 30-i to the sensor Si, the time interval for outputting the DC voltage, and the output time of the DC voltage per time. You may adjust according to the measurement result of the temperature difference by the measurement circuit 40-i.
For example, when the electromotive force of the sensor Si measured in the voltage measurement circuit 40-i is large (when the temperature difference is large), the control unit 51 increases the DC voltage, and as the electromotive force decreases (the temperature difference decreases). The output level of the voltage output circuit 30-i may be adjusted so that the DC voltage becomes smaller (as it becomes smaller).
In addition, when the electromotive force of the sensor Si measured in the voltage measurement circuit 40-i is large, the control unit 51 increases the output time of the DC voltage per time, and the output time decreases as the electromotive force decreases. As such, the switch circuit 20-i and the voltage output circuit 30-i may be controlled.
Alternatively, when the electromotive force of the sensor Si measured in the voltage measurement circuit 40-i is large, the control unit 51 shortens the time interval for outputting the DC voltage, and the time interval becomes longer as the electromotive force becomes smaller. As described above, the switch circuit 20-i and the voltage output circuit 30-i may be controlled.
By appropriately performing these controls, the control unit 51 quickly converges the temperature difference between the sample container 17 and the thermostatic container 13 to near zero while preventing the sample container 17 from being heated or cooled more than necessary. Let

熱制御処理によってセンサSiの起電力の測定値が小さくなり、ゼロに近い所定の範囲内に含まれると、制御部51は、試料容器17と恒温容器13との温度差が十分に小さくなったものと判断して、熱制御処理を終了する。これまでの処理により、外部から持ち込まれた熱がほぼ消去された状態となるので、制御部51は、試料中の微生物細胞の代謝熱を検出する本来の測定動作を開始する。   When the measured value of the electromotive force of the sensor Si is reduced by the thermal control process and included in a predetermined range close to zero, the control unit 51 has a sufficiently small temperature difference between the sample container 17 and the thermostatic container 13. It judges that it is a thing and complete | finishes a thermal control process. Since the heat brought in from the outside is almost erased by the processing so far, the control unit 51 starts the original measurement operation for detecting the metabolic heat of the microbial cells in the sample.

図4は、恒温槽10に測定対象試料を入れた直後からのセンサSによる測定値の時間変化を表す図であり、上述した熱制御処理を行った場合と行わない場合の違いを示す。曲線CV1は熱制御処理を行わない場合、曲線CV2は熱制御処理を行った場合のグラフである。
図4の例では、基準温度(恒温容器13の温度)より高い温度の試料を含む試料容器17が恒温槽10の内部に導入・設置されるため、試料容器17の温度は時間とともに低下して基準温度に近づいていく。熱制御処理を行わない場合は、曲線CV1に示すように、恒温槽10の内部に持ち込まれた温熱はニュートンの熱伝導側に基づいて時間と共に基準温度まで減衰していくが、熱制御処理を行うことによって、曲線CV2に示すように、減衰の速度が速くなる。すなわち、熱制御処理を行わない場合は80分経過してもセンサの出力(ゼーベック電圧)はゼロにならないが、熱制御処理を行った場合は約20分でセンサの出力がゼロになる。
FIG. 4 is a diagram showing the time change of the measured value by the sensor S immediately after the sample to be measured is put in the thermostat 10, and shows the difference between the case where the thermal control process described above is performed and the case where it is not performed. A curve CV1 is a graph when the thermal control process is not performed, and a curve CV2 is a graph when the thermal control process is performed.
In the example of FIG. 4, since the sample container 17 containing the sample having a temperature higher than the reference temperature (the temperature of the thermostatic container 13) is introduced and installed in the thermostatic chamber 10, the temperature of the sample container 17 decreases with time. It approaches the reference temperature. When the heat control process is not performed, as shown in the curve CV1, the heat brought into the thermostat 10 is attenuated to the reference temperature with time based on the heat conduction side of Newton, but the heat control process is performed. By doing so, the rate of attenuation is increased, as shown by curve CV2. That is, if the thermal control process is not performed, the sensor output (Seebeck voltage) does not become zero even after 80 minutes have elapsed, but if the thermal control process is performed, the sensor output becomes zero in about 20 minutes.

以上説明したように、本実施形態に係る生物活性測定装置によれば、試料容器17と恒温容器13とに挟まれて設置されたセンサ7(熱電素子)の温度測定結果に基づいて、試料容器17と恒温容器13との温度差が小さくなるようにセンサ7へ直流電圧を供給して試料容器17を加熱・冷却することにより、試料容器17の設置時に恒温槽10内部へ持ち込まれた熱(温熱・冷熱)を速やかに消去できる。従って、微生物細胞の示す代謝熱の測定を従来に比べて著しく速く行うことができる。
また、以上のような作用を持つ独立した回路を試料の数だけ設けることによって、異なった温度履歴を持つ試料を複数測定する場合でも、それぞれの試料についての測定を迅速に行うことができる。
As described above, according to the biological activity measurement apparatus according to the present embodiment, the sample container is based on the temperature measurement result of the sensor 7 (thermoelectric element) installed between the sample container 17 and the thermostatic container 13. Heat supplied to the interior of the thermostat 10 when the sample container 17 is installed by supplying a DC voltage to the sensor 7 so that the temperature difference between the thermostat 17 and the thermostatic container 13 is reduced to heat and cool the sample container 17 (see FIG. (Hot / cold) can be quickly erased. Therefore, measurement of metabolic fever exhibited by microbial cells can be performed significantly faster than in the past.
In addition, by providing the same number of independent circuits as described above for the number of samples, even when a plurality of samples having different temperature histories are measured, each sample can be measured quickly.

<第2の実施形態>
次に、本発明の第2の実施形態について説明する。
第2の実施形態は、代謝熱に基づいて生物活性を測定する生物活性測定装置において最小生育阻止濃度を推定する方法に関する。
最小生育阻止濃度は、抗微生物作用を示す物質が微生物の生育を阻止する最小の濃度であり、特に抗微生物作用を示す物質の新たな開発において評価される指標である。従来の寒天平板培養法では、有意な結果が得られるまで抗微生物作用を示す物質の濃度を変えて寒天平板培養を繰り返し行わねばならないという問題があったが、本実施形態に係る方法では、複数の試料の代謝熱を並行に測定してそのデータを処理することにより、従来より少ない労力で短時間に最小生育阻止濃度を推定できる。
<Second Embodiment>
Next, a second embodiment of the present invention will be described.
The second embodiment relates to a method for estimating a minimum growth inhibitory concentration in a biological activity measuring device that measures biological activity based on metabolic fever.
The minimum growth inhibitory concentration is the minimum concentration at which a substance exhibiting antimicrobial action inhibits the growth of microorganisms, and is an index evaluated particularly in the new development of a substance exhibiting antimicrobial action. In the conventional agar plate culture method, there is a problem that the agar plate culture must be repeated by changing the concentration of the substance exhibiting antimicrobial action until a significant result is obtained. By measuring the metabolic fever of these samples in parallel and processing the data, it is possible to estimate the minimum growth inhibition concentration in a short time with less labor.

本実施形態に係る最小生育阻止濃度の推定方法では、まず、目的とする抗微生物物質がそれぞれ濃度を変えて添加された複数の微生物培養試料(固体、液体あるいは両者の混合物)について、微生物の増殖に伴って放出される代謝熱がそれぞれ測定される。
すなわち、抗微生物作用を示す物質がそれぞれ異なる濃度で添加された微生物培養試料が複数個(例えば、6〜52個)準備され、当該複数個の微生物培養試料を入れた複数の試料容器の温度が、例えば図1に示すような生物活性測定装置によって並行に測定される。これにより、抗微生物物質の濃度の異なる微生物試料のそれぞれについて、増殖途上にある微生物細胞の増殖量に対応する代謝熱が測定される。
In the method for estimating the minimum growth inhibition concentration according to the present embodiment, first, the growth of microorganisms is performed on a plurality of microorganism culture samples (solid, liquid, or a mixture of both) to which target antimicrobial substances are added at different concentrations. The metabolic fever released with each is measured.
That is, a plurality (for example, 6 to 52) of microorganism culture samples to which substances having antimicrobial activity are added at different concentrations are prepared, and the temperature of a plurality of sample containers containing the plurality of microorganism culture samples is adjusted. For example, it is measured in parallel by a biological activity measuring apparatus as shown in FIG. Thereby, for each of the microbial samples having different concentrations of the antimicrobial substance, the metabolic heat corresponding to the amount of growth of the microbial cells in the process of growth is measured.

任意の培養時間において各微生物培養試料の代謝熱が測定されると、各試料の代謝熱の測定データと抗微生物物質の濃度との関係から、数値解析の手法により、代謝熱が発生しなくなる(微生物の増殖が阻止される)抗微生物物質の濃度が最小生育阻止濃度として推計される。
すなわち、ある所定の培養時間(例えば、微生物の培養を開始してから8時間あるいは12時間等)が経過したときに得られる各試料の代謝熱の測定データと各試料の抗微生物物質の濃度データとに基づいて、代謝熱の測定データと濃度データとの関係を表す所定の関数(例えばべき関数)の係数が回帰分析法などにより算出される。そして、算出された係数を持つ所定の関数において、測定データが示す代謝熱の値がゼロとなる場合の抗微生物物質の濃度(最小生育阻止濃度)が算出される。
この場合、増殖途上の複数の時間のそれぞれにおいて上述の方法により最小生育阻止濃度を算出して平均することにより、特定温度における最小生育阻止濃度の平均値と誤差を算出することも可能である。
When the metabolic fever of each microbial culture sample is measured at an arbitrary incubation time, metabolic fever is no longer generated by the numerical analysis method based on the relationship between the metabolic fever measurement data of each sample and the concentration of the antimicrobial substance ( The concentration of the antimicrobial substance (which prevents microbial growth) is estimated as the minimum inhibitory concentration.
That is, metabolic heat measurement data and antimicrobial substance concentration data of each sample obtained when a predetermined culture time (for example, 8 hours or 12 hours from the start of culturing of microorganisms) has elapsed. Based on the above, a coefficient of a predetermined function (for example, a power function) representing the relationship between the metabolic fever measurement data and the concentration data is calculated by a regression analysis method or the like. Then, in a predetermined function having the calculated coefficient, the concentration of the antimicrobial substance (minimum growth inhibition concentration) when the metabolic heat value indicated by the measurement data is zero is calculated.
In this case, the average value and the error of the minimum growth inhibition concentration at a specific temperature can be calculated by calculating and averaging the minimum growth inhibition concentration by the above-described method at each of a plurality of times during the growth.

以下、図1に示す生物活性測定装置において最小生育阻止濃度を推定する場合のシステム制御装置50の構成例について説明する。本実施形態に係る生物活性測定装置の他の構成は、第1の実施形態に係る生物活性測定装置と同様である。   Hereinafter, a configuration example of the system control device 50 when the minimum growth inhibition concentration is estimated in the biological activity measurement device shown in FIG. 1 will be described. Other configurations of the biological activity measurement apparatus according to the present embodiment are the same as those of the biological activity measurement apparatus according to the first embodiment.

システム制御装置50の制御部51は、上述した熱制御処理が終了した後(すなわち恒温槽10内部に持ち込まれた熱が消去された後)所定時間が経過しとき、センサSi(i=1,2,3…)と電圧測定回路40−iとを接続するようにスイッチ回路20−iを制御するとともに、センサSiの起電力を測定するように電圧測定回路40−iを制御する。
例えば、制御部51は、熱制御処理が終了してから複数の所定の時間が経過する度に(例えば一定時間ごとに)センサS1,S2,S3…による一群の起電力データが得られるように、スイッチ部20と測定部40を制御する。
The control unit 51 of the system control device 50 detects the sensor Si (i = 1, 1) after a predetermined time elapses after the above-described thermal control process ends (that is, after the heat brought into the thermostatic chamber 10 is erased). 2, 3) and the voltage measurement circuit 40-i are controlled, and the voltage measurement circuit 40-i is controlled so as to measure the electromotive force of the sensor Si.
For example, the control unit 51 obtains a group of electromotive force data from the sensors S1, S2, S3,... Every time a plurality of predetermined times have elapsed since the thermal control process is completed (for example, every predetermined time). The switch unit 20 and the measurement unit 40 are controlled.

また、システム制御装置50は、コンピュータ等のハードウェアとプログラムとの協働による構成要素として、回帰分析部52と濃度算出部53を有する。   Further, the system control device 50 includes a regression analysis unit 52 and a concentration calculation unit 53 as components by cooperation of hardware such as a computer and a program.

回帰分析部52は、所定の時間の経過後に測定されたセンサS1,S2,S3…の起電力を示す一群の起電力データと、恒温容器13の複数の測定セルに収容された複数の試料容器17中の試料(微生物培養試料)にそれぞれ含まれる抗微生物物質の濃度を示す一群の濃度データとに基づいて、センサSの起電力と抗微生物物質の濃度との関係を表す所定の関数の係数を回帰分析法(最小二乗法など)により算出する。例えば回帰分析部52は、複数の所定の時間が経過する度に得られる一群の起電力データと一群の濃度データとに基づいて、複数の所定の時間のそれぞれについて上記関数の係数を算出する。
回帰分析部52において係数の算出を行う関数としては、例えば2次方程式,3次方程式などの多項式(べき関数)や双曲線関数などを用いることができる。
The regression analysis unit 52 includes a group of electromotive force data indicating the electromotive force of the sensors S1, S2, S3,... Measured after a lapse of a predetermined time, and a plurality of sample containers accommodated in a plurality of measurement cells of the thermostatic container 13. 17 is a coefficient of a predetermined function that represents the relationship between the electromotive force of the sensor S and the concentration of the antimicrobial substance based on a group of concentration data indicating the concentration of the antimicrobial substance contained in each of the samples (microbe culture samples) Is calculated by regression analysis (such as least squares). For example, the regression analysis unit 52 calculates the coefficient of the above function for each of a plurality of predetermined times based on a group of electromotive force data and a group of concentration data obtained each time a plurality of predetermined times elapses.
As a function for calculating coefficients in the regression analysis unit 52, for example, a polynomial (power function) such as a quadratic equation or a cubic equation, a hyperbolic function, or the like can be used.

濃度算出部53は、回帰分析部52において算出された係数を持つ所定の関数において、センサSの起電力がゼロとなる場合の抗微生物物質の濃度(最小生育阻止濃度)を算出する。例えば、濃度算出部53は、所定の複数の時間のそれぞれについて、回帰分析部52により算出された上記所定の関数の係数に基づいて、センサSの起電力がゼロとなる場合の抗微生物物質の濃度を算出し、当該濃度の平均値と誤差を更に算出する。   The concentration calculation unit 53 calculates the concentration of the antimicrobial substance (minimum growth inhibition concentration) when the electromotive force of the sensor S becomes zero in a predetermined function having the coefficient calculated by the regression analysis unit 52. For example, the concentration calculation unit 53 determines the antimicrobial substance in the case where the electromotive force of the sensor S is zero based on the coefficient of the predetermined function calculated by the regression analysis unit 52 for each of a plurality of predetermined times. The density is calculated, and the average value and error of the density are further calculated.

次に、上述した構成を有する生体活性測定装置において最小生育阻止濃度の推定値を得る動作について説明する。   Next, an operation for obtaining an estimated value of the minimum growth inhibition concentration in the bioactivity measuring apparatus having the above-described configuration will be described.

まず、利用者が、抗微生物物質の濃度が異なる他は同一条件に整えられた複数の微生物培養資料を準備し、これを恒温槽10の恒温容器13の各測定セルに設置して恒温槽10を密封し、システム制御装置50を操作して熱制御処理を実行させる。制御部51は、恒温槽10の内部に持ち込まれた熱を消去する熱制御処理を実行する。熱制御処理が終了した後、制御部51は、例えば一定時間ごとにスイッチ部20と測定部40を制御して、センサS1,S2,S3…による一群の起電力データを取得する。制御部51は、取得した一群の起電力データを記憶装置(例えばハードディスク装置70)に格納する。   First, a user prepares a plurality of microbial culture materials prepared under the same conditions except that the concentration of the antimicrobial substance is different, and installs them in each measurement cell of the thermostatic container 13 of the thermostatic bath 10. And the system control device 50 is operated to execute the thermal control process. The control unit 51 executes a heat control process for erasing heat brought into the thermostatic chamber 10. After the thermal control process is completed, the control unit 51 controls the switch unit 20 and the measurement unit 40, for example, at regular intervals, and acquires a group of electromotive force data from the sensors S1, S2, S3,. The control unit 51 stores the acquired group of electromotive force data in a storage device (for example, the hard disk device 70).

センサS1,S2,S3…による一群の起電力データを取得して記憶装置に格納すると、回帰分析部52は、この一群の起電力データと一群の濃度データとに基づいて、起電力と濃度との関係を表す所定の関数の係数(1つの係数若しくは複数を1組とする係数)を回帰分析法により算出し、記憶装置に格納する。濃度算出部53は、回帰分析部52において算出された係数に基づいて、当該係数を持つ関数において起電力がゼロになる場合の濃度(最小生育阻止濃度)を算出し、記憶装置に格納する。
なお、回帰分析部52は、センサS1,S2,S3…による一群の起電力データを取得する度に係数を算出しても良いし、一群の起電力データを複数回取得した後、それぞれについて係数を算出しても良い。また、濃度算出部53は、回帰分析部52において係数が算出される度に最小生育阻止濃度の算出を行ってもよいし、回帰分析部52において係数が複数回算出された後、それぞれについて最小生育阻止濃度を算出してもよい。
When the group of electromotive force data obtained by the sensors S1, S2, S3,... Is acquired and stored in the storage device, the regression analysis unit 52 determines the electromotive force and the concentration based on the group of electromotive force data and the group of concentration data. A coefficient of a predetermined function (one coefficient or a coefficient having a plurality of sets) is calculated by a regression analysis method and stored in a storage device. Based on the coefficient calculated by the regression analysis unit 52, the concentration calculation unit 53 calculates the concentration (minimum growth inhibition concentration) when the electromotive force becomes zero in the function having the coefficient, and stores it in the storage device.
The regression analysis unit 52 may calculate a coefficient each time a group of electromotive force data is acquired by the sensors S1, S2, S3,... May be calculated. The concentration calculation unit 53 may calculate the minimum growth inhibition concentration every time the coefficient is calculated by the regression analysis unit 52, or after the coefficient is calculated a plurality of times by the regression analysis unit 52, the minimum is determined for each. The growth inhibitory concentration may be calculated.

制御部51は、熱制御処理の後所定の時間が経過すると、スイッチ部20と測定部40による起電力データを終了する。濃度算出部53は、算出した複数の最小生育阻止濃度に基づいて、最小生育阻止濃度の平均値と誤差を算出する。   When a predetermined time elapses after the thermal control process, the control unit 51 ends the electromotive force data by the switch unit 20 and the measurement unit 40. The concentration calculation unit 53 calculates an average value and an error of the minimum growth inhibition concentration based on the calculated minimum growth inhibition concentrations.

図5は、抗微生物物質の濃度が異なる10個の微生物培養試料について本実施形態に係る生物活性測定装置により行った代謝熱の測定値の時間的な変化の例を示した図であり、0時間目から14時間目までの間における測定値の経時変化を示す。横軸は培養時間を表し、縦軸は代謝熱の測定値を表す。なお、ここで代謝熱の測定値は、センサSの起電力を測定部40において検出した電圧値であり、電圧の単位(μV)は一例である。
図5の例では、抗微生物物質の濃度が異なる10個の同一微生物種の培養試料について同時に測定を行っている。曲線A0〜A9は、各培養試料についての測定結果のグラフであり、抗微生物物質の濃度は曲線A0が0%、曲線A1が1%、曲線A2が2%、曲線A3が3%、曲線A4が4%、曲線A5が5%、曲線A6が6%、曲線A7が7%、曲線A8が8%、曲線A9が9%である。
センサSによる代謝熱の測定値は微生物細胞の増殖量に対応するため、この経時変化を表す曲線A0〜A9は微生物の培養における増殖曲線とも呼ばれる。
図5を見ると、微生物培養試料に添加される抗微生物物質の濃度が高くなるに従い、増殖曲線の傾きが小さくなっている。これは、抗微生物物質の濃度が高くなるほど微生物細胞の増殖がより強く抑制されることを表している。
FIG. 5 is a diagram showing an example of a temporal change in the measured value of metabolic fever performed by the biological activity measurement apparatus according to the present embodiment for 10 microorganism culture samples having different concentrations of antimicrobial substances. The time-dependent change of the measured value from the time to the 14th hour is shown. The horizontal axis represents the culture time, and the vertical axis represents the measured value of metabolic fever. Here, the measured value of metabolic fever is a voltage value obtained by detecting the electromotive force of the sensor S in the measuring unit 40, and the unit of voltage (μV) is an example.
In the example of FIG. 5, measurement is simultaneously performed on 10 culture samples of the same microbial species having different concentrations of antimicrobial substances. Curves A0 to A9 are graphs of measurement results for each culture sample. The concentrations of antimicrobial substances are 0% for curve A0, 1% for curve A1, 2% for curve A2, 3% for curve A3, and curve A4. Is 4%, curve A5 is 5%, curve A6 is 6%, curve A7 is 7%, curve A8 is 8%, and curve A9 is 9%.
Since the measured value of metabolic fever by the sensor S corresponds to the amount of growth of the microbial cells, the curves A0 to A9 representing the change with time are also referred to as growth curves in microbial culture.
Referring to FIG. 5, the slope of the growth curve decreases as the concentration of the antimicrobial substance added to the microorganism culture sample increases. This indicates that the higher the concentration of the antimicrobial substance, the stronger the growth of microbial cells is suppressed.

図6は、図5に示すグラフにおける12時間目の測定値(y0,y1,…,y9)を曲線A0〜A9から読み取り、これを培養試料に含まれる抗微生物物質の濃度との関係でグラフに表した図である。図6のグラフを見ると、抗微生物物質の濃度が増加するにつれて微生物増殖量に対応する測定値が減少していることが判る。
図6の細実線は、測定値(y0,y1,…,y9)のグラフとよく一致するように多元回帰分析の手法で得られた関数の曲線である。この関数は、理論的に根拠のあるものが存在する場合にはその関数を用いるが、2次方程式や3次方程式(べき関数)、1次の双曲線関数などを用いてもよい。図6において細実線で示した曲線は、1次双曲線関数を用いた回帰分析により得られた回帰曲線である。回帰分析部52は、この回帰曲線の係数を算出する。
FIG. 6 is a graph showing the measured values (y0, y1,..., Y9) at the 12th hour in the graph shown in FIG. 5 from the curves A0 to A9 and the relationship with the concentration of the antimicrobial substance contained in the culture sample. FIG. It can be seen from the graph of FIG. 6 that the measured value corresponding to the amount of microbial growth decreases as the concentration of the antimicrobial substance increases.
The thin solid line in FIG. 6 is a curve of a function obtained by the multiple regression analysis technique so as to be in good agreement with the graph of measured values (y0, y1,..., Y9). This function is used when there is a theoretically valid function, but a quadratic equation, a cubic equation (power function), a linear hyperbolic function, or the like may be used. A curve indicated by a thin solid line in FIG. 6 is a regression curve obtained by regression analysis using a linear hyperbolic function. The regression analysis unit 52 calculates the coefficient of this regression curve.

図6に示す回帰曲線は、横軸の濃度が大きくなるに従い減少し、ある濃度において縦軸の測定電圧がゼロになる。縦軸がゼロになる抗微生物物質の濃度が、最小生育阻止濃度を表す。濃度算出部53は、回帰分析により得られた回帰曲線において測定電圧がゼロになる場合の濃度を算出する。図6の例において、最小生育阻止濃度は9.72%である。   The regression curve shown in FIG. 6 decreases as the concentration on the horizontal axis increases, and the measured voltage on the vertical axis becomes zero at a certain concentration. The concentration of the antimicrobial substance on which the vertical axis becomes zero represents the minimum growth inhibition concentration. The concentration calculation unit 53 calculates the concentration when the measured voltage becomes zero in the regression curve obtained by the regression analysis. In the example of FIG. 6, the minimum growth inhibition concentration is 9.72%.

図6に示すように、1つの培養時間について得られる一群の測定値(起電力データ)から1つの最小生育阻止濃度を算出できるので、これを複数の培養時間についてそれぞれ行えば、複数の最小生育阻止濃度を算出できる。濃度算出部53は複数の培養時間について算出した複数の最小生育阻止濃度に基づいて、最小生育阻止濃度の平均値と誤差を算出する。   As shown in FIG. 6, since one minimum growth inhibition concentration can be calculated from a group of measured values (electromotive force data) obtained for one culture time, if this is performed for each of a plurality of culture times, a plurality of minimum growths can be obtained. The inhibitory concentration can be calculated. The concentration calculation unit 53 calculates an average value and an error of the minimum growth inhibition concentration based on the plurality of minimum growth inhibition concentrations calculated for a plurality of culture times.

図7は、第6図と同様に、図1に示す増殖曲線の培養10時間目の測定値(起電力データ)を読み取り、この測定値と抗微生物物質の濃度との関係をグラフに表したものである。また、図8は、図6,図7と同様に、図1に示す増殖曲線の培養8時間目の測定値の読み取り、この測定値と抗微生物物質の濃度との関係をグラフに表したものである。
図7,図8の細実線は、図6と同様な回帰分析によって得られた回帰曲線である。この回帰曲線から最小生育阻止濃度を算出すると、図7に示す培養10時間目のグラフについては9.58%、図8に示す培養8時間目のグラフについては9.38%の結果が得られる。
FIG. 7 shows the relationship between the measured value and the concentration of the antimicrobial substance in the form of a graph as shown in FIG. Is. 8 is a graph showing the relationship between the measured value and the concentration of the antimicrobial substance in the growth curve shown in FIG. It is.
The thin solid lines in FIGS. 7 and 8 are regression curves obtained by the same regression analysis as in FIG. When the minimum growth inhibitory concentration is calculated from this regression curve, a result of 9.58% is obtained for the graph at 10 hours of culture shown in FIG. 7, and 9.38% is obtained for the graph at 8 hours of culture shown in FIG. .

図9は、図6〜図8に示す回帰曲線を1つにまとめて表した図である。
図9の例において、3本の回帰曲線がほぼ同じ濃度で交差しているが、実際の測定では、それぞれに計測誤差があるので必ずしも重ならない。そのため、センサSの起電力がゼロになる(代謝熱がゼロになる)場合の抗微生物物質の濃度を図6〜図8のそれぞれについて算出し、それらの平均値を求めることで、より信頼性の高い最小生育阻止濃度が得られる。すなわち、センサS1,S2,S3…から得られる一群の測定値を、異なるn個の培養時間においてそれぞれ測定し、これに基づいて算出されるn個の最小生育阻止濃度の平均値と誤差を算出することにより、計測誤差を考慮した最小生育阻止濃度が得られる。図6〜図8の例においてn=3であり、最小生育阻止濃度の平均値は9.56%、精度(標準偏差)は0.17%である。
なお、平均値の精度(誤差)は、標準偏差の他、例えば標準誤差やパーセント誤差によって表してもよい。上述の例の場合、標準誤差は0.10%、パーセント誤差は1.03%である。
FIG. 9 is a diagram in which the regression curves shown in FIGS.
In the example of FIG. 9, the three regression curves intersect at almost the same concentration. However, in actual measurement, there is a measurement error in each, so they do not necessarily overlap. Therefore, the concentration of the antimicrobial substance when the electromotive force of the sensor S becomes zero (the metabolic heat becomes zero) is calculated for each of FIGS. A high minimum growth inhibitory concentration. That is, a group of measured values obtained from the sensors S1, S2, S3... Are measured at different n culture times, and the average value and error of the n minimum growth inhibition concentrations calculated based on the measured values are calculated. By doing so, the minimum growth inhibition concentration considering the measurement error can be obtained. 6 to 8, n = 3, the average value of the minimum growth inhibition concentration is 9.56%, and the accuracy (standard deviation) is 0.17%.
The accuracy (error) of the average value may be expressed by, for example, standard error or percentage error in addition to the standard deviation. In the above example, the standard error is 0.10% and the percent error is 1.03%.

以上説明したように、本実施形態に係る最小生育阻止濃度の推定方法よれば、それぞれ異なる濃度の抗微生物物質が添加された複数の微生物培養試料が準備され、この複数の微生物培養試料が入られた複数の試料容器17が恒温槽10の内部に配置される。恒温槽10内部には、複数の試料容器17に接してセンサ(熱電素子)S1,S2,…が配置されており、各センサ(熱電素子)S1,S2,…において発生する試料容器17の温度に応じた起電力が測定部40によって測定される。回帰分析部52では、測定部40の測定によって得られた一群の起電力データと、複数の微生物培養試料中にそれぞれ添加された抗微生物物質の濃度を示す一群の濃度データとに基づいて、センサの起電力と抗微生物物質の濃度との関係を表す所定の関数の係数が回帰分析法により算出される。濃度算出部53では、前記算出された係数を持つ所定の関数において、センサの起電力がゼロとなる場合の抗微生物物質の濃度が算出される。
従って、多数の培養試料を使って繰り返し培養を行う従来の寒天平板培養法を用いる場合に比べて、最小生育阻止濃度の推定値を得るためにに要する時間や労力、資源を大幅に削減できる。
As described above, according to the method for estimating the minimum growth inhibition concentration according to the present embodiment, a plurality of microbial culture samples to which antimicrobial substances having different concentrations are added are prepared, and the plurality of microbial culture samples are placed. A plurality of sample containers 17 are arranged in the thermostatic chamber 10. Sensors (thermoelectric elements) S1, S2,... Are arranged in contact with the plurality of sample containers 17 inside the thermostat 10, and the temperature of the sample container 17 generated in each sensor (thermoelectric elements) S1, S2,. The measuring unit 40 measures the electromotive force according to the above. In the regression analysis unit 52, based on the group of electromotive force data obtained by the measurement of the measurement unit 40 and the group of concentration data indicating the concentration of the antimicrobial substance added to each of the plurality of microorganism culture samples, the sensor A coefficient of a predetermined function representing the relationship between the electromotive force and the concentration of the antimicrobial substance is calculated by the regression analysis method. The concentration calculation unit 53 calculates the concentration of the antimicrobial substance when the electromotive force of the sensor becomes zero in the predetermined function having the calculated coefficient.
Therefore, the time, labor, and resources required to obtain the estimated value of the minimum growth inhibition concentration can be greatly reduced as compared with the case of using the conventional agar plate culture method in which a large number of culture samples are repeatedly cultured.

また、本実施形態に係る最小生育阻止濃度の推定方法よれば、複数の培養時間についてそれぞれ測定された一群の起電力データに基づいて、各培養時間についての最小生育阻止濃度が算出され、当該算出された複数の最小生育阻止濃度に基づいて、最小生育阻止濃度の平均値と誤差が算出されるため、より信頼性の高い最小生育阻止濃度の推定値を得ることができる。   Further, according to the method for estimating the minimum growth inhibition concentration according to the present embodiment, the minimum growth inhibition concentration for each culture time is calculated based on a group of electromotive force data measured for each of a plurality of culture times, and the calculation is performed. Since the average value and the error of the minimum growth inhibition concentration are calculated based on the plurality of minimum growth inhibition concentrations, a more reliable estimated value of the minimum growth inhibition concentration can be obtained.

ここまで本発明の幾つかの実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、種々のバリエーションを含んでいる。   Although several embodiments of the present invention have been described so far, the present invention is not limited to the above-described embodiments, and includes various variations.

例えば上述した第1の実施形態において、センサSiに接続されるスイッチ回路20−i(i=1,2,3,…)は、電圧出力回路30−iの増幅回路31や電圧測定回路40−iの増幅回路41から独立に構成されているが(図3)、本発明はこの例に限定されない。本発明の他の実施形態では、増幅回路31の出力段を構成するトランジスタ等の半導体素子を適切に制御することによって、増幅回路31の出力インピーダンスを高めてセンサSiから増幅回路31へ流れる電流を遮断してもよい。同様に、増幅回路41の入力段を構成するトランジスタ等の半導体素子を適切に制御することによって、増幅回路41の入力インピーダンスを高めてセンサSiから増幅回路41へ流れる電流を遮断してもよい。   For example, in the first embodiment described above, the switch circuit 20-i (i = 1, 2, 3,...) Connected to the sensor Si is the amplifier circuit 31 of the voltage output circuit 30-i or the voltage measurement circuit 40-. Although it is configured independently from the i amplifier circuit 41 (FIG. 3), the present invention is not limited to this example. In another embodiment of the present invention, the current flowing from the sensor Si to the amplifier circuit 31 by increasing the output impedance of the amplifier circuit 31 by appropriately controlling semiconductor elements such as transistors constituting the output stage of the amplifier circuit 31 is obtained. You may block it. Similarly, the current flowing from the sensor Si to the amplifier circuit 41 may be cut off by appropriately controlling semiconductor elements such as transistors constituting the input stage of the amplifier circuit 41 to increase the input impedance of the amplifier circuit 41.

また、上述した第2の実施形態において、最小生育阻止濃度を算出するためにセンサS1,S2,S3…の起電力を複数の培養時間において測定する場合、この複数の培養時間は常に一定である必要はなく、例えば試験に用いる微生物の種類や培養温度などに応じて任意に変えてよい。   In the second embodiment described above, when the electromotive forces of the sensors S1, S2, S3... Are measured in a plurality of culture times in order to calculate the minimum growth inhibition concentration, the plurality of culture times are always constant. It is not necessary, and may be arbitrarily changed according to, for example, the type of microorganism used in the test or the culture temperature.

上述した実施形態において、制御部51,回帰分析部52,濃度算出部53を含むシステム制御装置50は1つのコンピュータによって構成してもよいし、通信可能に接続された複数のコンピュータによって構成してもよい。また、制御部51,回帰分析部52,濃度算出部53は、全ての機能をプログラムに基づいて構成してもよいし、少なくとも一部の機能をロジック回路等のハードウェアで構成してもよい。   In the above-described embodiment, the system control device 50 including the control unit 51, the regression analysis unit 52, and the concentration calculation unit 53 may be configured by a single computer, or may be configured by a plurality of computers connected to be communicable. Also good. In addition, the control unit 51, the regression analysis unit 52, and the concentration calculation unit 53 may be configured with all functions based on a program, or at least some of the functions may be configured with hardware such as a logic circuit. .

本発明は、微生物細胞が関与する様々な分野に利用可能であり、例えば医薬品の開発、食品・化粧品の防腐処理、微生物を利用した食品の製造、食品流通における品質管理、土壌をはじめとする環境中の微生物の管理、放射線などの物理学的要因の細胞への影響評価などの分野に幅広く利用可能である。また、微生物細胞のみならず、例えば一部の動植物細胞など、種々の生物細胞の培養を伴う分野にも利用可能である。   The present invention can be used in various fields in which microbial cells are involved. For example, development of pharmaceuticals, preservative treatment of foods and cosmetics, production of foods using microorganisms, quality control in food distribution, environment including soil It can be widely used in fields such as the management of microorganisms in the environment and the evaluation of the effects of physical factors such as radiation on cells. Moreover, it can be used not only for microbial cells but also for fields involving the cultivation of various biological cells such as some animal and plant cells.

10…恒温槽、11,14…蓋部、12…箱体、13…恒温容器、17…試料容器、20…スイッチ部、20−1,20−2…スイッチ回路、30…電圧出力部、30−1,30−2…電圧出力回路、31,41…増幅回路、32…デジタル−アナログ変換回路、40…測定部、40−1,40−2…電圧測定回路、42…アナログ−デジタル変換回路、50…システム制御装置、51…制御部、52…回帰分析部、53…濃度算出部、60…ディスプレイ装置、70…ハードディスク装置
DESCRIPTION OF SYMBOLS 10 ... Constant temperature bath, 11, 14 ... Cover part, 12 ... Box, 13 ... Constant temperature container, 17 ... Sample container, 20 ... Switch part, 20-1, 20-2 ... Switch circuit, 30 ... Voltage output part, 30 -1, 30-2 ... voltage output circuit 31, 41 ... amplifier circuit, 32 ... digital-analog conversion circuit, 40 ... measurement unit, 40-1, 40-2 ... voltage measurement circuit, 42 ... analog-digital conversion circuit , 50: System control device, 51: Control unit, 52: Regression analysis unit, 53: Concentration calculation unit, 60: Display device, 70: Hard disk device

Claims (6)

試料に含まれる生物細胞が発生した熱を測定する生物活性測定装置であって、
恒温槽と、
前記恒温槽の中に配置され、高熱伝導性材のブロックにより形成され、測定対象の試料が入れられた試料容器を収容する複数の測定セルが設けられた恒温容器と、
前記複数の測定セルの各内部において前記恒温容器と前記試料容器との間に挟まれて設置され、前記恒温容器に接触する第1の面と前記試料容器に接触する第2の面との温度差に応じた起電力をそれぞれ発生する複数の熱電素子と、
前記複数の熱電素子が発生した前記起電力をそれぞれ測定する測定部と、
前記複数の熱電素子に印加するための直流電圧をそれぞれ出力する電圧出力部と、
前記複数の熱電素子を、それぞれ前記測定部又は前記電圧出力部に接続するスイッチ部と、
前記熱電素子を前記測定部と前記電圧出力部とへ交互に接続するように前記スイッチ部を制御し、前記熱電素子と前記測定部とを接続した期間に前記起電力を測定するように前記測定部を制御し、前記測定部において測定された起電力が前記恒温容器と比べて前記試料容器の温度が低いことを示す場合、前記熱電素子と前記電圧出力部とを接続した期間に前記第2の面から熱を放出させる極性の直流電圧を出力するように前記電圧出力部を制御し、前記測定された起電力が前記恒温容器と比べて前記試料容器の温度が高いことを示す場合、前記熱電素子と前記電圧出力部とを接続した期間に前記第2の面で熱を吸収させる極性の直流電圧を出力するように前記電圧出力部を制御する一連の熱制御処理を、前記複数の熱電素子のそれぞれについて行う制御部と、
を有する生物活性測定装置。
A biological activity measuring device for measuring heat generated by biological cells contained in a sample,
A thermostat,
A thermostatic container provided with a plurality of measurement cells that are arranged in the thermostatic bath, are formed of blocks of a high thermal conductivity material, and contain a sample container in which a sample to be measured is placed;
Temperatures of a first surface in contact with the constant temperature container and a second surface in contact with the sample container that are sandwiched between the constant temperature container and the sample container in each of the plurality of measurement cells. A plurality of thermoelectric elements each generating an electromotive force according to the difference;
A measuring unit for measuring each electromotive force generated by the plurality of thermoelectric elements;
A voltage output unit that outputs a DC voltage to be applied to the plurality of thermoelectric elements;
A plurality of thermoelectric elements, each of which is connected to the measurement unit or the voltage output unit;
The switch unit is controlled to connect the thermoelectric element to the measurement unit and the voltage output unit alternately, and the electromotive force is measured during a period in which the thermoelectric element and the measurement unit are connected. And when the electromotive force measured in the measurement unit indicates that the temperature of the sample container is lower than that of the thermostatic container, the second time is applied during a period in which the thermoelectric element and the voltage output unit are connected. When the voltage output unit is controlled to output a direct-current voltage having a polarity for releasing heat from the surface, and the measured electromotive force indicates that the temperature of the sample container is higher than that of the thermostatic container, A series of thermal control processes for controlling the voltage output unit to output a DC voltage having a polarity that absorbs heat on the second surface during a period in which the thermoelectric element and the voltage output unit are connected, For each element And a control unit for performing,
A biological activity measuring device.
前記制御部は、前記測定部において測定された起電力のレベルに応じて、
前記電圧出力部から出力する前記直流電圧のレベル、
前記熱電素子と前記電圧出力部とを接続する時間間隔、及び、
前記熱電素子と前記電圧出力部とを接続した期間に前記電圧出力部から前記直流電圧を出力する時間の長さ、
の少なくとも1つを調節する、
請求項1に記載の生物活性測定装置。
The control unit, according to the level of electromotive force measured in the measurement unit,
The level of the DC voltage output from the voltage output unit,
A time interval for connecting the thermoelectric element and the voltage output unit, and
A length of time for outputting the DC voltage from the voltage output unit during a period in which the thermoelectric element and the voltage output unit are connected;
Adjusting at least one of the
The biological activity measuring apparatus according to claim 1.
前記制御部は、前記測定部において測定された起電力が前記恒温容器と前記試料容器との温度差が十分に小さいことを示す所定の範囲内に入った場合に前記熱制御処理を終了する、
請求項2に記載の生物活性測定装置。
The control unit ends the thermal control process when the electromotive force measured in the measurement unit falls within a predetermined range indicating that the temperature difference between the constant temperature container and the sample container is sufficiently small.
The biological activity measuring apparatus according to claim 2.
前記制御部は、前記熱制御処理を終了してから所定の時間が経過すると、前記複数の熱電素子をそれぞれ前記測定部と接続するように前記スイッチ部を制御するとともに、前記複数の熱電素子の前記起電力を測定するように前記測定部を制御し、
前記所定の時間の経過後に測定された前記複数の熱電素子の前記起電力を示す一群の起電力データと、前記複数の測定セルに収容される複数の試料容器中の試料にそれぞれ添加された抗微生物作用を示す物質の濃度を示す一群の濃度データとに基づいて、前記熱電素子の起電力と前記物質の濃度との関係を表す所定の関数の係数を回帰分析法により算出する回帰分析部と、
前記回帰分析部において算出された前記係数を持つ前記所定の関数において、前記起電力がゼロとなる場合の前記物質の濃度を算出する濃度算出部とを有する、
請求項3に記載の生物活性測定装置。
The control unit controls the switch unit to connect each of the plurality of thermoelectric elements to the measurement unit when a predetermined time elapses after the thermal control process is completed, and the plurality of thermoelectric elements Controlling the measurement unit to measure the electromotive force;
A group of electromotive force data indicating the electromotive force of the plurality of thermoelectric elements measured after the lapse of the predetermined time, and resistance added to the samples in the plurality of sample containers accommodated in the plurality of measurement cells, respectively. A regression analysis unit that calculates a coefficient of a predetermined function representing a relationship between the electromotive force of the thermoelectric element and the concentration of the substance by a regression analysis method based on a group of concentration data indicating a concentration of the substance exhibiting a microbial action; ,
In the predetermined function having the coefficient calculated in the regression analysis unit, a concentration calculation unit that calculates the concentration of the substance when the electromotive force becomes zero,
The biological activity measuring apparatus according to claim 3.
前記制御部は、前記熱制御処理を終了してから複数の所定の時間が経過する度に、前記一群の起電力データが得られるように前記スイッチ部と前記測定部を制御し、
前記回帰分析部は、前記複数の所定の時間が経過する度に得られる前記一群の起電力データと前記一群の濃度データとに基づいて、前記複数の所定の時間のそれぞれについて前記係数を算出し、
前記濃度算出部は、前記複数の所定の時間のそれぞれについて前記回帰分析部により算出された前記係数に基づいて、前記起電力がゼロとなる場合の前記物質の濃度を算出し、当該算出した複数の濃度に基づいて当該濃度の平均値を更に算出する、
請求項4に記載の生物活性測定装置。
The control unit controls the switch unit and the measurement unit so that the group of electromotive force data is obtained each time a plurality of predetermined times have elapsed after the thermal control process is finished,
The regression analysis unit calculates the coefficient for each of the plurality of predetermined times based on the group of electromotive force data and the group of concentration data obtained each time the plurality of predetermined times elapses. ,
The concentration calculation unit calculates the concentration of the substance when the electromotive force is zero based on the coefficient calculated by the regression analysis unit for each of the plurality of predetermined times, and the calculated plurality Further calculating the average value of the concentration based on the concentration of
The biological activity measuring apparatus according to claim 4.
抗微生物作用を示す物質が微生物の生育を阻止するために必要な最小の濃度を推定する最小生育阻止濃度推定方法であって、
それぞれ異なる濃度の前記物質が添加された複数の微生物培養試料を準備し、当該複数の微生物培養試料が入られた複数の試料容器を恒温槽の内部に配置する工程と、
前記恒温槽内部の前記複数の試料容器に接して配置された複数の熱電素子にそれぞれ発生する、前記試料容器の温度に応じた起電力を測定する工程と、
前記測定された前記複数の熱電素子の前記起電力を示す一群の起電力データと、前記複数の微生物培養試料中にそれぞれ添加された前記物質の濃度を示す一群の濃度データとに基づいて、前記熱電素子の起電力と前記物質の濃度との関係を表す所定の関数の係数を回帰分析法により算出する工程と、
前記算出された前記係数を持つ前記所定の関数において、前記起電力がゼロとなる場合の前記物質の濃度を算出する工程と、
を有する最小生育阻止濃度推定方法。
A method for estimating a minimum growth inhibition concentration in which a substance having an antimicrobial action estimates a minimum concentration necessary for inhibiting the growth of microorganisms,
Preparing a plurality of microorganism culture samples to which the substances of different concentrations are added, and arranging a plurality of sample containers containing the plurality of microorganism culture samples in a thermostatic chamber;
Measuring electromotive force according to the temperature of the sample container, respectively generated in a plurality of thermoelectric elements disposed in contact with the plurality of sample containers inside the thermostat;
Based on the group of electromotive force data indicating the measured electromotive force of the plurality of thermoelectric elements and the group of concentration data indicating the concentration of the substance added to each of the plurality of microorganism culture samples, Calculating a coefficient of a predetermined function representing the relationship between the electromotive force of the thermoelectric element and the concentration of the substance by a regression analysis method;
Calculating the concentration of the substance when the electromotive force is zero in the predetermined function having the calculated coefficient;
A method for estimating the minimum growth inhibition concentration.
JP2011096640A 2011-04-22 2011-04-22 Biological activity measuring device and method for estimating minimum growth inhibiting concentration Pending JP2012228183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011096640A JP2012228183A (en) 2011-04-22 2011-04-22 Biological activity measuring device and method for estimating minimum growth inhibiting concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011096640A JP2012228183A (en) 2011-04-22 2011-04-22 Biological activity measuring device and method for estimating minimum growth inhibiting concentration

Publications (1)

Publication Number Publication Date
JP2012228183A true JP2012228183A (en) 2012-11-22

Family

ID=47430327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011096640A Pending JP2012228183A (en) 2011-04-22 2011-04-22 Biological activity measuring device and method for estimating minimum growth inhibiting concentration

Country Status (1)

Country Link
JP (1) JP2012228183A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118870A (en) * 2015-12-30 2017-07-06 パロ アルト リサーチ センター インコーポレイテッド Thermochromic sensing devices, systems, and methods
US20220099711A1 (en) * 2020-09-25 2022-03-31 Northwestern University Seebeck cancellation switch for precision dc voltage measurements
CN115753912A (en) * 2022-10-27 2023-03-07 青岛众瑞智能仪器股份有限公司 A analytical equipment for microorganism growth

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274938A (en) * 1994-04-14 1995-10-24 Sapporo Breweries Ltd Temperature control device for observing cell and biological ingredient
JP2003125797A (en) * 2001-10-29 2003-05-07 Mitsubishi Heavy Ind Ltd Method and apparatus for assaying bioactivity of microorganism by calorimetry
JP2005127753A (en) * 2003-10-21 2005-05-19 Nippon Ika Kikai Seisakusho:Kk Thermostatic bath device
JP2006025612A (en) * 2004-07-12 2006-02-02 Nikon Corp Pyrostat
JP2008509669A (en) * 2004-08-12 2008-04-03 ニューロ プローブ インコーポレイテッド Point source diffusion cell activity analysis apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274938A (en) * 1994-04-14 1995-10-24 Sapporo Breweries Ltd Temperature control device for observing cell and biological ingredient
JP2003125797A (en) * 2001-10-29 2003-05-07 Mitsubishi Heavy Ind Ltd Method and apparatus for assaying bioactivity of microorganism by calorimetry
JP2005127753A (en) * 2003-10-21 2005-05-19 Nippon Ika Kikai Seisakusho:Kk Thermostatic bath device
JP2006025612A (en) * 2004-07-12 2006-02-02 Nikon Corp Pyrostat
JP2008509669A (en) * 2004-08-12 2008-04-03 ニューロ プローブ インコーポレイテッド Point source diffusion cell activity analysis apparatus and method
US20090246860A1 (en) * 2004-08-12 2009-10-01 Neuro Probe Incorporated Point source diffusion cell activity assay apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118870A (en) * 2015-12-30 2017-07-06 パロ アルト リサーチ センター インコーポレイテッド Thermochromic sensing devices, systems, and methods
US20220099711A1 (en) * 2020-09-25 2022-03-31 Northwestern University Seebeck cancellation switch for precision dc voltage measurements
US11525847B2 (en) * 2020-09-25 2022-12-13 Northwestern University Seebeck cancellation switch for precision DC voltage measurements
CN115753912A (en) * 2022-10-27 2023-03-07 青岛众瑞智能仪器股份有限公司 A analytical equipment for microorganism growth

Similar Documents

Publication Publication Date Title
Choi et al. Probing and manipulating embryogenesis via nanoscale thermometry and temperature control
Van Impe et al. Towards a novel class of predictive microbial growth models
Braissant et al. Use of isothermal microcalorimetry to monitor microbial activities
CN111836683B (en) Laboratory tempering device and method
Higuera-Guisset et al. Calorimetry of microbial growth using a thermopile based microreactor
CN105813754B (en) Apparatus, system, and method for providing thermal uniformity to a thermal cycler
JP2023033381A (en) Incubator, system, and method for a monitored cell growth
JP4988835B2 (en) Apparatus, method and container assembly for measuring heat flow in at least one sample
Wetterstedt et al. Quality or decomposer efficiency–which is most important in the temperature response of litter decomposition? A modelling study using the GLUE methodology
JP2012228183A (en) Biological activity measuring device and method for estimating minimum growth inhibiting concentration
Gao et al. Dynamic metabolic modeling for a MAB bioprocess
WO2022051431A2 (en) Open system cold plate differential calorimeter
Valdramidis et al. Identification of non-linear microbial inactivation kinetics under dynamic conditions
JP4183597B2 (en) Thermostatic bath device
Almeida et al. Physical behavior of highly deformable products during convective drying assessed by a new experimental device
Valdramidis et al. Development of predictive modelling approaches for surface temperature and associated microbiological inactivation during hot dry air decontamination
CN201041639Y (en) Precise temperature control instrument
Knapp et al. SiCTeC: An inexpensive, easily assembled Peltier device for rapid temperature shifting during single-cell imaging
Taberner et al. Characterization of a flow-through microcalorimeter for measuring the heat production of cardiac trabeculae
Srisuma et al. Thermal imaging-based state estimation of a Stefan problem with application to cell thawing
JP2013085516A (en) Method for controlling cell culture, device for controlling cell culture, and device for culturing cell including the device
Wadsö et al. Biological applications of a new isothermal calorimeter that simultaneously measures at four temperatures
JP5848020B2 (en) Bioactivity measuring device
KR101288482B1 (en) Method for food quality prediction based microbial growth model
US20080234874A1 (en) Temperature Controlling Method and Temperature Controller

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150917