JP2012224546A - Single crystal silicon carbide substrate - Google Patents

Single crystal silicon carbide substrate Download PDF

Info

Publication number
JP2012224546A
JP2012224546A JP2012185253A JP2012185253A JP2012224546A JP 2012224546 A JP2012224546 A JP 2012224546A JP 2012185253 A JP2012185253 A JP 2012185253A JP 2012185253 A JP2012185253 A JP 2012185253A JP 2012224546 A JP2012224546 A JP 2012224546A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
substrate
carbide substrate
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012185253A
Other languages
Japanese (ja)
Other versions
JP5376477B2 (en
Inventor
Tadaaki Kaneko
忠昭 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kwansei Gakuin Educational Foundation
Original Assignee
Kwansei Gakuin Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kwansei Gakuin Educational Foundation filed Critical Kwansei Gakuin Educational Foundation
Priority to JP2012185253A priority Critical patent/JP5376477B2/en
Publication of JP2012224546A publication Critical patent/JP2012224546A/en
Application granted granted Critical
Publication of JP5376477B2 publication Critical patent/JP5376477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a single crystal silicon carbide substrate where the small piece of the seed crystal of the single crystal silicon carbide is grown in a horizontal direction by liquid phase epitaxial growth and which has a large area.SOLUTION: The single crystal silicon carbide substrate 13b is produced such that: the composite of a polycrystalline silicon carbide substrate 5 where the polycrystalline silicon carbide substrate 5 whose surface is carbonized partially and the polycrystalline silicon carbide substrate 5 are arranged closely and oppositely via a metal silicon molten liquid 12 is stored in a storage container and heat-treated; the small piece 13a of the seed crystal of the single crystal silicon carbide is made by self-growing the single crystal silicon carbide in liquid phase growth on the carbonized surface 11 of the polycrystalline silicon carbide substrate 5; and the small piece 13a of the seed crystal of the single crystal silicon carbide is grown in a direction orthogonal to an opposite direction by continuing further liquid phase epitaxial growth and has a part where a crystal is grown to a plane direction on its outer periphery.

Description

本発明は、主要には、単結晶炭化ケイ素(SiC)基板に関する。   The present invention primarily relates to single crystal silicon carbide (SiC) substrates.

炭化ケイ素(SiC)は、耐熱性及び機械的強度に優れ、放射線にも強く、不純物の添加によって電子や正孔の価電子制御も容易にできるとともに、広い禁制帯幅(6H型の単結晶SiCで約3.0eV、4H型の単結晶SiCで3.3eV)を有するという特徴を備えている。従って、ケイ素(Si)やガリウムヒ素(GaAs)などの既存の半導体材料では実現できない高温、高周波、耐電圧・耐環境性を実現することが可能であるとされ、次世代のパワーデバイス、高周波デバイス用半導体の材料として期待が高まっている。   Silicon carbide (SiC) has excellent heat resistance and mechanical strength, is resistant to radiation, can easily control the valence electrons of electrons and holes by adding impurities, and has a wide band gap (6H-type single crystal SiC). About 3.0 eV and 3.3 eV for 4H type single crystal SiC. Therefore, it is said that it is possible to realize high temperature, high frequency, withstand voltage / environment resistance that cannot be realized with existing semiconductor materials such as silicon (Si) and gallium arsenide (GaAs). Expectation is growing as a semiconductor material.

この単結晶SiC基板を製造する方法に関し、当該単結晶SiC基板を作る従来から良く知られている方法はアチソン法であり石油コ−クスとケイ石を電気炉で焼結してインゴットを造りスライスしてバルク基板を作る方法であるが基板の大きさが非常に小さく実用に供するものが得られていない。一方半導体に使用できるマイクロパイプ欠陥や結晶欠陥の少ない高品質の単結晶SiC基板を得る研究が昇華再析出法(改良レーリー法)やCVD(気相析出法)で行はれているが高品質の単結晶SiC基板の生成を実用に供することが出来る量産技術は今もって確立していない。高品質の単結晶SiC基板を実用に供する技術開発に関する研究の代表的な文献を以下に示す。   Regarding the method for producing this single crystal SiC substrate, the conventionally well-known method for producing the single crystal SiC substrate is the Atchison method, in which petroleum coke and quartzite are sintered in an electric furnace to form an ingot. In this method, a bulk substrate is produced, but the size of the substrate is very small, and a product for practical use has not been obtained. On the other hand, research on obtaining high-quality single-crystal SiC substrates with few micropipe defects and crystal defects that can be used in semiconductors has been conducted by sublimation reprecipitation (modified Rayleigh method) and CVD (vapor phase deposition), but high quality. No mass production technology has been established so far that can produce a single crystal SiC substrate for practical use. The following is a representative document of research related to technological development for practical use of a high-quality single crystal SiC substrate.

特開平2006−1836号公報Japanese Patent Laid-Open No. 2006-1836 特開平2006−111478号公報Japanese Patent Laid-Open No. 2006-111478 特開平2005−314167号公報Japanese Patent Laid-Open No. 2005-314167 特開平2005−41710号公報Japanese Patent Laid-Open No. 2005-41710 特開平2004−33012号公報Japanese Patent Laid-Open No. 2004-33012 特開平2003−119097号公報Japanese Patent Laid-Open No. 2003-119097 特開平2003−511337号公報Japanese Patent Laid-Open No. 2003-511337 特開平2002−527339号公報JP-A-2002-527339

高品質の単結晶SiC基板を実用に供する技術開発に関する研究の内容を要約して検証する。
特許文献1、6はRAF法と呼ばれており、マイクロパイプ欠陥、螺旋転位、刃状転位、及び積層欠陥をほとんど含まないSiC単結晶を提供する方法として、昇華再析出法(改良レーリー法)によりSiC単結晶を垂直方向に厚みを成長させる第1工程においては、{1−100}面からオフセット角度±20°以下の面、または{11−20}面からオフセット角度±20°以下の面を第1成長面として第1成長結晶を作製し、中間成長工程においては、第(n−1)成長面より45〜90°傾き、且つ{0001}面より60〜90°傾いた面を第n成長面として第n成長結晶を作製し、最終成長工程においては、第(N−1)成長結晶の{0001}面よりオフセット角度±20°以下の面を最終成長面35として、上記最終成長面35上に螺旋転位及び刃状転位が低減されたバルク状のSiC単結晶30を成長させる報告がある。
Summarize and verify the contents of research related to technology development for practical use of high-quality single-crystal SiC substrates.
Patent Documents 1 and 6 are called RAF methods. Sublimation reprecipitation method (improved Rayleigh method) is a method for providing a SiC single crystal substantially free of micropipe defects, spiral dislocations, edge dislocations, and stacking faults. In the first step of growing the thickness of the SiC single crystal in the vertical direction by the step, a surface having an offset angle of ± 20 ° or less from the {1-100} plane or a surface having an offset angle of ± 20 ° or less from the {11-20} plane Is used as a first growth surface, and in the intermediate growth step, a surface inclined by 45 to 90 ° from the (n-1) growth surface and inclined by 60 to 90 ° from the {0001} surface is formed. An n-th growth crystal is produced as an n-growth surface, and in the final growth step, a surface having an offset angle of ± 20 ° or less from the {0001} plane of the (N-1) -th growth crystal is defined as the final growth surface 35 and the final growth. On surface 35 There is a report of growing a bulk SiC single crystal 30 with reduced screw dislocations and edge dislocations.

特許文献2〜4には昇華再析出法(レーリー法)によるSiC単結晶成長工程において、SiC単結晶のドーパント元素濃度の最大値が5×1017atoms/cm3未満で、かつ、ドーパント元素濃度の最大値が最小値の50倍以下であることと、不可避的に混入する未補償不純物を原子数密度で1×1015/cm3以上含有し、かつバナジウムを該未補償不純物濃度未満含有する炭化珪素単結晶及び、前記炭化珪素単結晶を加工、研磨してなる炭化珪素単結晶ウェハであって、室温の電気抵抗率が5×103Ωcm以上であるSiC単結晶成長方法の報告がある。   In Patent Documents 2 to 4, in the SiC single crystal growth step by the sublimation reprecipitation method (Rayleigh method), the maximum value of the dopant element concentration of the SiC single crystal is less than 5 × 10 17 atoms / cm 3 and the maximum value of the dopant element concentration. Is less than 50 times the minimum value, and unavoidably mixed uncompensated impurities are contained in an atomic density of 1 × 10 15 / cm 3 or more, and a silicon carbide single crystal containing vanadium below the uncompensated impurity concentration and There is a report of a method for growing a SiC single crystal, which is a silicon carbide single crystal wafer obtained by processing and polishing the silicon carbide single crystal and having an electrical resistivity at room temperature of 5 × 10 3 Ωcm or more.

特許文献5にはSiと、Cおよび/またはSiCと、保護材とを装入して、結晶成長温度に加熱することにより、該保護材の融液で、該黒鉛坩堝の内壁を濡らすが下記C含有Si溶液とは混合しない保護層を形成させた状態で、C含有Si溶液と、Cおよび/またはSiCとの共存下においてSiC単結晶の成長を行なうことを特徴とするSiC単結晶の製造方法の報告がある。   In Patent Document 5, Si, C and / or SiC, and a protective material are charged, and heated to the crystal growth temperature to wet the inner wall of the graphite crucible with the melt of the protective material. Production of a SiC single crystal, wherein a SiC single crystal is grown in the coexistence of a C-containing Si solution and C and / or SiC in a state where a protective layer that is not mixed with the C-containing Si solution is formed. There is a report of the method.

特許文献7、8にはバルク低不純度炭化珪素単結晶バルク低不純度炭化珪素単結晶を、珪素を含む蒸気種および炭素を含む蒸気種の結晶バルク低不純度炭化珪素単結晶を、珪素を含む蒸気種および炭素を含む蒸気種の結晶成長界面への堆積により成長させる。珪素源蒸気は、液体珪素を気化させ、珪素蒸気を結晶成長るつぼに輸送することにより、与えられる。炭素蒸気種は、炭素含有源ガス(例えば、CN)、あるいは珪素源蒸気を固体炭素源の上もしくはそれを通して流すことにより、例えば、珪素蒸気を多孔質黒鉛もしくは黒鉛粒子床を通して流すことにより、与えられる報告がある。以上の報告は殆どが昇華再析出法(レーリー法)によるSiC単結晶基板の成長に関するもので液相エピタキシャル成長に関する研究は報告されていない。   Patent Documents 7 and 8 disclose bulk low-impurity silicon carbide single crystal bulk low-impurity silicon carbide single crystal, vapor species containing silicon and vapor-type crystal bulk low-impurity silicon carbide single crystal containing carbon, silicon The vapor species containing carbon and the vapor species containing carbon are grown by deposition on the crystal growth interface. The silicon source vapor is provided by vaporizing liquid silicon and transporting the silicon vapor to a crystal growth crucible. The carbon vapor species can be provided by flowing a carbon-containing source gas (eg, CN) or silicon source vapor over or through a solid carbon source, for example, by flowing silicon vapor through a porous graphite or graphite particle bed. There are reports. Most of the above reports relate to the growth of SiC single crystal substrates by the sublimation reprecipitation method (Rayleigh method), and no studies on liquid phase epitaxial growth have been reported.

前項の文献の何れもSiC単結晶種基板を厚み方向の垂直に結晶成長させる技術に関するもので、SiC単結晶種基板の水平方向に結晶成長させてSiC単結晶基板の基板サイズを大きく成長させる技術は開発出来ていない。従ってSiC単結晶種基板の基板サイズを大きくしてSiウエファ−に近い実用サイズにSiC単結晶基板を大きくするための基本技術の解明が行われておらず量産技術の課題が解決されていない。   Each of the documents in the preceding paragraph relates to a technology for crystal growth of a SiC single crystal seed substrate vertically in the thickness direction, and a technology for growing the substrate size of the SiC single crystal substrate by crystal growth in the horizontal direction of the SiC single crystal seed substrate. Has not been developed. Therefore, the basic technology for enlarging the SiC single crystal substrate to the practical size close to the Si wafer by increasing the substrate size of the SiC single crystal seed substrate has not been elucidated, and the problems of mass production technology have not been solved.

本発明の主要な目的は、単結晶炭化ケイ素種結晶小片又は種結晶板を水平方向に液相エピタキシャル成長させた面積の大きい単結晶炭化ケイ素基板を提供することである。   The main object of the present invention is to provide a single crystal silicon carbide substrate having a large area obtained by liquid phase epitaxial growth of a single crystal silicon carbide seed crystal piece or seed crystal plate in the horizontal direction.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

第1の発明の単結晶炭化ケイ素基板は、表面を局部的に炭化処理した多結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを金属シリコン融液を介して近接対向配置させた多結晶炭化ケイ素基板の複合体を、収納容器に収納するとともに、前記収納容器の内部圧力が外部圧力よりも高くなるようにシリコンの飽和蒸気圧下の真空に保った状態で1500℃以上2300℃以下の温度で加熱処理して、前記多結晶炭化ケイ素基板の炭化処理面に単結晶炭化ケイ素を液相成長により自己成長させて単結晶炭化ケイ素種結晶小片を生成し、更に液相成長を継続することで、前記単結晶炭化ケイ素種結晶小片を前記対向方向と直交する方向に液相エピタキシャル成長させて生成されており、その外周部に面方向に結晶成長した部分を有することを特徴とする。   A single crystal silicon carbide substrate according to a first aspect of the present invention is a polycrystalline silicon carbide substrate in which a polycrystalline silicon carbide substrate whose surface is locally carbonized and a polycrystalline silicon carbide substrate are disposed in close proximity to each other via a metal silicon melt. The composite is stored in a storage container and heat-treated at a temperature of 1500 ° C. or higher and 2300 ° C. or lower in a state where the internal pressure of the storage container is kept under a vacuum under the saturated vapor pressure of silicon so as to be higher than the external pressure. Then, single crystal silicon carbide is self-grown by liquid phase growth on the carbonized surface of the polycrystalline silicon carbide substrate to produce single crystal silicon carbide seed crystal pieces, and further, liquid phase growth is continued, thereby A crystalline silicon carbide seed crystal piece is produced by liquid phase epitaxial growth in a direction perpendicular to the facing direction, and has a portion grown in the plane direction on the outer periphery thereof. .

この構成によると、面積が大きく、その外周部に面方向に結晶成長した部分を有する単結晶炭化ケイ素基板を実現できる。   According to this configuration, it is possible to realize a single crystal silicon carbide substrate having a large area and having a crystal growth portion in the plane direction on the outer periphery thereof.

第2の発明の単結晶炭化ケイ素基板は、表面に単結晶炭化ケイ素種結晶小片が配置された多結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを金属シリコン融液を介して近接対向配置させて、前記対向方向と直交する方向における前記単結晶炭化ケイ素種結晶小片の周囲に前記金属シリコン融液を存在させた多結晶炭化ケイ素基板の複合体を、収納容器に収納するとともに、前記収納容器の内部圧力が外部圧力よりも高くなるようにシリコンの飽和蒸気圧下の真空に保った状態で1500℃以上2300℃以下の温度で加熱処理することで、前記単結晶炭化ケイ素種結晶小片を前記対向方向と直交する方向に液相エピタキシャル成長させて生成されており、その外周部に面方向に結晶成長した部分を有することを特徴とする。   A single-crystal silicon carbide substrate according to a second aspect of the present invention has a polycrystalline silicon carbide substrate having a single-crystal silicon carbide seed crystal piece disposed on a surface thereof and a polycrystalline silicon carbide substrate disposed close to each other through a metal silicon melt. Storing the composite of the polycrystalline silicon carbide substrate in which the metal silicon melt is present around the single crystal silicon carbide seed crystal piece in a direction orthogonal to the facing direction in a storage container; The single crystal silicon carbide seed crystal piece is heat-treated at a temperature of 1500 ° C. or higher and 2300 ° C. or lower while maintaining a vacuum under a saturated vapor pressure of silicon so that the internal pressure is higher than the external pressure, thereby It is generated by liquid phase epitaxial growth in a direction perpendicular to the surface, and has an outer peripheral portion having a crystal grown portion in the plane direction.

この構成によると、面積が大きく、その外周部に面方向に結晶成長した部分を有する単結晶炭化ケイ素基板を実現できる。   According to this configuration, it is possible to realize a single crystal silicon carbide substrate having a large area and having a crystal growth portion in the plane direction on the outer periphery thereof.

前記第2の発明において、前記単結晶炭化ケイ素種結晶小片が、表面を炭化処理した多結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを金属シリコン融液を介して近接対向配置させた多結晶炭化ケイ素基板の複合体を、収納容器に収納するとともに、前記収納容器の内部圧力が外部圧力よりも高くなるようにシリコンの飽和蒸気圧下の真空に保った状態で1500℃以上2300℃以下の温度で加熱処理することで、前記多結晶炭化ケイ素基板の炭化処理面に単結晶炭化ケイ素を液相成長により自己成長させて生成されたものであってもよい。   In the second aspect of the invention, the single crystal silicon carbide seed crystal piece is a polycrystalline carbon carbide in which a polycrystalline silicon carbide substrate having a carbonized surface and a polycrystalline silicon carbide substrate are disposed in close proximity to each other via a metal silicon melt. The silicon substrate composite is stored in a storage container and at a temperature of 1500 ° C. or more and 2300 ° C. or less in a state where the internal pressure of the storage container is kept under a vacuum under the saturated vapor pressure of silicon so as to be higher than the external pressure. The heat treatment may be performed by self-growing single crystal silicon carbide by liquid phase growth on the carbonized surface of the polycrystalline silicon carbide substrate.

第3の発明の単結晶炭化ケイ素基板は、表面に単結晶炭化ケイ素種結晶板が配置された多結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを金属シリコン融液を介して近接対向配置させて、前記対向方向と直交する方向における前記単結晶炭化ケイ素種結晶板の周囲に前記金属シリコン融液を存在させた多結晶炭化ケイ素基板の複合体を、収納容器に収納するとともに、前記収納容器の内部圧力が外部圧力よりも高くなるようにシリコンの飽和蒸気圧下の真空に保った状態で1500℃以上2300℃以下の温度で加熱処理することで、前記単結晶炭化ケイ素種結晶板を前記対向方向と直交する方向に液相エピタキシャル成長させて生成されており、その外周部に面方向に結晶成長した部分を有することを特徴とする。   A single crystal silicon carbide substrate according to a third aspect of the present invention includes a polycrystalline silicon carbide substrate having a single crystal silicon carbide seed crystal plate disposed on a surface thereof, and a polycrystalline silicon carbide substrate disposed close to each other through a metal silicon melt. A composite of a polycrystalline silicon carbide substrate in which the metal silicon melt is present around the single crystal silicon carbide seed crystal plate in a direction orthogonal to the facing direction is stored in a storage container; The single crystal silicon carbide seed crystal plate is heat treated at a temperature not lower than 1500 ° C. and not higher than 2300 ° C. while maintaining a vacuum under the saturated vapor pressure of silicon so that the internal pressure becomes higher than the external pressure, thereby It is generated by liquid phase epitaxial growth in a direction perpendicular to the surface, and has an outer peripheral portion having a crystal grown portion in the plane direction.

この構成によると、面積が大きく、その外周部に面方向に結晶成長した部分を有する単結晶炭化ケイ素基板を実現できる。   According to this configuration, it is possible to realize a single crystal silicon carbide substrate having a large area and having a crystal growth portion in the plane direction on the outer periphery thereof.

前記第3の発明において、前記単結晶炭化ケイ素種結晶板が、表面を局部的に炭化処理した多結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを金属シリコン融液を介して近接対向配置させた多結晶炭化ケイ素基板の複合体を、収納容器に収納するとともに、前記収納容器の内部圧力が外部圧力よりも高くなるようにシリコンの飽和蒸気圧下の真空に保った状態で1500℃以上2300℃以下の温度で加熱処理して、前記多結晶炭化ケイ素基板の炭化処理面に単結晶炭化ケイ素を液相成長により自己成長させて単結晶炭化ケイ素種結晶小片を生成し、更に液相成長を継続することで、前記単結晶炭化ケイ素種結晶小片を前記対向方向と直交する方向に液相エピタキシャル成長させて生成されたものであってもよい。   In the third aspect of the invention, the single crystal silicon carbide seed crystal plate has a polycrystalline silicon carbide substrate whose surface is locally carbonized and a polycrystalline silicon carbide substrate arranged close to each other through a metal silicon melt. The composite of the polycrystalline silicon carbide substrate is stored in a storage container and 1500 ° C. or more and 2300 ° C. or less in a state where the internal pressure of the storage container is kept under a vacuum under the saturated vapor pressure of silicon so as to be higher than the external pressure. The single crystal silicon carbide is self-grown by liquid phase growth on the carbonized surface of the polycrystalline silicon carbide substrate to form a single crystal silicon carbide seed crystal piece, and the liquid phase growth is continued. Thus, the single crystal silicon carbide seed crystal piece may be produced by liquid phase epitaxial growth in a direction orthogonal to the facing direction.

前記単結晶炭化ケイ素種結晶小片又は種結晶板は、前記多結晶炭化ケイ素基板の外周端に近い位置に配置されてもよい。多結晶炭化ケイ素基板の外周終端に近い程、金属シリコン融液の表面張力によるC原子の対流の影響で面方向に結晶成長する速度は加速されるため、単結晶炭化ケイ素種結晶小片又は種結晶板は多結晶炭化ケイ素基板の外周端に近い位置に配置することが好ましい。   The single crystal silicon carbide seed crystal piece or seed crystal plate may be arranged at a position close to an outer peripheral end of the polycrystalline silicon carbide substrate. Since the rate of crystal growth in the plane direction is accelerated by the influence of convection of C atoms due to the surface tension of the metal silicon melt, the closer to the outer peripheral end of the polycrystalline silicon carbide substrate, the single crystal silicon carbide seed piece or seed crystal The plate is preferably disposed at a position close to the outer peripheral edge of the polycrystalline silicon carbide substrate.

前記炭化処理は、3C−SiC集合体の多結晶炭化ケイ素基板を真空又は不活性雰囲気に保った状態でレーザー光線や電子ビ−ムで基板表面を局部的に照射して、基板表面の3C−SiC集合体を4H−SiC集合体を含む結晶粒に成長させると同時に、基板表面のケイ素を選択的に蒸発除去させて炭素リッチな炭化ケイ素組成を作る処理であってもよい。   The carbonization treatment is performed by locally irradiating the surface of the substrate with a laser beam or an electron beam in a state where the polycrystalline silicon carbide substrate of the 3C-SiC aggregate is kept in a vacuum or an inert atmosphere, and 3C-SiC on the surface of the substrate. The aggregate may be grown to crystal grains containing 4H-SiC aggregates, and at the same time, the silicon on the substrate surface may be selectively removed by evaporation to create a carbon-rich silicon carbide composition.

前記収納容器は、タンタル金属からなるとともに炭化タンタル層を内部空間に露出させるように構成された上下が嵌合した容器であってもよい。   The storage container may be a container that is made of tantalum metal and that is configured to expose the tantalum carbide layer to the internal space and that is vertically fitted.

前記単結晶炭化ケイ素種結晶小片又は種結晶板が配置される前記多結晶炭化ケイ素基板の代わりに、表面がタンタルカーバイド加工されたタンタル基板、或いは、1500℃以上2300℃以下の高真空中で耐熱性を有する材料で覆われた基板を用いてもよい。   Instead of the polycrystalline silicon carbide substrate on which the single crystal silicon carbide seed crystal piece or seed crystal plate is disposed, the surface is tantalum carbide processed tantalum substrate, or heat resistant in a high vacuum of 1500 ° C. to 2300 ° C. A substrate covered with a material having properties may be used.

本発明の単結晶SiC基板の生成方法に好適な熱処理装置の一例を示す模式断面図。The schematic cross section which shows an example of the heat processing apparatus suitable for the production | generation method of the single crystal SiC substrate of this invention. 収納容器の上容器と下容器とを取り外した図。The figure which removed the upper container and lower container of the storage container. 多結晶SiC基板の炭化処理面上に液相成長で自己成長させて単結晶SiC小片を複数枚生成させる工程概念図である。FIG. 5 is a process conceptual diagram in which a plurality of single-crystal SiC pieces are generated by self-growth by liquid phase growth on a carbonized surface of a polycrystalline SiC substrate. 多結晶SiC基板の炭化処理面上に単結晶SiC小片を自己成長させて単結晶SiCの複数の小片表面を拡大して観察した顕微鏡写真である。It is the microscope picture which expanded and observed the surface of the several small piece of single crystal SiC by growing the single crystal SiC piece self-growth on the carbonization process surface of a polycrystalline SiC substrate. 多結晶SiC基板の炭化処理面上に単結晶SiC小片を自己成長させて更に液相エピタキシャル成長により単結晶SiCが生成されている状態の断面を拡大して観察した顕微鏡写真である。It is the microscope picture which expanded and observed the cross section of the state in which the single crystal SiC piece was self-grown on the carbonization process surface of a polycrystalline SiC substrate, and also the single crystal SiC was produced | generated by liquid phase epitaxial growth. 本発明の第1の実施の形態に係る単結晶炭化ケイ素基板の生成工程を示す概念図である。It is a conceptual diagram which shows the production | generation process of the single crystal silicon carbide substrate which concerns on the 1st Embodiment of this invention. 図7(a)は、収納容器の内部に、表面が炭化処理された多結晶SiC基板及びそれに対向して近接設置された多結晶SiC基板を収納し、単結晶SiC基板を生成した状態を示す。図7(b)は、図7(a)の状態の平面の位置関係を示す配置概念図を示す。FIG. 7A shows a state in which a polycrystalline SiC substrate whose surface has been carbonized and a polycrystalline SiC substrate placed adjacent to the polycrystalline SiC substrate are accommodated in the storage container to produce a single crystal SiC substrate. . FIG. 7B shows an arrangement conceptual diagram showing the positional relationship of the plane in the state of FIG. 本発明の第2の実施の形態に係る単結晶炭化ケイ素基板の生成工程を示す概念図である。It is a conceptual diagram which shows the production | generation process of the single crystal silicon carbide substrate which concerns on the 2nd Embodiment of this invention. 図9(a)は、収納容器の内部に、単結晶SiC種結晶小片が配置されたタンタル基板及びそれに対向して近接設置された多結晶SiC基板を収納し、より大きい面積の単結晶SiC基板を生成した状態を示す。図9(b)は、図9(a)の状態の平面の位置関係を示す配置概念図を示す。FIG. 9 (a) shows a tantalum substrate on which a single crystal SiC seed crystal piece is arranged and a polycrystalline SiC substrate placed in close proximity to the tantalum substrate in a storage container, and a single crystal SiC substrate having a larger area. Indicates the state that has been generated. FIG. 9B shows an arrangement conceptual diagram showing the positional relationship of the plane in the state of FIG. 本発明の第2の実施の形態の変更例に係る単結晶炭化ケイ素基板の生成工程を示す概念図である。It is a conceptual diagram which shows the production | generation process of the single crystal silicon carbide substrate which concerns on the example of a change of the 2nd Embodiment of this invention. 図11(a)は、収納容器の内部に、単結晶SiC種結晶小片が配置された多結晶SiC基板及びそれに対向して近接設置された多結晶SiC基板を収納し、より大きい面積の単結晶SiC基板を生成した状態を示す。図11(b)は、図11(a)の状態の平面の位置関係を示す配置概念図を示す。FIG. 11A shows a case where a polycrystalline SiC substrate on which a single crystal SiC seed crystal piece is arranged and a polycrystalline SiC substrate placed adjacent to the polycrystalline SiC substrate are accommodated in a storage container, and a single crystal having a larger area is stored. The state which produced | generated the SiC substrate is shown. FIG.11 (b) shows the arrangement | positioning conceptual diagram which shows the positional relationship of the plane of the state of Fig.11 (a). 本発明の第3の実施の形態に係る単結晶炭化ケイ素基板の生成工程を示す概念図である。It is a conceptual diagram which shows the production | generation process of the single crystal silicon carbide substrate which concerns on the 3rd Embodiment of this invention. 図13(a)は、収納容器の内部に、単結晶SiC種結晶小片が配置されたタンタル基板及びそれに対向して近接設置された分割された多結晶SiC基板を収納し、より大きい面積の単結晶SiC基板を生成した状態を示す。図13(b)は、図13(a)の状態の平面の位置関係を示す配置概念図を示す。FIG. 13A shows a case where a tantalum substrate on which a single crystal SiC seed crystal piece is arranged and a divided polycrystalline SiC substrate placed in close proximity to the tantalum substrate are accommodated in a storage container. The state which produced | generated the crystalline SiC substrate is shown. FIG. 13B shows an arrangement conceptual diagram showing the positional relationship of the plane in the state of FIG. 本発明の第3の実施の形態の変形例に係る単結晶炭化ケイ素基板の生成工程を示す概念図である。It is a conceptual diagram which shows the production | generation process of the single crystal silicon carbide substrate which concerns on the modification of the 3rd Embodiment of this invention. 図15(a)は、収納容器の内部に、単結晶SiC種結晶小片が配置された多結晶SiC基板及びそれに対向して近接設置された分割された多結晶SiC基板が収納された状態を示す。図15(b)は、図15(a)の状態の平面の位置関係を示す配置概念図を示す。FIG. 15A shows a state in which a polycrystalline SiC substrate on which a single crystal SiC seed crystal piece is arranged and a divided polycrystalline SiC substrate placed in close proximity to the polycrystalline SiC substrate are accommodated in the storage container. . FIG. 15B is an arrangement conceptual diagram showing the positional relationship of the plane in the state of FIG. 本発明の第4の実施の形態に係る単結晶炭化ケイ素基板の生成工程を示す概念図である。It is a conceptual diagram which shows the production | generation process of the single crystal silicon carbide substrate which concerns on the 4th Embodiment of this invention. 図17(a)は、収納容器の内部に、単結晶SiC種結晶板が配置されたタンタル基板及びそれに対向して近接設置された多結晶SiC基板を収納し、より大きい面積の単結晶SiC基板を生成した状態を示す。図17(b)は、図17(a)の状態の平面の位置関係を示す配置概念図を示す。FIG. 17A shows that a tantalum substrate on which a single crystal SiC seed crystal plate is arranged and a polycrystalline SiC substrate placed in close proximity to the tantalum substrate are accommodated in a storage container, and a single crystal SiC substrate having a larger area is stored. Indicates the state that has been generated. FIG. 17B is an arrangement conceptual diagram showing the positional relationship of the plane in the state of FIG. 本発明の第4の実施の形態の変形例に係る単結晶炭化ケイ素基板の生成工程を示す概念図である。It is a conceptual diagram which shows the production | generation process of the single crystal silicon carbide substrate which concerns on the modification of the 4th Embodiment of this invention. 図19(a)は、収納容器の内部に、単結晶SiC種結晶板が配置された多結晶SiC基板及びそれに対向して近接設置された多結晶SiC基板を収納し、より大きい面積の単結晶SiC基板を生成した状態を示す。図19(b)は、図19(a)の状態の平面の位置関係を示す配置概念図を示す。FIG. 19A shows a case in which a polycrystalline SiC substrate on which a single crystal SiC seed crystal plate is arranged and a polycrystalline SiC substrate placed in close proximity to the polycrystalline SiC substrate are accommodated in a storage container. The state which produced | generated the SiC substrate is shown. FIG. 19B shows an arrangement conceptual diagram showing the positional relationship of the plane in the state of FIG.

以下、図面を参照しつつ、本発明に係る単結晶炭化ケイ素基板の生成方法の実施形態を説明する。まず、本実施形態に好適な熱処理装置としての加熱炉の一例を、図1の模式断面図を参照して説明する。   Hereinafter, embodiments of a method for producing a single crystal silicon carbide substrate according to the present invention will be described with reference to the drawings. First, an example of a heating furnace as a heat treatment apparatus suitable for the present embodiment will be described with reference to the schematic cross-sectional view of FIG.

図1において、加熱炉1は、本加熱室2と、予備加熱室3と、予備加熱室3から本加熱室2に続く部分にある前室4とを主要部分として構成されている。この構成で、多結晶SiC基板等が収納された収納容器16が予備加熱室3から前室4、本加熱室2へと順次移動することで、多結晶SiC基板等を短時間で所定の温度(1500℃〜2300℃、好ましくは1700℃〜1900℃、例えば約1800℃)で加熱できるようになっている。   In FIG. 1, the heating furnace 1 includes a main heating chamber 2, a preheating chamber 3, and a front chamber 4 that is a portion following the preheating chamber 3 to the main heating chamber 2. With this configuration, the storage container 16 in which the polycrystalline SiC substrate and the like are stored sequentially moves from the preheating chamber 3 to the front chamber 4 and the main heating chamber 2, so that the polycrystalline SiC substrate and the like can be kept at a predetermined temperature in a short time. It can be heated at (1500 ° C. to 2300 ° C., preferably 1700 ° C. to 1900 ° C., for example, about 1800 ° C.).

この加熱炉1では、図1に示すように、本加熱室2と前室4との接続部分、及び、前室4と予備加熱室3との接続部分が、それぞれ連通部を有して仕切られている。このため、上記の各室2・3・4は予め所定の圧力下に制御することが可能である。また必要な場合には、各室毎にゲートバルブ7を設けることによって、各室2・3・4毎に圧力調整を行うようにすることもできる。これによって、多結晶SiC基板等を収納した収納容器16の移動時において、外気に触れることなく、所定圧力下の炉内を適宜の移動手段(図略)によって移動させることができ、不純物の混入を抑制することができる。   In this heating furnace 1, as shown in FIG. 1, the connecting portion between the main heating chamber 2 and the front chamber 4 and the connecting portion between the front chamber 4 and the preheating chamber 3 each have a communication portion and are partitioned. It has been. For this reason, each of the chambers 2, 3, and 4 can be controlled in advance under a predetermined pressure. If necessary, the pressure can be adjusted for each of the chambers 2, 3, and 4 by providing a gate valve 7 for each chamber. As a result, when the storage container 16 storing the polycrystalline SiC substrate or the like is moved, the inside of the furnace under a predetermined pressure can be moved by an appropriate moving means (not shown) without touching the outside air, and impurities can be mixed. Can be suppressed.

予備加熱室3には、加熱手段としてのハロゲンランプ6が設けられており、この構成により、約10-2Pa以下の減圧下で所定の範囲の温度(例えば、約800℃〜1000℃の範囲内)に急速に加熱することができる。また前述したように、予備加熱室3と前室4との接続部分にはゲートバルブ7が設けられて、予備加熱室3及び前室4の圧力制御を容易なものにしている。 The preheating chamber 3 is provided with a halogen lamp 6 as a heating means. With this configuration, a temperature within a predetermined range (for example, a range of about 800 ° C. to 1000 ° C.) under a reduced pressure of about 10 −2 Pa or less. Inner) can be heated rapidly. As described above, the gate valve 7 is provided at the connecting portion between the preheating chamber 3 and the front chamber 4 to facilitate the pressure control of the preheating chamber 3 and the front chamber 4.

多結晶SiC基板等が収納された収納容器16は、予備加熱室3で、テーブル8に載置された状態で約800℃以上に予め加熱される。その後、予備加熱室3と前室4との圧力調整が行われ、調整完了後、前室4に設けられている昇降式のサセプタ9に載置されるように移動する。   A storage container 16 in which a polycrystalline SiC substrate or the like is stored is preheated to about 800 ° C. or higher in the preheating chamber 3 while being placed on the table 8. Thereafter, pressure adjustment between the preheating chamber 3 and the front chamber 4 is performed, and after the adjustment is completed, the preheating chamber 3 and the front chamber 4 are moved so as to be placed on a liftable susceptor 9 provided in the front chamber 4.

前室4に移動した収納容器16は、一部図示している昇降式の移動手段30によって、サセプタ9とともに前室4から本加熱室2へ移動する。本加熱室2は、図示しない真空ポンプによって予め約10-4Paの減圧下に調整され、また、加熱ヒータ31によって所望の温度(例えば、1800℃)となるように温度調節されている。 The storage container 16 moved to the front chamber 4 is moved from the front chamber 4 to the main heating chamber 2 together with the susceptor 9 by a lifting / lowering moving means 30 partially shown. The main heating chamber 2 is preliminarily adjusted under a reduced pressure of about 10 −4 Pa by a vacuum pump (not shown), and the temperature is adjusted by the heater 31 so as to reach a desired temperature (for example, 1800 ° C.).

なお、本加熱室2の圧力環境は、約10-4Pa以下の真空とするのが好ましいが、例えば約10-2Pa以下の真空としても良い。また、例えば約10-2Pa以下の真空、好ましくは約10-4Pa以下の真空にした後に、若干の不活性ガスが導入された希薄ガス雰囲気下であっても良い。 The pressure environment of the heating chamber 2 is preferably a vacuum of about 10 −4 Pa or less, but may be a vacuum of about 10 −2 Pa or less, for example. Further, for example, after a vacuum of about 10 −2 Pa or less, preferably about 10 −4 Pa or less, a rare gas atmosphere into which some inert gas is introduced may be used.

上記本加熱室2の状態をこのように設定しておき、収納容器16を前室4から本加熱室2内へ移動手段30によって高速で移動させることによって、収納容器16を前記の所望の温度に急速に短時間で加熱することができる。   The state of the main heating chamber 2 is set in this way, and the storage container 16 is moved from the front chamber 4 into the main heating chamber 2 at high speed by the moving means 30, whereby the storage container 16 is moved to the desired temperature. Can be rapidly heated in a short time.

本加熱室2内には、加熱ヒータ31の周囲に反射鏡32が設置されており、加熱ヒータ31からの熱を反射して、当該加熱ヒータ31の内部に位置する多結晶SiC基板等に熱が集中するようにしている。この反射鏡32は、金メッキしたW、Ta、Mo等の高融点金属や、WC、TaC、MoC等の高耐熱炭化物で形成されていることが好ましい。また、本加熱室2には窓37が設けられており、本加熱室2の外部に設置された赤外線放射温度計18によって本加熱室2の内部温度を計測できるようになっている。   In the main heating chamber 2, a reflecting mirror 32 is installed around the heater 31, and reflects heat from the heater 31 to heat a polycrystalline SiC substrate or the like located inside the heater 31. Is trying to concentrate. The reflecting mirror 32 is preferably formed of gold-plated refractory metal such as W, Ta, or Mo, or high heat-resistant carbide such as WC, TaC, or MoC. Further, the main heating chamber 2 is provided with a window 37 so that the internal temperature of the main heating chamber 2 can be measured by an infrared radiation thermometer 18 installed outside the main heating chamber 2.

また、移動手段30と本加熱室2との嵌合部25は、移動手段30に設けられている凸状の段付き部21と、本加熱室2に形成されている凹状の段付き部22とで構成されている。また、本加熱室2の密閉のために、移動手段30の段付き部21の各段部には図略のシール部材(例えば、Oリング)が設けられている。   Further, the fitting portion 25 between the moving means 30 and the main heating chamber 2 includes a convex stepped portion 21 provided in the moving means 30 and a concave stepped portion 22 formed in the main heating chamber 2. It consists of and. Further, in order to seal the heating chamber 2, unillustrated seal members (for example, O-rings) are provided at each step portion of the stepped portion 21 of the moving means 30.

本加熱室2内の加熱ヒータ31の内側には、汚染物除去機構29が設けられている。汚染物除去機構29は、熱処理中に単結晶SiC基板等から収納容器16の外に排出される不純物を、加熱ヒータ31と接触しないように除去する。これによって、加熱ヒータ31が上記不純物と反応し劣化することを防止できる。なお、この汚染物除去機構29は、単結晶SiC基板等から排出する不純物を吸着するものであれば、特に限定されるものではない。   A contaminant removal mechanism 29 is provided inside the heater 31 in the main heating chamber 2. The contaminant removal mechanism 29 removes impurities discharged out of the storage container 16 from the single crystal SiC substrate or the like during the heat treatment so as not to come into contact with the heater 31. Thereby, it is possible to prevent the heater 31 from reacting with the impurities and deteriorating. The contaminant removal mechanism 29 is not particularly limited as long as it can adsorb impurities discharged from a single crystal SiC substrate or the like.

加熱ヒータ31は、W又はTa等の金属製の抵抗加熱ヒータであり、サセプタ9側に設置されたベースヒータ31aと、本加熱室2側に設けられた上部ヒータ31bとで構成されている。移動手段30によって収納容器16がベースヒータ31aとともに本加熱室2側へ上昇移動すると、収納容器16が加熱ヒータ31によって取り囲まれる形となる。このような加熱ヒータ31のレイアウトにより、前述の反射鏡32ともあいまって、加熱領域の温度分布を高精度で均一になるよう制御することができる。なお、本加熱室2の加熱方式としては、抵抗加熱ヒータに限定せず、例えば高周波誘導加熱式のものを採用することができる。   The heater 31 is a resistance heater made of metal such as W or Ta, and includes a base heater 31 a installed on the susceptor 9 side and an upper heater 31 b provided on the main heating chamber 2 side. When the storage container 16 moves upward together with the base heater 31 a toward the main heating chamber 2 by the moving means 30, the storage container 16 is surrounded by the heater 31. With such a layout of the heater 31, it is possible to control the temperature distribution in the heating region to be uniform with high accuracy in combination with the reflector 32 described above. Note that the heating method of the main heating chamber 2 is not limited to the resistance heater, and for example, a high frequency induction heating type can be adopted.

次に、図2を参照しつつ、多結晶SiC基板等が収納される収納容器16について説明する。図2は収納容器の上容器と下容器とを取り外した状態の斜視図である。   Next, the storage container 16 in which a polycrystalline SiC substrate and the like are stored will be described with reference to FIG. FIG. 2 is a perspective view of the storage container with the upper and lower containers removed.

収納容器16は、図2に示すような上容器16aと下容器16bとを嵌め合わせることにより構成されている。収納容器16の形状は図示されるようにほぼ六面体状とされているが、これは一例であって、例えば円筒状に構成されていても良い。   The storage container 16 is configured by fitting an upper container 16a and a lower container 16b as shown in FIG. The shape of the storage container 16 is substantially hexahedral as shown in the figure, but this is an example, and it may be configured in a cylindrical shape, for example.

収納容器16としては、タンタル金属から構成されており、その表面全体を炭化タンタル層で覆った構成になっている。この炭化タンタル層のうち、上容器16a及び下容器16bの内面を覆う部分は、収納容器16の内部空間に露出している。   The storage container 16 is made of tantalum metal, and the entire surface thereof is covered with a tantalum carbide layer. Of the tantalum carbide layer, portions covering the inner surfaces of the upper container 16 a and the lower container 16 b are exposed in the internal space of the storage container 16.

なお、上容器16aと下容器16bとを嵌め合わせたときの嵌合部分の遊びは、約2mm以下であることが好ましい。これによって、実質的な密閉状態が実現され、本加熱室2での加熱処理工程において収納容器16内のSi圧力を高めて外部圧力(本加熱室2内の圧力)よりも高い圧力とし、不純物が嵌合部分を通じて収納容器16内に侵入するのを防止することができる。   In addition, it is preferable that the play of a fitting part when the upper container 16a and the lower container 16b are fitted together is about 2 mm or less. Thereby, a substantially sealed state is realized, and in the heat treatment process in the main heating chamber 2, the Si pressure in the storage container 16 is increased to a pressure higher than the external pressure (pressure in the main heating chamber 2), and impurities Can be prevented from entering the storage container 16 through the fitting portion.

次に、図3を参照しつつ、後述する第2及び第3の実施の形態に係る単結晶炭化ケイ素基板を生成する際に用いる単結晶SiC小片の生成方法について説明する。図3は、多結晶SiC基板5の炭化処理面11上に液相成長で自己成長させて単結晶SiC小片13aを複数枚生成させる工程を示す概念図である。   Next, with reference to FIG. 3, a method for generating single crystal SiC pieces used when generating single crystal silicon carbide substrates according to second and third embodiments described later will be described. FIG. 3 is a conceptual diagram showing a process of generating a plurality of single-crystal SiC pieces 13 a by self-growth by liquid phase growth on the carbonized surface 11 of the polycrystalline SiC substrate 5.

図3(a)の多結晶SiC基板5の表面全体が加熱処理されることで、多結晶SiC基板5の表面全体が炭化処理され、図3(b)に示すように、多結晶SiC基板5の表面全体に炭化処理面11が形成される。そして、図3(c)に示すように、多結晶SiC基板5の炭化処理面11に対向して多結晶SiC基板5を近接設置して、両者の基板の隙間に金属シリコン融液12を介在させて液相成長させると、多結晶SiC基板5の表面19が侵食されると共に、複数枚の単結晶SiC小片13aが自己成長する。このようにして、図3(d)に示すように、多結晶SiC基板5の炭化処理面11上に複数枚の単結晶SiC小片13aを生成することができる。   The entire surface of the polycrystalline SiC substrate 5 in FIG. 3A is heat-treated, so that the entire surface of the polycrystalline SiC substrate 5 is carbonized, and as shown in FIG. 3B, the polycrystalline SiC substrate 5 The carbonized surface 11 is formed on the entire surface. Then, as shown in FIG. 3 (c), the polycrystalline SiC substrate 5 is placed close to the carbonized surface 11 of the polycrystalline SiC substrate 5, and the metal silicon melt 12 is interposed between the two substrates. When the liquid phase growth is performed, the surface 19 of the polycrystalline SiC substrate 5 is eroded and a plurality of single crystal SiC pieces 13a are self-grown. In this way, as shown in FIG. 3 (d), a plurality of single-crystal SiC pieces 13 a can be generated on the carbonized surface 11 of the polycrystalline SiC substrate 5.

ここで、結晶構造がC軸配向の3C−SiC集合体である多結晶SiC基板5の表面が加熱処理されると、表面が炭化処理されると共に、結晶構造がC軸配向の4H−SiC集合体を含む結晶粒に成長し、多結晶SiC基板5の表面を改質して、単結晶SiC小片13aの生成の環境が提供される。   Here, when the surface of the polycrystalline SiC substrate 5 whose crystal structure is a 3C-SiC aggregate having a C-axis orientation is subjected to heat treatment, the surface is carbonized and 4H-SiC aggregate whose crystal structure is C-axis orientation. It grows into a crystal grain including a body and modifies the surface of the polycrystalline SiC substrate 5 to provide an environment for producing the single crystal SiC piece 13a.

また、上述したように、多結晶SiC基板5の炭化処理面11上に自己成長した単結晶SiC小片13aの結晶構造は4H−SiC集合体であり、単結晶SiC小片13aは炭化処理面11上の4H−SiC集合体上に生成されることになる。従って、単結晶SiC小片13aは、液相エピタキシャル成長で生成されたものと考えることもできる。   Further, as described above, the crystal structure of the single crystal SiC piece 13a self-grown on the carbonized surface 11 of the polycrystalline SiC substrate 5 is a 4H—SiC aggregate, and the single crystal SiC piece 13a is on the carbonized surface 11. It is generated on the 4H-SiC aggregate. Therefore, it can be considered that the single crystal SiC piece 13a is generated by liquid phase epitaxial growth.

図4は、多結晶SiC基板5の炭化処理面11上に自己成長させた複数の単結晶SiC小片13aの表面を拡大して観察した顕微鏡写真である。
図5は、多結晶SiC基板5の炭化処理面11上に単結晶SiC小片13aを自己成長させて更に液相エピタキシャル成長により単結晶SiCが生成されている状態の断面を拡大して観察した顕微鏡写真である。
FIG. 4 is a photomicrograph obtained by magnifying and observing the surface of a plurality of single crystal SiC pieces 13 a self-grown on the carbonized surface 11 of the polycrystalline SiC substrate 5.
FIG. 5 is a photomicrograph of a single crystal SiC piece 13a self-grown on the carbonized surface 11 of the polycrystalline SiC substrate 5 and further magnifying and observing a section in which single crystal SiC is generated by liquid phase epitaxial growth. It is.

次に、図6及び図7を参照しつつ、本発明の第1の実施の形態に係る単結晶SiC基板の生成方法について説明する。図6は、多結晶SiC基板5の表面の微小面積の炭化処理面11上に単結晶SiCを液相エピタキシャル成長で自己成長させて単結晶SiC種結晶小片13aを複数枚生成し、単結晶SiC液相エピタキシャル成長を水平方向に行うことで面積の大きな単結晶SiC基板13bを生成する工程を示す概念図である。   Next, a method for producing a single crystal SiC substrate according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 6 shows a single crystal SiC liquid which is produced by self-growing single crystal SiC by liquid phase epitaxial growth on a carbonized surface 11 having a small area on the surface of the polycrystalline SiC substrate 5 to produce a plurality of single crystal SiC seed crystal pieces 13a. It is a conceptual diagram which shows the process of producing | generating the single crystal SiC substrate 13b with a large area by performing a phase epitaxial growth in a horizontal direction.

図6(a)の多結晶SiC基板5の表面の微小部分をレーザー光線10により局部的に加熱することで、図6(b)に示すように、多結晶SiC基板5の表面の微小部分が局部的に炭化処理され、微小面積の炭化処理面11が形成される。そして、図6(c)に示すように、多結晶SiC基板5の微小面積の炭化処理面11に対向して多結晶SiC基板5を近接設置して、両者の基板の隙間に金属シリコン融液12を介在させて液相エピタキシャル成長させると、多結晶SiC基板の表面19が侵食されると共に、単結晶SiC種結晶小片13aが炭化処理面11上に自己成長する。更に液相エピタキシャル成長工程を継続することで、単結晶SiC種結晶小片13aが水平方向に単結晶SiC液相エピタキシャル成長し、図6(d)に示すように、単結晶SiC基板13bが生成される。このようにして、図6(e)に示すように、多結晶SiC基板5の微小面積の炭化処理面11上の単結晶SiC種結晶小片13aから水平方向に成長した、単結晶SiC種結晶小片13aより大きい面積の単結晶SiC基板13bを生成することができる。   By locally heating a minute portion of the surface of the polycrystalline SiC substrate 5 of FIG. 6A with the laser beam 10, the minute portion of the surface of the polycrystalline SiC substrate 5 is locally localized as shown in FIG. 6B. The carbonization process 11 of the micro area is formed. Then, as shown in FIG. 6C, the polycrystalline SiC substrate 5 is placed close to the carbonized surface 11 having a small area of the polycrystalline SiC substrate 5, and the metal silicon melt is placed in the gap between the substrates. When the liquid phase epitaxial growth is performed with 12 interposed, the surface 19 of the polycrystalline SiC substrate is eroded and the single crystal SiC seed crystal pieces 13 a are self-grown on the carbonized surface 11. Further, by continuing the liquid phase epitaxial growth process, the single crystal SiC seed crystal piece 13a is grown in the single crystal SiC liquid phase epitaxially in the horizontal direction, and a single crystal SiC substrate 13b is generated as shown in FIG. 6 (d). In this way, as shown in FIG. 6 (e), the single crystal SiC seed crystal pieces grown in the horizontal direction from the single crystal SiC seed crystal pieces 13a on the carbonized surface 11 having a small area of the polycrystalline SiC substrate 5 are obtained. A single crystal SiC substrate 13b having an area larger than 13a can be generated.

図7(a)は、収納容器16の内部に、表面の微小部分が局部的に炭化処理された多結晶SiC基板5及びそれに対向して近接設置された多結晶SiC基板5を収納し、単結晶SiC基板13bを生成した状態を示す。図7(b)は、図7(a)の状態の平面の位置関係を示す配置概念図を示す。   FIG. 7A shows a case in which a polycrystalline SiC substrate 5 whose surface minute portions are locally carbonized and a polycrystalline SiC substrate 5 placed in close proximity to the polycrystalline SiC substrate 5 are accommodated in a storage container 16. The state which produced | generated the crystalline SiC substrate 13b is shown. FIG. 7B shows an arrangement conceptual diagram showing the positional relationship of the plane in the state of FIG.

図7(a)及び図7(b)から分かるように、4個所の微小面積の炭化処理面11は多結晶SiC基板5の外周終端に近い位置に配列されており、4個所の微小面積の炭化処理面11に対応した位置に自己成長した単結晶SiC種結晶小片13aは、多結晶SiC基板5の外周終端に近い位置に配列される。これは、多結晶SiC基板5の外周終端に近い程、金属シリコン融液12の表面張力によるC原子の対流の影響で水平方向に結晶成長する速度が加速されるためである。   As can be seen from FIGS. 7 (a) and 7 (b), the four carbonized areas 11 with a small area are arranged at positions close to the outer peripheral end of the polycrystalline SiC substrate 5, Single crystal SiC seed crystal pieces 13 a self-grown at a position corresponding to carbonized surface 11 are arranged at a position near the outer peripheral end of polycrystalline SiC substrate 5. This is because the crystal growth rate in the horizontal direction is accelerated by the influence of convection of C atoms due to the surface tension of the metal silicon melt 12 as it is closer to the outer peripheral end of the polycrystalline SiC substrate 5.

そして、単結晶SiC種結晶小片13aが、水平方向に単結晶SiC液相エピタキシャル成長し、単結晶SiC基板13bが生成される。ここで、単結晶SiC基板13bは、単結晶SiC種結晶小片13aの外側に水平方向に単結晶SiC液相エピタキシャル成長することで円板状に生成される。また、単結晶SiC液相エピタキシャル成長の水平方向成長速度はC原子の対流の影響で基板の中心部方向には成長が遅く外周部の方向に成長速度が大きいために、単結晶SiC基板13bは、図7(b)に示すように、単結晶SiC種結晶小片13aの外側に均等に生成されるのではなく外周部の方向により大きく生成される。   Then, the single crystal SiC seed crystal piece 13a is grown in the single crystal SiC liquid phase epitaxially in the horizontal direction, and the single crystal SiC substrate 13b is generated. Here, the single crystal SiC substrate 13b is generated in a disc shape by performing single crystal SiC liquid phase epitaxial growth in the horizontal direction outside the single crystal SiC seed crystal piece 13a. Further, the horizontal growth rate of the single crystal SiC liquid phase epitaxial growth is slow in the central direction of the substrate due to the influence of C atom convection, and the growth rate is large in the direction of the outer peripheral portion. As shown in FIG. 7 (b), the single crystal SiC seed crystal pieces 13a are not generated uniformly on the outer side but are generated more largely in the direction of the outer peripheral portion.

次に、図8及び図9を参照しつつ、本発明の第2の実施の形態に係る単結晶SiC基板の生成方法について説明する。図8は、タンタル基板15のタンタルカーバイド加工された表面15a上に単結晶SiC種結晶小片13aを配置し、単結晶SiC液相エピタキシャル成長を水平方向に行うことで面積の大きな単結晶SiC基板13bを生成する工程を示す概念図である。   Next, a method for producing a single crystal SiC substrate according to the second embodiment of the present invention will be described with reference to FIGS. In FIG. 8, a single crystal SiC seed crystal piece 13a is disposed on a tantalum carbide-processed surface 15a of a tantalum substrate 15, and a single crystal SiC substrate 13b having a large area is obtained by performing single crystal SiC liquid phase epitaxial growth in the horizontal direction. It is a conceptual diagram which shows the process to produce | generate.

タンタル基板15の表面全体が加熱処理されることで、図8(a)に示すように、タンタル基板15の表面全体にタンタルカーバイド加工された表面15aが形成される。タンタルカーバイド加工された表面15a上には、図8(b)に示すように、単結晶SiC種結晶小片13aが配置される。そして、図8(c)に示すように、タンタル基板15のタンタルカーバイド加工された表面15aに対向して多結晶SiC基板5を近接設置して、両者の基板の隙間に金属シリコン融液12を介在させて液相エピタキシャル成長させると、図8(d)に示すように、多結晶SiC基板の表面19が侵食されると共に、単結晶SiC種結晶小片13aが水平方向に単結晶SiC液相エピタキシャル成長し、単結晶SiC基板13bが生成される。このようにして、図8(e)に示すように、タンタル基板15のタンタルカーバイド加工された表面15a上の単結晶SiC種結晶小片13aから水平方向に成長した、単結晶SiC種結晶小片13aより大きい面積の単結晶SiC基板13bを生成することができる。   By heating the entire surface of the tantalum substrate 15, a surface 15 a subjected to tantalum carbide processing is formed on the entire surface of the tantalum substrate 15 as shown in FIG. As shown in FIG. 8B, single crystal SiC seed crystal pieces 13a are arranged on the surface 15a subjected to tantalum carbide processing. Then, as shown in FIG. 8C, the polycrystalline SiC substrate 5 is placed close to the tantalum carbide-processed surface 15a of the tantalum substrate 15, and the metal silicon melt 12 is placed in the gap between the two substrates. When the liquid phase epitaxial growth is performed by interposing, as shown in FIG. 8D, the surface 19 of the polycrystalline SiC substrate is eroded and the single crystal SiC seed crystal pieces 13a are grown in the single crystal SiC liquid phase epitaxially in the horizontal direction. A single crystal SiC substrate 13b is generated. Thus, as shown in FIG. 8E, from the single crystal SiC seed crystal piece 13a grown in the horizontal direction from the single crystal SiC seed crystal piece 13a on the tantalum carbide processed surface 15a of the tantalum substrate 15. A large-area single crystal SiC substrate 13b can be generated.

図9(a)は、収納容器16の内部に、単結晶SiC種結晶小片13aが配置されたタンタル基板15及びそれに対向して近接設置された多結晶SiC基板5を収納し、より大きい面積の単結晶SiC基板13bを生成した状態を示す。図9(b)は、図9(a)の状態の平面の位置関係を示す配置概念図を示す。   FIG. 9A shows that a tantalum substrate 15 on which a single crystal SiC seed crystal piece 13a is disposed and a polycrystalline SiC substrate 5 that is disposed in close proximity to the tantalum substrate 15 are accommodated in a storage container 16, and has a larger area. The state which produced | generated the single crystal SiC substrate 13b is shown. FIG. 9B shows an arrangement conceptual diagram showing the positional relationship of the plane in the state of FIG.

図9(a)及び図9(b)から分かるように、4個所に配置された単結晶SiC種結晶小片13aは、多結晶SiC基板5の外周終端に近い位置に配列されている。これは、多結晶SiC基板5の外周終端に近い程、金属シリコン融液12の表面張力によるC原子の対流の影響で水平方向に結晶成長する速度が加速されるためである。   As can be seen from FIGS. 9A and 9B, the single crystal SiC seed crystal pieces 13 a arranged at the four locations are arranged at positions close to the outer peripheral end of the polycrystalline SiC substrate 5. This is because the crystal growth rate in the horizontal direction is accelerated by the influence of convection of C atoms due to the surface tension of the metal silicon melt 12 as it is closer to the outer peripheral end of the polycrystalline SiC substrate 5.

そして、単結晶SiC種結晶小片13aが、水平方向に単結晶SiC液相エピタキシャル成長し、単結晶SiC基板13bが生成される。ここで、単結晶SiC基板13bは、単結晶SiC種結晶小片13aの外側に水平方向に単結晶SiC液相エピタキシャル成長することで円板状に生成される。また、単結晶SiC液相エピタキシャル成長の水平方向成長速度はC原子の対流の影響で基板の中心部方向には成長が遅く外周部の方向に成長速度が大きいために、単結晶SiC基板13bは、図9(b)に示すように、単結晶SiC種結晶小片13aの外側に均等に生成されるのではなく外周部の方向により大きく生成される。   Then, the single crystal SiC seed crystal piece 13a is grown in the single crystal SiC liquid phase epitaxially in the horizontal direction, and the single crystal SiC substrate 13b is generated. Here, the single crystal SiC substrate 13b is generated in a disc shape by performing single crystal SiC liquid phase epitaxial growth in the horizontal direction outside the single crystal SiC seed crystal piece 13a. Further, the horizontal growth rate of the single crystal SiC liquid phase epitaxial growth is slow in the central direction of the substrate due to the influence of C atom convection, and the growth rate is large in the direction of the outer peripheral portion. As shown in FIG. 9 (b), the single crystal SiC seed crystal pieces 13a are not generated uniformly on the outer side, but are generated more largely in the direction of the outer peripheral portion.

次に、図10及び図11を参照しつつ、本発明の第2の実施の形態に係る単結晶SiC基板の生成方法の変形例について説明する。図10は、多結晶SiC基板5の表面上に単結晶SiC種結晶小片13aを配置し、単結晶SiC液相エピタキシャル成長を水平方向に行うことで面積の大きな単結晶SiC基板13bを生成する工程を示す概念図である。図11(a)は、収納容器16の内部に、単結晶SiC種結晶小片13aが配置された多結晶SiC基板5及びそれに対向して近接設置された多結晶SiC基板5を収納し、より大きい面積の単結晶SiC基板13bを生成した状態を示す。図11(b)は、図11(a)の状態の平面の位置関係を示す配置概念図を示す。   Next, a modification of the method for producing a single crystal SiC substrate according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 10 shows a process of forming a single-crystal SiC substrate 13b having a large area by arranging single-crystal SiC seed crystal pieces 13a on the surface of the polycrystalline SiC substrate 5 and performing single-crystal SiC liquid phase epitaxial growth in the horizontal direction. FIG. FIG. 11A shows a case where the polycrystalline SiC substrate 5 on which the single crystal SiC seed crystal piece 13a is arranged and the polycrystalline SiC substrate 5 which is placed in close proximity to the polycrystalline SiC substrate 5 are accommodated in the storage container 16 and larger. The state which produced the single crystal SiC substrate 13b of the area is shown. FIG.11 (b) shows the arrangement | positioning conceptual diagram which shows the positional relationship of the plane of the state of Fig.11 (a).

本変形例の単結晶SiC基板の生成方法は、上述の第2の実施の形態と同様であるので詳細な説明は省略するが、単結晶SiC種結晶小片13aを多結晶SiC基板5の表面上に配置し、単結晶SiC液相エピタキシャル成長を水平方向に行うことで面積の大きな単結晶SiC基板13bを生成することができる。   The method for producing the single crystal SiC substrate of the present modification is the same as that of the second embodiment described above, and detailed description thereof is omitted. However, the single crystal SiC seed crystal piece 13a is placed on the surface of the polycrystalline SiC substrate 5. The single crystal SiC substrate 13b having a large area can be produced by arranging the single crystal SiC liquid phase epitaxial growth in the horizontal direction.

次に、図12及び図13を参照しつつ、本発明の第3の実施の形態に係る単結晶SiC基板の生成方法について説明する。図12は、タンタル基板15のタンタルカーバイド加工された表面15a上に単結晶SiC種結晶小片13aを配置し、単結晶SiC液相エピタキシャル成長を水平方向に行うことで面積の大きな単結晶SiC基板13bに成長する工程を示す概念図である。   Next, a method for producing a single crystal SiC substrate according to the third embodiment of the present invention will be described with reference to FIGS. FIG. 12 shows that a single crystal SiC seed crystal piece 13a is disposed on a tantalum carbide-processed surface 15a of a tantalum substrate 15, and single crystal SiC liquid phase epitaxial growth is performed in a horizontal direction to form a single crystal SiC substrate 13b having a large area. It is a conceptual diagram which shows the process to grow.

タンタル基板15の表面全体が加熱処理されることで、図12(a)に示すように、タンタル基板15の表面全体にタンタルカーバイド加工された表面15aが形成される。タンタルカーバイド加工された表面15a上には、図12(b)に示すように、単結晶SiC種結晶小片13aが配置される。そして、図12(c)に示すように、タンタル基板15のタンタルカーバイド加工された表面15aに配置された単結晶SiC種結晶小片13aに対向する多結晶SiC基板5を分割して単結晶SiC種結晶小片13aに個々に対向するように多結晶SiC基板5を近接設置して、両者の基板の隙間に金属シリコン融液12を介在させて液相エピタキシャル成長させると、図12(d)に示すように、多結晶SiC基板5の表面19が侵食されると共に、単結晶SiC種結晶小片13aが水平方向に単結晶SiC液相エピタキシャル成長し、単結晶SiC基板13bが生成される。このようにして、図12(e)に示すように、タンタル基板15のタンタルカーバイド加工された表面15a上の単結晶SiC種結晶小片13aから水平方向に成長した、単結晶SiC種結晶小片13aより大きい面積の単結晶SiC基板13bを生成することができる。   By heat-treating the entire surface of the tantalum substrate 15, a surface 15a subjected to tantalum carbide processing is formed on the entire surface of the tantalum substrate 15 as shown in FIG. On the surface 15a subjected to tantalum carbide processing, as shown in FIG. 12B, single crystal SiC seed crystal pieces 13a are arranged. Then, as shown in FIG. 12C, the polycrystalline SiC substrate 5 facing the single crystal SiC seed crystal piece 13a disposed on the tantalum carbide processed surface 15a of the tantalum substrate 15 is divided to obtain a single crystal SiC seed. As shown in FIG. 12D, when the polycrystalline SiC substrate 5 is placed close to each of the crystal pieces 13a, and the metal silicon melt 12 is interposed in the gap between the substrates, the liquid phase epitaxial growth is performed. In addition, the surface 19 of the polycrystalline SiC substrate 5 is eroded, and the single crystal SiC seed crystal pieces 13a are grown in the single crystal SiC liquid phase epitaxially in the horizontal direction to generate the single crystal SiC substrate 13b. In this way, as shown in FIG. 12E, from the single crystal SiC seed crystal piece 13a grown in the horizontal direction from the single crystal SiC seed crystal piece 13a on the tantalum carbide processed surface 15a of the tantalum substrate 15. A large-area single crystal SiC substrate 13b can be generated.

図13(a)は、収納容器16の内部に、単結晶SiC種結晶小片13aが配置されたタンタル基板15及びそれに対向して近接設置された分割された多結晶SiC基板5を収納し、より大きい面積の単結晶SiC基板13bを生成した状態を示す。図13(b)は、図13(a)の状態の平面の位置関係を示す配置概念図を示す。   FIG. 13 (a) stores the tantalum substrate 15 on which the single crystal SiC seed crystal piece 13a is disposed and the divided polycrystalline SiC substrate 5 disposed adjacent to and opposed to the tantalum substrate 15 inside the storage container 16, The state which produced | generated the single crystal SiC substrate 13b of a large area is shown. FIG. 13B shows an arrangement conceptual diagram showing the positional relationship of the plane in the state of FIG.

図13(a)から分かるように、タンタルカーバイド加工された表面15aに4個所に配置された単結晶SiC種結晶小片13aは、それぞれに対向した多結晶SiC基板5のほぼ中央に配置されている。   As can be seen from FIG. 13 (a), single crystal SiC seed crystal pieces 13a arranged at four locations on the surface 15a subjected to tantalum carbide processing are arranged at substantially the center of the polycrystalline SiC substrate 5 facing each other. .

そして、単結晶SiC種結晶小片13aが、水平方向に単結晶SiC液相エピタキシャル成長し、単結晶SiC基板13bが生成される。ここで、単結晶SiC基板13bは、単結晶SiC種結晶小片13aの外側に水平方向に単結晶SiC液相エピタキシャル成長することで円板状に生成される。また、上述したように、単結晶SiC液相エピタキシャル成長の水平方向成長速度はC原子の対流の影響で基板の中心部方向には成長が遅く外周部の方向に成長速度が大きいが、多結晶SiC基板5が単結晶SiC種結晶小片13aに個々に分割されており、単結晶SiC種結晶小片13aがそれぞれに近接設置した多結晶SiC基板5のほぼ中央に配置されているので、単結晶SiC基板13bは単結晶SiC種結晶小片13aの外側にほぼ均等に生成される。   Then, the single crystal SiC seed crystal piece 13a is grown in the single crystal SiC liquid phase epitaxially in the horizontal direction, and the single crystal SiC substrate 13b is generated. Here, the single crystal SiC substrate 13b is generated in a disc shape by performing single crystal SiC liquid phase epitaxial growth in the horizontal direction outside the single crystal SiC seed crystal piece 13a. In addition, as described above, the horizontal growth rate of single crystal SiC liquid phase epitaxial growth is slow in the center direction of the substrate due to the convection of C atoms, but is high in the direction of the outer peripheral portion. Since the substrate 5 is individually divided into single crystal SiC seed crystal pieces 13a, and the single crystal SiC seed crystal pieces 13a are arranged at substantially the center of the polycrystalline SiC substrate 5 disposed adjacent to each other, the single crystal SiC substrate 13b is generated almost uniformly outside the single crystal SiC seed crystal piece 13a.

次に、図14及び図15を参照しつつ、本発明の第3の実施の形態に係る単結晶SiC基板の生成方法の変形例について説明する。図14は、多結晶SiC基板5の表面上に単結晶SiC種結晶小片13aを配置し、単結晶SiC液相エピタキシャル成長を水平方向に行うことで面積の大きな単結晶SiC基板13bに成長する工程を示す概念図である。図15(a)は、収納容器16の内部に、単結晶SiC種結晶小片13aが配置された多結晶SiC基板5及びそれに対向して近接設置された分割された多結晶SiC基板5が収納された状態を示す。図15(b)は、図15(a)の状態の平面の位置関係を示す配置概念図を示す。   Next, a modification of the method for producing a single crystal SiC substrate according to the third embodiment of the present invention will be described with reference to FIGS. FIG. 14 shows a process of arranging a single crystal SiC seed crystal piece 13a on the surface of the polycrystalline SiC substrate 5 and performing single crystal SiC liquid phase epitaxial growth in the horizontal direction to grow the single crystal SiC substrate 13b having a large area. FIG. FIG. 15A shows that the polycrystalline SiC substrate 5 in which the single crystal SiC seed crystal pieces 13 a are arranged and the divided polycrystalline SiC substrate 5 that is placed in close proximity to the polycrystalline SiC substrate 5 are accommodated in the storage container 16. Indicates the state. FIG. 15B is an arrangement conceptual diagram showing the positional relationship of the plane in the state of FIG.

本変形例の単結晶SiC基板の生成方法は、上述の第3の実施の形態と同様であるので詳細な説明は省略するが、単結晶SiC種結晶小片13aを多結晶SiC基板5の表面上に配置し、単結晶SiC液相エピタキシャル成長を水平方向に行うことで面積の大きな単結晶SiC基板13bを生成することができる。   The method for producing the single crystal SiC substrate of the present modification is the same as that of the third embodiment described above, and detailed description thereof is omitted, but the single crystal SiC seed crystal piece 13a is placed on the surface of the polycrystalline SiC substrate 5. The single crystal SiC substrate 13b having a large area can be produced by arranging the single crystal SiC liquid phase epitaxial growth in the horizontal direction.

なお、上述の第2及び第3の実施の形態及び変形例において、タンタル基板15又は多結晶SiC基板5の表面に配置される単結晶SiC種結晶小片13aは、上述した方法で生成されたものでもよいし、別途の方法で得られたものでもよい。   In the second and third embodiments and modifications described above, the single crystal SiC seed crystal pieces 13a arranged on the surface of the tantalum substrate 15 or the polycrystalline SiC substrate 5 are generated by the method described above. However, it may be obtained by a separate method.

次に、図16及び図17を参照しつつ、本発明の第4の実施の形態に係る単結晶SiC基板の生成方法について説明する。図16は、タンタル基板15のタンタルカーバイド加工された表面15a上に単結晶SiC種結晶板13bを配置し、単結晶SiC液相エピタキシャル成長を水平方向に行うことでより面積の大きな単結晶SiC基板13cを生成する工程を示す概念図である。   Next, a method for producing a single crystal SiC substrate according to the fourth embodiment of the present invention will be described with reference to FIGS. FIG. 16 shows a single crystal SiC substrate 13c having a larger area by arranging a single crystal SiC seed crystal plate 13b on the surface 15a of the tantalum carbide 15 of the tantalum substrate 15 and performing single crystal SiC liquid phase epitaxial growth in the horizontal direction. It is a conceptual diagram which shows the process of producing | generating.

タンタル基板15の表面全体が加熱処理されることで、図16(a)に示すように、タンタル基板15の表面全体にタンタルカーバイド加工された表面15aが形成される。タンタルカーバイド加工された表面15a上には、図16(b)に示すように、単結晶SiC種結晶板13bが配置される。そして、図16(c)に示すように、タンタル基板15のタンタルカーバイド加工された表面15aに対向して多結晶SiC基板5を近接設置して、両者の基板の隙間に金属シリコン融液12を介在させて液相エピタキシャル成長させると、図16(d)に示すように、多結晶SiC基板の表面19が侵食されると共に、単結晶SiC種結晶板13bが水平方向に単結晶SiC液相エピタキシャル成長し、単結晶SiC基板13cが生成される。このようにして、図16(e)に示すように、タンタル基板15のタンタルカーバイド加工された表面15a上の単結晶SiC種結晶板13bから水平方向に成長した、単結晶SiC種結晶板13bより大きい面積の単結晶SiC基板13cを生成することができる。   By heat-treating the entire surface of the tantalum substrate 15, as shown in FIG. 16A, a surface 15a subjected to tantalum carbide processing is formed on the entire surface of the tantalum substrate 15. As shown in FIG. 16B, a single crystal SiC seed crystal plate 13b is arranged on the surface 15a subjected to tantalum carbide processing. Then, as shown in FIG. 16 (c), the polycrystalline SiC substrate 5 is placed close to the tantalum carbide-processed surface 15 a of the tantalum substrate 15, and the metal silicon melt 12 is placed in the gap between the two substrates. When the liquid phase epitaxial growth is performed by interposing, as shown in FIG. 16D, the surface 19 of the polycrystalline SiC substrate is eroded and the single crystal SiC seed crystal plate 13b is grown in the single crystal SiC liquid phase epitaxially in the horizontal direction. A single crystal SiC substrate 13c is generated. In this way, as shown in FIG. 16 (e), from the single crystal SiC seed crystal plate 13b grown in the horizontal direction from the single crystal SiC seed crystal plate 13b on the tantalum carbide processed surface 15a of the tantalum substrate 15. A single crystal SiC substrate 13c having a large area can be generated.

17(a)は、収納容器16の内部に、単結晶SiC種結晶板13bが配置されたタンタル基板15及びそれに対向して近接設置された多結晶SiC基板5を収納し、より大きい面積の単結晶SiC基板13cを生成した状態を示す。図17(b)は、図17(a)の状態の平面の位置関係を示す配置概念図を示す。   17 (a) accommodates a tantalum substrate 15 on which a single crystal SiC seed crystal plate 13b is disposed and a polycrystalline SiC substrate 5 disposed in close proximity to the tantalum substrate 15 in a storage container 16, and has a larger area. The state which produced | generated the crystalline SiC substrate 13c is shown. FIG. 17B is an arrangement conceptual diagram showing the positional relationship of the plane in the state of FIG.

図17(a)及び図17(b)から分かるように、単結晶SiC種結晶板13bが、水平方向に単結晶SiC液相エピタキシャル成長し、単結晶SiC基板13cが生成される。ここで、単結晶SiC基板13cは、単結晶SiC種結晶板13bの外側に水平方向に単結晶SiC液相エピタキシャル成長することで円板状に生成される。また、上述したように、単結晶SiC液相エピタキシャル成長の水平方向成長速度はC原子の対流の影響で基板の中心部方向には成長が遅く外周部の方向に成長速度が大きいが、単結晶SiC種結晶板13bが近接設置した多結晶SiC基板5のほぼ中央に配置されているので、単結晶SiC基板13cは単結晶SiC種結晶板13bの外側にほぼ均等に生成される。   As can be seen from FIGS. 17A and 17B, the single crystal SiC seed crystal plate 13b undergoes single crystal SiC liquid phase epitaxial growth in the horizontal direction to generate a single crystal SiC substrate 13c. Here, the single crystal SiC substrate 13c is generated in a disc shape by performing single crystal SiC liquid phase epitaxial growth in the horizontal direction outside the single crystal SiC seed crystal plate 13b. Further, as described above, the horizontal growth rate of the single crystal SiC liquid phase epitaxial growth is slow in the center direction of the substrate due to the influence of C atom convection, but is high in the direction of the outer peripheral portion. Since the seed crystal plate 13b is disposed in the approximate center of the polycrystalline SiC substrate 5 disposed in the vicinity, the single crystal SiC substrate 13c is generated substantially uniformly outside the single crystal SiC seed crystal plate 13b.

次に、図18及び図19を参照しつつ、本発明の第4の実施の形態に係る単結晶SiC基板の生成方法の変形例について説明する。図18は、多結晶SiC基板5の表面上に単結晶SiC種結晶板13bを配置し、単結晶SiC液相エピタキシャル成長を水平方向に行うことでより面積の大きな単結晶SiC基板13cを生成する工程を示す概念図である。図19(a)は、収納容器16の内部に、単結晶SiC種結晶板13bが配置された多結晶SiC基板5及びそれに対向して近接設置された多結晶SiC基板5を収納し、より大きい面積の単結晶SiC基板13cを生成した状態を示す。図19(b)は、図19(a)の状態の平面の位置関係を示す配置概念図を示す。   Next, a modification of the method for producing a single crystal SiC substrate according to the fourth embodiment of the present invention will be described with reference to FIGS. FIG. 18 shows a process of forming a single crystal SiC substrate 13c having a larger area by disposing a single crystal SiC seed crystal plate 13b on the surface of the polycrystalline SiC substrate 5 and performing a single crystal SiC liquid phase epitaxial growth in the horizontal direction. FIG. FIG. 19A shows a case where the polycrystalline SiC substrate 5 on which the single crystal SiC seed crystal plate 13b is arranged and the polycrystalline SiC substrate 5 which is placed in close proximity to the polycrystalline SiC substrate 5 are accommodated in the storage container 16. The state which produced the single crystal SiC substrate 13c of the area is shown. FIG. 19B shows an arrangement conceptual diagram showing the positional relationship of the plane in the state of FIG.

本変形例の単結晶SiC基板の生成方法は、上述の第4の実施の形態と同様であるので詳細な説明は省略するが、単結晶SiC種結晶板13bを多結晶SiC基板5の表面上に配置し、単結晶SiC液相エピタキシャル成長を水平方向に行うことで面積の大きな単結晶SiC基板13cを生成することができる。   The method for producing the single crystal SiC substrate of the present modification is the same as that in the fourth embodiment described above, and detailed description thereof is omitted. However, the single crystal SiC seed crystal plate 13b is placed on the surface of the polycrystalline SiC substrate 5. The single-crystal SiC substrate 13c having a large area can be generated by arranging the single-crystal SiC liquid phase epitaxial growth in the horizontal direction.

なお、上述の第4の実施の形態及び変形例において、タンタル基板15又は多結晶SiC基板5の表面に配置される単結晶SiC種結晶板13bは、上述の第1〜3の実施の形態で生成されたものでもよいし、別途の方法で得られたものでもよい。   In the fourth embodiment and the modification described above, the single crystal SiC seed crystal plate 13b disposed on the surface of the tantalum substrate 15 or the polycrystalline SiC substrate 5 is the same as that in the first to third embodiments. It may be generated or may be obtained by a separate method.

以上に本発明の好適な実施形態を示したが、上記は一例であって、例えば以下のように変更することができる。   Although the preferred embodiment of the present invention has been described above, the above is an example, and can be modified as follows, for example.

加熱処理工程に用いられる収納容器16は、その表面全体に炭化タンタル層31を露出させることのほか、収納容器16の内部空間にのみ露出させたり、収納容器16の内面の一部にのみ露出させるように構成してもよい。   In addition to exposing the tantalum carbide layer 31 on the entire surface of the storage container 16 used in the heat treatment process, the storage container 16 is exposed only in the internal space of the storage container 16 or only on a part of the inner surface of the storage container 16. You may comprise as follows.

第2〜第4の実施の形態では、表面がタンタルカーバイド加工されたタンタル基板15の表面に単結晶SiC種結晶小片13a又は単結晶SiC種結晶板13bを配置しているが、タンタルカーバイド加工されたタンタル基板15の代わりに、1500℃以上2300℃以下の高真空中で耐熱特性に優れた材料で覆われた基板を用いてもよく、例えば表面がタンタルカーバイドで覆われたグラファイト基板やタングステン基板を用いてもよい。   In the second to fourth embodiments, the single crystal SiC seed crystal piece 13a or the single crystal SiC seed crystal plate 13b is disposed on the surface of the tantalum substrate 15 whose surface is tantalum carbide processed. Instead of the tantalum substrate 15, a substrate covered with a material excellent in heat resistance in a high vacuum of 1500 ° C. or higher and 2300 ° C. or lower may be used. For example, a graphite substrate or a tungsten substrate whose surface is covered with tantalum carbide. May be used.

1 熱処理装置
5 多結晶炭化ケイ素基板
11 炭化処理面
12 金属シリコン融液
13 単結晶炭化ケイ素基板
13a 単結晶炭化ケイ素種結晶小片、単結晶炭化ケイ素小片
13b 単結晶炭化ケイ素種結晶板、単結晶炭化ケイ素基板
13c 単結晶炭化ケイ素基板、
15 タンタル基板
15a タンタルカーバイド加工された表面
16 収納容器
19 液相エピタキシャル成長で侵食された多結晶炭化ケイ素基板の表面
DESCRIPTION OF SYMBOLS 1 Heat processing apparatus 5 Polycrystalline silicon carbide substrate 11 Carbonization process surface 12 Metal silicon melt 13 Single crystal silicon carbide substrate 13a Single crystal silicon carbide seed piece, Single crystal silicon carbide piece 13b Single crystal silicon carbide seed plate, Single crystal carbonization Silicon substrate 13c single crystal silicon carbide substrate,
15 Tantalum substrate 15a Surface 16 processed with tantalum carbide 16 Container 19 Surface of polycrystalline silicon carbide substrate eroded by liquid phase epitaxial growth

Claims (9)

表面を局部的に炭化処理した多結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを金属シリコン融液を介して近接対向配置させた多結晶炭化ケイ素基板の複合体を、収納容器に収納するとともに、前記収納容器の内部圧力が外部圧力よりも高くなるようにシリコンの飽和蒸気圧下の真空に保った状態で1500℃以上2300℃以下の温度で加熱処理して、前記多結晶炭化ケイ素基板の炭化処理面に単結晶炭化ケイ素を液相成長により自己成長させて単結晶炭化ケイ素種結晶小片を生成し、更に液相成長を継続することで、前記単結晶炭化ケイ素種結晶小片を前記対向方向と直交する方向に液相エピタキシャル成長させて生成されており、その外周部に面方向に結晶成長した部分を有することを特徴とする単結晶炭化ケイ素基板。   A polycrystalline silicon carbide substrate in which a polycrystalline silicon carbide substrate and a polycrystalline silicon carbide substrate whose surfaces are locally carbonized and disposed in close proximity to each other through a metal silicon melt is stored in a storage container, The polycrystalline silicon carbide substrate is carbonized by heat treatment at a temperature of 1500 ° C. or higher and 2300 ° C. or lower while maintaining a vacuum under a saturated vapor pressure of silicon so that the internal pressure of the storage container is higher than the external pressure. A single crystal silicon carbide seed crystal piece is produced by self-growth of single crystal silicon carbide on the surface by liquid phase growth, and the liquid crystal growth is continued, so that the single crystal silicon carbide seed crystal piece is orthogonal to the facing direction. A single crystal silicon carbide substrate, which is produced by liquid phase epitaxial growth in a direction to be formed, and has a portion of crystal growth in a plane direction on an outer peripheral portion thereof. 表面に単結晶炭化ケイ素種結晶小片が配置された多結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを金属シリコン融液を介して近接対向配置させて、前記対向方向と直交する方向における前記単結晶炭化ケイ素種結晶小片の周囲に前記金属シリコン融液を存在させた多結晶炭化ケイ素基板の複合体を、収納容器に収納するとともに、前記収納容器の内部圧力が外部圧力よりも高くなるようにシリコンの飽和蒸気圧下の真空に保った状態で1500℃以上2300℃以下の温度で加熱処理することで、前記単結晶炭化ケイ素種結晶小片を前記対向方向と直交する方向に液相エピタキシャル成長させて生成されており、その外周部に面方向に結晶成長した部分を有することを特徴とする単結晶炭化ケイ素基板。   A polycrystalline silicon carbide substrate having a single crystal silicon carbide seed crystal piece disposed on a surface thereof and a polycrystalline silicon carbide substrate are disposed in close proximity to each other through a metal silicon melt, and the single crystal in a direction orthogonal to the facing direction The composite of the polycrystalline silicon carbide substrate in which the metal silicon melt is present around the silicon carbide seed crystal piece is stored in a storage container, and the internal pressure of the storage container is made higher than the external pressure. The single crystal silicon carbide seed crystal pieces are grown by liquid phase epitaxial growth in a direction perpendicular to the facing direction by heat treatment at a temperature of 1500 ° C. or higher and 2300 ° C. or lower while maintaining a vacuum under a saturated vapor pressure of And a single crystal silicon carbide substrate characterized by having a portion of crystal growth in a plane direction on an outer periphery thereof. 前記単結晶炭化ケイ素種結晶小片が、表面を炭化処理した多結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを金属シリコン融液を介して近接対向配置させた多結晶炭化ケイ素基板の複合体を、収納容器に収納するとともに、前記収納容器の内部圧力が外部圧力よりも高くなるようにシリコンの飽和蒸気圧下の真空に保った状態で1500℃以上2300℃以下の温度で加熱処理することで、前記多結晶炭化ケイ素基板の炭化処理面に単結晶炭化ケイ素を液相成長により自己成長させて生成されたものであることを特徴とする請求項2に記載の単結晶炭化ケイ素基板。   The single crystal silicon carbide seed crystal piece is a composite of a polycrystalline silicon carbide substrate in which a polycrystalline silicon carbide substrate having a carbonized surface and a polycrystalline silicon carbide substrate are disposed in close proximity to each other through a metal silicon melt, While being housed in a storage container, the heat treatment is performed at a temperature of 1500 ° C. or more and 2300 ° C. or less in a state where the internal pressure of the storage container is kept under a vacuum under a saturated vapor pressure of silicon so as to be higher than the external pressure, 3. The single crystal silicon carbide substrate according to claim 2, wherein the single crystal silicon carbide substrate is produced by self-growing single crystal silicon carbide by liquid phase growth on the carbonized surface of the polycrystalline silicon carbide substrate. 表面に単結晶炭化ケイ素種結晶板が配置された多結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを金属シリコン融液を介して近接対向配置させて、前記対向方向と直交する方向における前記単結晶炭化ケイ素種結晶板の周囲に前記金属シリコン融液を存在させた多結晶炭化ケイ素基板の複合体を、収納容器に収納するとともに、前記収納容器の内部圧力が外部圧力よりも高くなるようにシリコンの飽和蒸気圧下の真空に保った状態で1500℃以上2300℃以下の温度で加熱処理することで、前記単結晶炭化ケイ素種結晶板を前記対向方向と直交する方向に液相エピタキシャル成長させて生成されており、その外周部に面方向に結晶成長した部分を有することを特徴とする単結晶炭化ケイ素基板。   A polycrystalline silicon carbide substrate having a single crystal silicon carbide seed crystal plate disposed on a surface thereof and a polycrystalline silicon carbide substrate are disposed in close proximity to each other via a metal silicon melt, and the single crystal in a direction orthogonal to the facing direction A composite of a polycrystalline silicon carbide substrate in which the metal silicon melt is present around a silicon carbide seed crystal plate is stored in a storage container, and silicon is used so that the internal pressure of the storage container is higher than the external pressure. The single crystal silicon carbide seed crystal plate is produced by liquid phase epitaxial growth in a direction perpendicular to the facing direction by heat treatment at a temperature of 1500 ° C. or higher and 2300 ° C. or lower while maintaining a vacuum under a saturated vapor pressure of And a single crystal silicon carbide substrate characterized by having a portion of crystal growth in a plane direction on an outer periphery thereof. 前記単結晶炭化ケイ素種結晶板が、表面を局部的に炭化処理した多結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを金属シリコン融液を介して近接対向配置させた多結晶炭化ケイ素基板の複合体を、収納容器に収納するとともに、前記収納容器の内部圧力が外部圧力よりも高くなるようにシリコンの飽和蒸気圧下の真空に保った状態で1500℃以上2300℃以下の温度で加熱処理して、前記多結晶炭化ケイ素基板の炭化処理面に単結晶炭化ケイ素を液相成長により自己成長させて単結晶炭化ケイ素種結晶小片を生成し、更に液相成長を継続することで、前記単結晶炭化ケイ素種結晶小片を前記対向方向と直交する方向に液相エピタキシャル成長させて生成されたものであることを特徴とする請求項4に記載の単結晶炭化ケイ素基板。   The single crystal silicon carbide seed crystal plate is a composite of a polycrystalline silicon carbide substrate in which a polycrystalline silicon carbide substrate whose surface is locally carbonized and a polycrystalline silicon carbide substrate are disposed in close proximity to each other via a metal silicon melt. The body is stored in a storage container, and heat-treated at a temperature of 1500 ° C. or higher and 2300 ° C. or lower in a state where the internal pressure of the storage container is kept under a vacuum under the saturated vapor pressure of silicon so as to be higher than the external pressure. The single crystal silicon carbide is self-grown by liquid phase growth on the carbonized surface of the polycrystalline silicon carbide substrate to form single crystal silicon carbide seed crystal pieces, and further, liquid phase growth is continued, whereby the single crystal carbonization is performed. 5. The single crystal silicon carbide substrate according to claim 4, wherein the single crystal silicon carbide substrate is produced by liquid phase epitaxial growth of a silicon seed crystal piece in a direction orthogonal to the facing direction. 前記単結晶炭化ケイ素種結晶小片又は種結晶板が、前記多結晶炭化ケイ素基板の外周端に近い位置に配置されることを特徴とする請求項2又は4に記載の単結晶炭化ケイ素基板。   5. The single crystal silicon carbide substrate according to claim 2, wherein the single crystal silicon carbide seed crystal piece or seed crystal plate is disposed at a position close to an outer peripheral end of the polycrystalline silicon carbide substrate. 前記炭化処理が、3C−SiC集合体の多結晶炭化ケイ素基板を真空又は不活性雰囲気に保った状態でレーザー光線や電子ビ−ムで基板表面を局部的に照射して、基板表面の3C−SiC集合体を4H−SiC集合体を含む結晶粒に成長させると同時に、基板表面のケイ素を選択的に蒸発除去させて炭素リッチな炭化ケイ素組成を作る処理であることを特徴とする請求項1又は3に記載の単結晶炭化ケイ素基板。   The carbonization treatment is performed by locally irradiating the surface of the substrate with a laser beam or an electron beam while keeping the 3C-SiC aggregate polycrystalline silicon carbide substrate in a vacuum or in an inert atmosphere. 2. The process of growing the aggregate into crystal grains containing a 4H—SiC aggregate and simultaneously evaporating and removing silicon on the substrate surface to produce a carbon-rich silicon carbide composition. 4. The single crystal silicon carbide substrate according to 3. 前記収納容器は、タンタル金属からなるとともに炭化タンタル層を内部空間に露出させるように構成された上下が嵌合した容器であることを特徴とする請求項1〜7のいずれかに記載の単結晶炭化ケイ素基板。   The single crystal according to any one of claims 1 to 7, wherein the storage container is made of tantalum metal and is configured to fit the upper and lower parts configured to expose the tantalum carbide layer in the internal space. Silicon carbide substrate. 前記単結晶炭化ケイ素種結晶小片又は種結晶板が配置される前記多結晶炭化ケイ素基板の代わりに、表面がタンタルカーバイド加工されたタンタル基板、或いは、1500℃以上2300℃以下の高真空中で耐熱性を有する材料で覆われた基板を用いることを特徴とする請求項2又は4に記載の単結晶炭化ケイ素基板。   Instead of the polycrystalline silicon carbide substrate on which the single crystal silicon carbide seed crystal piece or seed crystal plate is disposed, the surface is tantalum carbide processed tantalum substrate, or heat resistant in a high vacuum of 1500 ° C. to 2300 ° C. The single crystal silicon carbide substrate according to claim 2, wherein a substrate covered with a material having a property is used.
JP2012185253A 2012-08-24 2012-08-24 Single crystal silicon carbide substrate Active JP5376477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012185253A JP5376477B2 (en) 2012-08-24 2012-08-24 Single crystal silicon carbide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012185253A JP5376477B2 (en) 2012-08-24 2012-08-24 Single crystal silicon carbide substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006212627A Division JP5207427B2 (en) 2006-08-03 2006-08-03 Method for producing liquid phase of single crystal silicon carbide, method for producing liquid phase epitaxial of single crystal silicon carbide substrate, method of producing single crystal silicon carbide substrate

Publications (2)

Publication Number Publication Date
JP2012224546A true JP2012224546A (en) 2012-11-15
JP5376477B2 JP5376477B2 (en) 2013-12-25

Family

ID=47275148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012185253A Active JP5376477B2 (en) 2012-08-24 2012-08-24 Single crystal silicon carbide substrate

Country Status (1)

Country Link
JP (1) JP5376477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086122A (en) * 2013-11-01 2015-05-07 株式会社豊田自動織機 Production method of compound semiconductor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297034A (en) * 2003-03-10 2004-10-21 Kwansei Gakuin Thermal treatment equipment and thermal treatment method using the same
JP2005126248A (en) * 2003-10-21 2005-05-19 New Industry Research Organization Method for growing single crystal silicon carbide
JP2006117512A (en) * 2004-09-24 2006-05-11 Showa Denko Kk Method for producing silicon carbide single crystal and silicon carbide single crystal grown by the method, single crystal ingot and silicon carbide single crystal wafer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297034A (en) * 2003-03-10 2004-10-21 Kwansei Gakuin Thermal treatment equipment and thermal treatment method using the same
JP2005126248A (en) * 2003-10-21 2005-05-19 New Industry Research Organization Method for growing single crystal silicon carbide
JP2006117512A (en) * 2004-09-24 2006-05-11 Showa Denko Kk Method for producing silicon carbide single crystal and silicon carbide single crystal grown by the method, single crystal ingot and silicon carbide single crystal wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086122A (en) * 2013-11-01 2015-05-07 株式会社豊田自動織機 Production method of compound semiconductor

Also Published As

Publication number Publication date
JP5376477B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5207427B2 (en) Method for producing liquid phase of single crystal silicon carbide, method for producing liquid phase epitaxial of single crystal silicon carbide substrate, method of producing single crystal silicon carbide substrate
JP6980201B2 (en) SiC substrate manufacturing equipment
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
US7678195B2 (en) Seeded growth process for preparing aluminum nitride single crystals
US7794842B2 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and method of production of same
JPH11116398A (en) Production of silicon carbide single crystal
JP4460236B2 (en) Silicon carbide single crystal wafer
JP3590485B2 (en) Single crystal silicon carbide ingot and method for producing the same
JP6681687B2 (en) Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot
TWI567867B (en) Semiconductor wafer manufacturing method and semiconductor wafer
Hartmann et al. Homoepitaxial seeding and growth of bulk AlN by sublimation
JP5131262B2 (en) Silicon carbide single crystal and method for producing the same
JP2006298722A (en) Method for manufacturing single crystal silicon carbide substrate
JP5376477B2 (en) Single crystal silicon carbide substrate
JP4482642B2 (en) Single crystal silicon carbide growth method
JP6881365B2 (en) Silicon Carbide Single Crystal Manufacturing Method and Equipment
TW201730386A (en) Method for manufacturing single-crystal SiC, and housing container
JP5164121B2 (en) Single crystal silicon carbide growth method
US20240044044A1 (en) Crystal growth device and method for growing a semiconductor
JP2010150109A (en) Nitride single crystal and method for producing the same
JP2006041544A (en) Heat treatment method and heat treatment device
KR20220088554A (en) AlN SINGLE CRYSTAL AND THE GROWING METHOD THEREOF
JP5545268B2 (en) SiC multichip substrate
CN112334607A (en) Silicon carbide single crystal and method for producing same
JP2015067499A (en) Single crystal manufacturing apparatus and single crystal manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5376477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250