JP2012224653A - Lubricating base oil - Google Patents

Lubricating base oil Download PDF

Info

Publication number
JP2012224653A
JP2012224653A JP2011090418A JP2011090418A JP2012224653A JP 2012224653 A JP2012224653 A JP 2012224653A JP 2011090418 A JP2011090418 A JP 2011090418A JP 2011090418 A JP2011090418 A JP 2011090418A JP 2012224653 A JP2012224653 A JP 2012224653A
Authority
JP
Japan
Prior art keywords
fatty acid
component
hydrocarbon group
carbon atoms
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011090418A
Other languages
Japanese (ja)
Other versions
JP5604360B2 (en
Inventor
Akinori Kanetani
昭範 金谷
Hiroyuki Izumimoto
浩之 泉本
Takaaki Kano
孝明 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP2011090418A priority Critical patent/JP5604360B2/en
Publication of JP2012224653A publication Critical patent/JP2012224653A/en
Application granted granted Critical
Publication of JP5604360B2 publication Critical patent/JP5604360B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide lubricating base oil which can satisfactorily dissolve a lubricating oil additive, and can achieve the coexistence of a low dynamic viscosity and a high viscosity index in a higher dimension.SOLUTION: The lubricating base oil includes: (A) 10 to 70 mass% of specified fatty acid polyalkylene alkyl ether having a narrow ratio of 55 to 80%; (B) 5 to 60 mass% of specified fatty acid alkyl ester; and (C) 5 to 60 mass% of fatty acid polyol ester obtained by ester-interexchanging specified fatty acid or fatty acid alkyl ester with specified polyhydric alcohol.

Description

本発明は、潤滑油基油に関する。   The present invention relates to a lubricating base oil.

一般に、潤滑油組成物には、鉱油やPAO(アルファオレフィンを重合した後、水素化処理した合成潤滑油)等の炭化水素系の基油が多く用いられている。これらの基油は、生分解性が悪く、環境への負荷が大きい。このため、菜種油等の植物油、エステル系合成油等のエステル系油等、生分解性に優れるものを潤滑油組成物の基油(潤滑油基油)に用いる試みがなされている。
例えば、ペンタエリスリトールと、炭素数6〜14の直鎖飽和モノカルボン酸成分及び炭素数6〜10のα分岐飽和モノカルボン酸成分を特定の割合で混合した酸成分とにより合成される合成エステルを含有する合成潤滑油基油が提案されている(例えば、特許文献1)。
また、特定の脂肪酸エステルを主体として含む潤滑油組成物が提案されている(例えば、特許文献2)。
あるいは、特定の脂肪族カルボン酸モノエステルを含有し、動粘度が5〜15mm/s、粘度指数100以上の軸受用潤滑油が提案されている(例えば、特許文献3)。
In general, hydrocarbon-based base oils such as mineral oil and PAO (synthetic lubricating oil that has been subjected to hydrogenation treatment after polymerizing alpha olefin) are often used in the lubricating oil composition. These base oils are poorly biodegradable and have a large environmental load. For this reason, attempts have been made to use oils having excellent biodegradability such as vegetable oils such as rapeseed oil and ester oils such as ester synthetic oils as the base oil (lubricant base oil) of the lubricating oil composition.
For example, a synthetic ester synthesized by pentaerythritol and an acid component obtained by mixing a linear saturated monocarboxylic acid component having 6 to 14 carbon atoms and an α-branched saturated monocarboxylic acid component having 6 to 10 carbon atoms in a specific ratio. Synthetic lubricating base oils have been proposed (for example, Patent Document 1).
A lubricating oil composition containing a specific fatty acid ester as a main component has been proposed (for example, Patent Document 2).
Or the lubricating oil for bearings containing specific aliphatic carboxylic acid monoester, kinematic viscosity 5-15 mm < 2 > / s, and viscosity index 100 or more is proposed (for example, patent document 3).

潤滑油組成物は、摩擦や摩耗の低減、エネルギーの伝達、熱の冷却を目的に、軸受け部、油圧作動部や金属加工等の広い用途に用いられている。潤滑油組成物による摩擦の低減効果は、油膜の厚さに依存しており、用途毎に適切な厚さの油膜を固体表面に形成することで十分な摩擦低減効果が得られる。潤滑油組成物の粘度が使用する温度によって大きく変化すると、それに伴って油膜の厚さが変化し、摩擦低減効果が安定して得られない。例えば、低温で潤滑油組成物の粘度が高くなりすぎると、均一な油膜を形成できなくなる。一方、高温で潤滑油組成物の粘度が低くなりすぎると、油膜が薄くなって摩擦低減効果が低下してしまう。
このように、摩擦低減効果を安定して得るためには、潤滑油組成物を、動粘度が低く(低動粘度)、かつ温度変化に対する粘度変化が小さいものにする必要がある。温度変化に対する粘度変化の度合いは粘度指数で表され、粘度指数が高い(高粘度指数)ほど、温度変化に対する粘度変化の度合いが小さい。
Lubricating oil compositions are used in a wide range of applications such as bearings, hydraulic operating parts and metal processing for the purpose of reducing friction and wear, transferring energy, and cooling heat. The friction reducing effect by the lubricating oil composition depends on the thickness of the oil film, and a sufficient friction reducing effect can be obtained by forming an oil film having an appropriate thickness for each application on the solid surface. If the viscosity of the lubricating oil composition changes greatly depending on the temperature used, the thickness of the oil film changes accordingly, and the friction reducing effect cannot be obtained stably. For example, if the viscosity of the lubricating oil composition becomes too high at low temperatures, a uniform oil film cannot be formed. On the other hand, if the viscosity of the lubricating oil composition becomes too low at a high temperature, the oil film becomes thin and the friction reducing effect decreases.
Thus, in order to stably obtain the friction reducing effect, the lubricating oil composition needs to have a low kinematic viscosity (low kinematic viscosity) and a small viscosity change with respect to a temperature change. The degree of viscosity change with respect to temperature change is represented by a viscosity index, and the higher the viscosity index (higher viscosity index), the smaller the degree of viscosity change with respect to temperature change.

エステル系油は、鉱油やPAOに比べて粘度指数が高いものの、各種潤滑油組成物に求められる機能を満足できるものではない。
このため、潤滑油組成物には、各種機能を高めるために、ポリメタクリレート系ポリマー化合物又はポリオレフィン系ポリマー化合物等の粘度指数向上剤又は流動点降下剤、ジアルキルジチオリン酸亜鉛等の各種リン酸エステル類に代表される摩擦低減剤、ラウリルアルコール、オレイン酸等の油性剤、ジアルキルジチオリン酸亜鉛、硫化オレフィン、塩素化パラフィン等の極圧剤、2.6−ジ−t−ブチルパラクレゾール、ジオクチルフェニルアミン、トリフェニルフォスファイト等の酸化防止剤、イソステアレート、ソルビタンオレート、アルケニルコハク酸等の腐食防止剤、シリコーン等の消泡剤、ベンゾトリアゾール、チアジアゾール、ジチオカーバメート等の金属不活性化剤、コハク酸、カルシウムスルホネート等の防錆剤、アルキル土類金属スルホネート、ポリアルケニルコハク酸イミド等の清浄分散剤等の添加剤が配合される。
さらには、エンジン油や油圧作動油等の様々な用途向けに、複数種の添加剤を組み合わせたパッケージ品が用いられている。
Although ester oil has a higher viscosity index than mineral oil or PAO, it does not satisfy the functions required for various lubricating oil compositions.
For this reason, in order to enhance various functions, the lubricating oil composition has various viscosity esters such as polymethacrylate polymer compounds or polyolefin polymer compounds or pour point depressants, and various phosphate esters such as zinc dialkyldithiophosphate. Friction reducing agents represented by: oily agents such as lauryl alcohol and oleic acid, extreme pressure agents such as zinc dialkyldithiophosphates, sulfurized olefins and chlorinated paraffins, 2.6-di-t-butylparacresol, dioctylphenylamine Antioxidants such as triphenyl phosphite, corrosion inhibitors such as isostearate, sorbitan oleate and alkenyl succinic acid, antifoaming agents such as silicone, metal deactivators such as benzotriazole, thiadiazole and dithiocarbamate, succinate Antirust agent such as acid, calcium sulfonate, Al Le earth metal sulfonate, additives such as a detergent-dispersant, such as polyalkenyl succinimide is blended.
Furthermore, package products in which a plurality of additives are combined are used for various applications such as engine oil and hydraulic fluid.

上述した添加剤やパッケージ品(以下、総じて潤滑油添加剤ということがある)は潤滑油組成物を製品化する上で不可欠な原料であるにもかかわらず、エステル系油の種類によっては、潤滑油添加剤がその添加効果を発揮できるほど溶解できないという問題がある。
こうした問題に対し、例えば、トリメチロールプロパン(TMP)トリカプリレート、又はこれと1−ドデセンとの重合物を用いることで添加剤の溶解性の改善を図った発明が提案されている(例えば、特許文献4)。
Although the above-mentioned additives and packaged products (hereinafter sometimes referred to as “lubricating oil additives” in general) are essential raw materials for commercialization of lubricating oil compositions, depending on the type of ester oil, lubrication may occur. There exists a problem that it cannot melt | dissolve so that an oil additive can exhibit the addition effect.
In order to solve these problems, for example, an invention has been proposed in which the solubility of the additive is improved by using trimethylolpropane (TMP) tricaprylate or a polymer of this with 1-dodecene (for example, Patent Document 4).

特開平7−224289号公報JP-A-7-224289 特開2002−206094号公報JP 2002-206094 A 特開2008−179773号公報JP 2008-179773 A 特開平1−252699号公報JP-A-1-252699

しかしながら、特許文献1〜3の発明は、鉱油やPAOに比べて生分解性に優れるものの、低動粘度と高粘度指数との両立の面で満足できるものではなく、潤滑油添加剤の溶解性も不十分であった。
特許文献4の発明は、製造工程が煩雑である上、動粘度が高くなるという問題がある。
そこで、潤滑油添加剤を良好に溶解でき、低動粘度と高粘度指数とをより高い次元で両立できる潤滑油基油を目的とする。
However, although the inventions of Patent Documents 1 to 3 are superior in biodegradability compared to mineral oil and PAO, they are not satisfactory in terms of coexistence of low kinematic viscosity and high viscosity index, and are soluble in lubricating oil additives. Was insufficient.
The invention of Patent Document 4 has a problem that the manufacturing process is complicated and the kinematic viscosity increases.
Accordingly, it is an object of the present invention to provide a lubricating base oil that can dissolve a lubricating oil additive satisfactorily and can achieve both a low kinematic viscosity and a high viscosity index at a higher level.

本発明者らは、鋭意検討した結果、特定の脂肪酸ポリオキシアルキレンアルキルエーテルと、特定の脂肪酸アルキルエステルと、特定の脂肪酸ポリオールエステルと、を特定の量で配合することで、潤滑油添加剤を良好に溶解でき、かつ低動粘度と高粘度指数とを両立できることを見出し、本発明に至った。   As a result of intensive studies, the present inventors have formulated a lubricating oil additive by blending a specific fatty acid polyoxyalkylene alkyl ether, a specific fatty acid alkyl ester, and a specific fatty acid polyol ester in a specific amount. The present inventors have found that it can be dissolved satisfactorily and can achieve both a low kinematic viscosity and a high viscosity index.

即ち、本発明の潤滑油基油は、下記一般式(I)で表され、下記(1)式で表されるナロー率が55〜80%である脂肪酸ポリオキシアルキレンアルキルエーテル(A)10〜70質量%と、下記一般式(II)で表される脂肪酸アルキルエステル(B)5〜60質量%と、下記一般式(III)で表される脂肪酸又は脂肪酸アルキルエステルと下記一般式(IV)で表される多価アルコールとを反応させて得られる脂肪酸ポリオールエステル(C)5〜60質量%と、を含有することを特徴とする。
−CO−Q−OR ・・・(I)
((I)式中、Rは炭素数7〜19の直鎖状の一価の炭化水素基を表し、Rは炭素数1〜8の一価の炭化水素基を表し、Qは炭素数2〜4のオキシアルキレン基を表し、nはアルキレンオキシドの平均付加モル数を表す3〜9の数である。)
−COO−R ・・・(II)
((II)式中、Rは炭素数7〜19の直鎖状の一価の炭化水素基を表し、Rは炭素数3〜8の一価の炭化水素基を表す。)
−COO−R ・・・(III)
((III)式中、Rは炭素数7〜9の直鎖状又は分岐鎖状の一価の飽和炭化水素基又は炭素数17〜19の一価の不飽和炭化水素基を表し、Rは水素又は炭素数1〜8の一価の炭化水素基を表す。)

Figure 2012224653
((IV)式中、Rは炭素数1〜6の一価の炭化水素基又はメチロール基を表す。)
Figure 2012224653
((1)式中、nMAXは全体のアルキレンオキシド付加体中に質量基準で最も多く存在するアルキレンオキシド付加体のアルキレンオキシドの付加モル数を示す。iはアルキレンオキシドの付加モル数を示す。Yiは全体のアルキレンオキシド付加体中に存在するアルキレンオキシドの付加モル数がiであるアルキレンオキシド付加体の割合(質量%)を示す。) That is, the lubricating base oil of the present invention is represented by the following general formula (I), and the fatty acid polyoxyalkylene alkyl ether (A) 10 represented by the following formula (1) has a narrow ratio of 55 to 80%. 70 mass%, fatty acid alkyl ester (B) represented by the following general formula (II) 5 to 60 mass%, fatty acid or fatty acid alkyl ester represented by the following general formula (III) and the following general formula (IV) It contains the fatty acid polyol ester (C) 5-60 mass% obtained by making it react with the polyhydric alcohol represented by these, It is characterized by the above-mentioned.
R 1 —CO—Q n —OR 2 (I)
(In the formula (I), R 1 represents a linear monovalent hydrocarbon group having 7 to 19 carbon atoms, R 2 represents a monovalent hydrocarbon group having 1 to 8 carbon atoms, and Q represents carbon. The oxyalkylene group of the number 2 to 4 is represented, and n is a number of 3 to 9 representing the average number of added moles of alkylene oxide.)
R 3 —COO—R 4 (II)
(In the formula (II), R 3 represents a linear monovalent hydrocarbon group having 7 to 19 carbon atoms, and R 4 represents a monovalent hydrocarbon group having 3 to 8 carbon atoms.)
R 5 —COO—R 6 (III)
(In the formula (III), R 5 represents a linear or branched monovalent saturated hydrocarbon group having 7 to 9 carbon atoms or a monovalent unsaturated hydrocarbon group having 17 to 19 carbon atoms; 6 represents hydrogen or a monovalent hydrocarbon group having 1 to 8 carbon atoms.)
Figure 2012224653
(In the formula (IV), R 7 represents a monovalent hydrocarbon group or methylol group having 1 to 6 carbon atoms.)
Figure 2012224653
(In formula (1), n MAX represents the number of moles of alkylene oxide adduct of the alkylene oxide adduct most present on a mass basis in the whole alkylene oxide adduct, and i represents the number of moles of alkylene oxide added. Yi represents the proportion (% by mass) of the alkylene oxide adduct having an added mole number of alkylene oxide i present in the entire alkylene oxide adduct.

本発明の潤滑油基油によれば、潤滑油添加剤を良好に溶解でき、低動粘度と高粘度指数とをより高い次元で両立できる。   According to the lubricating base oil of the present invention, the lubricating oil additive can be dissolved well, and a low kinematic viscosity and a high viscosity index can be achieved at a higher level.

(潤滑油基油)
本発明の潤滑油基油は、脂肪酸ポリオキシアルキレンアルキルエーテル(A)と脂肪酸アルキルエステル(B)と、脂肪酸ポリオールエステル(C)と、を含有するものである。
潤滑油基油は、潤滑油組成物の主成分である。潤滑油組成物中の潤滑油基油の含有量は、例えば、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、80質量%以上が特に好ましい。
(Lubricant base oil)
The lubricating base oil of the present invention contains a fatty acid polyoxyalkylene alkyl ether (A), a fatty acid alkyl ester (B), and a fatty acid polyol ester (C).
The lubricating base oil is the main component of the lubricating oil composition. The content of the lubricating base oil in the lubricating oil composition is, for example, preferably 50% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, and particularly preferably 80% by mass or more.

<脂肪酸ポリオキシアルキレンアルキルエーテル(A)>
脂肪酸ポリオキシアルキレンアルキルエーテル(A)(以下、(A)成分ということがある)は、下記(I)式で表されるものである。
<Fatty acid polyoxyalkylene alkyl ether (A)>
The fatty acid polyoxyalkylene alkyl ether (A) (hereinafter sometimes referred to as component (A)) is represented by the following formula (I).

−CO−Q−OR ・・・(I) R 1 —CO—Q n —OR 2 (I)

((I)式中、Rは炭素数7〜19の直鎖状の一価の炭化水素基を表し、Rは炭素数1〜8の一価の炭化水素基を表し、Qは炭素数2〜4のオキシアルキレン基を表し、nはアルキレンオキシドの平均付加モル数を表す3〜9の数である。) (In the formula (I), R 1 represents a linear monovalent hydrocarbon group having 7 to 19 carbon atoms, R 2 represents a monovalent hydrocarbon group having 1 to 8 carbon atoms, and Q represents carbon. The oxyalkylene group of the number 2 to 4 is represented, and n is a number of 3 to 9 representing the average number of added moles of alkylene oxide.)

は、直鎖状かつ一価であれば飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよいが、不飽和炭化水素基が好ましい。Rが不飽和炭化水素基であれば、潤滑油添加剤を溶解する能力(添加剤溶解性)及び粘度指数を高め、かつ流動点を低くすることができる。なお、(A)成分は、Rが飽和炭化水素基のものとRが不飽和炭化水素基のものとの混合物であってもよい。 R 1 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group as long as it is linear and monovalent, but an unsaturated hydrocarbon group is preferred. If R 1 is an unsaturated hydrocarbon group, the ability to dissolve the lubricant additive (additive solubility) and the viscosity index can be increased, and the pour point can be lowered. Incidentally, (A) component may be a mixture of those ones with R 1 in which R 1 is a saturated hydrocarbon group is an unsaturated hydrocarbon group.

の炭素数は7〜19である。上記下限値以上であれば添加剤溶解性及び粘度指数を高められ、上記上限値以下であれば流動点が低くなると共に動粘度が適度なものになる。
の好ましい炭素数は、Rが飽和炭化水素基であれば、添加剤溶解性、耐熱性、粘度指数を高める観点からは15〜19が好ましく、動粘度及び流動点を低くする観点からは7〜11が好ましい。また、Rが不飽和炭化水素基であれば、添加剤溶解性、耐熱性、粘度指数を高める観点からは15〜19が好ましく、流動点を低くする観点からは7〜11又は17〜19が好ましい。なお、(A)成分は、Rの炭素数が異なるものの混合物であってもよい。
としては、添加剤溶解性、耐熱性、粘度指数を高め、かつ流動点を低くする観点から、炭素数17〜19の不飽和炭化水素基が好ましい。
R 1 has 7 to 19 carbon atoms. If it is at least the above lower limit value, the solubility of the additive and the viscosity index can be increased.
Preferred number of carbon atoms in R 1, if R 1 is a saturated hydrocarbon radical, additive solubility, heat resistance, preferably 15 to 19 from the viewpoint of enhancing the viscosity index, from the viewpoint of lowering the kinematic viscosity and pour point Is preferably 7-11. Further, if R 1 is an unsaturated hydrocarbon group, additive solubility, heat resistance, preferably 15 to 19 from the viewpoint of enhancing the viscosity index, 7-11 or from the viewpoint of lowering the pour point 17-19 Is preferred. In addition, (A) component may be a mixture of different carbon numbers for R 1 .
R 1 is preferably an unsaturated hydrocarbon group having 17 to 19 carbon atoms from the viewpoint of increasing the solubility of the additive, heat resistance, viscosity index, and lowering the pour point.

(A)成分の脂肪酸部(R−CO)に対応する脂肪酸としては、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストレイン酸、パルミチン酸、パルミトレイン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、エライジン酸、アラキン酸、アラキドン酸、アラキジン酸、パーム由来C18混合脂肪酸(例えば、C16/C18:0/C18:1/C18:2=3/10/70/17の混合脂肪酸。ただし、「C18:X」の「X」は不飽和結合の数を表わす。)、パーム核由来混合脂肪酸、ヤシ由来混合脂肪酸、大豆由来C18混合脂肪酸、菜種由来C18混合脂肪酸、とうもろこし由来混合脂肪酸、紅花由来混合脂肪酸等が挙げられる。 The fatty acid corresponding to the fatty acid part (R 1 -CO) of the component (A) includes caprylic acid, capric acid, lauric acid, myristic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid Linolenic acid, elaidic acid, arachidic acid, arachidonic acid, arachidic acid, palm-derived C18 mixed fatty acid (for example, C16 / C18: 0 / C18: 1 / C18: 2 = 3/10/70/17 mixed fatty acid. , “C18: X” represents the number of unsaturated bonds.), Palm kernel derived mixed fatty acid, palm derived mixed fatty acid, soybean derived C18 mixed fatty acid, rapeseed derived C18 mixed fatty acid, corn derived mixed fatty acid, safflower Examples include derived mixed fatty acids.

は、飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよい。また、Rは、直鎖状、分岐鎖状及び環状のいずれであってもよい。流動点を低くする観点からは分岐鎖が好ましい。 R 2 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. R 2 may be linear, branched or cyclic. A branched chain is preferable from the viewpoint of lowering the pour point.

の炭素数は、1〜8である。上記下限値以上であれば添加剤溶解性に優れ、上記上限値以下であれば動粘度を低くできる。Rの好ましい炭素数は、Rが直鎖状であれば、動粘度及び流動点を低くする観点から1が好ましく、Rが分岐鎖状であれば、流動点を低くする観点から3〜8が好ましい。(A)成分の入手や製造が容易である観点から、Rは炭素数1(メチル基)であることが好ましい。 R 2 has 1 to 8 carbon atoms. If it is more than the said lower limit, it is excellent in additive solubility, and if it is below the said upper limit, kinematic viscosity can be made low. Preferred number of carbon atoms in R 2, if R 2 is a linear, 1 is preferable from the viewpoint of lowering the kinematic viscosity and pour point, if R 2 is branched, 3 from the viewpoint of lowering the pour point ~ 8 is preferred. From the viewpoint of easy acquisition and production of the component (A), R 2 preferably has 1 carbon atom (methyl group).

Qは、炭素数2〜4のオキシアルキレン基である。Qの炭素数は、流動点を低くする観点からは3〜4が好ましく、動粘度を低くする観点から2〜3が好ましい。流動点と動粘度とを低くする観点からは、Qの炭素数は3、即ちQはオキシプロピレン基が好ましい。  Q is an oxyalkylene group having 2 to 4 carbon atoms. The carbon number of Q is preferably 3 to 4 from the viewpoint of lowering the pour point, and preferably 2 to 3 from the viewpoint of lowering the kinematic viscosity. From the viewpoint of lowering the pour point and kinematic viscosity, Q has 3 carbon atoms, that is, Q is preferably an oxypropylene group.

nは、アルキレンオキシドの平均付加モル数を表す3〜9の数であり、耐熱性、粘度指数を高める観点からは4〜9が好ましく、動粘度を低くする観点からは3〜7が好ましく、低動粘度と高粘度指数とを両立させる観点からは4〜7が好ましい。  n is a number of 3 to 9 representing the average number of added moles of alkylene oxide, 4 to 9 is preferable from the viewpoint of increasing heat resistance and viscosity index, and 3 to 7 is preferable from the viewpoint of reducing kinematic viscosity, From the viewpoint of achieving both a low kinematic viscosity and a high viscosity index, 4 to 7 is preferable.

(A)成分としては、Rが炭素数17〜19の不飽和炭化水素基、Rが炭素数1の炭化水素基(メチル基)、Qがオキシプロピレン基、nが4〜7であるものが好ましい。 As the component (A), R 1 is an unsaturated hydrocarbon group having 17 to 19 carbon atoms, R 2 is a hydrocarbon group having 1 carbon atom (methyl group), Q is an oxypropylene group, and n is 4 to 7 Those are preferred.

(A)成分は、下記(1)式で表されるナロー率が55〜80%のものであり、ナロー率55〜75%のものが好ましく、55〜70%のものがより好ましい。ナロー率が上記下限値未満であると、添加剤溶解性や耐熱性が低下する。加えて、ナロー率が上記下限値未満であると、臭気を生じたり、引火点が低下したり、流動点が高くなるおそれがある。ナロー率が上記上限値超であると、添加剤溶解性及び粘度指数が不十分になり、耐熱性が低下するおそれがある。
なお、(A)成分を2種以上併用する場合、(A)成分のナロー率は、それぞれの(A)成分におけるナロー率であり、2種以上の(A)成分の混合物におけるナロー率ではない。
例えば、(A)成分を後述するエステル化法又はエステル交換法で得る場合には、原料のグリコールエーテルを蒸留して低沸点分と高沸点分とを分離して所望のナロー率のグリコールエーテルを得、これをエステル化又はエステル交換に用いることで(A)成分のナロー率を調節してもよい。
また、(A)成分を後述する直接反応法で得る場合、触媒の種類を変更したり、水酸化アルミナ・マグネシウムを焼成して得られる触媒等とNaOHやKOH等の塩基性物質とを併用したりすることで、(A)成分のナロー率を調節できる。
The component (A) has a narrow rate of 55 to 80% represented by the following formula (1), preferably a narrow rate of 55 to 75%, and more preferably 55 to 70%. When the narrow rate is less than the lower limit, additive solubility and heat resistance are lowered. In addition, if the narrow rate is less than the lower limit, odor may be generated, the flash point may be lowered, or the pour point may be increased. If the narrow ratio is more than the above upper limit, the additive solubility and the viscosity index become insufficient, and the heat resistance may be lowered.
In addition, when using 2 or more types of (A) component together, the narrow rate of (A) component is the narrow rate in each (A) component, and is not the narrow rate in the mixture of 2 or more types (A) component. .
For example, when the component (A) is obtained by an esterification method or a transesterification method to be described later, the glycol ether as a raw material is distilled to separate a low boiling point component and a high boiling point component to obtain a glycol ether having a desired narrow ratio. The narrow ratio of the component (A) may be adjusted by using it for esterification or transesterification.
In addition, when the component (A) is obtained by the direct reaction method described later, a catalyst obtained by changing the type of catalyst or calcining alumina hydroxide / magnesium and a basic substance such as NaOH or KOH are used in combination. The narrow ratio of the component (A) can be adjusted.

Figure 2012224653
Figure 2012224653

(1)式中、nMAXは全体のアルキレンオキシド付加体中に質量基準で最も多く存在するアルキレンオキシド付加体のアルキレンオキシドの付加モル数を示す。iはアルキレンオキシドの付加モル数を示す。Yiは全体のアルキレンオキシド付加体(即ち(A)成分)中に存在するアルキレンオキシドの付加モル数がiであるアルキレンオキシド付加体の割合(質量%)を示す。 (1) In formula, nMAX shows the addition mole number of the alkylene oxide of the alkylene oxide adduct which exists most on the basis of mass in the whole alkylene oxide adduct. i represents the number of added moles of alkylene oxide. Yi represents the proportion (% by mass) of the alkylene oxide adduct having an added mole number of alkylene oxide i present in the entire alkylene oxide adduct (ie, component (A)).

なお、nMAXについては、質量基準で最も多いアルキレンオキシド付加体が2種ある場合、それらのうちアルキレンオキシドの付加モル数が多い方よりもアルキレンオキシドの付加モル数が1つ多いものと、アルキレンオキシドの付加モル数が少ない方よりもアルキレンオキシドの付加モル数が1つ少ないものとを比較し、その量が多い側の脂肪酸ポリオキシアルキレンアルキルエーテルのアルキレンオキシドの付加モル数をnMAXとする。例えば、i=4とi=5の脂肪酸ポリオキシアルキレンアルキルエーテルが等量で、かつそれらがそれぞれ質量基準で最も多い場合、i=3の脂肪酸ポリオキシアルキレンアルキルエーテルと、i=6の脂肪酸ポリオキシアルキレンアルキルエーテルを比較し、i=3の脂肪酸ポリオキシアルキレンアルキルエーテルの方が多ければnMAX=4とする。一方、i=6の脂肪酸ポリオキシアルキレンアルキルエーテルの方が多ければnMAX=5とする。
なお、(A)成分中のnはアルキレンオキシドの平均付加モル数であるが、(A)成分は広い付加モル数分布を有し、n=3の場合でも、(A)成分中には、アルキレンオキシド付加モル数が1や2の化合物を含有する。また、n=9の場合も、アルキレンオキシド付加モル数が10、11、12等の高付加モル体を含有する。ナロー率の算出には、これらの構造の含有率(質量%)も算入した上で行う。即ち、iは1以上の整数を取り得る数である。
As for n MAX , when there are two types of adducts having the largest number of alkylene oxides on a mass basis, those having one added mole number of alkylene oxide than those having a larger number of added moles of alkylene oxide, Compared with one having a smaller number of added moles of alkylene oxide than one having a smaller number of added moles of oxide, the number of added moles of alkylene oxide of the fatty acid polyoxyalkylene alkyl ether on the side having the larger amount is defined as n MAX . . For example, if the fatty acid polyoxyalkylene alkyl ethers of i = 4 and i = 5 are equal in amount and are the most on a mass basis, respectively, the fatty acid polyoxyalkylene alkyl ether of i = 3 and the fatty acid polyoxyalkylene alkyl of i = 6 Oxyalkylene alkyl ethers are compared, and if there are more fatty acid polyoxyalkylene alkyl ethers with i = 3, then n MAX = 4. On the other hand, if there are more fatty acid polyoxyalkylene alkyl ethers with i = 6, n MAX = 5.
In addition, although n in (A) component is the average addition mole number of alkylene oxide, (A) component has a wide addition mole number distribution, and even when n = 3, in (A) component, Contains a compound having 1 or 2 alkylene oxide addition moles. In addition, when n = 9, a high addition mole having an alkylene oxide addition mole number of 10, 11, 12, or the like is contained. The narrow ratio is calculated after the content (mass%) of these structures is included. That is, i is a number that can take an integer of 1 or more.

ナロー率は、ガスクロマトグラフ分析により、(A)成分の全量に対する、アルキレンオキシドの付加モル数毎の各々の(A)成分の含有量(質量%)を測定し、前記式(1)式により算出することで求められる。   The narrow ratio is calculated by the above formula (1) by measuring the content (mass%) of each component (A) for each added mole number of alkylene oxide with respect to the total amount of the component (A) by gas chromatographic analysis. Is required.

(A)成分としては、例えば、ポリオキシプロピレンラウリン酸メチルエーテル(M12−7PO,プロピレンオキシド7モル付加物,エステル交換法による合成品,以下、(a1)成分ということがある)、ポリオキシプロピレンC18混合脂肪酸メチルエーテル(M182−7PO,プロピレンオキシド7モル付加物,エステル交換法による合成品,以下、(a2)成分ということがある)、ポリオキシアルキレンC18混合脂肪酸メチルエーテル(M182−5EO−3PO,エチレンオキシド5モルとプロピレンオキシド3モルとの付加物,エステル交換法による合成品,商品名:レオファットOC−0503M(ライオン株式会社製,以下、(a3)成分ということがある)、ポリオキシプロピレンC18混合脂肪酸メチルエーテル(M182−5PO,プロピレンオキシド5モル付加物,直接反応法による合成品,以下、(a4)成分ということがある)、ポリオキシプロピレンC18混合脂肪酸メチルエーテル(M182−7PO,プロピレンオキシド7モル付加物,直接反応法による合成品,以下、(a5)成分ということがある)、ポリオキシプロピレンC18混合脂肪酸メチルエーテル(M182−3PO,プロピレンオキシド3モル付加物,直接反応法による合成品,以下、(a6)成分ということがある)等が挙げられる。上述した(a1)〜(a6)成分の添加剤溶解性は、(a2)〜(a6)成分>(a1)成分である。
上述した(A)成分の中でも、低動粘度と高粘度指数とを両立させる観点から、(a2)成分、(a3)成分、(a4)成分、(a6)成分が好ましく、さらに耐熱性に優れる点で(a2)成分、(a3)成分、(a4)成分がより好ましい。
As the component (A), for example, polyoxypropylene lauric acid methyl ether (M12-7PO, propylene oxide 7-mol adduct, synthetic product obtained by transesterification, hereinafter sometimes referred to as component (a1)), polyoxypropylene C18 mixed fatty acid methyl ether (M182-7PO, propylene oxide 7-mole adduct, synthetic product by transesterification, hereinafter referred to as component (a2)), polyoxyalkylene C18 mixed fatty acid methyl ether (M182-5EO-3PO) , An adduct of 5 mol of ethylene oxide and 3 mol of propylene oxide, a synthetic product by transesterification, a trade name: Leo Fat OC-0503M (manufactured by Lion Corporation, hereinafter, also referred to as component (a3)), polyoxypropylene C18 mixed fatty acid methyl ether (M182-5PO, propylene oxide 5 mol adduct, synthetic product by direct reaction method, hereinafter referred to as component (a4)), polyoxypropylene C18 mixed fatty acid methyl ether (M182-7PO, propylene oxide 7 mol adduct) , Synthetic product by direct reaction method, hereinafter referred to as component (a5)), polyoxypropylene C18 mixed fatty acid methyl ether (M182-3PO, propylene oxide 3 mol adduct, synthetic product by direct reaction method, hereinafter ( (It may be called a6) component.) The additive solubility of the above-mentioned components (a1) to (a6) is (a2) to (a6) component> (a1) component.
Among the components (A) described above, the component (a2), the component (a3), the component (a4), and the component (a6) are preferable from the viewpoint of achieving both a low kinematic viscosity and a high viscosity index, and further excellent heat resistance. (A2) component, (a3) component, and (a4) component are more preferable at the point.

潤滑油基油中の(A)成分の含有量は、10〜70質量%であり、10〜50質量%がより好ましい。上記下限値未満では、粘度指数を十分に高くできず、また耐熱性が低下するおそれがある。上記上限値超では十分な添加剤溶解性が得られない。  Content of (A) component in lubricating base oil is 10-70 mass%, and 10-50 mass% is more preferable. If it is less than the said lower limit, a viscosity index cannot be made high enough and there exists a possibility that heat resistance may fall. Above the upper limit, sufficient additive solubility cannot be obtained.

≪(A)成分の製造法≫
(A)成分の製造方法としては、例えば、脂肪酸又は脂肪酸エステルをグリコールエーテルでエステル化する方法(エステル化法)、脂肪酸エステルとグリコールエーテルとをエステル交換する方法(エステル交換法)、脂肪酸エステルにアルキレンオキシドを直接付加させる方法(直接反応法)等が挙げられ、中でも直接反応法が好ましい。エステル化法及びエステル交換法は、未反応原料等を除去するために、付加モル数の小さい(A)成分が除去されやすい。このため、エステル化法又はエステル交換法で得られる(A)成分はナロー率が高くなり、粘度指数が低くなりやすい。一方、直接反応法は、ナロー率が低い(A)成分を容易に製造できると共に、工程が簡略であり、工業的な製造に好適である。
なお、直接反応法としては、特開平8−169861号公報に記載の方法が挙げられる。
≪ (A) Component Production Method≫
(A) As a manufacturing method of a component, for example, the method of esterifying fatty acid or fatty acid ester with glycol ether (esterification method), the method of transesterifying fatty acid ester and glycol ether (transesterification method), and fatty acid ester Examples include a method of directly adding an alkylene oxide (direct reaction method), and the direct reaction method is preferable among them. In the esterification method and the transesterification method, the component (A) having a small number of added moles is easily removed in order to remove unreacted raw materials and the like. For this reason, the (A) component obtained by the esterification method or the transesterification method tends to have a high narrow rate and a low viscosity index. On the other hand, the direct reaction method can easily produce the component (A) having a low narrow rate, has a simple process, and is suitable for industrial production.
Examples of the direct reaction method include the method described in JP-A-8-169861.

<脂肪酸アルキルエステル(B)>
脂肪酸アルキルエステル(B)(以下、(B)成分ということがある)は、下記(II)式で表されるものである。潤滑油基油は、(B)成分を含有することで、添加剤溶解性が向上する。
<Fatty acid alkyl ester (B)>
The fatty acid alkyl ester (B) (hereinafter sometimes referred to as the component (B)) is represented by the following formula (II). Lubricant base oil contains (B) component, and additive solubility improves.

−COO−R ・・・(II) R 3 —COO—R 4 (II)

((II)式中、Rは炭素数7〜19の直鎖状の一価の炭化水素基を表し、Rは炭素数3〜8の一価の炭化水素基を表す。) (In the formula (II), R 3 represents a linear monovalent hydrocarbon group having 7 to 19 carbon atoms, and R 4 represents a monovalent hydrocarbon group having 3 to 8 carbon atoms.)

は、直鎖状かつ一価であれば、飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよく、これらの混合物であってもよい。中でも、耐熱性の観点からは、飽和炭化水素基が好ましい。 R 3 may be a saturated hydrocarbon group, an unsaturated hydrocarbon group, or a mixture thereof as long as it is linear and monovalent. Among these, a saturated hydrocarbon group is preferable from the viewpoint of heat resistance.

の炭素数は、7〜19である。上記下限値未満であると、添加剤溶解性、粘度指数を十分に高められず、上記上限値超であると、流動点が高くなり、動粘度を十分に低くできない。
の好ましい炭素数は、Rが飽和炭化水素基であれば、添加剤溶解性、粘度指数を高める観点からは9〜19が好ましく、また、流動点を低くする観点からは7〜11が好ましい。また、Rが不飽和炭化水素基であれば、粘度指数を高めつつ流動点を低くする観点からは17〜19が好ましい。
の炭素数は、添加剤溶解性、粘度指数を高め、かつ動粘度及び流動点を低くする観点から、9〜11がより好ましい。
R 3 has 7 to 19 carbon atoms. If it is less than the lower limit, the additive solubility and viscosity index cannot be sufficiently increased, and if it exceeds the upper limit, the pour point becomes high and the kinematic viscosity cannot be sufficiently lowered.
Preferred number of carbon atoms in R 3, if R 3 is a saturated hydrocarbon radical, additive solubility, preferably 9 to 19 from the viewpoint of enhancing the viscosity index, also from the viewpoint of lowering the pour point 7-11 Is preferred. Moreover, if R < 3 > is an unsaturated hydrocarbon group, 17-19 are preferable from a viewpoint of making a pour point low, raising a viscosity index.
The number of carbon atoms in R 3 is more preferably 9 to 11 from the viewpoint of increasing the additive solubility, the viscosity index, and lowering the kinematic viscosity and pour point.

(B)成分の脂肪酸部(R−CO)に対応する脂肪酸としては、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストレイン酸、パルミチン酸、パルミトレイン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、エライジン酸、アラキン酸、アラキドン酸、アラキジン酸、パーム由来C18混合脂肪酸、パーム核由来混合脂肪酸、ヤシ由来混合脂肪酸、大豆由来C18混合脂肪酸、菜種由来C18混合脂肪酸、とうもろこし由来混合脂肪酸、紅花由来混合脂肪酸等が挙げられる。 As the fatty acid corresponding to the fatty acid part (R 3 —CO) of the component (B), caprylic acid, capric acid, lauric acid, myristic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid Linolenic acid, elaidic acid, arachidic acid, arachidonic acid, arachidic acid, palm derived C18 mixed fatty acid, palm kernel derived mixed fatty acid, palm derived mixed fatty acid, soybean derived C18 mixed fatty acid, rapeseed derived C18 mixed fatty acid, corn derived mixed fatty acid, Examples include safflower-derived mixed fatty acids.

は、一価であれば、直鎖状、分岐鎖状及び環状のいずれであってもよい。中でも、流動点を低くする観点から分岐鎖状が好ましい。
の炭素数は、3〜8であり、4〜8が好ましい。上記範囲内であれば添加剤溶解性を向上できる。
は、添加剤溶解性をより高め、流動点を低くする観点から、炭素数4〜8の分岐鎖状であることが好ましい。
R 4 may be linear, branched or cyclic as long as it is monovalent. Of these, a branched chain is preferred from the viewpoint of lowering the pour point.
R 4 has 3 to 8 carbon atoms, preferably 4 to 8 carbon atoms. If it is in the said range, additive solubility can be improved.
R 4 is preferably a branched chain having 4 to 8 carbon atoms from the viewpoint of further improving the solubility of the additive and lowering the pour point.

(B)成分としては、例えば、Rが炭素数7〜11の炭化水素基又は炭素数17の不飽和炭化水素基、Rが炭素数4〜8の分岐鎖状の一価の炭化水素基であるカプリル酸イソブチル、カプリル酸t−ブチル、カプリル酸−2エチルヘキシル、カプリン酸イソブチル、カプリン酸t−ブチル、カプリン酸−2エチルヘキシル、ラウリン酸イソブチル、ラウリン酸t−ブチル、ラウリン酸−2エチルヘキシル、オレイン酸イソブチル、オレイン酸t−ブチル、オレイン酸−2エチルヘキシル、パーム由来C18混合脂肪酸イソブチル、パーム由来C18混合脂肪酸t−ブチル、パーム由来C18混合脂肪酸−2エチルヘキシルが好ましく、中でも、カプリル酸−2エチルヘキシル、ラウリン酸−2エチルヘキシル、オレイン酸−2エチルヘキシル、パーム由来C18混合脂肪酸−2エチルヘキシルがより好ましい。 As the component (B), for example, R 3 is a hydrocarbon group having 7 to 11 carbon atoms or an unsaturated hydrocarbon group having 17 carbon atoms, and R 4 is a branched monovalent hydrocarbon having 4 to 8 carbon atoms. Isobutyl caprylate, t-butyl caprylate, 2-ethylhexyl caprylate, isobutyl caprate, t-butyl caprate, 2-ethylhexyl caprate, isobutyl laurate, t-butyl laurate, 2-ethylhexyl laurate , Isobutyl oleate, t-butyl oleate, oleic acid-2-ethylhexyl, palm-derived C18 mixed fatty acid isobutyl, palm-derived C18 mixed fatty acid t-butyl, palm-derived C18 mixed fatty acid-2 ethylhexyl, among them, caprylic acid-2 Ethylhexyl, lauric acid-2-ethylhexyl, oleic acid-2 ethylhexyl Sill, palm-derived C18 mixed fatty -2-ethylhexyl is preferable.

潤滑油基油中の(B)成分の含有量は、5〜60質量%であり、20〜60質量%が好ましく、20〜50質量%がより好ましい。上記下限値未満であると、添加剤溶解性が不十分になり、上記上限値超であると、動粘度が低くなりすぎたり、十分な耐熱性が得られないおそれがある。  Content of (B) component in lubricating base oil is 5-60 mass%, 20-60 mass% is preferable and 20-50 mass% is more preferable. If it is less than the lower limit, the solubility of the additive becomes insufficient, and if it exceeds the upper limit, the kinematic viscosity may be too low or sufficient heat resistance may not be obtained.

<脂肪酸ポリオールエステル(C)>
脂肪酸ポリオールエステル(C)(以下、(C)成分ということがある)は、下記一般式(III)で表される脂肪酸又は脂肪酸アルキルエステル(以下、総じて(c1)成分ということがある)と、下記一般式(IV)で表される多価アルコール(以下、(c2)成分ということがある)とを反応させて得られるものである。(C)成分を含有することで、添加剤溶解性、耐熱性を向上できる。
<Fatty acid polyol ester (C)>
The fatty acid polyol ester (C) (hereinafter sometimes referred to as the component (C)) is a fatty acid or a fatty acid alkyl ester represented by the following general formula (III) (hereinafter sometimes collectively referred to as the component (c1)), It is obtained by reacting with a polyhydric alcohol represented by the following general formula (IV) (hereinafter sometimes referred to as component (c2)). (C) By containing a component, additive solubility and heat resistance can be improved.

−COO−R ・・・(III) R 5 —COO—R 6 (III)

((III)式中、Rは炭素数7〜9の直鎖状又は分岐鎖状の一価の飽和炭化水素基又は炭素数17〜19の一価の不飽和炭化水素基を表し、Rは水素又は炭素数1〜8の一価の炭化水素基を表す。) (In the formula (III), R 5 represents a linear or branched monovalent saturated hydrocarbon group having 7 to 9 carbon atoms or a monovalent unsaturated hydrocarbon group having 17 to 19 carbon atoms; 6 represents hydrogen or a monovalent hydrocarbon group having 1 to 8 carbon atoms.)

Figure 2012224653
Figure 2012224653

((IV)式中、Rは炭素数1〜6の一価の炭化水素基又はメチロール基を表す。) (In the formula (IV), R 7 represents a monovalent hydrocarbon group or methylol group having 1 to 6 carbon atoms.)

は炭素数7〜9の一価の飽和炭化水素基又は炭素数17〜19の一価の不飽和炭化水素基であり、動粘度を低くする観点からは、炭素数7〜9の飽和炭化水素基が好ましく、添加剤溶解性及び粘度指数を高める観点からは、炭素数9の飽和炭化水素基又は炭素数17〜19の不飽和炭化水素基が好ましい。中でも、動粘度を低くし、かつ添加剤溶解性及び粘度指数を高める観点からは、炭素数9の飽和炭化水素基がより好ましい。また、Rが炭素数9の飽和炭化水素基であれば、(c1)成分の入手や製造が容易である。
が炭素数7〜9の飽和炭化水素基である場合、該炭化水素基は直鎖状及び分岐鎖状のいずれであってもよく、中でも、高い粘度指数が得られる観点から直鎖状が好ましい。
が炭素数17〜19の不飽和炭化水素基である場合、該炭化水素基は直鎖状、分岐鎖状及び環状のいずれであってもよく、中でも、高い粘度指数が得られる観点から直鎖状が好ましい。
R 5 is a monovalent saturated hydrocarbon group having 7 to 9 carbon atoms or a monovalent unsaturated hydrocarbon group having 17 to 19 carbon atoms. From the viewpoint of lowering the kinematic viscosity, R 5 is saturated with 7 to 9 carbon atoms. A hydrocarbon group is preferable, and a saturated hydrocarbon group having 9 carbon atoms or an unsaturated hydrocarbon group having 17 to 19 carbon atoms is preferable from the viewpoint of increasing additive solubility and viscosity index. Of these, a saturated hydrocarbon group having 9 carbon atoms is more preferable from the viewpoint of lowering the kinematic viscosity and increasing the solubility of the additive and the viscosity index. Further, when R 5 is a saturated hydrocarbon group having 9 carbon atoms, it is easy to obtain and manufacture the component (c1).
When R 5 is a saturated hydrocarbon group having 7 to 9 carbon atoms, the hydrocarbon group may be either linear or branched, and in particular, linear from the viewpoint of obtaining a high viscosity index. Is preferred.
When R 5 is an unsaturated hydrocarbon group having 17 to 19 carbon atoms, the hydrocarbon group may be linear, branched or cyclic, and above all, from the viewpoint of obtaining a high viscosity index. A straight chain is preferred.

は水素、又は炭素数1〜8の直鎖状、分岐鎖状又は環状の一価の炭化水素基である。反応後、Rは減圧留去等の精製処理により、水又はアルコールとして除去されるため、どのような構造でもよい。ただし、入手しやすく、(C)成分の入手や製造が容易である点で、Rは水素、炭素数1のメチル基が特に好ましい。 R 6 is hydrogen or a linear, branched or cyclic monovalent hydrocarbon group having 1 to 8 carbon atoms. After the reaction, R 6 is removed as water or alcohol by a purification treatment such as distillation under reduced pressure, and therefore may have any structure. However, R 6 is particularly preferably hydrogen or a methyl group having 1 carbon atom because it is easily available and the component (C) can be easily obtained and manufactured.

(c1)成分としては、カプリル酸、カプリン酸、オレイン酸、リノール酸、リノレン酸、エライジン酸、アラキン酸、アラキドン酸、パーム由来C18混合脂肪酸、パーム核由来混合脂肪酸、ヤシ由来混合脂肪酸、大豆由来C18混合脂肪酸、菜種由来C18混合脂肪酸、とうもろこし由来混合脂肪酸、紅花由来混合脂肪酸等、及びこれらのアルキルエスエル(脂肪酸アルキルエステル)等が挙げられる。中でも、カプリル酸、カプリン酸、オレイン酸、リノール酸、リノレン酸又はパーム由来C18混合脂肪酸のアルキルエステルが好ましく、前記脂肪酸のメチルエステルがより好ましい。  As component (c1), caprylic acid, capric acid, oleic acid, linoleic acid, linolenic acid, elaidic acid, arachidic acid, arachidonic acid, palm-derived C18 mixed fatty acid, palm kernel-derived mixed fatty acid, palm-derived mixed fatty acid, soybean-derived Examples include C18 mixed fatty acids, rapeseed-derived C18 mixed fatty acids, corn-derived mixed fatty acids, safflower-derived mixed fatty acids and the like, and their alkyl esters (fatty acid alkyl esters). Among them, caprylic acid, capric acid, oleic acid, linoleic acid, linolenic acid or palm-derived alkyl ester of C18 mixed fatty acid is preferable, and methyl ester of the fatty acid is more preferable.

は炭素数1〜6の炭化水素基又はメチロール基であり、添加剤溶解性、耐熱性を高める観点からは、メチロール基又は炭素数1〜6の炭化水素基が好ましく、添加剤溶解性、耐熱性を高め、かつ動粘度を低くする観点からは炭素数1〜3の炭化水素基がより好ましい。 R 7 is a hydrocarbon group having 1 to 6 carbon atoms or a methylol group, and from the viewpoint of improving additive solubility and heat resistance, a methylol group or a hydrocarbon group having 1 to 6 carbon atoms is preferable, and the additive solubility is high. From the viewpoint of increasing heat resistance and reducing kinematic viscosity, a hydrocarbon group having 1 to 3 carbon atoms is more preferable.

が炭素数1〜6の炭化水素基である場合、Rは直鎖状、分岐鎖状及び環状のいずれであってもよいが、粘度指数を高める観点からは直鎖状が好ましい。
また、Rは飽和炭化水素基及び不飽和炭化水素基のいずれであってもよいが、入手しやすさの観点から飽和炭化水素基が好ましい。
When R 7 is a hydrocarbon group having 1 to 6 carbon atoms, R 7 may be linear, branched or cyclic, but is preferably linear from the viewpoint of increasing the viscosity index.
R 7 may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group, but a saturated hydrocarbon group is preferable from the viewpoint of availability.

(C)成分としては、例えば、下記一般式(i)で表されるトリメチロールアルカンポリオールエステル、下記一般式(ii)で表されるペンタエリスリトールポリオールエステル等が挙げられる。   Examples of the component (C) include trimethylol alkane polyol ester represented by the following general formula (i), pentaerythritol polyol ester represented by the following general formula (ii), and the like.

Figure 2012224653
Figure 2012224653

Figure 2012224653
Figure 2012224653

((i)式中、Rは、(III)式中のRと同じであり、全てが同じであってもよいし、相互に異なっていてもよい。(i)式中、mは1〜6の整数である。(ii)式中、Rは、(III)式中のRと同じであり、全てが同じであってもよいし、相互に異なっていてもよい。) (In the formula (i), R 5 is the same as R 5 in the formula (III), and all may be the same or different from each other. (I) In the formula, m is And is an integer of 1 to 6. (ii) In the formula, R 5 is the same as R 5 in the formula (III), and all may be the same or different from each other.

トリメチロールアルカンポリオールエステルとしては、トリメチロールプロパントリカプリレート、トリメチロールプロパントリカプレート(ライオン株式会社製、ルビノールF−308N、F−310N等)、トリメチロールプロパントリオレート(日油株式会社製、ユニスターH−381R等)等が挙げられ、ペンタエリスリトールポリオールエステルとしては、ペンタエリスリトールテトラオレート(日油株式会社製、ユニスターH−481R)等が挙げられる。中でも、トリメチロールアルカンポリオールエステルが好ましく、添加剤溶解性を高め、低動粘度、高粘度指数をより高次元で両立する観点から、トリメチロールプロパントリカプレートが特に好ましい。   Examples of the trimethylolalkane polyol ester include trimethylolpropane tricaprylate, trimethylolpropane tricaplate (manufactured by Lion Corporation, Rubinol F-308N, F-310N, etc.), trimethylolpropane trioleate (manufactured by NOF Corporation, Unistar). H-381R and the like), and pentaerythritol polyol ester includes pentaerythritol tetraoleate (manufactured by NOF Corporation, Unistar H-481R). Among them, trimethylolalkane polyol ester is preferable, and trimethylolpropane tricaplate is particularly preferable from the viewpoint of improving additive solubility and achieving both low kinematic viscosity and high viscosity index in higher dimensions.

潤滑油基油中の(C)成分の含有量は、5〜60質量%であり、10〜50質量%が好ましく、10〜40質量%がより好ましい。上記下限値未満であると、添加剤溶解性が不十分になると共に、耐熱性が低下するおそれがある。上記上限値超であると、添加剤溶解性が不十分になると共に、他の成分(特に(A)成分)の含有量が少なくて、低動粘度と高粘度指数との両立が困難になる。  Content of (C) component in lubricating base oil is 5-60 mass%, 10-50 mass% is preferable and 10-40 mass% is more preferable. If it is less than the lower limit, the additive solubility becomes insufficient and the heat resistance may be lowered. If it exceeds the above upper limit, the additive solubility becomes insufficient, and the content of other components (particularly the component (A)) is small, making it difficult to achieve both low kinematic viscosity and high viscosity index. .

≪(C)成分の製造方法≫
(C)成分の製造方法としては、例えば、(c1)成分である脂肪酸と(c2)成分とを触媒の存在下で任意の温度に加熱して、(c2)成分で(c1)成分をエステル化する(エステル化工程)もの(エステル化法)が挙げられる。
≪ (C) Component manufacturing method≫
As a method for producing the component (C), for example, the fatty acid (c1) and the component (c2) are heated to an arbitrary temperature in the presence of a catalyst, and the component (c1) is esterified with the component (c2). (Esterification step) (esterification method).

エステル化工程における(c1)成分と(c2)成分との配合比は、例えば、(c2)成分がトリオールである場合、(c1)/(c2)で表されるモル比を3〜6とするのが好ましい。  The compounding ratio of the component (c1) and the component (c2) in the esterification step is, for example, when the component (c2) is triol, the molar ratio represented by (c1) / (c2) is 3-6. Is preferred.

エステル化工程に用いる触媒としては、例えば、硫酸、p−トルエンスルホン酸(p−TS)、ベンゼンスルホン酸(BS)等の酸触媒、ZrO、TiO、SiO、PO、Al、ZnO等の無機酸化物触媒等が挙げられる。
エステル化工程における触媒の使用量は、触媒の種類等を勘案して決定でき、例えば、(c1)成分と(c2)成分との合計100質量部に対し、0.01〜5.0質量部とされる。
エステル化工程における加熱温度は、例えば、150〜260℃とされる。
Examples of the catalyst used in the esterification step include acid catalysts such as sulfuric acid, p-toluenesulfonic acid (p-TS), and benzenesulfonic acid (BS), ZrO 2 , TiO 2 , SiO 2 , PO 4 , and Al 2 O. 3 and inorganic oxide catalysts such as ZnO.
The amount of the catalyst used in the esterification step can be determined in consideration of the type of the catalyst, for example, 0.01 to 5.0 parts by mass with respect to 100 parts by mass in total of the (c1) component and the (c2) component. It is said.
The heating temperature in the esterification step is, for example, 150 to 260 ° C.

エステル化工程の後、必要に応じて精製工程を設けることができる。
精製工程は、未反応の(c1)成分、(c2)成分、副生物の水及び触媒を除去する工程である。精製工程には、従来公知の精製方法を用いることができ、例えば、焼成珪藻土等の濾過助剤を用いて濾別する方法、遠心分離、減圧留去等が挙げられる。
After the esterification step, a purification step can be provided as necessary.
The purification step is a step of removing unreacted component (c1), component (c2), by-product water and catalyst. A conventionally well-known purification method can be used for a refinement | purification process, For example, the method of filter-separating using filter aids, such as calcination diatomaceous earth, centrifugation, vacuum distillation, etc. are mentioned.

また、(C)成分の製造方法としては、例えば、(c1)成分である脂肪酸アルキルエステルと(c2)成分とを触媒の存在下で加熱して、(c1)成分と(c2)成分とをエステル交換する(エステル交換工程)もの(エステル交換法)が挙げられる。  Moreover, as a manufacturing method of (C) component, for example, the fatty acid alkyl ester which is (c1) component and (c2) component are heated in presence of a catalyst, (c1) component and (c2) component are made. Examples include transesterification (transesterification step) (transesterification method).

エステル交換工程における(c1)成分と(c2)成分との配合比は、エステル化工程における(c1)成分と(c2)成分との配合比と同様である。  The compounding ratio of the component (c1) and the component (c2) in the transesterification step is the same as the compounding ratio of the component (c1) and the component (c2) in the esterification step.

エステル交換工程に用いる触媒としては、例えば、リチウム、セシウム、ナトリウム、カリウム、マグネシウム、バリウム、カルシウム等の水酸化物、炭酸水素塩、炭酸塩、ナトリウムメトキシド、カリウムメトキシド等の塩基性触媒、チタン系のテトライソプロピルチタネート、テトラn−ブチルチタネート、テトラエタノールアミンチタネート、テトラステアリルチタネート等が挙げられる。
エステル交換工程における触媒の使用量は、触媒の種類等を勘案して決定でき、例えば、(c1)成分と(c2)成分との合計100質量部に対し、0.01〜5.0質量部とされる。
エステル交換工程における加熱温度は、例えば、150〜260℃とされる。
Examples of the catalyst used in the transesterification step include hydroxides such as lithium, cesium, sodium, potassium, magnesium, barium and calcium, basic catalysts such as hydrogen carbonate, carbonate, sodium methoxide and potassium methoxide, Examples include titanium-based tetraisopropyl titanate, tetra n-butyl titanate, tetraethanolamine titanate, and tetrastearyl titanate.
The amount of the catalyst used in the transesterification step can be determined in consideration of the type of the catalyst, for example, 0.01 to 5.0 parts by mass with respect to 100 parts by mass in total of the component (c1) and the component (c2). It is said.
The heating temperature in the transesterification step is, for example, 150 to 260 ° C.

エステル交換工程の後、必要に応じて精製工程を設けることができる。
精製工程は、未反応の(c1)成分、(c2)成分、副生物のアルコール及び触媒を除去する工程である。
エステル交換工程の後に設ける精製工程は、エステル化工程の後に設ける精製工程と同じである。
After the transesterification step, a purification step can be provided as necessary.
The purification step is a step of removing unreacted (c1) component, (c2) component, by-product alcohol and catalyst.
The purification step provided after the transesterification step is the same as the purification step provided after the esterification step.

<任意成分>
潤滑油基油は、本発明の効果を損なわない範囲で、必要に応じて任意成分を含有できる。任意成分としては、例えば、鉱油、PAO、イソブテン等の炭化水素油等、(A)〜(C)成分以外の潤滑油基油(任意油基油)等が挙げられる。任意基油を含有することで、動粘度、粘度指数、耐熱性、流動点等の諸特性を調節できる。
潤滑油基油中の任意基油の含有量は、1〜50質量%が好ましく、高粘度指数を維持する観点から5〜20質量%がより好ましい。
<Optional component>
Lubricating oil base oil can contain an arbitrary component as needed in the range which does not impair the effect of this invention. Examples of the optional component include mineral base oils, hydrocarbon oils such as PAO and isobutene, and lubricant base oils (arbitrary oil base oils) other than the components (A) to (C). By containing an optional base oil, various properties such as kinematic viscosity, viscosity index, heat resistance, and pour point can be adjusted.
The content of the optional base oil in the lubricating base oil is preferably 1 to 50% by mass, and more preferably 5 to 20% by mass from the viewpoint of maintaining a high viscosity index.

<潤滑油基油の物性>
潤滑油基油の40℃における動粘度は、7〜30mm/sが好ましく、8〜22mm/sがより好ましく、9.8〜15mm/sがさらに好ましい。40℃における動粘度が上記下限値以上であれば、高温下において動粘度が低下して油膜が薄くなりすぎることを抑制しやすく、油膜切れによる摩擦力の増大や摩耗等を抑制しやすい。40℃における動粘度が上記上限値以下であれば、低摩擦損失(低トルク)で省エネとなり、潤滑油基油の持ち出しが少なく経済的である。
<Physical properties of lubricating base oil>
Kinematic viscosity at 40 ° C. of the lubricating base oil is preferably 7~30mm 2 / s, more preferably 8~22mm 2 / s, more preferably 9.8~15mm 2 / s. If the kinematic viscosity at 40 ° C. is equal to or higher than the above lower limit value, it is easy to suppress the kinematic viscosity from decreasing and the oil film from becoming too thin at high temperatures, and it is easy to suppress an increase in frictional force or wear due to the oil film breakage. If the kinematic viscosity at 40 ° C. is equal to or lower than the above upper limit, energy is saved with a low friction loss (low torque), and it is economical to take out the lubricating base oil.

本発明の潤滑油基油の100℃における動粘度は、2〜10mm/sが好ましく、2〜8mm/sがより好ましく、2〜6mm/sがさらに好ましい。100℃における動粘度が2mm/s以上であれば、油膜が薄くなりすぎるのを抑制しやすい。100℃における動粘度が10mm/s以下であれば、低摩擦損失(低トルク)で省エネとなり、潤滑油基油の持ち出しが少なく経済的である。 Kinematic viscosity at 100 ° C. of the lubricating base oils of the present invention is preferably from 2 to 10 mm 2 / s, more preferably from 2 to 8 mm 2 / s, more preferably 2 to 6 mm 2 / s. If the kinematic viscosity at 100 ° C. is 2 mm 2 / s or more, it is easy to suppress the oil film from becoming too thin. When the kinematic viscosity at 100 ° C. is 10 mm 2 / s or less, energy is saved with a low friction loss (low torque), and it is economical to take out the lubricating base oil.

本発明の潤滑油基油の粘度指数は、150以上が好ましく、160以上がより好ましく、170以上がさらに好ましい。粘度指数が上記下限値以上であれば、温度変化による動粘度の変化が小さくなり、幅広い温度範囲で高い摩擦低減効果が安定して得られやすい。また、本発明の潤滑油基油を別の基油と混合した際の潤滑油組成物の粘度指数も向上する。さらに、粘度指数向上剤を添加する場合も、その添加量が少なくなるので、せん断による粘度低下の度合いが少なくなる。  The viscosity index of the lubricating base oil of the present invention is preferably 150 or more, more preferably 160 or more, and even more preferably 170 or more. If the viscosity index is equal to or greater than the above lower limit value, the change in kinematic viscosity due to a temperature change is small, and a high friction reduction effect is easily obtained stably over a wide temperature range. Moreover, the viscosity index of the lubricating oil composition when the lubricating base oil of the present invention is mixed with another base oil is also improved. Further, when a viscosity index improver is added, the amount of addition is reduced, and therefore the degree of viscosity reduction due to shearing is reduced.

潤滑油基油の流動点は、冬季や高緯度地域等、幅広い使用環境でのハンドリング性を確保する観点から、−20℃以下が好ましく、−30℃以下がより好ましく、−35℃以下がさらに好ましい。  The pour point of the lubricating base oil is preferably −20 ° C. or lower, more preferably −30 ° C. or lower, and even more preferably −35 ° C. or lower, from the viewpoint of ensuring handling in a wide range of usage environments such as winter and high latitude areas. .

<製造方法>
潤滑油基油の製造方法は、特に限定されず、(A)〜(C)成分を任意の温度条件下で攪拌混合する方法が挙げられる。攪拌混合する装置としては、従来公知の攪拌翼付きの配合槽、減圧により脱水可能な装置を備えた攪拌翼付の精製槽等が挙げられる。
<Manufacturing method>
The method for producing the lubricating base oil is not particularly limited, and examples thereof include a method of stirring and mixing the components (A) to (C) under an arbitrary temperature condition. Examples of the apparatus for stirring and mixing include conventionally known mixing tanks with stirring blades, purification tanks with stirring blades equipped with a device that can be dehydrated by decompression, and the like.

本発明の潤滑油基油は、低動粘度で高粘度指数が要求される用途に好適である。具体的には自動車用エンジン油、船舶用エンジン油、建設機械用エンジン油、農業機器用エンジン油、グリース向け基油、冷凍機油、切削、研削、圧延、プレス等の金属加工油、軸受け油、変速機油、ディファレンシャル油、トルクコンバーター油、油圧作動油が挙げられ、より好ましくは、潤滑部の初動時の温度が室温付近で、使用中に温度上昇が起こる用途であって、使用時の温度が主に0〜130℃の範囲であり、かつ低動粘度を要求される潤滑部への使用に適する。このような用途としては、例えば、油圧作動油、変速機油、金属加工油、グリース油又は軸受け油のいずれかの基油として用いられることが好ましく、中でも、油圧作動油の基油として用いられることがさらに好ましく、車輌のダンパー用又はショックアブソーバー用、制震装置に封入される油等、緩衝器の油圧作動油の基油として用いられることが特に好ましい。  The lubricating base oil of the present invention is suitable for applications requiring a low kinematic viscosity and a high viscosity index. Specifically, automotive engine oil, marine engine oil, construction machine engine oil, agricultural machinery engine oil, grease base oil, refrigeration oil, cutting, grinding, rolling, pressing metal processing oil, bearing oil, Transmission oil, differential oil, torque converter oil, hydraulic fluid, etc., more preferably, the temperature at the time of initial operation of the lubrication part is near room temperature, and the temperature rises during use. It is mainly in the range of 0 to 130 ° C. and is suitable for use in lubricated parts that require low kinematic viscosity. As such an application, for example, it is preferable to be used as a base oil of any one of hydraulic hydraulic oil, transmission oil, metalworking oil, grease oil or bearing oil, and above all, it is used as a base oil for hydraulic hydraulic oil. Is more preferable, and it is particularly preferably used as a base oil of a hydraulic fluid for a shock absorber such as a vehicle damper or a shock absorber or oil sealed in a vibration control device.

油圧作動油、変速機油、金属加工油、グリース油、軸受け油等の潤滑油組成物には、本発明の潤滑油基油以外に、必要に応じて、鉱油、PAO、イソブテン等の炭化水素油、(A)〜(C)成分以外のポリオールエステル、コンプレックスエステル、脂肪酸アルキルエステル、菜種油や米糠油、大豆油等の植物油といった他の潤滑油基油等を併用できる。  In addition to the lubricating base oil of the present invention, a lubricating oil composition such as hydraulic fluid, transmission oil, metalworking oil, grease oil, bearing oil, etc., if necessary, hydrocarbon oil such as mineral oil, PAO, isobutene, etc. Polyol esters other than the components (A) to (C), complex esters, fatty acid alkyl esters, other lubricating base oils such as rapeseed oil, rice bran oil and soybean oil can be used in combination.

また、潤滑油組成物には、必要に応じて、酸化防止剤、極圧剤、摩擦調整剤、金属不活性化剤、流動帯電防止剤、粘度指数向上剤、流動点降下剤、清浄分散剤、分子修復剤、乳化剤等、従来公知の添加剤又はこれらを複数種組み合わせたパッケージ品等を添加できる。粘度指数向上剤としては、例えば、メタクリレート系ポリマー(三洋化成工業株式会社製、商品名「アクルーブ136」、「サンルーブ1703」)等が挙げられる。また、天然ガスエンジン、船舶用ディーゼルエンジン等に用いられる潤滑油添加剤としては、HiTEC 638(無灰分散剤、Afton chemical社(アメリカ)製)等が挙げられる。また、パッケージ品としては、エンジンオイル用パッケージの汎用グレード品であるHiTEC 9325G(添加剤パッケージ、Afton chemical社(アメリカ)製)が挙げられる。
本発明の潤滑油基油は、これらの潤滑油添加剤を良好に溶解できるため、潤滑油添加剤の機能を十分に発揮できる。
In addition, as necessary, the lubricating oil composition may include an antioxidant, an extreme pressure agent, a friction modifier, a metal deactivator, a fluid antistatic agent, a viscosity index improver, a pour point depressant, and a cleaning dispersant. In addition, a conventionally known additive such as a molecular restoration agent, an emulsifier, or a package product obtained by combining a plurality of these can be added. Examples of the viscosity index improver include methacrylate polymers (manufactured by Sanyo Kasei Kogyo Co., Ltd., trade names “Aclude 136”, “Sun-Lube 1703”) and the like. Moreover, as a lubricating oil additive used for a natural gas engine, a marine diesel engine, etc., HiTEC 638 (ashless dispersant, manufactured by Afton chemical (USA)) and the like can be mentioned. Examples of the package product include HiTEC 9325G (additive package, manufactured by Afton chemical (USA)), which is a general-purpose grade product for engine oil packages.
Since the lubricating base oil of the present invention can dissolve these lubricating oil additives satisfactorily, the lubricating oil additive can sufficiently function.

潤滑油組成物中の潤滑油添加剤の含有量は、潤滑油組成物に求める機能等を勘案して決定でき、例えば、0.01〜20質量%が好ましい。上記下限値未満であると、潤滑油添加剤の添加効果が得られにくいおそれがあり、上記上限値超では、他の成分(特に(A)〜(C)成分)の含有量が減少し、低動粘度と高粘度指数との両立が図りにくくなるおそれがある。   The content of the lubricating oil additive in the lubricating oil composition can be determined in consideration of functions required for the lubricating oil composition, and is preferably 0.01 to 20% by mass, for example. If the amount is less than the lower limit, the additive effect of the lubricating oil additive may not be obtained. If the amount exceeds the upper limit, the content of other components (particularly the components (A) to (C)) decreases. It may be difficult to achieve both a low kinematic viscosity and a high viscosity index.

上述した潤滑油基油は、(A)〜(C)成分を特定量含有するため、潤滑油添加剤を良好に溶解でき、かつ低動粘度と高粘度指数とをより高い次元で両立できる。
そして、低動粘度と高粘度指数とが高い次元で両立されているため、各種緩衝器の油圧作動油の基油に好適である。
Since the lubricating base oil described above contains a specific amount of the components (A) to (C), the lubricating oil additive can be dissolved well, and a low kinematic viscosity and a high viscosity index can be achieved at a higher level.
And since low kinematic viscosity and high viscosity index are compatible in a high dimension, it is suitable for the base oil of the hydraulic fluid of various shock absorbers.

以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。
(使用原料)
<(A)成分:脂肪酸ポリオキシアルキレンアルキルエーテル(A)>
(A)成分として、表1に示す仕様の下記A−1〜A−6を用いた。
A−1:ポリオキシプロピレンラウリン酸メチルエーテル(M12−7PO,プロピレンオキシド7モル付加物,後述する製造例1で製造したもの)
A−2:ポリオキシプロピレンC18混合脂肪酸メチルエーテル(M182−7PO,プロピレンオキシド7モル付加物,後述する製造例2で製造したもの)
A−3:ポリオキシアルキレンC18混合脂肪酸メチルエーテル(M182−5EO−3PO,エチレンオキシド5モルとプロピレンオキシド3モルとの付加物,商品名:レオファットOC−0503M,ライオン株式会社製)
A−4:ポリオキシプロピレンC18混合脂肪酸メチルエーテル(M182−5PO,プロピレンオキシド5モル付加物,後述する製造例3で製造したもの)
A−5:ポリオキシプロピレンC18混合脂肪酸メチルエーテル(M182−7PO,プロピレンオキシド7モル付加物,後述する製造例4で製造したもの)
A−6:ポリオキシプロピレンC18混合脂肪酸メチルエーテル(M182−3PO,プロピレンオキシド3モル付加物,後述する製造例5で製造したもの)
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in detail, this invention is not limited by the following description.
(Raw materials used)
<(A) component: fatty acid polyoxyalkylene alkyl ether (A)>
As the component (A), the following A-1 to A-6 having the specifications shown in Table 1 were used.
A-1: Polyoxypropylene lauric acid methyl ether (M12-7PO, propylene oxide 7 mol adduct, produced in Production Example 1 described later)
A-2: Polyoxypropylene C18 mixed fatty acid methyl ether (M182-7PO, propylene oxide 7-mol adduct, produced in Production Example 2 described later)
A-3: Polyoxyalkylene C18 mixed fatty acid methyl ether (M182-5EO-3PO, adduct of 5 mol of ethylene oxide and 3 mol of propylene oxide, trade name: Leo Fat OC-0503M, manufactured by Lion Corporation)
A-4: Polyoxypropylene C18 mixed fatty acid methyl ether (M182-5PO, propylene oxide 5 mol adduct, produced in Production Example 3 described later)
A-5: Polyoxypropylene C18 mixed fatty acid methyl ether (M182-7PO, propylene oxide 7 mol adduct, produced in Production Example 4 described later)
A-6: Polyoxypropylene C18 mixed fatty acid methyl ether (M182-3PO, propylene oxide 3 mol adduct, produced in Production Example 5 described later)

<(A’)成分:(A)成分の比較品>
(A’)成分として、表1に示す仕様の下記A’−1、A’−2を用いた。
A’−1:ポリオキシプロピレンC18混合脂肪酸メチルエーテル(M182−5PO,プロピレンオキシド5モル付加物,後述する製造例6で製造したもの)
A’−2:ポリオキシプロピレンC18混合脂肪酸メチルエーテル(M182−5PO,プロピレンオキシド5モル付加物,後述する製造例7で製造したもの)
<(A ′) component: Comparative product of component (A)>
As the component (A ′), the following A′-1 and A′-2 having the specifications shown in Table 1 were used.
A′-1: Polyoxypropylene C18 mixed fatty acid methyl ether (M182-5PO, propylene oxide 5 mol adduct, produced in Production Example 6 described later)
A′-2: Polyoxypropylene C18 mixed fatty acid methyl ether (M182-5PO, propylene oxide 5 mol adduct, produced in Production Example 7 described later)

<(B)成分:脂肪酸アルキルエステル(B)>
(B)成分として、表1に示す仕様の下記B−1〜B−4を用いた。
B−1:オレイン酸−2エチルヘキシル(C18:1−2EH,商品名:ユニスターMB−881,日油株式会社製)
B−2:ラウリン酸−2エチルヘキシル(C12−2EH,商品名:パステル2H−12,ライオン株式会社製)
B−3:カプリル酸−2エチルヘキシル(C8−2EH,商品名:パステル2H−08,ライオン株式会社製)
B−4:ラウリン酸−イソプロピル(C12−イソプロピル,後述する製造例8で製造したもの)
<(B) component: fatty acid alkyl ester (B)>
As the component (B), the following B-1 to B-4 having the specifications shown in Table 1 were used.
B-1: Oleic acid-2-ethylhexyl (C18: 1-2EH, trade name: Unistar MB-881, manufactured by NOF Corporation)
B-2: lauric acid-2-ethylhexyl (C12-2EH, trade name: Pastel 2H-12, manufactured by Lion Corporation)
B-3: Caprylic acid-2-ethylhexyl (C8-2EH, trade name: Pastel 2H-08, manufactured by Lion Corporation)
B-4: Isopropyl laurate (C12-isopropyl, produced in Production Example 8 described later)

<(B’)成分:(B)成分の比較品>
(B’)成分として、表1に示す仕様の下記B’−1を用いた。
B’−1:ラウリン酸メチルエステル(M12、商品名:パステルM12、ライオン株式会社製)
<(B ′) component: Comparative product of component (B)>
The following B′-1 having the specifications shown in Table 1 was used as the component (B ′).
B′-1: Lauric acid methyl ester (M12, trade name: Pastel M12, manufactured by Lion Corporation)

<(C)成分:脂肪酸ポリオールエステル(C)>
(C)成分として、表1に示す仕様の下記C−1〜C−4を用いた。
C−1:トリメチロールプロパントリカプリレート(TMP−C8,商品名:ルビノールF−308N,ライオン株式会社製)
C−2:トリメチロールプロパントリカプレート(TMP−C10,商品名:ルビノールF−310N,ライオン株式会社製)
C−3:トリメチロールプロパントリオレート(TMP−C18:1,商品名:ユニスターH−381R、日油株式会社製)
C−4:ペンタエリスリトールテトラオレート(ペンタエリスリトール−C18:1,商品名:ユニスターH−481R、日油株式会社製)
<(C) component: fatty acid polyol ester (C)>
As the component (C), the following C-1 to C-4 having the specifications shown in Table 1 were used.
C-1: Trimethylolpropane tricaprylate (TMP-C8, trade name: Rubinol F-308N, manufactured by Lion Corporation)
C-2: Trimethylolpropane tricaplate (TMP-C10, trade name: Rubinol F-310N, manufactured by Lion Corporation)
C-3: Trimethylolpropane trioleate (TMP-C18: 1, trade name: Unistar H-382R, manufactured by NOF Corporation)
C-4: Pentaerythritol tetraoleate (Pentaerythritol-C18: 1, trade name: Unistar H-481R, manufactured by NOF Corporation)

<(C’)成分:(C)成分の比較品>
(C’)成分として、表1に示す仕様の下記C’−1を用いた。
C’−1:ネオペンチルグリコール−ジカプレート(ネオペンチルグリコール−C10,後述する製造例9で製造したもの)
<(C ′) component: Comparative product of component (C)>
The following C′-1 having the specifications shown in Table 1 was used as the component (C ′).
C′-1: Neopentylglycol-Dicaplate (Neopentylglycol-C10, produced in Production Example 9 described later)

Figure 2012224653
Figure 2012224653

(評価方法)
<ナロー率>
(A)成分又は(A’)成分それぞれのアルキレンオキシドの付加モル数の分布測定及びナロー率の算出は下記の手順により行った。
(A)成分又は(A’)成分0.5gをアセトン10gに溶解して試料とした。この試料1μLを下記仕様の装置に注入して、(A)成分又は(A’)成分におけるアルキレンオキシドの付加モル数毎の濃度(質量%)を測定した。得られた濃度から、前述の(1)式によりナロー率を算出した。
(Evaluation method)
<Narrow rate>
The distribution measurement of the number of added moles of the alkylene oxide of each of the component (A) or the component (A ′) and the calculation of the narrow ratio were performed according to the following procedure.
A sample was prepared by dissolving 0.5 g of component (A) or component (A ′) in 10 g of acetone. 1 μL of this sample was injected into an apparatus having the following specifications, and the concentration (% by mass) of each alkylene oxide added in the component (A) or component (A ′) was measured. From the obtained concentration, the narrow ratio was calculated by the above-described equation (1).

≪装置仕様≫
ガスクロマトグラム:HP−5890(ヒューレットパッカード社製)
検出器:FID
カラム:Ultra2、φ0.25mm×長さ25m、膜厚0.1μm
≪Device specifications≫
Gas chromatogram: HP-5890 (manufactured by Hewlett-Packard Company)
Detector: FID
Column: Ultra2, φ0.25 mm × length 25 m, film thickness 0.1 μm

≪分析条件≫
Injection:320℃
Detecter:320℃
温度:80℃→100℃(昇温速度:5℃/min)
100℃→320℃(昇温速度:25℃/min)、20minホールド
キャリアガス:He
スプリット比:50対1
スプリットベント流量:50mL/min
パージベント流量:3.5mL/min
≪Analysis conditions≫
Injection: 320 ° C
Detector: 320 ° C
Temperature: 80 ° C. → 100 ° C. (Temperature increase rate: 5 ° C./min)
100 ° C. → 320 ° C. (temperature increase rate: 25 ° C./min), 20 min hold Carrier gas: He
Split ratio: 50 to 1
Split vent flow rate: 50 mL / min
Purge vent flow rate: 3.5 mL / min

<平均付加モル数の算出方法>
EO(エチレンオキシド),PO(プロピレンオキシド)の平均付加モル数は、原料及びアルキレンオキシドの仕込みの質量の収支から計算で求めた。ただし、EO、POの付加反応後に蒸留を行った場合には、以下のH−NMR分析により平均付加モル数を求めた。
得られた化合物30mgを4mLの重クロロホルムに溶解し、H−NMR(300MHz、日本電子株式会社製 FT NMR SYSTEM JNM−LA300)にて測定した。重クロロホルムのケミカルシフトを7.30ppm基準として、ケミカルシフト0.87ppm(脂肪酸の末端メチル)、1.13〜1.15ppm(POの側鎖メチル)、3.32〜3.66ppm(POのメチンとメチレン)、3.52〜3.71ppm(EOのメチレン)の各ピークの積分値比率から計算で求めた。
<Calculation method of average added mole number>
The average added mole number of EO (ethylene oxide) and PO (propylene oxide) was calculated from the mass balance of the raw materials and the charge of alkylene oxide. However, when distillation was performed after the addition reaction of EO and PO, the average number of added moles was determined by the following 1 H-NMR analysis.
30 mg of the obtained compound was dissolved in 4 mL of deuterated chloroform and measured with 1 H-NMR (300 MHz, FT NMR SYSTEM JNM-LA300 manufactured by JEOL Ltd.). Chemical shift 0.87ppm (terminal methyl of fatty acid), 1.13 to 1.15ppm (side chain methyl of PO), 3.32 to 3.66ppm (PO methine, based on 7.30ppm of chemical shift of deuterated chloroform And methylene) and 3.52 to 3.71 ppm (methylene of EO).

<動粘度>
40℃又は100℃における動粘度をJIS K2283に準拠して測定した。
試料をキャノンフェンスケ型動粘度管に採取し、40℃又は100℃に保持した恒温槽で30分以上保温し、該キャノンフェンスケ型動粘度管において試料を流下させた際の時間を計測した。
<Kinematic viscosity>
The kinematic viscosity at 40 ° C. or 100 ° C. was measured according to JIS K2283.
The sample was collected in a Cannon Fenceke type kinematic viscosity tube, kept warm for 30 minutes or more in a thermostatic bath maintained at 40 ° C. or 100 ° C., and the time when the sample was allowed to flow down in the Cannon Fenceke type kinematic viscosity tube was measured. .

<粘度指数>
粘度指数をJIS K2283に準拠し、40℃及び100℃の動粘度を下記(2)式及び下記(3)に引用して算出した。算出した粘度指数を下記評価基準に分類して評価した。
<Viscosity index>
The kinematic viscosity at 40 ° C. and 100 ° C. was calculated based on the following formula (2) and the following (3) based on the viscosity index according to JIS K2283. The calculated viscosity index was classified and evaluated according to the following evaluation criteria.

粘度指数=(10−1)/0.00715+100 ・・・(2)
N=(logH−logU)/logY ・・・(3)
Viscosity index = (10 N −1) /0.00715+100 (2)
N = (logH−logU) / logY (3)

ただし、前記(2)式及び(3)式における各記号は以下の通りである。
U:試料の40℃における動粘度(mm/s)。
Y:試料の100℃における動粘度(mm/s)。
H:100℃において試料と同一の動粘度をもつ、粘度指数100の石油製品の40℃における動粘度(mm/s)。JIS K2283の付表から該当する動粘度を読み取って引用する。
N:YをHとUの比に一致させるために必要なべき数。
However, each symbol in the formulas (2) and (3) is as follows.
U: Kinematic viscosity of the sample at 40 ° C. (mm 2 / s).
Y: Kinematic viscosity at 100 ° C. (mm 2 / s) of the sample.
H: Kinematic viscosity at 40 ° C. (mm 2 / s) of a petroleum product having a viscosity index of 100 having the same kinematic viscosity as the sample at 100 ° C. Read and quote the corresponding kinematic viscosity from the appendix of JIS K2283.
N: The number necessary to match Y to the ratio of H and U.

≪評価基準≫
◎:粘度指数が170以上。
○:粘度指数が150以上170未満。
×:粘度指数が150未満。
≪Evaluation criteria≫
A: Viscosity index is 170 or more.
○: The viscosity index is 150 or more and less than 170.
X: Viscosity index is less than 150.

<流動点>
流動点は、JIS K2269に準拠して測定した。
−20℃以下を「○」(合格)とし、−20℃超を「×」(不合格)とした。
<Pour point>
The pour point was measured according to JIS K2269.
−20 ° C. or lower was evaluated as “◯” (passed), and −20 ° C. or higher was determined as “x” (failed).

<耐熱性>
耐熱性は、DRY−BLOCK−BATH装置(アズワン株式会社製、THB−2)にて測定した。ガラスビン(SV−30、NICHIDEN−RIKA GLASS CO,LTD.)に試料5gを採取し、130℃に到達した時点から、72時間保持した後の質量を記録し、試験前後の質量減少率を下記(4)式により求め、これを耐熱性の指標とした。求めた質量減少率を下記評価基準に分類し、「○」以上を合格とした。
<Heat resistance>
The heat resistance was measured with a DRY-BLOCK-BATH apparatus (manufactured by ASONE Corporation, THB-2). 5 g of a sample was taken in a glass bottle (SV-30, NICHIDEN-RIKA GLASS CO, LTD.), And after reaching 130 ° C., the mass after holding for 72 hours was recorded. 4) It was obtained from the equation and used as an index of heat resistance. The obtained mass reduction rate was classified into the following evaluation criteria, and “◯” or more was regarded as acceptable.

質量減少率(質量%)=(試験前の質量−試験後の質量)÷試験前の質量×100・・・(4)  Mass reduction rate (mass%) = (mass before test−mass after test) ÷ mass before test × 100 (4)

≪評価基準≫
◎:質量減少率が3質量%未満。
○:質量減少率が3質量%以上4質量%未満。
△:質量減少率が4質量%以上5質量%未満。
×:質量減少率が5質量%以上。
≪Evaluation criteria≫
A: Mass reduction rate is less than 3% by mass.
○: The mass reduction rate is 3% by mass or more and less than 4% by mass.
(Triangle | delta): Mass reduction rate is 4 mass% or more and less than 5 mass%.
X: Mass reduction rate is 5 mass% or more.

<添加剤溶解性>
各例の潤滑油基油39.6gに、潤滑油添加剤としてHiTEC 9325G(添加剤パッケージ,Afton chemical社(アメリカ)製,以下、添加剤A)又はHiTEC 638(無灰分散剤,Afton chemical社(アメリカ)製,以下、添加剤B)0.4gを加え、振とう混合して試料を調製した。潤滑油添加剤の溶けやすさ、振とう混合後の外観から、添加剤溶解性を下記評価基準に従い評価した。添加剤A及びBのいずれも「○」又は「◎」のものを総合評価「○」(合格)とし、添加剤A及び/又はBが「×」又は「△」のものを総合評価「×」(不合格)とした。
<Additive solubility>
To 39.6 g of the lubricating base oil of each example, HiTEC 9325G (additive package, manufactured by Afton chemical (USA), hereinafter referred to as additive A) or HiTEC 638 (ashless dispersant, Afton chemical ( USA), hereinafter, additive B) 0.4 g was added and mixed by shaking to prepare a sample. From the easiness of dissolution of the lubricant additive and the appearance after shake mixing, the additive solubility was evaluated according to the following evaluation criteria. Additives A and B are both “O” or “◎” as overall evaluation “O” (pass), and additives A and / or B are “X” or “△” as overall evaluation “×” "(Fail).

≪評価基準≫
◎:室温でも容易に均一に溶解し、かつ室温で1日間静置後の外観が透明液体。
○:60℃に加熱すると均一に溶解し、かつ室温で1日間静置後の外観が透明液体。
△:60℃に加熱すると均一に溶解し、60℃では透明だが、室温で1日静置後は沈殿又は濁りを生じる。
×:60℃に加熱しても、均一に溶解しない。
≪Evaluation criteria≫
A: Easily and evenly dissolved at room temperature, and the appearance after standing at room temperature for 1 day is a transparent liquid.
○: When heated to 60 ° C., it dissolves uniformly, and the appearance after standing at room temperature for 1 day is a transparent liquid.
(Triangle | delta): It melt | dissolves uniformly when heated to 60 degreeC, and although transparent at 60 degreeC, precipitation or cloudiness will arise after standing at room temperature for 1 day.
X: Even if it heats to 60 degreeC, it does not melt | dissolve uniformly.

(製造例1)A−1の調製
以下の手順に従い、ラウリン酸メチルエステルとグリコールエーテルとのエステル交換によりA−1を製造した。
4Lオートクレーブ内の窒素置換を2度行った後、メタノール(純正化学株式会社製)388gと、触媒として28質量%ナトリウムメトキシド8.9gを仕込んだ。その後、90℃まで昇温し、POを2112g(メタノール1モルに対して3.0モルに相当)を徐々に導入してPO付加反応を行った。PO導入時の圧力は0.48MPaであった。反応進行と共に圧力が低下し、2時間後に0.39MPaで一定となるまでPO付加反応を継続して行い、一次中間体A(メタノール−3PO体)を得た。
次いで、1223gの一次中間体Aを4Lオートクレーブに仕込み、90℃まで昇温した後、さらにPO861g(一次中間体A1モルに対して2.5モルに相当)を徐々に導入してPO付加反応を行った。PO導入時の圧力は0.49MPaであった。その後圧力が反応進行と共に低下し、2時間後に0.38MPaで一定となるまでPO付加反応を継続して行った。冷却後、キョーワード600S及びキョーワード700SL(以上、無機合成吸着剤,協和化学工業株式会社製)を各20g(粗製物に対して1質量%)添加し、95℃で30分間攪拌して触媒の吸着処理を行い、80℃で加圧ろ過による固液分離を行うことで二次中間体A(メタノール−5.5PO体)を得た。さらに、常圧から5Torr(0.7kPa)まで段階的に減圧しながら、常温から180℃まで昇温することで、POの付加モル数が0〜3の低沸点留分を除去した三次中間体A(メタノール−7PO体、蒸留品)を得た。
その後、攪拌翼付きの5L4つ口フラスコに、三次中間体A1097gと、ラウリン酸メチル(パーム油由来の炭素数12留分由来の脂肪酸メチルエステル、商品名:パステルM12、ライオン株式会社製)508g(三次中間体1モルに対して0.95モルに相当)と、炭酸水素ナトリウム7.3gを仕込み、攪拌下、常圧から5Torr(0.7kPa)まで段階的に減圧しながら、60℃から210℃まで昇温して、未反応のラウリン酸メチルが2質量%以下になるまでエステル交換反応を行い、粗製物を得た。その後、1000gの粗製物に対し、キョーワード500SH及びキョーワード700SL(いずれも協和化学工業株式会社製)を各10g(粗製物に対し1質量%)添加し、95℃で1時間加熱して吸着処理を行った。さらに、ハイフロスーパーセル(商品名,セライト社製)10g(粗製物に対し1質量%)を添加し、均一に分散させた後、80℃で加圧ろ過を行うことで、POの平均付加モル数が7モルのA−1(M12−7PO、R=C1123、R=CH)を得た。
(Manufacture example 1) Preparation of A-1 According to the following procedures, A-1 was manufactured by transesterification with lauric acid methyl ester and glycol ether.
After performing nitrogen substitution in the 4 L autoclave twice, 388 g of methanol (manufactured by Junsei Chemical Co., Ltd.) and 8.9 g of 28% by mass sodium methoxide as a catalyst were charged. Thereafter, the temperature was raised to 90 ° C., and 2112 g of PO (corresponding to 3.0 mol per 1 mol of methanol) was gradually introduced to carry out PO addition reaction. The pressure when introducing PO was 0.48 MPa. The pressure decreased with the progress of the reaction, and the PO addition reaction was continued until 2 hours later and became constant at 0.39 MPa to obtain a primary intermediate A (methanol-3PO form).
Next, 1223 g of the primary intermediate A was charged into a 4 L autoclave, heated to 90 ° C., and then PO861 g (corresponding to 2.5 mol relative to 1 mol of the primary intermediate A) was gradually introduced to carry out the PO addition reaction. went. The pressure at the time of PO introduction was 0.49 MPa. Thereafter, the pressure was reduced with the progress of the reaction, and the PO addition reaction was continued until 2 hours later and became constant at 0.38 MPa. After cooling, Kyoward 600S and Kyoward 700SL (above, inorganic synthetic adsorbent, manufactured by Kyowa Chemical Industry Co., Ltd.) 20 g each (1% by mass with respect to the crude product) were added, and the mixture was stirred at 95 ° C. for 30 minutes for catalyst. The secondary intermediate A (methanol-5.5PO body) was obtained by performing solid-liquid separation by pressure filtration at 80 ° C. Further, a tertiary intermediate in which the low-boiling fraction having an addition mole number of PO of 0 to 3 is removed by raising the temperature from normal temperature to 180 ° C. while gradually reducing the pressure from normal pressure to 5 Torr (0.7 kPa). A (methanol-7PO body, distilled product) was obtained.
Thereafter, in a 5 L four-necked flask equipped with a stirring blade, 1097 g of tertiary intermediate A and methyl laurate (fatty acid methyl ester derived from palm oil-derived carbon number 12 fraction, trade name: Pastel M12, manufactured by Lion Corporation) 508 g ( The equivalent of 0.95 mol per mol of the intermediate intermediate) and 7.3 g of sodium hydrogen carbonate were added, and while stirring, the pressure was gradually reduced from normal pressure to 5 Torr (0.7 kPa) while the temperature was reduced from 60 ° C to 210 ° C. The temperature was raised to 0 ° C., and a transesterification reaction was performed until the amount of unreacted methyl laurate was 2% by mass or less to obtain a crude product. Then, 10 g each of Kyoward 500SH and Kyoward 700SL (both manufactured by Kyowa Chemical Industry Co., Ltd.) are added to 1000 g of the crude product and heated at 95 ° C. for 1 hour for adsorption. Processed. Further, 10 g of Hyflo Supercell (trade name, manufactured by Celite) (1% by mass with respect to the crude product) was added and dispersed uniformly, followed by pressure filtration at 80 ° C., so that the average added mole of PO A-1 (M12-7PO, R 1 = C 11 H 23 , R 2 = CH 3 ) having 7 moles was obtained.

(製造例2)A−2の製造
ラウリン酸メチルエステルに換えて、オレイン酸メチル(パーム油由来の炭素数18留分由来のC18混合脂肪酸メチルエステル(C16/C18:0/C18:1/C18:2=3/10/70/17)、商品名:パステルM182、ライオン株式会社製)を三次中間体A1モルに対し0.95モル用い、常圧から5Torr(0.7kPa)まで段階的に減圧しながら、60℃から260℃まで昇温した以外は、製造例1と同様にして、A−2(M182−7PO、R=C1733、R=CH)を製造した。
(Production Example 2) Production of A-2 In place of lauric acid methyl ester, methyl oleate (C18 mixed fatty acid methyl ester derived from palm oil-derived C18 fraction (C16 / C18: 0 / C18: 1 / C18 : 2 = 3/10/70/17), brand name: Pastel M182, manufactured by Lion Co., Ltd.) is used in an amount of 0.95 moles per mole of tertiary intermediate A1, and stepwise from normal pressure to 5 Torr (0.7 kPa). A-2 (M182-7PO, R 1 = C 17 H 33 , R 2 = CH 3 ) was produced in the same manner as in Production Example 1 except that the temperature was raised from 60 ° C. to 260 ° C. while reducing the pressure.

(製造例3)A−4の製造
以下の手順に従い、オレイン酸メチル(パーム油由来の炭素数18留分由来のC18混合脂肪酸メチルエステル(C16/C18:0/C18:1/C18:2=3/10/70/17)、商品名:パステルM182、ライオン株式会社製)にプロピレンオキシドを直接付加させてA−4を製造した。
2.5MgO・Al・nHOで表される水酸化アルミナ・マグネシア(キョーワード300SN、協和化学工業株式会社製)を窒素気流下、750℃で3時間焼成し、焼成水酸化アルミナ・マグネシウム(Al/Mgモル比=0.44/0.56)触媒を得た。4Lオートクレーブに、パステルM182(商品名、ライオン株式会社製)908gと、焼成水酸化アルミナ・マグネシウム触媒7.2gを仕込み、窒素置換を行った。次いで、原料に含まれる水分を除去するため、100℃まで昇温し、5Torr(0.7kPa)で1時間脱水処理を行った。脱水処理後、180℃まで昇温して、窒素を導入してオートクレーブの反応缶内を常圧に戻し、プロピレンオキシド(PO)885g(オレイン酸メチル1モルに対して5モルに相当)を徐々に容器内へ導入した。導入終了直後、0.34MPaであった圧力が反応進行とともに低下し、2時間後に圧力0.29MPaで一定となるまでPO付加反応を継続して行った。得られた粗製物1350gにハイフロスーパーセル(セライト社製:珪藻土)20.25g(粗製物に対し1.5質量%)を添加し、均一に分散させた後、80℃で加圧ろ過を行い、A−4(M182−5PO、R=C1733、R=CH)を得た。
(Production Example 3) Production of A-4 According to the following procedure, methyl oleate (C18 mixed fatty acid methyl ester derived from palm oil-derived C18 fraction (C16 / C18: 0 / C18: 1 / C18: 2 = 3/10/70/17), trade name: Pastel M182, manufactured by Lion Corporation) and propylene oxide were directly added to produce A-4.
Alumina hydroxide-magnesia (Kyoward 300SN, manufactured by Kyowa Chemical Industry Co., Ltd.) represented by 2.5MgO.Al 2 O 3 · nH 2 O was calcined at 750 ° C. for 3 hours in a nitrogen stream, and calcined alumina hydroxide A magnesium (Al / Mg molar ratio = 0.44 / 0.56) catalyst was obtained. Into a 4 L autoclave, 908 g of pastel M182 (trade name, manufactured by Lion Corporation) and 7.2 g of calcined alumina hydroxide / magnesium catalyst were charged, and nitrogen substitution was performed. Subsequently, in order to remove the water | moisture content contained in a raw material, it heated up to 100 degreeC and dehydrated at 5 Torr (0.7 kPa) for 1 hour. After dehydration, the temperature was raised to 180 ° C., nitrogen was introduced to return the inside of the autoclave reaction vessel to normal pressure, and 885 g of propylene oxide (PO) (corresponding to 5 mol per 1 mol of methyl oleate) was gradually added. Into the container. Immediately after the introduction, the pressure of 0.34 MPa decreased with the progress of the reaction, and the PO addition reaction was continued until the pressure became constant at 0.29 MPa after 2 hours. To 1350 g of the obtained crude product, 20.25 g of Hyflo Supercell (manufactured by Celite: Diatomaceous Earth) (1.5% by mass with respect to the crude product) was added and dispersed uniformly, followed by pressure filtration at 80 ° C. , A-4 (M182-5PO, R 1 = C 17 H 33 , R 2 = CH 3 ) was obtained.

(製造例4)A−5の製造
POの導入量を1239gとした以外は、製造例3と同様にしてA−5(M182−7PO、R=C1733、R=CH)を得た。
(Production Example 4) Production of A-5 A-5 (M182-7PO, R 1 = C 17 H 33 , R 2 = CH 3 ) in the same manner as in Production Example 3 except that the amount of PO introduced was 1239 g. Got.

(製造例5)A−6の製造
POの導入量を531gとした以外は、製造例3と同様にしてA−6(M182−3PO、R=C1733、R=CH)を得た。
(Production Example 5) Production of A-6 A-6 (M182-3PO, R 1 = C 17 H 33 , R 2 = CH 3 ) in the same manner as in Production Example 3, except that the amount of PO introduced was 531 g. Got.

(製造例6)A’−1の製造
製造例1の一次中間体A1412gを4Lオートクレーブに仕込み、90℃まで昇温した後、さらにPO795g(一次中間体A1モルに対して2モルに相当)を徐々に導入してPO付加反応を行った。PO導入時の圧力は0.49MPaであった。その圧力が反応進行と共に低下し、2時間後に0.38MPaで一定となるまでPO付加反応を継続して行った。その後、蒸留操作を行わずに、キョーワード600S及びキョーワード700SL(以上、無機合成吸着剤,協和化学工業株式会社製)を各22g(粗製物に対して1質量%)添加し、95℃で30分間攪拌して触媒の吸着処理を行い、80℃で加圧ろ過による固液分離を行うことで二次中間体A’(メタノール−5PO体)を得た。その後、二次中間体A’を5L4つ口フラスコに入れ、常圧から5Torr(0.7kPa)まで段階的に減圧しながら、常温から260℃まで昇温することで、POの付加モル数が0〜2の低沸点留分とPOの付加モル数が8以上の高沸点留分を除去し、三次中間体A’(メタノール−5PO体、蒸留品)を得た。
その後、オレイン酸メチル(パーム油由来の炭素数18留分由来のC18混合脂肪酸メチルエステル(C16/C18:0/C18:1/C18:2=3/10/70/17)、商品名:パステルM182、ライオン株式会社製)を三次中間体A’の1モルに対し0.95モル用いた以外、製造例2と同様にしてA’−1(M182−5PO、R=C1733、R=CH)を得た。
(Production Example 6) Production of A′-1 First, 1412 g of the primary intermediate A in Production Example 1 was charged into a 4 L autoclave, heated to 90 ° C., and further PO795 g (corresponding to 2 moles relative to 1 mole of the primary intermediate A). The PO addition reaction was carried out gradually. The pressure at the time of PO introduction was 0.49 MPa. The PO addition reaction was continued until the pressure decreased with the progress of the reaction and became constant at 0.38 MPa after 2 hours. Then, without performing distillation operation, Kyoward 600S and Kyoward 700SL (above, inorganic synthetic adsorbent, manufactured by Kyowa Chemical Industry Co., Ltd.) were added in an amount of 22 g (1% by mass relative to the crude product) at 95 ° C. The catalyst was adsorbed by stirring for 30 minutes and subjected to solid-liquid separation by pressure filtration at 80 ° C. to obtain a secondary intermediate A ′ (methanol-5PO). Thereafter, the secondary intermediate A ′ is put into a 5 L four-necked flask, and the temperature is raised from normal temperature to 260 ° C. while gradually reducing the pressure from normal pressure to 5 Torr (0.7 kPa). A low-boiling fraction of 0 to 2 and a high-boiling fraction having an addition mole number of PO of 8 or more were removed to obtain a tertiary intermediate A ′ (methanol-5PO, distilled product).
Thereafter, methyl oleate (C18 mixed fatty acid methyl ester derived from palm oil-derived carbon number fraction (C16 / C18: 0 / C18: 1 / C18: 2 = 3/10/70/17), trade name: pastel A′-1 (M182-5PO, R 1 = C 17 H 33 ) was prepared in the same manner as in Production Example 2, except that M182 (manufactured by Lion Corporation) was used in an amount of 0.95 mol relative to 1 mol of the tertiary intermediate A ′. R 2 = CH 3 ) was obtained.

(製造例7)A’−2の製造
製造例6の二次中間体A’(メタノール−5PO体)1モルに対し、オレイン酸メチル(パーム油由来の炭素数18留分由来のC18混合脂肪酸メチルエステル(C16/C18:0/C18:1/C18:2=3/10/70/17)、商品名:パステルM182、ライオン株式会社製)を0.95モル用いた以外、製造例2と同様にしてA’−2(M182−5PO、R=C1733、R=CH)を得た。
(Manufacture example 7) Manufacture of A'-2 With respect to 1 mol of secondary intermediate A '(methanol-5PO body) of manufacture example 6, methyl oleate (C18 mixed fatty acid derived from a C18 fraction derived from palm oil) Production Example 2 except that 0.95 mol of methyl ester (C16 / C18: 0 / C18: 1 / C18: 2 = 3/10/70/17), trade name: Pastel M182, manufactured by Lion Corporation) was used. Similarly, A′-2 (M182-5PO, R 1 = C 17 H 33 , R 2 = CH 3 ) was obtained.

(製造例8)B−4の製造
製造例1の三次中間体Aに換えてイソプロパノール360gを用い、ラウリン酸メチル(パーム油由来の炭素数12留分由来の脂肪酸メチルエステル、商品名:パステルM12、ライオン株式会社製)を1223g(イソプロパノール1モルに対して0.95モルに相当)とした以外は、製造例1と同様にしてエステル交換反応を行い、B−4(C12−イソプロピル、R=C1123、R=CH(CH)を得た。
(Production Example 8) Production of B-4 360 g of isopropanol was used in place of the tertiary intermediate A of Production Example 1, and methyl laurate (fatty acid methyl ester derived from palm oil-derived 12 carbon fractions, trade name: Pastel M12 Except for using 1223 g (corresponding to 0.95 mol with respect to 1 mol of isopropanol), a transesterification reaction was carried out in the same manner as in Production Example 1 to obtain B-4 (C12-isopropyl, R 3 = C 11 H 23, R 4 = CH (CH 3) 2) was obtained.

(製造例9)C’−1の製造
製造例1の三次中間体Aに換えてネオペンチルグリコール313gを用い、ラウリン酸メチルに換えてカプリン酸メチル(パーム油由来の炭素数10留分由来の脂肪酸メチルエステル、商品名:パステルM10、ライオン株式会社製)1339g(ネオペンチルグリコール1モルに対して2.4モルに相当)を用いた以外は、製造例1と同様にしてエステル交換反応を行い、C’−1(ネオペンチルグリコール−C10)を得た。
(Production Example 9) Production of C′-1 Using 313 g of neopentyl glycol instead of the tertiary intermediate A of Production Example 1, methyl caprate (derived from palm oil-derived 10 carbon fractions) instead of methyl laurate Fatty acid methyl ester, trade name: Pastel M10, manufactured by Lion Co., Ltd.) 1339 g (corresponding to 2.4 moles relative to 1 mole of neopentyl glycol) was used in the same manner as in Production Example 1 for transesterification. , C′-1 (neopentyl glycol-C10) was obtained.

(実施例1〜24、比較例1〜13)
表2〜4に示す組成に従い、各成分を5L4つ口フラスコに投入し、室温(25℃)で、15分間攪拌した。攪拌後、100℃に昇温し、5Torr(0.7kPa)まで減圧して脱水し、各例の潤滑油基油を得た。得られた潤滑油基油について、動粘度、流動点、質量減少率を測定し、粘度指数、添加剤溶解性、耐熱性を評価した。これらの結果を表中に示す。
なお、表中の各成分の配合量は、純分換算量である。
(Examples 1-24, Comparative Examples 1-13)
According to the composition shown in Tables 2 to 4, each component was put into a 5 L four-necked flask and stirred at room temperature (25 ° C.) for 15 minutes. After stirring, the temperature was raised to 100 ° C., the pressure was reduced to 5 Torr (0.7 kPa), and dehydration was performed to obtain the lubricating base oil of each example. The obtained lubricating base oil was measured for kinematic viscosity, pour point, and mass reduction rate, and evaluated for viscosity index, additive solubility, and heat resistance. These results are shown in the table.
In addition, the compounding quantity of each component in a table | surface is a pure amount conversion amount.

Figure 2012224653
Figure 2012224653

Figure 2012224653
Figure 2012224653

Figure 2012224653
Figure 2012224653

表2〜4に示すように、本発明を適用した実施例1〜24は、40℃動粘度が16.63mm/s以下という低いものであり、かつ粘度指数が150以上という高いものであった。加えて、実施例1〜24は、添加剤溶解性の総合評価が「○」であった。さらに、実施例1〜24は、流動点が−22.5℃以下で低温での流動性が高いものであり、耐熱性の評価が「○」又は「◎」であった。 As shown in Tables 2 to 4, Examples 1 to 24 to which the present invention was applied had a low 40 ° C. kinematic viscosity of 16.63 mm 2 / s or less and a high viscosity index of 150 or more. It was. In addition, in Examples 1 to 24, the comprehensive evaluation of additive solubility was “◯”. Further, in Examples 1 to 24, the pour point was −22.5 ° C. or less and the fluidity at low temperature was high, and the evaluation of heat resistance was “◯” or “◎”.

一方、(A)成分に換えてA’−1を用いた比較例1、5、6は、粘度指数の評価が「×」、添加剤溶解性の総合評価が「×」であった。(A)成分に換えてA’−2を用いた比較例2は、粘度指数の評価が「◎」であったが、添加剤溶解性が「×」であった。
(B)成分に換えて(B’)成分を用いた比較例3、5、7は、添加剤溶解性の総合評価が「×」、耐熱性の評価が「×」であった。
(C)成分に換えて(C’)成分を用いた比較例4、6、7は、添加剤溶解性の総合評価が「×」であった。
(A)成分の含有量が5質量%の比較例9は、粘度指数の評価、添加剤溶解性の総合評価が「×」であり、(A)成分の含有量が80質量%の比較例8は、粘度指数の評価が「◎」であるものの、添加剤溶解性の総合評価が「×」であった。
(B)成分の含有量が3質量%の比較例10は、粘度指数の評価が「◎」であるものの、添加剤溶解性の総合評価が「×」であり、(B)成分の含有量が70質量%の比較例11は、添加剤溶解性の総合評価及び耐熱性の評価が「×」であった。
(C)成分の含有量が70質量%の比較例12、及び(C)成分の含有量が3質量%の比較例13は、添加剤溶解性が「×」であった。
これらの結果から、本発明を適用することで、添加剤溶解性に優れ、低動粘度と高粘度指数とを両立できることが判った。
On the other hand, in Comparative Examples 1, 5, and 6 using A′-1 instead of the component (A), the evaluation of the viscosity index was “x”, and the comprehensive evaluation of the additive solubility was “x”. In Comparative Example 2 using A′-2 instead of the component (A), the evaluation of the viscosity index was “◎”, but the additive solubility was “x”.
In Comparative Examples 3, 5, and 7 using the component (B ′) instead of the component (B), the comprehensive evaluation of additive solubility was “x” and the evaluation of heat resistance was “x”.
In Comparative Examples 4, 6, and 7 using the component (C ′) instead of the component (C), the comprehensive evaluation of additive solubility was “x”.
Comparative Example 9 in which the content of the component (A) is 5% by mass is Comparative Example 9 in which the evaluation of the viscosity index and the comprehensive evaluation of the additive solubility are “x”, and the content of the component (A) is 80% by mass. In No. 8, the evaluation of the viscosity index was “◎”, but the comprehensive evaluation of additive solubility was “x”.
In Comparative Example 10 in which the content of the component (B) is 3% by mass, the evaluation of the viscosity index is “◎”, but the comprehensive evaluation of the additive solubility is “x”, and the content of the component (B) In Comparative Example 11 having 70 mass%, the comprehensive evaluation of additive solubility and the evaluation of heat resistance were “x”.
Comparative Example 12 in which the content of the component (C) was 70% by mass and Comparative Example 13 in which the content of the (C) component was 3% by mass had an additive solubility of “x”.
From these results, it was found that by applying the present invention, the additive solubility was excellent, and both a low kinematic viscosity and a high viscosity index could be achieved.

Claims (1)

下記一般式(I)で表され、下記(1)式で表されるナロー率が55〜80%である脂肪酸ポリオキシアルキレンアルキルエーテル(A)10〜70質量%と、
下記一般式(II)で表される脂肪酸アルキルエステル(B)5〜60質量%と、
下記一般式(III)で表される脂肪酸又は脂肪酸アルキルエステルと下記一般式(IV)で表される多価アルコールとを反応させて得られる脂肪酸ポリオールエステル(C)5〜60質量%と、を含有する潤滑油基油。
−CO−Q−OR ・・・(I)
((I)式中、Rは炭素数7〜19の直鎖状の一価の炭化水素基を表し、Rは炭素数1〜8の一価の炭化水素基を表し、Qは炭素数2〜4のオキシアルキレン基を表し、nはアルキレンオキシドの平均付加モル数を表す3〜9の数である。)
−COO−R ・・・(II)
((II)式中、Rは炭素数7〜19の直鎖状の一価の炭化水素基を表し、Rは炭素数3〜8の一価の炭化水素基を表す。)
−COO−R ・・・(III)
((III)式中、Rは炭素数7〜9の直鎖状又は分岐鎖状の一価の飽和炭化水素基又は炭素数17〜19の一価の不飽和炭化水素基を表し、Rは水素又は炭素数1〜8の一価の炭化水素基を表す。)
Figure 2012224653
((IV)式中、Rは炭素数1〜6の一価の炭化水素基又はメチロール基を表す。)
Figure 2012224653
((1)式中、nMAXは全体のアルキレンオキシド付加体中に質量基準で最も多く存在するアルキレンオキシド付加体のアルキレンオキシドの付加モル数を示す。iはアルキレンオキシドの付加モル数を示す。Yiは全体のアルキレンオキシド付加体中に存在するアルキレンオキシドの付加モル数がiであるアルキレンオキシド付加体の割合(質量%)を示す。)
The fatty acid polyoxyalkylene alkyl ether (A) represented by the following general formula (I) and having a narrow rate of 55 to 80% represented by the following formula (1):
Fatty acid alkyl ester (B) represented by the following general formula (II) 5-60 mass%,
Fatty acid polyol ester (C) obtained by reacting a fatty acid or fatty acid alkyl ester represented by the following general formula (III) with a polyhydric alcohol represented by the following general formula (IV): Contains lubricating base oil.
R 1 —CO—Q n —OR 2 (I)
(In the formula (I), R 1 represents a linear monovalent hydrocarbon group having 7 to 19 carbon atoms, R 2 represents a monovalent hydrocarbon group having 1 to 8 carbon atoms, and Q represents carbon. The oxyalkylene group of the number 2 to 4 is represented, and n is a number of 3 to 9 representing the average number of added moles of alkylene oxide.)
R 3 —COO—R 4 (II)
(In the formula (II), R 3 represents a linear monovalent hydrocarbon group having 7 to 19 carbon atoms, and R 4 represents a monovalent hydrocarbon group having 3 to 8 carbon atoms.)
R 5 —COO—R 6 (III)
(In the formula (III), R 5 represents a linear or branched monovalent saturated hydrocarbon group having 7 to 9 carbon atoms or a monovalent unsaturated hydrocarbon group having 17 to 19 carbon atoms; 6 represents hydrogen or a monovalent hydrocarbon group having 1 to 8 carbon atoms.)
Figure 2012224653
(In the formula (IV), R 7 represents a monovalent hydrocarbon group or methylol group having 1 to 6 carbon atoms.)
Figure 2012224653
(In formula (1), n MAX represents the number of moles of alkylene oxide adduct of the alkylene oxide adduct most present on a mass basis in the whole alkylene oxide adduct, and i represents the number of moles of alkylene oxide added. Yi represents the proportion (% by mass) of the alkylene oxide adduct having an added mole number of alkylene oxide i present in the entire alkylene oxide adduct.
JP2011090418A 2011-04-14 2011-04-14 Lubricating base oil Expired - Fee Related JP5604360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011090418A JP5604360B2 (en) 2011-04-14 2011-04-14 Lubricating base oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090418A JP5604360B2 (en) 2011-04-14 2011-04-14 Lubricating base oil

Publications (2)

Publication Number Publication Date
JP2012224653A true JP2012224653A (en) 2012-11-15
JP5604360B2 JP5604360B2 (en) 2014-10-08

Family

ID=47275210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090418A Expired - Fee Related JP5604360B2 (en) 2011-04-14 2011-04-14 Lubricating base oil

Country Status (1)

Country Link
JP (1) JP5604360B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099907A1 (en) * 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Low viscosity ester lubricant and method for using
JP2016084286A (en) * 2014-10-22 2016-05-19 三菱瓦斯化学株式会社 Ester compound and method for producing the same
JP2020066712A (en) * 2018-10-26 2020-04-30 Kyb株式会社 Lubricating oil composition for buffer, additive for adjusting friction of lubricating oil for buffer, and lubricating oil additive
WO2021070433A1 (en) * 2019-10-11 2021-04-15 Kyb株式会社 Shock absorber lubricant composition, shock absorber, and method for modifying friction of shock absorber lubricant
WO2021256465A1 (en) * 2020-06-19 2021-12-23 Kyb株式会社 Shock absorber lubricant composition, shock absorber, and method for adjusting frictional property of shock absorber lubricant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160177A (en) * 1998-11-30 2000-06-13 Idemitsu Kosan Co Ltd Two-cycle engine oil composition
JP2002146374A (en) * 2000-08-31 2002-05-22 New Japan Chem Co Ltd Lubricating oil for bearing
JP2002275483A (en) * 2001-03-21 2002-09-25 Daisan Kogyo Kk Lubricant composition for conveyor
JP2008179773A (en) * 2006-12-27 2008-08-07 New Japan Chem Co Ltd Lubricating oil for bearing
JP2010065191A (en) * 2008-09-12 2010-03-25 Japan Energy Corp Refrigerating oil, and working fluid for use in refrigeration machine, as well as refrigerator
JP2011132470A (en) * 2009-12-25 2011-07-07 Lion Corp Lubricant base oil and method of producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160177A (en) * 1998-11-30 2000-06-13 Idemitsu Kosan Co Ltd Two-cycle engine oil composition
JP2002146374A (en) * 2000-08-31 2002-05-22 New Japan Chem Co Ltd Lubricating oil for bearing
JP2002275483A (en) * 2001-03-21 2002-09-25 Daisan Kogyo Kk Lubricant composition for conveyor
JP2008179773A (en) * 2006-12-27 2008-08-07 New Japan Chem Co Ltd Lubricating oil for bearing
JP2010065191A (en) * 2008-09-12 2010-03-25 Japan Energy Corp Refrigerating oil, and working fluid for use in refrigeration machine, as well as refrigerator
JP2011132470A (en) * 2009-12-25 2011-07-07 Lion Corp Lubricant base oil and method of producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099907A1 (en) * 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Low viscosity ester lubricant and method for using
US10208269B2 (en) 2013-12-23 2019-02-19 Exxonmobil Research And Engineering Company Low viscosity ester lubricant and method for using
JP2016084286A (en) * 2014-10-22 2016-05-19 三菱瓦斯化学株式会社 Ester compound and method for producing the same
JP2020066712A (en) * 2018-10-26 2020-04-30 Kyb株式会社 Lubricating oil composition for buffer, additive for adjusting friction of lubricating oil for buffer, and lubricating oil additive
WO2020084606A1 (en) * 2018-10-26 2020-04-30 Kyb株式会社 Shock absorber lubricating oil composition, additive for friction adjustment, lubricating oil additive, shock absorber, and method for adjusting friction of shock absorber lubricating oil
JP7264616B2 (en) 2018-10-26 2023-04-25 Kyb株式会社 Shock absorber lubricating oil composition, friction modifier additive for shock absorber lubricating oil, and lubricating oil additive
WO2021070433A1 (en) * 2019-10-11 2021-04-15 Kyb株式会社 Shock absorber lubricant composition, shock absorber, and method for modifying friction of shock absorber lubricant
CN114502702A (en) * 2019-10-11 2022-05-13 Kyb株式会社 Lubricating oil composition for shock absorber, and method for adjusting friction of lubricating oil for shock absorber
WO2021256465A1 (en) * 2020-06-19 2021-12-23 Kyb株式会社 Shock absorber lubricant composition, shock absorber, and method for adjusting frictional property of shock absorber lubricant
CN115698237A (en) * 2020-06-19 2023-02-03 Kyb株式会社 Lubricating oil composition for shock absorber, and method for adjusting friction characteristics of lubricating oil for shock absorber
JP7469151B2 (en) 2020-06-19 2024-04-16 カヤバ株式会社 Lubricating oil composition for shock absorber, shock absorber, and method for adjusting friction characteristics of lubricating oil for shock absorber

Also Published As

Publication number Publication date
JP5604360B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP4466850B2 (en) Bearing lubricant
JP5882860B2 (en) Lubricating oil composition
JP5631702B2 (en) Lubricating base oil
JP2014517123A (en) Grease composition containing estolide base oil
JP5604360B2 (en) Lubricating base oil
JP2005232434A (en) Lubricating oil for bearing
JP5793756B2 (en) Automotive lubricant
JP2021059739A (en) Low shear strength lubricating fluids
JP2008280500A (en) Lubricating oil
KR20200041901A (en) Lubricating composition for hybrid electric vehicle transmission
JP4702052B2 (en) Lubricating oil and lubricating method
JP5500977B2 (en) Lubricating base oil and method for producing the same
JP2021515817A (en) Modified oil-soluble polyalkylene glycol
JP7101779B2 (en) Modified oil-soluble polyalkylene glycol
JP2017101148A (en) Base oil for lubricant
JP6040986B2 (en) Lubricating base oil for fluid bearings
US11820952B2 (en) Process to produce low shear strength base oils
JP6654727B2 (en) Ester base oil for lubricating oil
JP2017101149A (en) Base oil for lubricant
JP7317188B2 (en) Modified oil-soluble polyalkylene glycol
JP7107741B2 (en) Turbine oil composition
JP2008297501A (en) Lubricating oil for use in bearing
EP3601502A1 (en) Synthetic lubricant compositions having improved oxidation stability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5604360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees