JP2012225548A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2012225548A
JP2012225548A JP2011092273A JP2011092273A JP2012225548A JP 2012225548 A JP2012225548 A JP 2012225548A JP 2011092273 A JP2011092273 A JP 2011092273A JP 2011092273 A JP2011092273 A JP 2011092273A JP 2012225548 A JP2012225548 A JP 2012225548A
Authority
JP
Japan
Prior art keywords
hot water
water
refrigerant
heat exchanger
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011092273A
Other languages
Japanese (ja)
Other versions
JP5594220B2 (en
Inventor
Shuji Mogi
周二 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011092273A priority Critical patent/JP5594220B2/en
Publication of JP2012225548A publication Critical patent/JP2012225548A/en
Application granted granted Critical
Publication of JP5594220B2 publication Critical patent/JP5594220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump type water heater capable of shortening a defrosting operation time, by increasing a defrosting heating capacity for defrosting the frost formation on an air refrigerant heat exchanger, while controlling the complication of a structure and an increase of a manufacturing cost.SOLUTION: The heat pump type water heater includes a heat pump water heater outdoor unit 1. The heat pump water heater outdoor unit 1 has: an outdoor unit water circuit where a hot water is made to flow; a compressor 2 for compressing a refrigerant; a water refrigerant heat exchanger 8 for performing a heat exchange between the refrigerant and the hot water of the outdoor unit water circuit; an air refrigerant heat exchanger 7 for performing the heat exchange between the refrigerant and the air; a blower 6 for ventilating the air refrigerant heat exchanger 7; a blower chamber 15 for housing the blower 6; and a blower chamber water pipe 46 arranged in the blower chamber 15 and connected with the outdoor unit water circuit.

Description

本発明は、ヒートポンプ式給湯装置に関する。   The present invention relates to a heat pump type hot water supply apparatus.

空気冷媒熱交換器において空気の熱を冷媒に吸収し、圧縮機で圧縮して高温とした冷媒を水冷媒熱交換器に導き、この水冷媒熱交換器において水を加熱して湯を生成するヒートポンプ給湯室外機を備えたヒートポンプ式給湯装置が広く用いられている。ヒートポンプ給湯室外機を低外気温度条件で運転すると、空気冷媒熱交換器の着霜量が徐々に増加し、空気冷媒熱交換器の冷媒と空気の熱交換能力は徐々に低下するので、一時的に沸き上げ運転を中断し、空気冷媒熱交換器の着霜を除霜するための除霜運転を行う。除霜運転は、通常、圧縮機を駆動し、圧縮機に発生する冷媒の熱量を空気冷媒熱交換器の加熱に利用する方式としており、除霜運転では、沸き上げが行われずに圧縮機が電力を使用しながら駆動するので、年間効率低下の原因となっている。従って、年間効率の低下を抑制するため、圧縮機の駆動に要する電力の増加を抑制しながら除霜加熱能力を増加させ、除霜運転時間を短縮させることが望まれている。   In the air-refrigerant heat exchanger, air heat is absorbed by the refrigerant, the refrigerant compressed to high temperature by the compressor is led to the water-refrigerant heat exchanger, and water is heated in this water-refrigerant heat exchanger to generate hot water. 2. Description of the Related Art A heat pump type hot water supply apparatus including a heat pump hot water supply outdoor unit is widely used. When the heat pump hot water supply outdoor unit is operated at a low outside air temperature condition, the frost formation amount of the air refrigerant heat exchanger gradually increases, and the heat exchange capacity of the air refrigerant heat exchanger with the refrigerant gradually decreases. Then, the boiling operation is interrupted and the defrosting operation is performed to defrost the air refrigerant heat exchanger. In the defrosting operation, the compressor is usually driven and the amount of refrigerant generated in the compressor is used for heating the air refrigerant heat exchanger. In the defrosting operation, the compressor is not heated and the compressor is operated. Since it is driven while using electric power, it is the cause of annual efficiency decline. Therefore, in order to suppress a decrease in annual efficiency, it is desired to increase the defrosting heating capacity while suppressing an increase in electric power required for driving the compressor and shorten the defrosting operation time.

特許文献1には、空気冷媒熱交換器の送風ファンによる送風の風上側に放熱器を備え、水冷媒熱交換器で加熱される前の給水をこの放熱器に通すように水配管を接続することにより、水冷媒熱交換器で加熱される前の水の熱量を上記放熱器で放熱して除霜をしながら沸き上げ運転を行うヒートポンプ式給湯装置が開示されている。   In Patent Document 1, a radiator is provided on the windward side of air blown by a blower fan of an air refrigerant heat exchanger, and a water pipe is connected so that water supplied before being heated by the water refrigerant heat exchanger is passed through the radiator. Thus, a heat pump type hot water supply apparatus is disclosed in which the amount of water before being heated by the water-refrigerant heat exchanger is dissipated by the radiator to perform a boiling operation while defrosting.

特開2007−198691号公報JP 2007-198691 A

しかしながら、水の熱量を放熱する放熱器を空気冷媒熱交換器の外側に隣接して設けると、著しい量の配管の追加が必要になり、更に、ヒートポンプ給湯室外機の構造が複雑かつ大型となり、コストが著しく増加する等の問題点がある。   However, if a radiator that dissipates the heat of water is provided adjacent to the outside of the air refrigerant heat exchanger, a significant amount of piping is required, and the structure of the heat pump hot water outdoor unit becomes complicated and large. There are problems such as a significant increase in cost.

本発明は、上述のような課題を解決するためになされたもので、構造の複雑化および製造コスト増加を抑制しながら、空気冷媒熱交換器の着霜を除霜する除霜加熱能力を増加させ、除霜運転時間を短縮させることのできるヒートポンプ式給湯装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and increases the defrosting heating capability for defrosting the air refrigerant heat exchanger while suppressing the complexity of the structure and the increase in manufacturing cost. An object of the present invention is to provide a heat pump hot water supply apparatus that can shorten the defrosting operation time.

本発明に係るヒートポンプ式給湯装置は、ヒートポンプ給湯室外機を備えたヒートポンプ式給湯装置であって、ヒートポンプ給湯室外機は、湯水が流れる室外機水回路と、冷媒を圧縮する圧縮機と、冷媒と室外機水回路の湯水との熱交換を行う水冷媒熱交換器と、冷媒と空気との熱交換を行う空気冷媒熱交換器と、空気冷媒熱交換器に送風する送風機と、送風機を収納する送風機室と、送風機室内に設けられ、室外機水回路に接続された送風機室水配管と、を有するものである。   A heat pump hot water supply apparatus according to the present invention is a heat pump hot water supply apparatus including a heat pump hot water supply outdoor unit, and the heat pump hot water supply outdoor unit includes an outdoor unit water circuit through which hot water flows, a compressor that compresses refrigerant, and a refrigerant. A water refrigerant heat exchanger that exchanges heat with hot water in the outdoor unit water circuit, an air refrigerant heat exchanger that exchanges heat between the refrigerant and air, a blower that blows air to the air refrigerant heat exchanger, and a blower are housed It has a fan room and a fan room water pipe provided in the fan room and connected to an outdoor unit water circuit.

本発明によれば、送風機室内に設けた送風機室水配管からの放熱量を空気冷媒熱交換器を除霜する除霜加熱能力に利用することにより、圧縮機の駆動に要する電力の増加を抑制しながら除霜加熱能力は増加し、除霜運転時間は短縮し、年間効率低下が抑制できる。また、著しい量の配管の追加は不要であり、ヒートポンプ給湯室外機の構造が複雑かつ大型となることが抑制できるので、コスト増加を抑制することができる。   According to the present invention, an increase in the power required to drive the compressor is suppressed by utilizing the amount of heat released from the blower chamber water pipe provided in the blower chamber for the defrosting heating capacity for defrosting the air refrigerant heat exchanger. However, the defrosting heating capacity is increased, the defrosting operation time is shortened, and the annual efficiency reduction can be suppressed. In addition, it is not necessary to add a significant amount of piping, and the increase in cost can be suppressed because the structure of the heat pump hot water supply outdoor unit can be suppressed from becoming complicated and large.

本発明の実施の形態1のヒートポンプ式給湯装置が備えるヒートポンプ給湯室外機を示す分解斜視図である。It is a disassembled perspective view which shows the heat pump hot-water supply outdoor unit with which the heat pump type hot-water supply apparatus of Embodiment 1 of this invention is provided. ヒートポンプ給湯室外機におけるベースに対する水冷媒熱交換器の設置状態を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the installation state of the water refrigerant | coolant heat exchanger with respect to the base in a heat pump hot-water supply outdoor unit. ヒートポンプ給湯室外機の内部構成を模式的に示す正面図である。It is a front view which shows typically the internal structure of a heat pump hot-water supply outdoor unit. 送風機室水配管を示す図である。It is a figure which shows a fan room water piping. 送風機室水配管の他の構成例を示す図である。It is a figure which shows the other structural example of an air blower chamber water piping. 本発明の実施の形態1のヒートポンプ式給湯装置の冷媒回路および水回路を示す回路図である。It is a circuit diagram which shows the refrigerant circuit and water circuit of the heat pump type hot water supply apparatus of Embodiment 1 of this invention. 本発明の実施の形態2のヒートポンプ式給湯装置の冷媒回路および水回路を示す回路図である。It is a circuit diagram which shows the refrigerant circuit and water circuit of the heat pump type hot-water supply apparatus of Embodiment 2 of this invention. 本発明の実施の形態3のヒートポンプ式給湯装置の冷媒回路および水回路を示す回路図である。It is a circuit diagram which shows the refrigerant circuit and water circuit of the heat pump type hot-water supply apparatus of Embodiment 3 of this invention. 本発明の実施の形態4のヒートポンプ式給湯装置の冷媒回路および水回路を示す回路図である。It is a circuit diagram which shows the refrigerant circuit and water circuit of the heat pump type hot-water supply apparatus of Embodiment 4 of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
図1は、本発明の実施の形態1のヒートポンプ式給湯装置が備えるヒートポンプ給湯室外機を示す分解斜視図である。まず、図1を参照して、本実施形態のヒートポンプ給湯室外機の全体構成について説明する。なお、図1中では、左下が前方、右上が後方である。
Embodiment 1 FIG.
FIG. 1 is an exploded perspective view showing a heat pump hot water supply outdoor unit provided in the heat pump hot water supply apparatus according to Embodiment 1 of the present invention. First, with reference to FIG. 1, the whole structure of the heat pump hot water supply outdoor unit of this embodiment is demonstrated. In FIG. 1, the lower left is the front and the upper right is the rear.

図1に示す本実施形態のヒートポンプ給湯室外機1の外郭は、底部(基部)となるベース17と、前面部18、後面部19、上面部20、右側面部21および左側面部22を有する筐体とで構成される。空気冷媒熱交換器7の設置部以外は、上記筐体で覆われている。筐体は、通常、板金材から成形される。ヒートポンプ給湯室外機1の内部は、仕切板16が設けられ、この仕切板16により、前面から見て右側の機械室14と左側の送風機室15とに区画されている。送風機室15の下方のベース17の上には、水冷媒熱交換器8が設置されている。   1 includes a base 17 serving as a bottom (base), a front surface 18, a rear surface 19, a top surface 20, a right side 21, and a left side 22. It consists of. Except the installation part of the air refrigerant heat exchanger 7, it is covered with the said housing | casing. The housing is usually formed from a sheet metal material. A partition plate 16 is provided inside the heat pump hot water supply outdoor unit 1, and the partition plate 16 divides the machine room 14 on the right side and the blower chamber 15 on the left side as viewed from the front. On the base 17 below the blower chamber 15, a water refrigerant heat exchanger 8 is installed.

図1では図示を省略しているものもあるが、仕切板16により分離された右側の機械室14内には、冷媒を圧縮するための圧縮機2、冷媒を減圧するための膨張弁3、これらを接続する吸入管4や吐出管5等の冷媒配管、その他の冷媒回路部品が組み込まれている。圧縮機2の内部には、冷媒の圧縮動作を行う圧縮部(図示せず)と、圧縮部と接続され圧縮部を駆動するモータ(図示せず)とが組み込まれ、外部から供給される電力によりモータおよび圧縮部が所定の回転数で駆動するようになっている。また、圧縮機2の下部に取り付けられた脚部材には3〜4個の防振マウントが取り付けられている。防振マウントは、概略円筒形のゴムあるいは金属コイルの成形品である。防振マウントは、ベース17の上面に設置され、圧縮機2を弾性的に支持している。また、冷媒を吸入するための吸入管4と、冷媒を圧縮機2の内部で圧縮した後に吐出するための吐出管5とが、圧縮機2にそれぞれ取り付けられている。圧縮機2は、吐出管5を介して水冷媒熱交換器8の冷媒入口部と接続され、水冷媒熱交換器8の冷媒出口部は、出口側冷媒配管を介して膨張弁3の入口部と接続されている。膨張弁3は、冷媒流路本体外側面にコイル部材が取り付けられ、このコイル部材に外部から通電することにより発生する電磁作用により、内部の流路抵抗調節部を稼動させて冷媒の流路抵抗を調節し、膨張弁3の上流側の高圧冷媒と下流側の低圧冷媒とを所定の圧力に調節している。膨張弁3の出口部は、別の冷媒配管を介して空気冷媒熱交換器7の冷媒入口部と接続されている。空気冷媒熱交換器7の冷媒出口部は、吸入管4を介して圧縮機2と接続されている。また、冷媒配管の途中にはその他の冷媒回路部品が取り付けられている場合もある。このように構成された冷媒回路の密閉空間内に所定の量の冷媒が封入されており、通常CO冷媒が使用されている。 Although there are some illustrations omitted in FIG. 1, a compressor 2 for compressing the refrigerant, an expansion valve 3 for decompressing the refrigerant, in the right machine room 14 separated by the partition plate 16, A refrigerant pipe such as a suction pipe 4 and a discharge pipe 5 for connecting them, and other refrigerant circuit components are incorporated. The compressor 2 incorporates a compression unit (not shown) that performs a refrigerant compression operation and a motor (not shown) that is connected to the compression unit and drives the compression unit, and is supplied from the outside. Thus, the motor and the compression unit are driven at a predetermined rotational speed. In addition, 3 to 4 vibration-proof mounts are attached to leg members attached to the lower portion of the compressor 2. The anti-vibration mount is an approximately cylindrical rubber or metal coil molded product. The anti-vibration mount is installed on the upper surface of the base 17 and elastically supports the compressor 2. A suction pipe 4 for sucking refrigerant and a discharge pipe 5 for discharging the refrigerant after being compressed inside the compressor 2 are attached to the compressor 2. The compressor 2 is connected to the refrigerant inlet portion of the water refrigerant heat exchanger 8 via the discharge pipe 5, and the refrigerant outlet portion of the water refrigerant heat exchanger 8 is connected to the inlet portion of the expansion valve 3 via the outlet side refrigerant pipe. Connected with. The expansion valve 3 has a coil member attached to the outer surface of the refrigerant flow passage main body, and operates an internal flow resistance adjustment portion by electromagnetic action generated by energizing the coil member from the outside, thereby causing the flow resistance of the refrigerant to flow. The high-pressure refrigerant on the upstream side and the low-pressure refrigerant on the downstream side of the expansion valve 3 are adjusted to a predetermined pressure. The outlet portion of the expansion valve 3 is connected to the refrigerant inlet portion of the air refrigerant heat exchanger 7 via another refrigerant pipe. The refrigerant outlet portion of the air refrigerant heat exchanger 7 is connected to the compressor 2 via the suction pipe 4. In addition, other refrigerant circuit components may be attached in the middle of the refrigerant pipe. A predetermined amount of refrigerant is sealed in the sealed space of the refrigerant circuit configured as described above, and CO 2 refrigerant is usually used.

機械室14内には、更に、第1内部水配管24、水冷媒熱交換器8の給湯出口部と接続された第2内部水配管25等の、室外機水回路の部品が組み込まれている。筐体の右側下部には、水入口バルブ29と、給湯出口バルブ30とが設けられている。第1内部水配管24は水入口バルブ29に接続され、第2内部水配管25は給湯出口バルブ30に接続されている。また、水入口バルブ29と給湯出口バルブ30を保護するため、サービスパネル23が筐体の右側面部21に取り付けられている。   The machine room 14 further incorporates components of the outdoor unit water circuit such as the first internal water pipe 24 and the second internal water pipe 25 connected to the hot water supply outlet of the water refrigerant heat exchanger 8. . A water inlet valve 29 and a hot water outlet valve 30 are provided at the lower right side of the housing. The first internal water pipe 24 is connected to a water inlet valve 29, and the second internal water pipe 25 is connected to a hot water supply outlet valve 30. Further, in order to protect the water inlet valve 29 and the hot water outlet valve 30, a service panel 23 is attached to the right side surface portion 21 of the housing.

仕切板16により分離された左側の送風機室15内には、送風機6と、送風機6の後方に配置された空気冷媒熱交換器7とが組み込まれている。送風機室15内は、風路確保のため大きな空間を有している。送風機6は、2〜3枚の翼を有するプロペラ翼と、このプロペラ翼を回転駆動させるモータとが組み合わされており、外部から電力がモータに供給されることによりプロペラ翼が所定の回転数で回転するようになっている。空気冷媒熱交換器7は、複数回往復曲げ成形された長い冷媒配管に多数のアルミ薄板のフィンが密着して構成され、略平板状の全体形状を有している。この空気冷媒熱交換器7では、冷媒配管内の冷媒とフィン周辺の空気とで熱交換が行われるようになっており、送風機6により各フィン間を流れて通過する空気の風量が増やされて調節され、熱交換の量が増やされて調節されている。   A blower 6 and an air refrigerant heat exchanger 7 disposed behind the blower 6 are incorporated in the left blower chamber 15 separated by the partition plate 16. The blower chamber 15 has a large space for securing an air passage. The blower 6 is a combination of a propeller blade having two to three blades and a motor that rotationally drives the propeller blade, and the propeller blade is rotated at a predetermined rotational speed by supplying electric power to the motor from the outside. It is designed to rotate. The air refrigerant heat exchanger 7 is configured by adhering a large number of aluminum thin plate fins to a long refrigerant pipe that has been reciprocally bent a plurality of times, and has a substantially flat overall shape. In this air refrigerant heat exchanger 7, heat exchange is performed between the refrigerant in the refrigerant pipe and the air around the fins, and the blower 6 increases the amount of air flowing between the fins and passing therethrough. Regulated and the amount of heat exchange is increased and adjusted.

電気部品収納箱9は、圧縮機2、膨張弁3、送風機6等の動作部品を駆動制御する電源装置、制御装置等の電気部品を収納している。電源装置は、圧縮機2のモータの回転数を数十rps(Hz)〜百rps(Hz)程度の所定回転数に変化させ、また、膨張弁3の開度を所定量に変化させ、また、送風機6の回転数を数百rpm〜千rpm程度の所定回転数に変化させるよう制御している。電気部品収納箱9の右部には外部電気配線を接続する端子台9aが設けられ、筐体の右側面部21に取り付けられているサービスパネル23が端子台9aを保護している。冷媒配管、水配管に取り付けられている温度センサは、取り付け箇所の冷媒温度、水温度を検出し、制御装置に検出情報を伝送する。制御装置は、沸き上げ運転、除霜運転等での圧縮機2、膨張弁3、送風機6等の動作部品の動作内容を決定し、電源装置に動作指示内容を伝送する。   The electrical component storage box 9 stores electrical components such as a power supply device and a control device that drive and control operation components such as the compressor 2, the expansion valve 3, and the blower 6. The power supply device changes the rotation speed of the motor of the compressor 2 to a predetermined rotation speed of about several tens of rps (Hz) to one hundred rps (Hz), changes the opening of the expansion valve 3 to a predetermined amount, and The rotation speed of the blower 6 is controlled to be changed to a predetermined rotation speed of about several hundred rpm to 1,000 rpm. A terminal block 9a for connecting external electric wiring is provided on the right side of the electrical component storage box 9, and a service panel 23 attached to the right side surface portion 21 of the housing protects the terminal block 9a. The temperature sensor attached to the refrigerant pipe and the water pipe detects the refrigerant temperature and the water temperature at the attachment location, and transmits the detection information to the control device. The control device determines the operation content of the operation components such as the compressor 2, the expansion valve 3, and the blower 6 in the boiling operation, the defrost operation, and transmits the operation instruction content to the power supply device.

図2は、ヒートポンプ給湯室外機1におけるベース17に対する水冷媒熱交換器8の設置状態を説明するための分解斜視図である。水冷媒熱交換器8は、冷媒の熱により水回路内の湯水を加熱する装置である。図2に示すように、水冷媒熱交換器8は、前方から見て左右に長い略直方体形状の外形を有する発泡材の収納容器12に収納され、送風機室15内の送風機6の下方に位置するベース17の上面に設置されている。水冷媒熱交換器8を収納した収納容器12は、ベース17に取り付けられた板金材の収納囲部材10に囲まれ、発泡材の収納容器蓋13により上側を覆われる。この収納容器蓋13を更に覆うように、板金材の収納蓋部材11が設置される。   FIG. 2 is an exploded perspective view for explaining an installation state of the water refrigerant heat exchanger 8 with respect to the base 17 in the heat pump hot water supply outdoor unit 1. The water refrigerant heat exchanger 8 is a device that heats hot water in the water circuit by the heat of the refrigerant. As shown in FIG. 2, the water-refrigerant heat exchanger 8 is housed in a foam container 12 having a substantially rectangular parallelepiped shape that is long on the left and right when viewed from the front, and is positioned below the blower 6 in the blower chamber 15. It is installed on the upper surface of the base 17 to be operated. The storage container 12 storing the water-refrigerant heat exchanger 8 is surrounded by a sheet metal storage container 10 attached to the base 17 and covered with a foam storage container lid 13. A storage lid member 11 made of a sheet metal material is installed so as to further cover the storage container lid 13.

図3は、ヒートポンプ給湯室外機1の内部構成を模式的に示す正面図である。図4は、送風機室水配管41を示す図である。これらの図を参照して、送風機室15内に設けられた送風機室水配管41について説明する。   FIG. 3 is a front view schematically showing the internal configuration of the heat pump hot water supply outdoor unit 1. FIG. 4 is a view showing the blower chamber water pipe 41. With reference to these drawings, the blower chamber water pipe 41 provided in the blower chamber 15 will be described.

図4に示すように、送風機室水配管41は、略U字形状が逆さになった形状となっている。図3に示すように、送風機室15内の収納蓋部材11の上には、送風機6を支持するモータサポート46(支持部材)が設置されている。モータサポート46は、複数(本実施形態では2本)の支柱を組み合わせた形状をなしており、このモータサポート46に送風機6のモータが固定されている。モータサポート46の支柱に近接して、送風機室水配管41が設けられている。送風機室水配管41は、モータサポート46の一方の支柱に沿って下部から上部に延び、上部で折り返し、他方の支柱に沿って下部に戻るように配設されている。送風機室水配管41の一端は、第1内部水配管24に接続されている。送風機室水配管41の他端は、水冷媒熱交換器8の水入口部の水配管8aと接続されている。送風機室水配管41の配管外径は、モータサポート46の支柱の幅以下となっている。このため、送風機室水配管41がモータサポート46の支柱の幅に収まるので、送風機室15内の空気の流れの抵抗増加を抑制することができる。   As shown in FIG. 4, the blower chamber water pipe 41 has a shape in which a substantially U shape is inverted. As shown in FIG. 3, a motor support 46 (support member) that supports the blower 6 is installed on the storage lid member 11 in the blower chamber 15. The motor support 46 has a shape in which a plurality of (two in this embodiment) support columns are combined, and the motor of the blower 6 is fixed to the motor support 46. A blower chamber water pipe 41 is provided in the vicinity of the column of the motor support 46. The blower chamber water pipe 41 is arranged so as to extend from the lower portion to the upper portion along one support column of the motor support 46, to be folded back at the upper portion, and to return to the lower portion along the other support column. One end of the blower chamber water pipe 41 is connected to the first internal water pipe 24. The other end of the blower chamber water pipe 41 is connected to the water pipe 8 a at the water inlet of the water refrigerant heat exchanger 8. The outer diameter of the blower chamber water pipe 41 is equal to or less than the width of the column of the motor support 46. For this reason, since the blower chamber water piping 41 fits in the width | variety of the support | pillar of the motor support 46, the increase in resistance of the air flow in the blower chamber 15 can be suppressed.

水冷媒熱交換器8は、1本の水配管8aの外周に、複数本に分岐された冷媒配管8bが螺旋状に密着接合され、ハンダ付け、あるいは、ロウ付け等により接合が固着された構成となっている。この接合構造体が、略直方体形状の収納容器12に収納可能なように数回曲げ成形されている。水配管8a内の水と、冷媒配管8b内の冷媒とで、熱交換が行われる。   The water-refrigerant heat exchanger 8 has a configuration in which a plurality of branched refrigerant pipes 8b are closely and spirally joined to the outer periphery of one water pipe 8a, and the joint is fixed by soldering or brazing. It has become. The joint structure is bent several times so as to be housed in the substantially rectangular parallelepiped storage container 12. Heat exchange is performed between the water in the water pipe 8a and the refrigerant in the refrigerant pipe 8b.

図6は、本発明の実施の形態1のヒートポンプ式給湯装置の冷媒回路および水回路を示す回路図である。図6に示すように、本実施形態のヒートポンプ式給湯装置は、上述したヒートポンプ給湯室外機1と、貯湯装置31とを備えている。ヒートポンプ給湯室外機1と、貯湯装置31とは、第1外部水配管36、第2外部水配管37、および電気配線(図示せず)を介して接続されている。貯湯装置31には、例えば数百リットル程度の容量の貯湯タンク32と、送水ポンプ33と、切換弁35(流路切換手段)と、水配管42,43,44,45と、送水ポンプ33や切換弁35等の動作部品を駆動制御する電源装置および制御装置が設けられている。水配管42は、貯湯タンク32の下部と切換弁35とを接続している。水配管43は、切換弁35と第1外部水配管36の一端とを接続している。水配管43の途中に送水ポンプ33が設けられている。第1外部水配管36の他端は、ヒートポンプ給湯室外機1の水入口バルブ29を介して、ヒートポンプ給湯室外機1の第1内部水配管24と接続されている。水配管44は、貯湯タンク32の上部と切換弁35とを接続している。水配管45は、切換弁35と第2外部水配管37の一端とを接続している。第2外部水配管37の他端は、給湯出口バルブ30を介して、ヒートポンプ給湯室外機1の第2内部水配管25と接続されている。送水ポンプ33は、送水部を駆動するモータが組み込まれ、外部から電源供給されることによりモータと送水部が所定回転数で駆動するようになっている。切換弁35は、切換状態Aと切換状態Bとに切換可能になっている。切換状態Aでは、水配管42と水配管43とが接続されるとともに、水配管44と水配管45とが接続される。これに対し、切換状態Bでは水配管43と水配管45とが接続される。   FIG. 6 is a circuit diagram showing a refrigerant circuit and a water circuit of the heat pump hot water supply apparatus according to Embodiment 1 of the present invention. As shown in FIG. 6, the heat pump hot water supply apparatus of the present embodiment includes the heat pump hot water supply outdoor unit 1 and the hot water storage apparatus 31 described above. The heat pump hot water supply outdoor unit 1 and the hot water storage device 31 are connected via a first external water pipe 36, a second external water pipe 37, and electrical wiring (not shown). The hot water storage device 31 includes, for example, a hot water storage tank 32 having a capacity of about several hundred liters, a water pump 33, a switching valve 35 (flow path switching means), water pipes 42, 43, 44, 45, a water pump 33, A power supply device and a control device for driving and controlling operation parts such as the switching valve 35 are provided. The water pipe 42 connects the lower part of the hot water storage tank 32 and the switching valve 35. The water pipe 43 connects the switching valve 35 and one end of the first external water pipe 36. A water pump 33 is provided in the middle of the water pipe 43. The other end of the first external water pipe 36 is connected to the first internal water pipe 24 of the heat pump hot water supply outdoor unit 1 through the water inlet valve 29 of the heat pump hot water supply outdoor unit 1. The water pipe 44 connects the upper part of the hot water storage tank 32 and the switching valve 35. The water pipe 45 connects the switching valve 35 and one end of the second external water pipe 37. The other end of the second external water pipe 37 is connected to the second internal water pipe 25 of the heat pump hot water supply outdoor unit 1 via the hot water supply outlet valve 30. The water supply pump 33 incorporates a motor for driving the water supply unit, and the motor and the water supply unit are driven at a predetermined rotational speed when power is supplied from the outside. The switching valve 35 can be switched between a switching state A and a switching state B. In the switching state A, the water pipe 42 and the water pipe 43 are connected, and the water pipe 44 and the water pipe 45 are connected. On the other hand, in the switching state B, the water pipe 43 and the water pipe 45 are connected.

次に、貯湯装置31内の貯湯タンク32内の湯量を増やすための沸き上げ運転における機能部品の動作について説明する。貯湯装置31では、切換弁35が切換状態Aとされ、送水ポンプ33が駆動される。ヒートポンプ給湯室外機1では、電気部品収納箱9に収納された制御装置から動作内容が指示され、電源装置から圧縮機2内のモータに電源供給されるとモータが駆動し、モータと接続された圧縮機2内の圧縮部が駆動する。電源装置は、モータの回転数を数十rps(Hz)〜百rps(Hz)程度の所定回転数に変化させ、冷媒が循環して行われるヒートポンプサイクルの循環速度、冷媒の流量を変化させることにより、所定沸き上げ能力に調節制御している。また、電気部品収納箱9に収納された制御装置から動作内容が指示され、電源装置から送風機6のモータに電源供給されるとモータが駆動し、モータと接続された送風機6のプロペラ翼が回転駆動する。電源装置は、モータの回転数を数百rpm〜千rpm程度に変化させ、空気冷媒熱交換器7を通過する空気の流量を変化させることにより、空気冷媒熱交換器7での冷媒と空気の熱交換量を所定量に調節制御している。空気は送風機6の後方に設置された空気冷媒熱交換器7の後方から送風機6により吸い込まれ、空気冷媒熱交換器7を通過し、空気冷媒熱交換器7の前方へ排出される。また、電気部品収納箱9に収納された制御装置から動作内容が指示され、電源装置から膨張弁3の冷媒流路本体外側面に取り付けられたコイル部材に通電されると、膨張弁3はコイルに発生する電磁作用により内部の流路抵抗調節部を稼動させて冷媒の流路抵抗度を調節し、膨張弁3の上流側高圧と下流側低圧の冷媒を所定圧力に調節制御している。圧縮機2の回転数、送風機6の回転数、膨張弁3の流路抵抗度は、ヒートポンプ給湯室外機1の設置環境、使用環境に応じて制御されている。   Next, the operation of the functional components in the boiling operation for increasing the amount of hot water in the hot water storage tank 32 in the hot water storage device 31 will be described. In the hot water storage device 31, the switching valve 35 is switched to the switching state A, and the water supply pump 33 is driven. In the heat pump hot water supply outdoor unit 1, the operation content is instructed from the control device stored in the electrical component storage box 9, and when the power is supplied from the power supply to the motor in the compressor 2, the motor is driven and connected to the motor. The compression unit in the compressor 2 is driven. The power supply device changes the rotation speed of the motor to a predetermined rotation speed of about several tens of rps (Hz) to one hundred rps (Hz), and changes the circulation speed of the heat pump cycle in which the refrigerant is circulated and the flow rate of the refrigerant. Therefore, adjustment control is performed to a predetermined boiling capacity. When the operation content is instructed from the control device stored in the electrical component storage box 9 and power is supplied from the power supply device to the motor of the blower 6, the motor is driven and the propeller blades of the blower 6 connected to the motor rotate. To drive. The power supply device changes the rotational speed of the motor to several hundred rpm to about 1000 rpm and changes the flow rate of the air passing through the air refrigerant heat exchanger 7, whereby the refrigerant and air in the air refrigerant heat exchanger 7 are changed. The heat exchange amount is adjusted and controlled to a predetermined amount. Air is sucked in by the blower 6 from behind the air refrigerant heat exchanger 7 installed behind the blower 6, passes through the air refrigerant heat exchanger 7, and is discharged to the front of the air refrigerant heat exchanger 7. When the operation content is instructed from the control device stored in the electrical component storage box 9 and the coil member attached to the outer surface of the refrigerant flow path body of the expansion valve 3 is energized from the power supply device, the expansion valve 3 is coiled. The flow resistance resistance of the refrigerant is adjusted by operating an internal flow resistance adjusting unit by the electromagnetic action generated in the control valve, and the upstream high-pressure and downstream low-pressure refrigerant of the expansion valve 3 are adjusted and controlled to a predetermined pressure. The rotation speed of the compressor 2, the rotation speed of the blower 6, and the flow path resistance of the expansion valve 3 are controlled according to the installation environment and use environment of the heat pump hot water supply outdoor unit 1.

次に、ヒートポンプ給湯室外機1の冷媒回路の沸き上げ運転における冷媒のヒートポンプサイクル作用について説明する。圧縮機2、膨張弁3、送風機6等は、電気部品収納箱9に収納された制御装置から指示され、電源装置から電源供給されて駆動され、貯湯装置31の送水ポンプ33、切換弁35等は、貯湯装置31の制御装置から指示され、電源装置から電源供給されて駆動される。圧縮機2内の圧縮部が駆動すると圧縮部内で冷媒の圧縮動作が行われ、低圧冷媒は吸入管4から圧縮機2に吸入される。低圧冷媒は圧縮機2内の圧縮部で高温高圧冷媒に圧縮されエンタルピを増加させ、圧縮機2から吐出管5に吐出され、高温高圧冷媒は吐出管5から水冷媒熱交換器8の冷媒入口部に流入し、高温高圧冷媒は水冷媒熱交換器8で低温水と熱交換し、低温水を加熱して高温湯を生成させる。高温高圧冷媒は水冷媒熱交換器8でエンタルピを低下させ、温度を低下させて水冷媒熱交換器8の冷媒出口部から膨張弁3の入口部に流入する。高圧冷媒は膨張弁3で所定圧力に減圧され温度降下し低温低圧冷媒となり膨張弁3の出口部から空気冷媒熱交換器7の入口部に流入する。低温低圧冷媒は空気冷媒熱交換器7で空気と熱交換し、圧縮機2でのエンタルピ増加量の数倍エンタルピを増加させ、空気冷媒熱交換器7の出口部から吸入管4に流入し、圧縮機2に吸入される。このように冷媒が循環してヒートポンプサイクルが行われる。また、同時に、送風機6による送風で空気冷媒熱交換器7を通過する空気の風量が増やされて調節され、空気と冷媒の熱交換の量が増やされて調節されており、冷媒のエンタルピは圧縮機2での増加量、水冷媒熱交換器8での増減量、空気冷媒熱交換器7での増加量でほぼ熱収支がとれ、ヒートポンプサイクルが成立している。貯湯装置31内の切換弁35は、切換状態Aに切り換えられ、送水ポンプ33は所定回転数で駆動している。冷媒のヒートポンプサイクルと同時に、送水ポンプ33により、貯湯タンク32内の下部の低温水が、水配管42,43、第1外部水配管36を通って流れ、ヒートポンプ給湯室外機1の第1内部水配管24に流入し、送風機室水配管41内を流れ、水冷媒熱交換器8の水入口部に流入し、水冷媒熱交換器8で冷媒と熱交換し、水はおよそ水冷媒熱交換器8での冷媒のエンタルピの低下分エンタルピを増加させ、加熱されて高温湯に生成される。生成された高温湯は水冷媒熱交換器8の給湯出口部から第2内部水配管25に流入し、給湯出口バルブ30を介して第2外部水配管37内を流れ、貯湯装置31内の水配管45,44内を流れ、貯湯タンク32の上部に戻される。このように水あるいは湯が、ヒートポンプ給湯室外機1の水回路と貯湯装置31の水回路を循環して貯湯タンク32内の高温湯の量が増加している。   Next, the heat pump cycle action of the refrigerant in the boiling operation of the refrigerant circuit of the heat pump hot water supply outdoor unit 1 will be described. The compressor 2, the expansion valve 3, the blower 6, etc. are instructed by the control device housed in the electrical component storage box 9, driven by being supplied with power from the power supply device, and the water supply pump 33 of the hot water storage device 31, the switching valve 35, etc. Is instructed from the control device of the hot water storage device 31 and is driven by being supplied with power from the power supply device. When the compression unit in the compressor 2 is driven, the refrigerant is compressed in the compression unit, and the low-pressure refrigerant is sucked into the compressor 2 from the suction pipe 4. The low-pressure refrigerant is compressed into a high-temperature and high-pressure refrigerant at the compression section in the compressor 2 to increase enthalpy, and is discharged from the compressor 2 to the discharge pipe 5. The high-temperature and high-pressure refrigerant exchanges heat with low-temperature water in the water-refrigerant heat exchanger 8, and heats the low-temperature water to generate high-temperature hot water. The high-temperature and high-pressure refrigerant lowers the enthalpy in the water refrigerant heat exchanger 8, lowers the temperature, and flows from the refrigerant outlet portion of the water refrigerant heat exchanger 8 into the inlet portion of the expansion valve 3. The high pressure refrigerant is depressurized to a predetermined pressure by the expansion valve 3, drops in temperature, becomes a low temperature low pressure refrigerant, and flows into the inlet of the air refrigerant heat exchanger 7 from the outlet of the expansion valve 3. The low-temperature and low-pressure refrigerant exchanges heat with air in the air refrigerant heat exchanger 7, increases the enthalpy several times the enthalpy increase in the compressor 2, flows into the suction pipe 4 from the outlet of the air refrigerant heat exchanger 7, It is sucked into the compressor 2. Thus, the refrigerant circulates and a heat pump cycle is performed. At the same time, the amount of air passing through the air refrigerant heat exchanger 7 is increased and adjusted by blowing air from the blower 6, and the amount of heat exchange between the air and the refrigerant is increased and adjusted, and the enthalpy of the refrigerant is compressed. The heat balance is almost achieved by the increase amount in the machine 2, the increase / decrease amount in the water refrigerant heat exchanger 8, and the increase amount in the air refrigerant heat exchanger 7, and the heat pump cycle is established. The switching valve 35 in the hot water storage device 31 is switched to the switching state A, and the water supply pump 33 is driven at a predetermined rotational speed. Simultaneously with the heat pump cycle of the refrigerant, low-temperature water in the lower part of the hot water storage tank 32 flows through the water pipes 42 and 43 and the first external water pipe 36 by the water supply pump 33, and the first internal water of the heat pump hot water supply outdoor unit 1. It flows into the pipe 24, flows in the blower chamber water pipe 41, flows into the water inlet of the water refrigerant heat exchanger 8, and exchanges heat with the refrigerant in the water refrigerant heat exchanger 8, and the water is about the water refrigerant heat exchanger. The enthalpy of the enthalpy of the refrigerant at 8 is increased and the enthalpy is heated and generated into hot water. The generated high temperature hot water flows into the second internal water pipe 25 from the hot water supply outlet of the water-refrigerant heat exchanger 8, flows through the second external water pipe 37 through the hot water outlet valve 30, and the water in the hot water storage device 31. It flows through the pipes 45 and 44 and is returned to the upper part of the hot water storage tank 32. Thus, water or hot water circulates in the water circuit of the heat pump hot water supply outdoor unit 1 and the water circuit of the hot water storage device 31, and the amount of hot water in the hot water storage tank 32 increases.

次に、空気冷媒熱交換器7の着霜を除霜するための除霜運転について説明する。ヒートポンプ給湯室外機1を低外気温度条件で運転すると、空気冷媒熱交換器7の着霜量が徐々に増加し、空気冷媒熱交換器7の冷媒と空気の熱交換能力は徐々に低下するので、一時的に沸き上げ運転を中断し、空気冷媒熱交換器7を除霜するための除霜運転を行う。圧縮機2、膨張弁3、送風機6等は、電気部品収納箱9に収納された制御装置から指示され、電源装置から電源供給されて駆動され、貯湯装置31の送水ポンプ33、切換弁35等は、貯湯装置31の制御装置から指示され、電源装置から電源供給されて駆動される。除霜運転制御は、第1ステップ、第2ステップ、第3ステップの3つの工程を含む。除霜運転開始直前の第1ステップでは、圧縮機2、送風機6、送水ポンプ33を所定回転数で駆動し、膨張弁3を所定開度に調節し、切換弁35を切換状態Bに切り換え、水回路内の水のほぼ全域を短時間で高温湯の状態にさせる。その後、第2ステップに移行し、除霜運転開始する。第2ステップでは、圧縮機2を所定回転数で駆動させ、冷媒がほとんど減圧しないように膨張弁3を調節し、送風機6を停止させ、切換弁35は切換状態Bを維持させ、送水ポンプ33を所定回転数で駆動させる。循環する湯水の温度が所定温度以上である間は第1ステップを継続し、循環する湯水が所定温度以下となった時に第2ステップに移行し、送水ポンプ33のみ停止させ、送水ポンプ33以外は第1ステップの状態を継続させる。除霜運転中の第2ステップでは、冷媒は吸入管4から圧縮機2に吸入され、圧縮機2内の圧縮部で圧縮されエンタルピを増加させ、圧縮機2から吐出管5に吐出され、高温高圧冷媒は吐出管5から水冷媒熱交換器8の冷媒入口部に流入する。冷媒は水冷媒熱交換器8で湯水に熱量を与えるか受け取るかわずかな熱量の熱交換をし、水冷媒熱交換器8の冷媒出口部から膨張弁3の入口部に流入する。高圧冷媒は膨張弁3ではほとんど減圧されず膨張弁3の出口部から空気冷媒熱交換器7入口部に流入する。冷媒は空気冷媒熱交換器7で熱量を与えエンタルピを低下させ、空気冷媒熱交換器7の出口部から吸入管4に流入し、圧縮機2に吸入される。このように冷媒が循環している。また、冷媒のエンタルピは圧縮機2での増加量、水冷媒熱交換器8での増減量、空気冷媒熱交換器7での低下量でほぼ熱収支がとれ、サイクルが成立している。また、第2ステップでは、冷媒のヒートポンプサイクルと同時に、送水ポンプ33により高温湯が水配管43、第1外部水配管36内を流れ、第1内部水配管24に流入し、送風機室水配管41内を流れ、送風機室水配管41内の湯は送風機室15内で放熱し、水冷媒熱交換器8の水入口部に流入し、水冷媒熱交換器8で冷媒と少量の熱量の熱交換をし、第2内部水配管25に流入し、給湯出口バルブ30を介して第2外部水配管37内を流れ、水配管45、切換弁35、水配管43を経由して送水ポンプ33に戻され、循環している。第2ステップでは、空気冷媒熱交換器7の着霜は、冷媒からの熱量と送風機室水配管41を通る湯水から送風機室15内に放熱された熱量とにより、除霜される。第2ステップで、循環する湯水は除霜運転開始後から徐々に温度が低下するので、所定温度以下となった時に第3ステップに移行し、圧縮機は駆動させたまま送水ポンプ33の駆動を停止し、水冷媒熱交換器8で湯水と冷媒の熱交換量をできるだけ減少するようにする。第3ステップでの冷媒のヒートポンプサイクルは第2ステップとほぼ同じであるが、空気冷媒熱交換器7の着霜は冷媒からの熱量により除霜される。空気冷媒熱交換器7の着霜がほぼ全て除霜されたら、除霜運転を終了し、沸き上げ運転を開始するが、以上の除霜運転開始直前の第1ステップ、除霜運転中の第2ステップ、第3ステップ、沸き上げ運転等の切り換えは、冷媒配管、水配管に取り付けられている温度センサで検出される冷媒温度、水温度等に基づき、電気部品収納箱9に収納された制御装置で決定される。送風機室水配管41が設けられていないヒートポンプ給湯室外機と比較し、第2ステップでは除霜加熱能力が増加し、第3ステップでは除霜加熱能力が同等になるので、第2ステップでの増加分だけ除霜加熱能力は増加するので、圧縮機2の駆動に要する電力の増加を抑制しながら除霜加熱能力が増加するので、除霜運転時間を短縮させ、年間効率低下を抑制することができる。また、送風機室15内に送風機室水配管41を設けたので、著しい量の配管の追加は不要になり、更に、ヒートポンプ給湯室外機1の構造が複雑かつ大型となることが抑制でき、コストが著しく増加することが抑制できる。   Next, a defrosting operation for defrosting the frost formation of the air refrigerant heat exchanger 7 will be described. When the heat pump hot water supply outdoor unit 1 is operated under a low outside air temperature condition, the amount of frost formation in the air refrigerant heat exchanger 7 gradually increases, and the heat exchange capacity between the refrigerant and the air in the air refrigerant heat exchanger 7 gradually decreases. The boiling operation is temporarily interrupted, and the defrosting operation for defrosting the air refrigerant heat exchanger 7 is performed. The compressor 2, the expansion valve 3, the blower 6, etc. are instructed by the control device housed in the electrical component storage box 9, driven by being supplied with power from the power supply device, and the water supply pump 33 of the hot water storage device 31, the switching valve 35, etc. Is instructed from the control device of the hot water storage device 31 and is driven by being supplied with power from the power supply device. The defrosting operation control includes three processes of a first step, a second step, and a third step. In the first step immediately before the start of the defrosting operation, the compressor 2, the blower 6, and the water pump 33 are driven at a predetermined rotational speed, the expansion valve 3 is adjusted to a predetermined opening degree, and the switching valve 35 is switched to the switching state B. Make almost all the water in the water circuit hot water in a short time. Then, it transfers to a 2nd step and a defrost operation is started. In the second step, the compressor 2 is driven at a predetermined rotational speed, the expansion valve 3 is adjusted so that the refrigerant is hardly depressurized, the blower 6 is stopped, the switching valve 35 is maintained in the switching state B, and the water pump 33 Is driven at a predetermined rotational speed. The first step is continued while the temperature of the circulating hot water is equal to or higher than the predetermined temperature, and when the circulating hot water becomes lower than the predetermined temperature, the process proceeds to the second step and only the water pump 33 is stopped. The state of the first step is continued. In the second step during the defrosting operation, the refrigerant is sucked into the compressor 2 from the suction pipe 4, is compressed by the compression section in the compressor 2 to increase the enthalpy, and is discharged from the compressor 2 to the discharge pipe 5 so that the high temperature The high pressure refrigerant flows from the discharge pipe 5 into the refrigerant inlet portion of the water refrigerant heat exchanger 8. The refrigerant gives or receives heat to the hot / cold water in the water / refrigerant heat exchanger 8 or exchanges a small amount of heat, and flows into the inlet of the expansion valve 3 from the refrigerant outlet of the water / refrigerant heat exchanger 8. The high-pressure refrigerant is hardly depressurized by the expansion valve 3 and flows into the air refrigerant heat exchanger 7 inlet from the outlet of the expansion valve 3. The refrigerant gives heat to the air refrigerant heat exchanger 7 to lower the enthalpy, flows into the suction pipe 4 from the outlet of the air refrigerant heat exchanger 7, and is sucked into the compressor 2. Thus, the refrigerant circulates. In addition, the enthalpy of the refrigerant is almost balanced with the increase in the compressor 2, the increase / decrease in the water refrigerant heat exchanger 8, and the decrease in the air refrigerant heat exchanger 7, and the cycle is established. In the second step, simultaneously with the heat pump cycle of the refrigerant, high-temperature hot water flows through the water pipe 43 and the first external water pipe 36 by the water pump 33 and flows into the first internal water pipe 24, and the blower chamber water pipe 41. The hot water in the blower chamber water pipe 41 radiates heat in the blower chamber 15 and flows into the water inlet of the water-refrigerant heat exchanger 8, and the water-refrigerant heat exchanger 8 exchanges a small amount of heat with the refrigerant. Flows into the second internal water pipe 25, flows through the second external water pipe 37 through the hot water outlet valve 30, and returns to the water pump 33 through the water pipe 45, the switching valve 35, and the water pipe 43. Is circulating. In the second step, the frost formation of the air refrigerant heat exchanger 7 is defrosted by the amount of heat from the refrigerant and the amount of heat radiated from the hot water passing through the blower chamber water pipe 41 into the blower chamber 15. In the second step, since the temperature of the circulating hot water gradually decreases after the start of the defrosting operation, the process proceeds to the third step when the temperature falls below the predetermined temperature, and the water pump 33 is driven while the compressor is driven. Then, the amount of heat exchange between the hot water and the refrigerant is reduced as much as possible by the water / refrigerant heat exchanger 8. The refrigerant heat pump cycle in the third step is substantially the same as in the second step, but the frost formation of the air refrigerant heat exchanger 7 is defrosted by the amount of heat from the refrigerant. When almost all the frost on the air refrigerant heat exchanger 7 has been defrosted, the defrosting operation is terminated and the boiling operation is started. The first step immediately before the start of the above defrosting operation, the first step during the defrosting operation. Switching between the 2nd step, the 3rd step, the boiling operation, etc. is controlled in the electric component storage box 9 based on the refrigerant temperature, the water temperature, etc. detected by the temperature sensor attached to the refrigerant pipe and the water pipe. Determined by the device. Compared with a heat pump hot water supply outdoor unit in which the blower chamber water pipe 41 is not provided, the defrosting heating capacity increases in the second step, and the defrosting heating capacity becomes equal in the third step. Since the defrosting heating capacity increases by the amount, the defrosting heating capacity increases while suppressing the increase in electric power required to drive the compressor 2, so that the defrosting operation time can be shortened and the decrease in annual efficiency can be suppressed. it can. Moreover, since the blower chamber water piping 41 is provided in the blower chamber 15, it is not necessary to add a significant amount of piping, and the structure of the heat pump hot water supply outdoor unit 1 can be suppressed from becoming complicated and large in size. A significant increase can be suppressed.

以上のように、本実施形態では、送風機室水配管41を設けたことにより、ヒートポンプ給湯室外機1の空気冷媒熱交換器7を除霜する除霜加熱能力を増加させることによる年間効率向上に効果があり、コストの増加を抑制しながら効率面で優れたヒートポンプ給湯室外機1を得ることができる。すなわち、本実施形態のヒートポンプ給湯室外機1は、従来の給湯装置と比較して、効率が良く、電力消費量を低減することができ、効率向上に著しく貢献する。   As described above, in the present embodiment, by providing the blower chamber water pipe 41, the annual efficiency is improved by increasing the defrosting heating capacity for defrosting the air refrigerant heat exchanger 7 of the heat pump hot water supply outdoor unit 1. The heat pump hot water supply outdoor unit 1 that is effective and excellent in efficiency can be obtained while suppressing an increase in cost. That is, the heat pump hot water supply outdoor unit 1 of the present embodiment is more efficient than the conventional hot water supply apparatus, can reduce power consumption, and contributes significantly to improving the efficiency.

上述した例では、モータサポート46の支柱に近接して送風機室水配管41を設けているが、送風機室水配管41をモータサポート46の支柱に接触あるいは密着させ、送風機室水配管41の熱をモータサポート46に伝達させて、空気冷媒熱交換器7の着霜を除霜する除霜加熱能力を増加させるようにしてもよい。この場合、送風機室水配管41とモータサポート46の支柱とを溶接、ロウ付け、ハンダ付け等により接合させてもよい。送風機室水配管41をモータサポート46の支柱に接触させることにより、空気冷媒熱交換器7の着霜を除霜する除霜運転中の第2ステップでは、送風機室水配管41内の湯水の熱量はモータサポート46に伝達し、モータサポート46が接触している箇所から空気冷媒熱交換器7に熱量が伝達し、局所的に除霜加熱能力が大きく伝達するので、除霜運転時間を更に短縮させ、年間効率低下を更に抑制することができる。   In the example described above, the blower chamber water pipe 41 is provided close to the support column of the motor support 46. However, the blower chamber water pipe 41 is brought into contact with or in close contact with the support column of the motor support 46, and the heat of the blower chamber water pipe 41 is increased. You may make it increase in the defrost heating capability which is transmitted to the motor support 46 and defrosts the frost formation of the air refrigerant heat exchanger 7. In this case, the blower chamber water pipe 41 and the support of the motor support 46 may be joined by welding, brazing, soldering, or the like. In the second step during the defrosting operation for defrosting the air refrigerant heat exchanger 7 by bringing the blower chamber water pipe 41 into contact with the support column of the motor support 46, the amount of hot water in the blower chamber water pipe 41 is increased. Is transmitted to the motor support 46, and the amount of heat is transmitted from the place where the motor support 46 is in contact to the air refrigerant heat exchanger 7, and the defrosting heating capacity is locally transmitted greatly, so the defrosting operation time is further reduced. The annual efficiency decline can be further suppressed.

図5は、送風機室水配管41の他の構成例を示す図である。図5に示す送風機室水配管41には、薄板状のフィン41aが取り付けられ、放熱量を増加させるように構成されている。複数枚のフィン41aは、例えばアルミ材等で構成される。空気冷媒熱交換器7の着霜を除霜する除霜運転中の第2ステップでは、送風機室水配管41内の湯水の熱量は送風機室15内で放熱し、除霜加熱能力に利用されており、フィン41aにより放熱量が増加し、除霜加熱能力が更に増加するので、除霜運転時間を更に短縮させ、年間効率低下を更に抑制することができる。   FIG. 5 is a diagram illustrating another configuration example of the blower chamber water pipe 41. A thin plate-like fin 41a is attached to the blower chamber water pipe 41 shown in FIG. 5 so as to increase the heat radiation amount. The plurality of fins 41a are made of, for example, an aluminum material. In the second step during the defrosting operation for defrosting the air refrigerant heat exchanger 7, the amount of hot water in the blower chamber water pipe 41 is radiated in the blower chamber 15 and used for the defrosting heating capacity. In addition, since the heat radiation amount is increased by the fins 41a and the defrosting heating capacity is further increased, it is possible to further shorten the defrosting operation time and further suppress the annual efficiency decrease.

実施の形態2.
次に、図7を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図7は、本発明の実施の形態2のヒートポンプ式給湯装置の冷媒回路および水回路を示す回路図である。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIG. 7. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted. FIG. 7 is a circuit diagram showing a refrigerant circuit and a water circuit of the heat pump hot water supply apparatus according to Embodiment 2 of the present invention.

実施の形態1では貯湯装置31内に送水ポンプ33が設けられているが、本実施形態では、貯湯装置31内でなく、ヒートポンプ給湯室外機1内に送水ポンプ26が設けられている。ヒートポンプ給湯室外機1には、送水ポンプ26と、水冷媒熱交換器8と、送風機室水配管41と、第1内部水配管24a,24bと、第2内部水配管25a,25bと、切換弁27(流路切換手段)等が組み込まれている。切換弁27は、切換状態Aと切換状態Bとに切換可能になっている。切換状態Aでは、第1内部水配管24aと第1内部水配管24bとが接続されるとともに、第2内部水配管25aと第2内部水配管25bとが接続される。これに対し、切換状態Bでは、第1内部水配管24aと第2内部水配管25aとが接続される。貯湯装置31には、貯湯タンク32と、第1外部水配管36に連通する水配管42と、第2外部水配管37に連通する水配管44等が組み込まれている。   In the first embodiment, the water supply pump 33 is provided in the hot water storage device 31, but in this embodiment, the water supply pump 26 is provided not in the hot water storage device 31 but in the heat pump hot water supply outdoor unit 1. The heat pump hot water supply outdoor unit 1 includes a water pump 26, a water refrigerant heat exchanger 8, a blower chamber water pipe 41, first internal water pipes 24a and 24b, second internal water pipes 25a and 25b, and a switching valve. 27 (flow path switching means) and the like are incorporated. The switching valve 27 can be switched between a switching state A and a switching state B. In the switching state A, the first internal water pipe 24a and the first internal water pipe 24b are connected, and the second internal water pipe 25a and the second internal water pipe 25b are connected. On the other hand, in the switching state B, the first internal water pipe 24a and the second internal water pipe 25a are connected. The hot water storage device 31 incorporates a hot water storage tank 32, a water pipe 42 that communicates with the first external water pipe 36, a water pipe 44 that communicates with the second external water pipe 37, and the like.

本実施形態の構成は、送水ポンプ26および切換弁27が、貯湯装置31内でなく、ヒートポンプ給湯室外機1内に設けられていること以外は、実施の形態1とほぼ同様である。ヒートポンプ給湯室外機1および貯湯装置31の動作部品の、沸き上げ運転時、除霜運転開始直前の第1ステップ、除霜運転時の第2ステップ、第3ステップでの動作は、実施の形態1とほぼ同様であり、切換弁27で、湯水の流れが第1外部水配管36および第2外部水配管37を経由するか、経由しないでバイパスしてヒートポンプ給湯室外機1の水回路を循環するかを切り換えられるようになっている。本実施形態によれば、実施の形態1と同様な効果が得られる。   The configuration of this embodiment is almost the same as that of Embodiment 1 except that the water pump 26 and the switching valve 27 are provided not in the hot water storage device 31 but in the heat pump hot water supply outdoor unit 1. The operations in the first step immediately before the start of the defrosting operation, the second step in the defrosting operation, and the third step of the operation parts of the heat pump hot water supply outdoor unit 1 and the hot water storage device 31 are described in the first embodiment. In the switching valve 27, the flow of hot water passes through the first external water pipe 36 and the second external water pipe 37 or bypasses without passing through the water circuit of the heat pump hot water supply outdoor unit 1. Can be switched. According to the present embodiment, the same effect as in the first embodiment can be obtained.

実施の形態3.
次に、図8を参照して、本発明の実施の形態3について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図8は、本発明の実施の形態3のヒートポンプ式給湯装置の冷媒回路および水回路を示す回路図である。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to FIG. 8. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted. FIG. 8 is a circuit diagram showing a refrigerant circuit and a water circuit of the heat pump hot water supply apparatus according to Embodiment 3 of the present invention.

本実施形態では、実施の形態1と同様に貯湯装置31内に切換弁35を設けるほかに、ヒートポンプ給湯室外機1内に第2切換弁28(バイパス手段)を追加して設け、沸き上げ運転時の効率低下を抑制する。ヒートポンプ給湯室外機1には、水冷媒熱交換器8と、送風機室水配管41と、第1内部水配管24a,24bと、第2内部水配管25と、第2切換弁28等が組み込まれている。ヒートポンプ給湯室外機1の構造は、第2切換弁28が設けられ、送風機室水配管41、第1内部水配管24a,24bの接続状態が異なること以外は、実施の形態1のヒートポンプ給湯室外機1とほぼ同様である。貯湯装置31の構造は、実施の形態1の貯湯装置31とほぼ同様である。第2切換弁28は、湯水の流れが送風機室水配管41を経由する切換状態Bと、湯水の流れが送風機室水配管41を経由しないでバイパスする切換状態Aとを切り換え可能になっている。切換状態Bでは、第1内部水配管24aと第1内部水配管24bとが接続される。切換状態Aでは、水冷媒熱交換器8の水入口部と第1内部水配管24bとが接続される。沸き上げ運転時では、湯水の流れが送風機室水配管41を経由しないでバイパスする切換状態Aに切換弁28が切り換えられる。除霜運転開始直前の第1ステップ、除霜運転中の第2ステップ、第3ステップでは、湯水の流れが送風機室水配管41を経由する切換状態Bに切換弁28が切り換えられる。ヒートポンプ給湯室外機1および貯湯装置31の動作部品の、沸き上げ運転時、除霜運転開始直前の第1ステップ、除霜運転時の第2ステップ、第3ステップでの動作は、第2切換弁28の動作以外は、実施の形態1とほぼ同様である。本実施形態によれば、実施の形態1と同様な効果に加え、更に次の効果が得られる。沸き上げ運転中に水が送風機室水配管41内を流れている場合、送風機室水配管41内の水の温度が周囲の温度より低い時に、送風機室水配管41内の水の熱量が送風機室15内に放熱され、沸き上げ熱量が低下し、沸き上げ効率が低下する。これに対し、本実施形態では、沸き上げ運転中に水が送風機室水配管41内を流れないようにするので、沸き上げ効率の低下が抑制され、年間効率低下を更に抑制することができる。   In the present embodiment, a switching valve 35 is provided in the hot water storage device 31 in the same manner as in the first embodiment, and a second switching valve 28 (bypass means) is additionally provided in the heat pump hot water outdoor unit 1 for heating operation. Suppresses the efficiency drop at the time. In the heat pump hot water supply outdoor unit 1, a water refrigerant heat exchanger 8, a blower chamber water pipe 41, first internal water pipes 24a and 24b, a second internal water pipe 25, a second switching valve 28, and the like are incorporated. ing. The structure of the heat pump hot water supply outdoor unit 1 is that the second switching valve 28 is provided and the connection state of the blower room water pipe 41 and the first internal water pipes 24a and 24b is different. 1 is almost the same. The structure of the hot water storage device 31 is substantially the same as the hot water storage device 31 of the first embodiment. The second switching valve 28 can switch between a switching state B in which the hot water flow passes through the blower chamber water piping 41 and a switching state A in which the hot water flow bypasses without passing through the blower chamber water piping 41. . In the switching state B, the first internal water pipe 24a and the first internal water pipe 24b are connected. In the switching state A, the water inlet of the water-refrigerant heat exchanger 8 and the first internal water pipe 24b are connected. During the boiling operation, the switching valve 28 is switched to the switching state A in which the hot water flow is bypassed without passing through the blower chamber water pipe 41. In the first step immediately before the start of the defrosting operation, the second step during the defrosting operation, and the third step, the switching valve 28 is switched to the switching state B in which the flow of hot water passes through the blower chamber water pipe 41. Operation of the heat pump hot water supply outdoor unit 1 and the hot water storage device 31 during the heating operation, the first step immediately before the start of the defrosting operation, the second step during the defrosting operation, and the operation in the third step are the second switching valve. Except for the operation 28, it is almost the same as the first embodiment. According to the present embodiment, in addition to the same effects as those of the first embodiment, the following effects can be further obtained. When water is flowing through the blower chamber water pipe 41 during the boiling operation, when the temperature of the water in the blower chamber water pipe 41 is lower than the ambient temperature, the amount of heat in the blower chamber water pipe 41 is the blower chamber. 15 is dissipated in heat, and the amount of heating heat decreases, resulting in a decrease in boiling efficiency. On the other hand, in this embodiment, since water is prevented from flowing in the blower chamber water pipe 41 during the boiling operation, a decrease in boiling efficiency is suppressed, and a decrease in annual efficiency can be further suppressed.

実施の形態4.
次に、図9を参照して、本発明の実施の形態4について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図9は、本発明の実施の形態4のヒートポンプ式給湯装置の冷媒回路および水回路を示す回路図である。
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described with reference to FIG. 9. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted. FIG. 9 is a circuit diagram showing a refrigerant circuit and a water circuit of the heat pump hot water supply apparatus according to Embodiment 4 of the present invention.

実施の形態3では、水冷媒熱交換器8の入水側に第2切換弁28(バイパス手段)が設けられているが、本実施形態では、水冷媒熱交換器8の出湯側に第2切換弁28が設けられている。ヒートポンプ給湯室外機1の構造は、水冷媒熱交換器8の出湯側に第2切換弁28が設けられ、送風機室水配管41、第1内部水配管24、第2内部水配管25a,25b,25cの接続状態が異なること以外は、実施の形態1のヒートポンプ給湯室外機1とほぼ同様である。貯湯装置31の構造は、実施の形態1および実施の形態3の貯湯装置31とほぼ同様である。第2切換弁28は、湯水の流れが送風機室水配管41を経由する切換状態Bと、湯水の流れが送風機室水配管41を経由しないでバイパスする切換状態Aとを切り換え可能になっている。切換状態Bでは、第2内部水配管25aと第2内部水配管25bとが接続される。切換状態Aでは、第2内部水配管25aと第2内部水配管25cとが接続される。沸き上げ運転時では、湯水の流れが送風機室水配管41を経由しないでバイパスする切換状態Aに第2切換弁28が切り換えられる。除霜運転開始直前の第1ステップ、除霜運転中の第2ステップ、第3ステップでは、湯水の流れが送風機室水配管41を経由する切換状態Bに第2切換弁28が切り換えられる。ヒートポンプ給湯室外機1の動作部品の、沸き上げ運転時、除霜運転開始直前の第1ステップ、除霜運転時の第2ステップ、第3ステップでの動作は、実施の形態3とほぼ同様である。貯湯装置31の動作部品の、沸き上げ運転時、除霜運転開始直前の第1ステップ、除霜運転時の第2ステップ、第3ステップでの動作は、実施の形態1および実施の形態3とほぼ同様である。本実施形態では、実施の形態3と同様な効果に加え、更に次の効果が得られる。除霜運転開始直前の第1ステップでは、切り換え直後から湯水(高温湯)が送風機室水配管41内を流れるので、送風機室水配管41内の湯水の熱量はモータサポート46に伝達し、モータサポート46が接触している箇所から空気冷媒熱交換器7に熱量が伝達するので、局所的に除霜加熱能力が大きく伝達し、この第1ステップでの除霜加熱効果により除霜運転時間を更に短縮させ、年間効率低下を更に抑制することができる。   In the third embodiment, the second switching valve 28 (bypass means) is provided on the water inlet side of the water refrigerant heat exchanger 8, but in the present embodiment, the second switching is performed on the outlet side of the water refrigerant heat exchanger 8. A valve 28 is provided. The structure of the heat pump hot water supply outdoor unit 1 is such that the second switching valve 28 is provided on the outlet side of the water refrigerant heat exchanger 8, and the blower chamber water pipe 41, the first internal water pipe 24, the second internal water pipes 25a, 25b, Except that the connection state of 25c is different, it is almost the same as the heat pump hot water supply outdoor unit 1 of the first embodiment. The structure of hot water storage device 31 is substantially the same as hot water storage device 31 of the first and third embodiments. The second switching valve 28 can switch between a switching state B in which the hot water flow passes through the blower chamber water piping 41 and a switching state A in which the hot water flow bypasses without passing through the blower chamber water piping 41. . In the switching state B, the second internal water pipe 25a and the second internal water pipe 25b are connected. In the switching state A, the second internal water pipe 25a and the second internal water pipe 25c are connected. During the boiling operation, the second switching valve 28 is switched to the switching state A in which the hot water flow is bypassed without passing through the blower chamber water pipe 41. In the first step immediately before the start of the defrosting operation, the second step during the defrosting operation, and the third step, the second switching valve 28 is switched to the switching state B in which the flow of hot water passes through the blower chamber water pipe 41. The operations of the operation parts of the heat pump hot water supply outdoor unit 1 are substantially the same as those in Embodiment 3 in the first step immediately before starting the defrosting operation, the second step in the defrosting operation, and the third step. is there. The first component immediately before the start of the defrosting operation, the second step during the defrosting operation, and the third step of the operation parts of the hot water storage device 31 are the same as those in the first and third embodiments. It is almost the same. In the present embodiment, in addition to the same effects as in the third embodiment, the following effects are further obtained. In the first step immediately before the start of the defrosting operation, since hot water (hot water) flows in the blower chamber water pipe 41 immediately after switching, the amount of hot water in the blower chamber water pipe 41 is transmitted to the motor support 46, and the motor support. Since the amount of heat is transmitted to the air-refrigerant heat exchanger 7 from the place where 46 is in contact, the defrosting heating capacity is locally transmitted greatly, and the defrosting operation time is further increased by the defrosting heating effect in the first step. It can be shortened and the annual efficiency decline can be further suppressed.

以上説明した各実施の形態では、除霜運転中の第2ステップ、第3ステップで送風機6を停止させているが、除霜運転中の第2ステップ、第3ステップで送風機6側から空気冷媒熱交換器7側への送風方向となるように送風機6を駆動させ、除霜加熱能力を更に増加させるようにしてもよい。すなわち、沸き上げ運転時には、空気は送風機6により送風機6の後方に設置された空気冷媒熱交換器7の後方から吸い込まれ、空気冷媒熱交換器7を通過し、空気冷媒熱交換器7と反対側の前方へ排出されるよう駆動される。これに対し、除霜運転中の第2ステップ、第3ステップでは、送風機6側から空気冷媒熱交換器7側への送風方向となるように送風機6を駆動させる。これにより、除霜運転時の第2ステップ、第3ステップでは、送風機室水配管41から送風機室15内に放熱された熱量が、空気冷媒熱交換器7側へ送風されるので、熱量伝達は促進され、除霜加熱能力が更に増加するので、除霜運転時間を更に短縮させ、年間効率低下を更に抑制することができる。   In each embodiment described above, the blower 6 is stopped in the second step and the third step during the defrosting operation. However, the air refrigerant is supplied from the blower 6 side in the second step and the third step during the defrosting operation. You may make it drive the air blower 6 so that it may become the ventilation direction to the heat exchanger 7 side, and may further increase a defrost heating capability. That is, during the boiling operation, air is sucked from the rear of the air refrigerant heat exchanger 7 installed behind the blower 6 by the blower 6, passes through the air refrigerant heat exchanger 7, and is opposite to the air refrigerant heat exchanger 7. It is driven to be discharged to the front side. In contrast, in the second step and the third step during the defrosting operation, the blower 6 is driven so as to be in the blowing direction from the blower 6 side to the air refrigerant heat exchanger 7 side. Thereby, in the second step and the third step during the defrosting operation, the heat quantity radiated from the blower chamber water pipe 41 into the blower chamber 15 is blown to the air refrigerant heat exchanger 7 side. As a result, the defrosting heating capacity is further increased, so that the defrosting operation time can be further shortened and the annual efficiency reduction can be further suppressed.

1 ヒートポンプ給湯室外機
2 圧縮機
3 膨張弁
4 吸入管
5 吐出管
6 送風機
7 空気冷媒熱交換器
8 水冷媒熱交換器
8a 水配管
8b 冷媒配管
9 電気部品収納箱
14 機械室
15 送風機室
17 ベース
18 前面部
19 後面部
20 上面部
21 右側面部
22 左側面部
23 サービスパネル
24,24a,24b 第1内部水配管
25,25a,25b,25c 第2内部水配管
26,33 送水ポンプ
27,35 切換弁
28 第2切換弁
29 水入口バルブ
30 給湯出口バルブ
31 貯湯装置
32 貯湯タンク
36 第1外部水配管
37 第2外部水配管
41 送風機室水配管
41a フィン
42,43,44,45 水配管
46 モータサポート
DESCRIPTION OF SYMBOLS 1 Heat pump hot water supply outdoor unit 2 Compressor 3 Expansion valve 4 Suction pipe 5 Discharge pipe 6 Blower 7 Air refrigerant heat exchanger 8 Water refrigerant heat exchanger 8a Water pipe 8b Refrigerant pipe 9 Electrical component storage box 14 Machine room 15 Blower room 17 Base 18 Front surface portion 19 Rear surface portion 20 Upper surface portion 21 Right side surface portion 22 Left side surface portion 23 Service panels 24, 24a, 24b First internal water piping 25, 25a, 25b, 25c Second internal water piping 26, 33 Water pumps 27, 35 Switching valve 28 Second switching valve 29 Water inlet valve 30 Hot water outlet valve 31 Hot water storage device 32 Hot water storage tank 36 First external water pipe 37 Second external water pipe 41 Blower room water pipe 41a Fins 42, 43, 44, 45 Water pipe 46 Motor support

Claims (9)

ヒートポンプ給湯室外機を備えたヒートポンプ式給湯装置であって、
前記ヒートポンプ給湯室外機は、
湯水が流れる室外機水回路と、
冷媒を圧縮する圧縮機と、
冷媒と前記室外機水回路の湯水との熱交換を行う水冷媒熱交換器と、
冷媒と空気との熱交換を行う空気冷媒熱交換器と、
前記空気冷媒熱交換器に送風する送風機と、
前記送風機を収納する送風機室と、
前記送風機室内に設けられ、前記室外機水回路に接続された送風機室水配管と、
を有するヒートポンプ式給湯装置。
A heat pump type hot water supply device equipped with a heat pump hot water supply outdoor unit,
The heat pump hot water supply outdoor unit is
An outdoor unit water circuit through which hot water flows,
A compressor for compressing the refrigerant;
A water-refrigerant heat exchanger that performs heat exchange between the refrigerant and hot water of the outdoor unit water circuit;
An air refrigerant heat exchanger for exchanging heat between the refrigerant and air;
A blower for blowing air to the air refrigerant heat exchanger;
A blower chamber that houses the blower;
A blower room water pipe provided in the blower room and connected to the outdoor unit water circuit;
A heat pump type hot water supply apparatus having
複数の支柱を組み合わせた形状をなし、前記送風機を支持する支持部材を備え、
前記送風機室水配管は、前記支柱に沿って設けられた部分を有し、
前記送風機室水配管の外径が前記支柱の幅以下である請求項1記載のヒートポンプ式給湯装置。
Forming a combination of a plurality of struts, comprising a support member that supports the blower
The blower chamber water pipe has a portion provided along the support column,
The heat pump hot water supply apparatus according to claim 1, wherein an outer diameter of the blower chamber water pipe is equal to or less than a width of the support column.
複数の支柱を組み合わせた形状をなし、前記送風機を支持する支持部材を備え、
前記送風機室水配管は、前記支柱と接触して設けられた部分を有する請求項1記載のヒートポンプ式給湯装置。
Forming a combination of a plurality of struts, comprising a support member that supports the blower
The heat pump hot water supply apparatus according to claim 1, wherein the blower chamber water pipe has a portion provided in contact with the support column.
前記送風機室水配管に薄板状のフィンが取り付けられている請求項1乃至3の何れか1項記載のヒートポンプ式給湯装置。   The heat pump type hot water supply apparatus according to any one of claims 1 to 3, wherein a thin fin is attached to the blower chamber water pipe. 前記水冷媒熱交換器で加熱された湯水が前記送風機室水配管に循環可能となるように流路を切り換え可能な流路切換手段と、
前記水冷媒熱交換器で加熱された湯水が前記送風機室水配管に循環するように送水する送水ポンプと、
を備え、
前記空気冷媒熱交換器の着霜を除霜する除霜運転の少なくとも一部の工程において、前記水冷媒熱交換器で加熱された湯水が前記送風機室水配管に循環するように前記流路切換手段を切り換えて前記送水ポンプを作動させる請求項1乃至4の何れか1項記載のヒートポンプ式給湯装置。
Channel switching means capable of switching channels so that hot water heated by the water refrigerant heat exchanger can be circulated to the blower chamber water piping;
A water supply pump for supplying water so that hot water heated by the water refrigerant heat exchanger circulates in the blower chamber water pipe;
With
In at least a part of the defrosting operation for defrosting the frosting of the air refrigerant heat exchanger, the flow path switching is performed so that hot water heated by the water refrigerant heat exchanger circulates in the blower chamber water pipe. The heat pump type hot water supply apparatus according to any one of claims 1 to 4, wherein the water pump is operated by switching means.
外部水配管を介して前記室外機水回路と接続された貯湯装置を更に備え、
前記流路切換手段および前記送水ポンプが前記貯湯装置に設けられている請求項5記載のヒートポンプ式給湯装置。
It further comprises a hot water storage device connected to the outdoor unit water circuit via an external water pipe,
The heat pump type hot water supply apparatus according to claim 5, wherein the flow path switching means and the water supply pump are provided in the hot water storage apparatus.
前記流路切換手段および前記送水ポンプが前記ヒートポンプ給湯室外機に設けられている請求項5記載のヒートポンプ式給湯装置。   The heat pump hot water supply apparatus according to claim 5, wherein the flow path switching means and the water pump are provided in the heat pump hot water supply outdoor unit. 前記室外機水回路は、前記送風機室水配管に湯水を流さない状態に流路を切り換え可能なバイパス手段を含む請求項1乃至7の何れか1項記載のヒートポンプ式給湯装置。   The heat pump hot water supply apparatus according to any one of claims 1 to 7, wherein the outdoor unit water circuit includes a bypass unit capable of switching a flow path so that hot water does not flow through the blower room water pipe. 前記空気冷媒熱交換器の着霜を除霜する除霜運転の少なくとも一部の工程において、前記送風機側から前記空気冷媒熱交換器側への送風方向となるように前記送風機を駆動させる請求項1乃至8の何れか1項記載のヒートポンプ式給湯装置。   The at least part of the defrosting operation for defrosting the air refrigerant heat exchanger is configured to drive the blower so as to be in a blowing direction from the blower side to the air refrigerant heat exchanger side. The heat pump hot water supply apparatus according to any one of 1 to 8.
JP2011092273A 2011-04-18 2011-04-18 Heat pump type water heater Active JP5594220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011092273A JP5594220B2 (en) 2011-04-18 2011-04-18 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011092273A JP5594220B2 (en) 2011-04-18 2011-04-18 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2012225548A true JP2012225548A (en) 2012-11-15
JP5594220B2 JP5594220B2 (en) 2014-09-24

Family

ID=47275915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092273A Active JP5594220B2 (en) 2011-04-18 2011-04-18 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP5594220B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167367A (en) * 2013-02-28 2014-09-11 Mitsubishi Electric Corp Heat pump hot water supply outdoor unit and heat pump hot water supply system
WO2014174792A1 (en) * 2013-04-22 2014-10-30 株式会社デンソー Heat pump system
US20150121933A1 (en) * 2013-11-07 2015-05-07 Mitsubishi Electric Corporation Outdoor unit for air-conditioning device
US20150121934A1 (en) * 2013-11-07 2015-05-07 Mitsubishi Electric Corporation Outdoor unit for air-conditioning device
JP2017133823A (en) * 2016-01-25 2017-08-03 株式会社デンソー Heat pump system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828261U (en) * 1981-08-18 1983-02-23 富士電機株式会社 Outdoor unit of heat pump type air conditioner
JPH02140221U (en) * 1989-04-25 1990-11-22
JP2002327966A (en) * 2001-04-27 2002-11-15 Sanyo Electric Co Ltd Heat pump type water heater
JP2005009723A (en) * 2003-06-18 2005-01-13 Hitachi Home & Life Solutions Inc Heat pump water heater
JP2008096044A (en) * 2006-10-13 2008-04-24 Corona Corp Hot water reservoir type hot-water supply device
JP2008256312A (en) * 2007-04-06 2008-10-23 Daikin Ind Ltd Air conditioning device
JP2010121847A (en) * 2008-11-19 2010-06-03 Hitachi Appliances Inc Air conditioner
JP2010156523A (en) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp Heat pump type hot water supply device
JP2010210103A (en) * 2009-03-06 2010-09-24 Mitsubishi Electric Corp Heat exchanger for heat pump and heat pump device using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828261U (en) * 1981-08-18 1983-02-23 富士電機株式会社 Outdoor unit of heat pump type air conditioner
JPH02140221U (en) * 1989-04-25 1990-11-22
JP2002327966A (en) * 2001-04-27 2002-11-15 Sanyo Electric Co Ltd Heat pump type water heater
JP2005009723A (en) * 2003-06-18 2005-01-13 Hitachi Home & Life Solutions Inc Heat pump water heater
JP2008096044A (en) * 2006-10-13 2008-04-24 Corona Corp Hot water reservoir type hot-water supply device
JP2008256312A (en) * 2007-04-06 2008-10-23 Daikin Ind Ltd Air conditioning device
JP2010121847A (en) * 2008-11-19 2010-06-03 Hitachi Appliances Inc Air conditioner
JP2010156523A (en) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp Heat pump type hot water supply device
JP2010210103A (en) * 2009-03-06 2010-09-24 Mitsubishi Electric Corp Heat exchanger for heat pump and heat pump device using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167367A (en) * 2013-02-28 2014-09-11 Mitsubishi Electric Corp Heat pump hot water supply outdoor unit and heat pump hot water supply system
WO2014174792A1 (en) * 2013-04-22 2014-10-30 株式会社デンソー Heat pump system
JP2014214886A (en) * 2013-04-22 2014-11-17 株式会社デンソー Heat pump system
US20150121933A1 (en) * 2013-11-07 2015-05-07 Mitsubishi Electric Corporation Outdoor unit for air-conditioning device
US20150121934A1 (en) * 2013-11-07 2015-05-07 Mitsubishi Electric Corporation Outdoor unit for air-conditioning device
JP2015090260A (en) * 2013-11-07 2015-05-11 三菱電機株式会社 Outdoor unit of air conditioner
JP2015090259A (en) * 2013-11-07 2015-05-11 三菱電機株式会社 Outdoor unit of air conditioner
CN104633806A (en) * 2013-11-07 2015-05-20 三菱电机株式会社 Outdoor unit for air-conditioning device
CN104633807A (en) * 2013-11-07 2015-05-20 三菱电机株式会社 Outdoor unit for air-conditioning device
RU2596969C2 (en) * 2013-11-07 2016-09-10 Мицубиси Электрик Корпорейшн External air conditioning device module
JP2017133823A (en) * 2016-01-25 2017-08-03 株式会社デンソー Heat pump system

Also Published As

Publication number Publication date
JP5594220B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
US8794538B2 (en) Hot water circulation system associated with heat pump
JP5594220B2 (en) Heat pump type water heater
JP5173780B2 (en) Heat pump type hot water heater
EP3012551A1 (en) Heat pump apparatus
JP2001174001A (en) Cooling/heating air conditioner
JP6438765B2 (en) Thermal equipment
JP2011247547A (en) Refrigerating cycle device
JP5754423B2 (en) Heat pump water heater outdoor unit
JP6444538B2 (en) Compressor support device, outdoor unit of refrigeration cycle apparatus, and refrigeration cycle apparatus
JP2020128833A (en) Heat pump system
JP6938396B2 (en) Heat pump outdoor unit
JP5107884B2 (en) Heat pump type hot water heater
JP2010144965A (en) Heat pump type hot-water heater
JP2012013354A (en) Heat-pump type hot-water heating device
JP4236542B2 (en) Heat pump water heater
WO2021191949A1 (en) Heat pump heat source device and heat pump water heater
JP4665801B2 (en) Air conditioner
JP2006017440A (en) Heat pump air conditioner
JP2013117344A (en) Heat-pump heater
JP5625966B2 (en) Heat pump water heater outdoor unit
JP6363538B2 (en) Air conditioning system
JP6506033B2 (en) Heat pump device and vending machine provided with the same
JP3723402B2 (en) Air conditioner
WO2021161522A1 (en) Heat pump device and hot water storage type hot water supplier
KR100431135B1 (en) Electric Fan Combined With Cooling and Heating Function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5594220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250