JP2012224202A - Structural member excellent in collapse characteristic - Google Patents

Structural member excellent in collapse characteristic Download PDF

Info

Publication number
JP2012224202A
JP2012224202A JP2011093367A JP2011093367A JP2012224202A JP 2012224202 A JP2012224202 A JP 2012224202A JP 2011093367 A JP2011093367 A JP 2011093367A JP 2011093367 A JP2011093367 A JP 2011093367A JP 2012224202 A JP2012224202 A JP 2012224202A
Authority
JP
Japan
Prior art keywords
plate
front plate
back plate
central axis
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011093367A
Other languages
Japanese (ja)
Inventor
Takeshi Torikai
岳 鳥飼
Masaya Takahashi
昌也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2011093367A priority Critical patent/JP2012224202A/en
Publication of JP2012224202A publication Critical patent/JP2012224202A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structural member excellent in collapse characteristics where a front board is hard to buckle and has a high collapse load.SOLUTION: The impact absorbing member 10 is constituted such that a hollow structure is formed with both an approximately semicircle like front face plate 12 and a straight line like back board 14 connecting both ends of the front face plate 12, and a central axis Z of the cross section of the impact absorbing member 10 is placed between the front face plate 12 and the back board 14, which passes through a point O of the center of a width direction of the back board 14 intersects perpendicularly to the back board 14, with two connection boards 16 and 16 tilting to the central axis Z whose inclination direction are mutually opposite are arranged to become a line symmetry to the central axis Z, and finally the front face plate 12 and the back board 14 are connected in one with the two connection boards 16 and 16.

Description

本発明は、構造部材に係り、特に、圧壊特性に優れ、例えば自動車用のエネルギー吸収部材として好適に用いられる中空の構造部材に関するものである。   The present invention relates to a structural member, and more particularly to a hollow structural member that has excellent crushing characteristics and is suitably used as an energy absorbing member for automobiles, for example.

従来より、自動車の衝突安全性向上のために、各種のエネルギー吸収部材(衝撃吸収部材)が用いられてきている。例えば、衝突時の車体の損傷を緩和するためのエネルギー吸収部材の一つとして、自動車用バンパー補強材が用いられている。そして、そのような自動車用バンパー補強材の一つとして、特開2006−27499号公報(特許文献1)においては、車両の幅方向に配設したバンパビームの外側に取り付けられて、このバンパビームに小さな衝撃が加わったときに変形することによって、衝撃を吸収するようにした衝撃吸収部材が、明らかにされている。   Conventionally, various energy absorbing members (impact absorbing members) have been used to improve collision safety of automobiles. For example, a bumper reinforcing material for automobiles is used as one of energy absorbing members for alleviating damage to a vehicle body at the time of a collision. As one of such bumper reinforcing materials for automobiles, Japanese Patent Application Laid-Open No. 2006-27499 (Patent Document 1) is attached to the outside of a bumper beam disposed in the width direction of the vehicle and is small in this bumper beam. An impact absorbing member that absorbs an impact by being deformed when an impact is applied has been clarified.

具体的には、そのような公報に開示の衝撃吸収部材(バンパー補強材)は、アルミニウム押出形材にて形成されたものであって、自動車のバンパビームの外側に当接する板状の当接部と、この当接部の両端を略半円状に繋ぐ円弧部と、この円弧部に、前記当接部中央から二股状に且つ凸状の曲線状に延びる、湾曲したY字形状を呈する第1・第2の接続リブとを備えた中空構造において、構成されている。そして、この車両用バンパビームに設けられる衝撃吸収部材にあっては、第1・第2の接続リブを当接部中央から二股状に且つ凸状の曲線上に正面板まで延ばしたY字形状とされているところから、正面板に荷重が加わったときに、かかる第1・第2の接続リブは、正面板と当接部との間で突っ張ることがなく、凸状の二股部分が円滑に変形しつつ、衝撃を吸収することが出来ることとされている。   Specifically, the shock absorbing member (bumper reinforcing material) disclosed in such a gazette is formed of an aluminum extruded profile, and is a plate-like contact portion that contacts the outside of a bumper beam of an automobile. And a circular arc portion connecting both ends of the contact portion in a substantially semicircular shape, and a circular Y-shape extending in a bifurcated and convex curved shape from the center of the contact portion on the circular arc portion. The hollow structure having the first and second connecting ribs is configured. And, in the shock absorbing member provided in this vehicle bumper beam, the first and second connecting ribs are bifurcated from the center of the abutting portion and extend to the front plate on a convex curve, Therefore, when a load is applied to the front plate, the first and second connecting ribs do not stretch between the front plate and the contact portion, and the convex bifurcated portion is smooth. It is supposed that the shock can be absorbed while being deformed.

しかしながら、かかる特許文献1に明らかにされている衝撃吸収部材において採用される断面形状では、衝撃荷重が加わったときに、正面板が座屈し易いため、圧壊荷重が低くなってしまうという問題を内在するものであった。   However, the cross-sectional shape adopted in the shock absorbing member disclosed in Patent Document 1 has a problem in that the crushing load becomes low because the front plate is likely to buckle when an impact load is applied. It was something to do.

特開2006−27499号公報JP 2006-27499 A

ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、正面板が座屈しにくく、圧壊荷重が高い、圧壊特性に優れた構造部材を提供することにある。   Here, the present invention has been made in the background of such circumstances, and the problem to be solved is to provide a structural member that is less likely to buckle the front plate, has a high crushing load, and has excellent crushing characteristics. There is to do.

そして、本発明にあっては、かくの如き課題の解決のために、横断面形状が円弧形状の正面板と、該正面板の円弧形状の両端部を繋いで、中空構造を形成する直線状の背面板と、該中空構造内において、それら正面板と背面板との間に配置され、それら両者を一体的に連結する2枚の連結板とよりなる中空の一体的な構造部材であって、その横断面形状において、前記2枚の連結板は、前記背面板の前記正面板の両端部を繋ぐ方向となる幅方向の中央の点を通って該背面板に直交する中心軸に対して、該背面板に向かって拡開する方向に傾斜し、且つその傾斜方向が互いに逆方向であると共に、該中心軸に関して各連結板が線対称に配置されており、更に、前記正面板の外側面と該中心軸との交点と、前記背面板の外側面との間の距離:Hと、該背面板の幅寸法の半分の長さ:Lとが、次式:
20mm≦H≦100mm
0.60≦(H/L)≦1.40
を満足する関係にあり、そして前記連結板の厚さ方向の中心線と前記正面板の外側面との交点をA1点とした場合に、前記中心軸から該A1点までの距離:a1が
(L/6)≦a1≦(L/4)
の範囲内にあり、また該中心軸と該連結板の厚さ方向の中心線がなす角度:θが、3°乃至7°の範囲内にあることを特徴とする構造部材を、その要旨とするものである。
And, in the present invention, in order to solve such problems, the front plate having a circular cross-sectional shape and the both ends of the circular arc shape of the front plate are connected to form a linear structure. A hollow integrated structural member comprising a back plate and two connecting plates which are disposed between the front plate and the back plate in the hollow structure and integrally connect them. In the cross-sectional shape, the two connecting plates pass through a central point in the width direction, which is a direction connecting both ends of the front plate of the back plate, with respect to a central axis perpendicular to the back plate. And inclined in the direction of expanding toward the back plate, and the inclined directions are opposite to each other, and the connecting plates are arranged symmetrically with respect to the central axis, and A distance between the intersection of the side surface and the central axis and the outer surface of the back plate: H Half the length of the width dimension of said back plate: L and has the following formula:
20mm ≦ H ≦ 100mm
0.60 ≦ (H / L) ≦ 1.40
When the intersection point between the center line in the thickness direction of the connecting plate and the outer surface of the front plate is defined as A1 point, the distance from the central axis to the A1 point: a1 is (1) L / 6) ≦ a1 ≦ (L / 4)
And an angle formed by the central axis and the center line in the thickness direction of the connecting plate: θ is in the range of 3 ° to 7 °, To do.

また、かかる本発明に従う構造部材の望ましい態様の一つによれば、前記正面板の横断面形状は、以下の式:
(X/L)2+(Y/H)2=1
(ここで、横断面形状における背面板中央の点を原点:Oとした場合において、Xは正 面板横断面形状の水平方向の座標であり、Yは正面板横断面形状の垂直方向の座標で あり、L及びHは、それぞれ先に規定の通りである)
によって、定められることとなる。
Moreover, according to one of the desirable aspects of the structural member according to this invention, the cross-sectional shape of the said front board is the following formula | equation:
(X / L) 2 + (Y / H) 2 = 1
(Here, when the center point of the back plate in the cross-sectional shape is the origin: O, X is the horizontal coordinate of the front plate cross-sectional shape, and Y is the vertical coordinate of the front plate cross-sectional shape. Yes, L and H are as defined above)
It will be determined by.

さらに、本発明に従う構造部材の別の望ましい態様の一つによれば、前記正面板、前記背面板、及び前記連結板の厚みは、それぞれ、1mm乃至4mmの範囲内とされ、更に別の望ましい態様の一つによれば、前記正面板、前記背面板、及び前記連結板は、アルミニウム合金にて一体的に形成されることとなる。   Furthermore, according to one of the other desirable embodiments of the structural member according to the present invention, the thicknesses of the front plate, the back plate, and the connecting plate are in the range of 1 mm to 4 mm, respectively, and are further desirable. According to one aspect, the front plate, the back plate, and the connecting plate are integrally formed of an aluminum alloy.

このような本発明に従う構造部材にあっては、正面板が、円弧形状を呈する略半円状の横断面形状とされると共に、その中空の内部に、二つの連結板が「ハ」の字状形態において配設されているところから、構造部材に加えられる荷重を、かかる略半円部分で受けることによって、アーチ効果と支承効果とが有利に発揮され得て、圧壊荷重を効果的に高めることが出来ることとなるのであり、以て、優れた圧壊特性を示すことが可能となる。   In such a structural member according to the present invention, the front plate has a substantially semicircular cross-sectional shape having an arc shape, and the two connecting plates have a letter C in the hollow interior. Since the load applied to the structural member is received by such a semi-circular portion from the arrangement in the shape, the arch effect and the bearing effect can be advantageously exhibited, and the crush load is effectively increased. Therefore, it is possible to exhibit excellent crushing characteristics.

特に、正面板と背面板との間に配置され、それら両者を一体的に連結する2枚の連結板が、背面板の幅方向中央の点を通って、背面板に直交する中心軸に対して傾斜し、且つ、その傾斜方向が互いに逆方向となって、前記中心軸に関して各連結板が線対称になるように、「ハ」の字形状に配置されていることによって、構造部材に荷重が加えられた際に、そのような荷重が入力する正面板が座屈し難くなる効果が、有利に発揮せしめられ得るのである。   In particular, the two connecting plates that are arranged between the front plate and the back plate and integrally connect both of them pass through a center point in the width direction of the back plate, and the center axis perpendicular to the back plate And the inclined directions are opposite to each other, and the connecting plates are arranged symmetrically with respect to the central axis, so that the load is applied to the structural member. The effect of making it difficult for the front plate to which such a load is input to be buckled is exerted advantageously.

また、本発明においては、正面板の外側面と背面板の幅方向の中央を通る中心軸との交点と、背面板の外側面との間の距離:Hが、20mm≦H≦100mmの範囲とされ、且つかかる距離:Hと背面板の幅寸法の半分の長さ:Lとの関係が、式:0.60≦(H/L)≦1.40を満足するように構成されているところから、衝撃荷重を充分に吸収できるだけの変形量を確保することが出来ると共に、実用的な幅寸法範囲において、構造部材に荷重が加えられた際の連結板の座屈形態が、幅方向においてほぼ対称となって、衝撃吸収性能を効果的に高めることが出来る特徴を発揮することとなる。   In the present invention, the distance H between the intersection of the outer surface of the front plate and the central axis passing through the center in the width direction of the rear plate and the outer surface of the rear plate is in the range of 20 mm ≦ H ≦ 100 mm. In addition, the relationship between the distance: H and the half length of the width dimension of the back plate: L satisfies the formula: 0.60 ≦ (H / L) ≦ 1.40. Therefore, it is possible to secure a deformation amount sufficient to absorb the impact load, and in the practical width dimension range, the buckling form of the connecting plate when the load is applied to the structural member is in the width direction. It becomes almost symmetrical and exhibits the characteristics that can effectively improve the shock absorbing performance.

さらに、本発明においては、連結板の前記中心軸からの距離:a1や、かかる中心軸と連結板の厚さ方向の中心線がなす角度:θが、適切な範囲内の値となるように構成されているところから、構造部材に衝撃荷重が加えられて、その衝撃を吸収するために変形する際に、その変形初期において、連結板同士が接触して変形が不安定となったり、正面板や連結板が座屈しやすくなったりすることがなく、効果的に衝撃吸収をすることが出来、その結果、優れた圧壊特性を示すことが可能となる。   Further, in the present invention, the distance from the central axis of the connecting plate: a1 and the angle formed by the central axis and the center line in the thickness direction of the connecting plate: θ are values within an appropriate range. When the structure member is subjected to an impact load and deforms to absorb the impact, the connecting plates come into contact with each other at the initial stage of the deformation, and the deformation becomes unstable. The face plate and the connecting plate are not easily buckled, and the shock can be effectively absorbed. As a result, it is possible to exhibit excellent crushing characteristics.

本発明に従う構造部材としての衝撃吸収部材の一例を示す横断面説明図である。It is a cross-sectional explanatory drawing which shows an example of the impact-absorbing member as a structural member according to this invention. 従来の構成とされた衝撃吸収部材の一例を示す横断面説明図である。It is a cross-sectional explanatory drawing which shows an example of the impact-absorbing member made into the conventional structure. 実施例における圧縮試験にて用いたプレス装置を概略的に示す正面説明図である。It is front explanatory drawing which shows roughly the press apparatus used in the compression test in an Example. 実施例1において実施した圧縮試験の結果を示すグラフである。3 is a graph showing the results of a compression test performed in Example 1. 本発明に従う衝撃吸収部材の圧縮試験による座屈形態の一例を示す説明図である。It is explanatory drawing which shows an example of the buckling form by the compression test of the impact-absorbing member according to this invention. 本発明に従う衝撃吸収部材の圧縮試験による座屈形態の別の一例を示す説明図である。It is explanatory drawing which shows another example of the buckling form by the compression test of the impact-absorbing member according to this invention. 実施例2において実施した圧縮試験の結果の一例を示すグラフである。6 is a graph showing an example of a result of a compression test performed in Example 2. 実施例2において実施した圧縮試験の結果の別の一例を示すグラフである。10 is a graph showing another example of the result of the compression test performed in Example 2. 実施例2において実施した圧縮試験の結果の更に別の一例を示すグラフである。10 is a graph showing still another example of the result of the compression test performed in Example 2.

以下、本発明を更に具体的に明らかにするために、本発明の実施の形態について、図面を参照しつつ、詳細に説明することとする。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1には、本発明に従う構造部材の実施形態の一つとして、自動車のバンパー補強材として好適に用いられる長手の衝撃吸収部材が、横断面図の形態において、概略的に示されている。そこにおいて、衝撃吸収部材10は、略半円状の正面板12と、この正面板12の両端部を繋いで中空構造を形成する直線状の背面板14と、それら正面板12と背面板14との間に配置され、両者を一体的に連結する2枚の連結板16,16とから構成されて、紙面に垂直な方向に延びる所定長さの構造体として構成されている。そして、かかる横断面図の形態において、それら2枚の連結板16,16は、背面板14の幅方向中央の点:Oを通り、背面板14に直交する、衝撃吸収部材10の横断面の中心軸:Zに対して傾斜して、その傾斜方向が互いに逆方向であり、更に、かかる中心軸:Zに対して、各連結板16,16が、線対称となるように配置されている。   First, FIG. 1 schematically shows a longitudinal impact absorbing member suitably used as a bumper reinforcing material for an automobile as one embodiment of a structural member according to the present invention in the form of a cross-sectional view. Yes. The shock absorbing member 10 includes a substantially semicircular front plate 12, a linear back plate 14 that connects both ends of the front plate 12 to form a hollow structure, and the front plate 12 and the back plate 14. The two connecting plates 16 and 16 are integrally connected to each other and are configured as a structure having a predetermined length extending in a direction perpendicular to the paper surface. And in the form of such a cross-sectional view, these two connecting plates 16, 16 are cross sections of the shock-absorbing member 10 passing through a point O at the center in the width direction of the back plate 14 and orthogonal to the back plate 14. Inclined with respect to the central axis: Z, the directions of inclination are opposite to each other, and the connecting plates 16, 16 are arranged so as to be symmetrical with respect to the central axis: Z. .

より詳細には、衝撃吸収部材10を構成する正面板12や背面板14、連結板16は、アルミニウム合金、鉄合金、マグネシウム合金等の金属材料や樹脂材料等の公知の材料の中から、適宜に選択された材料を用いて構成され得るが、それらの中でも、本発明では、アルミニウム合金からなる材料にて一体的に構成されていることが好ましく、ここでは、アルミニウム合金(材質、質別:A7021−T6、耐力:380MPa)により構成されている。また、正面板12及び背面板14の厚み:tは、ここでは3mmとされ、2枚の連結板16,16の厚み:t’は、ここでは2mmとされている。なお、これら正面板12や背面板14、連結板16の厚み(t、t’)は、好ましくは1mm乃至4mmの範囲内とされることとなる。これは、それら厚みt、t’が1mm未満とされた場合には、押出成形操作によって衝撃吸収部材10を製作する際に押出性が悪くなり、目的とする製品を製作するのが難しくなるためであり、一方、かかる厚みt、t’が4mmを超える場合にあっては、衝撃吸収部材10の質量が増加して、その適用用途における軽量化が困難となるからである。   More specifically, the front plate 12, the back plate 14, and the connecting plate 16 constituting the shock absorbing member 10 are appropriately selected from known materials such as metal materials such as aluminum alloys, iron alloys, and magnesium alloys, and resin materials. Among them, in the present invention, it is preferable that the material is integrally formed of a material made of an aluminum alloy. Here, the aluminum alloy (material, quality: A7021-T6, yield strength: 380 MPa). Further, the thickness t of the front plate 12 and the back plate 14 is 3 mm here, and the thickness t ′ of the two connecting plates 16 and 16 is 2 mm here. The thickness (t, t ') of the front plate 12, the back plate 14, and the connecting plate 16 is preferably in the range of 1 mm to 4 mm. This is because when the thicknesses t and t ′ are less than 1 mm, the extrudability deteriorates when the shock absorbing member 10 is manufactured by the extrusion molding operation, and it becomes difficult to manufacture the target product. On the other hand, when the thicknesses t and t ′ exceed 4 mm, the mass of the shock absorbing member 10 increases, and it is difficult to reduce the weight in the application.

また、円弧形状の正面板12の外側面と背面板14の外側面との間の距離:H、即ち中心軸Zと正面板12の外側面との交点と、中心軸Zと背面板14の外側面との交点(O)との間の距離:Hは、20mm以上、100mm以下の範囲の大きさとされており、ここでは、30mmとなっている。これは、そのような距離:Hが20mm未満とされた場合には、連結板16の長さが短くなるため、衝撃吸収部材10に加えられる衝撃荷重を充分に吸収することが出来るだけの変形量を確保することが困難となるからである。一方、かかる距離:Hが100mmを超える場合には、連結板16の長さが長くなり、連結板16が幅方向において対称に座屈せず、幅方向の一方に偏った座屈形態が生じやすくなり、衝撃吸収量(耐荷重)の絶対値が低くなる問題を惹起する。   Further, the distance H between the outer surface of the arc-shaped front plate 12 and the outer surface of the back plate 14, that is, the intersection of the central axis Z and the outer surface of the front plate 12, the center axis Z and the back plate 14. The distance between the intersection with the outer side surface (O): H is in the range of 20 mm or more and 100 mm or less, and is 30 mm here. This is because, when such a distance: H is less than 20 mm, the length of the connecting plate 16 is shortened, so that the deformation sufficient to absorb the impact load applied to the impact absorbing member 10 is sufficient. It is because it becomes difficult to secure the amount. On the other hand, when this distance: H exceeds 100 mm, the length of the connecting plate 16 becomes long, and the connecting plate 16 does not buckle symmetrically in the width direction, and a buckling form biased to one side in the width direction is likely to occur. This causes a problem that the absolute value of the amount of shock absorption (withstand load) is lowered.

さらに、衝撃吸収部材10は、そのような距離:Hと、背面板14の幅寸法の半分の長さ:Lとの関係が、0.60≦(H/L)≦1.40を満足するようにされており、ここでは、Lの長さが30mmとされていることによって、H/Lの値は、1.00となっている。なお、前式において、H/Lの値が0.60未満となる場合には、幅寸法に比べて、厚み方向の寸法が小さくなり過ぎるために、衝撃吸収部材10としての実用的な幅寸法範囲においては、連結板16において衝撃を充分に吸収できるだけの変形量を確保することが困難となる問題がある。一方、H/Lが1.40を超える場合にあっては、連結板16が幅方向で対称に座屈せずに、幅方向の一方に偏った座屈を生じ易くなるため、衝撃吸収性が悪くなってしまう問題がある。このように、HとLの関係を上述の範囲に維持することによって、衝撃吸収部材10の実用的な幅寸法範囲において、衝撃を吸収する際の連結板16の座屈形態が幅方向においてほぼ対称となり、衝撃吸収性能を効果的に高めることが出来るのである。   Further, in the shock absorbing member 10, the relationship between such distance: H and half length of the width dimension of the back plate 14: L satisfies 0.60 ≦ (H / L) ≦ 1.40. Here, since the length of L is 30 mm, the value of H / L is 1.00. In the above equation, when the value of H / L is less than 0.60, the dimension in the thickness direction is too small compared to the width dimension, so that the practical width dimension as the shock absorbing member 10 is obtained. In the range, there is a problem that it is difficult to secure a deformation amount that can sufficiently absorb an impact in the connecting plate 16. On the other hand, when H / L exceeds 1.40, the connecting plate 16 does not buckle symmetrically in the width direction, and tends to be buckled in one direction in the width direction, so that the shock absorption property is reduced. There is a problem that gets worse. In this way, by maintaining the relationship between H and L in the above-described range, the buckling form of the connecting plate 16 when absorbing the shock is substantially in the width direction in the practical width dimension range of the shock absorbing member 10. It becomes symmetrical and can effectively enhance the shock absorbing performance.

なお、かかる正面板12の円弧形状は、図1の横断面形状における背面板14の幅方向中央の点を原点:Oとして、水平方向をX座標(図1における左右方向)とし、垂直方向をY座標(図1における上下方向)とした場合に、以下の式:
(X/L)2+(Y/H)2=1
によって定められることが好ましく、図1に例示された衝撃吸収部材10にあっても、その正面板12は、上記の関係を満たすものとなっている。
The arc shape of the front plate 12 is such that the center in the width direction of the back plate 14 in the cross-sectional shape of FIG. 1 is the origin: O, the horizontal direction is the X coordinate (left and right direction in FIG. 1), and the vertical direction is When the Y coordinate (vertical direction in FIG. 1) is used, the following formula:
(X / L) 2 + (Y / H) 2 = 1
Preferably, the front plate 12 satisfies the above relationship even in the shock absorbing member 10 illustrated in FIG.

さらに、正面板12と背面板14とを連結する連結板16にあっては、その厚さ方向の中心線:CLと正面板12の外側面との交点:A1点から、中心軸:Zまでの距離:a1が、前述した背面板14の幅寸法の半分の長さ:Lとの間に、(L/6)≦a1≦(L/4)の関係を満たす範囲内の距離とされ、ここでは、a1=6.0mmとなるように構成されている。これは、a1がL/6未満とされた場合には、衝撃吸収部材10が衝撃を吸収するために変形する際に、その変形初期において、2枚の連結板16,16同士が接触して変形が不安定となるからであり、一方、a1がL/4以上とされた場合は、2枚の連結板16,16同士の距離が離れているため、正面板12が座屈し易くなってしまい、充分な衝撃吸収が出来なくなる恐れがあるからである。   Further, in the connecting plate 16 that connects the front plate 12 and the back plate 14, the center line in the thickness direction: the intersection of the CL and the outer surface of the front plate 12: from the point A1 to the central axis: Z. The distance: a1 is a distance within a range satisfying the relationship of (L / 6) ≦ a1 ≦ (L / 4) with the half length: L of the width dimension of the back plate 14 described above, Here, it is configured so that a1 = 6.0 mm. This is because, when a1 is less than L / 6, when the shock absorbing member 10 is deformed to absorb the shock, the two connecting plates 16, 16 come into contact with each other at the initial stage of the deformation. This is because the deformation becomes unstable. On the other hand, when a1 is set to L / 4 or more, the front plate 12 is likely to buckle because the distance between the two connecting plates 16 is increased. This is because there is a possibility that sufficient shock absorption cannot be performed.

また、かかる連結板16は、中心軸:Zと連結板16の厚さ方向の中心線:CLがなす角度:θが、3°乃至7°の範囲内となるように、配設されており、ここでは、5°となっている。けだし、θが3°未満となる場合には、衝撃吸収における変形の際に、連結板16が座屈し易くなる問題があり、一方、θが7°を超える場合には、衝突面から入力される荷重を分散し難くなるため、充分な衝撃吸収効果が発揮されなくなる恐れがあるからである。   The connecting plate 16 is arranged so that the angle θ formed by the central axis Z and the center line CL in the thickness direction of the connecting plate 16 is within a range of 3 ° to 7 °. Here, it is 5 °. However, if θ is less than 3 °, there is a problem that the connecting plate 16 is likely to buckle during deformation in shock absorption. On the other hand, if θ exceeds 7 °, it is input from the collision surface. This is because a sufficient impact absorbing effect may not be exhibited because it is difficult to disperse the load.

なお、かくの如き構成からなる衝撃吸収部材10は、その用途に応じて適宜の長さにおいて構成された長手の構造部材とされるのであるが、一般には、200mm〜1500mm程度の長さが採用されることとなる。   The shock absorbing member 10 having such a configuration is a longitudinal structural member having an appropriate length depending on the application, but generally has a length of about 200 mm to 1500 mm. Will be.

そして、このような本発明に従う構造を有する長手の衝撃吸収部材10にあっては、円弧形状を呈する略半円状の横断面形状とされた正面板12と、正面板12の円弧形状の両端部を繋ぐ直線状の背面板14によって中空構造が形成され、そのような中空の内部に、2枚の連結板16,16が「ハ」の字状に配設され、それらの大きさや厚さ等の寸法、配設位置等が適切な範囲とされているところから、衝撃吸収部材10に加えられる衝撃荷重を受ける際に、略半円状の正面板12によるアーチ効果と、連結板16による支承効果とが、有利に発揮されることとなる。そして、その結果、衝撃吸収部材10の圧壊荷重を効果的に高めることが出来、以て、優れた圧壊特性を示すことが可能となるのである。   In the longitudinal impact absorbing member 10 having such a structure according to the present invention, the front plate 12 having a substantially semicircular cross-sectional shape having an arc shape and both ends of the arc shape of the front plate 12 are provided. A hollow structure is formed by the straight back plate 14 connecting the parts, and two connecting plates 16 and 16 are arranged in a “C” shape inside the hollow, and their size and thickness When the impact load applied to the shock absorbing member 10 is received, the arch effect by the substantially semicircular front plate 12 and the connection plate 16 are used. The bearing effect will be exhibited advantageously. As a result, the crushing load of the impact absorbing member 10 can be effectively increased, and therefore, excellent crushing characteristics can be exhibited.

以上、本発明の代表的な実施形態の一つについて詳述してきたが、それは、あくまでも例示に過ぎないものであって、本発明は、そのような実施形態に係る具体的な記述によって、何等、限定的に解釈されるものではないことが、理解されるべきである。また、その他、一々列挙はしないが、本発明は、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施され得るものであり、そして、そのような実施態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることは、言うまでもないところである。   As described above, one of the representative embodiments of the present invention has been described in detail. However, this is merely an example, and the present invention is not limited by the specific description according to such an embodiment. It should be understood that this is not to be construed as limiting. In addition, although not enumerated one by one, the present invention can be implemented in a mode with various changes, modifications, improvements, etc. based on the knowledge of those skilled in the art. Needless to say, all of these are within the scope of the present invention without departing from the spirit of the present invention.

以下に、本発明の代表的な実施例を示し、本発明の特徴について更に明確にすることとするが、本発明が、そのような実施例の記載によって、何等限定的に解釈されるものでないことは、言うまでもないところである。   In the following, typical examples of the present invention will be shown and the characteristics of the present invention will be further clarified. However, the present invention is not construed as being limited in any way by the description of such examples. It goes without saying.

[実施例1]
先ず、本発明に従う構造部材として、図1に示される横断面形状を呈する衝撃吸収部材(10)を、アルミニウム合金(材質、質別:A7021-T6、耐力:380MPa)を用いて、押出操作にて製作し、これを、試験材1とした。この試験材1に係る衝撃吸収部材(10)において、正面板12の外側面と背面板14の外側面との間の距離:Hは30mm、背面板14の幅寸法の半分の長さ:Lは30mmとした。つまり、試験材1たる衝撃吸収部材(10)における(H/L)は1.00とした。さらに、正面板12及び背面板14の厚み:tは3mm、連結板16の厚み:t’は2mmとし、中心軸:ZからA1点までの距離:a1は6.0mm、中心軸:Zと中心線:CLのなす角度:θは5°とした。
[Example 1]
First, as a structural member according to the present invention, an impact absorbing member (10) having a cross-sectional shape shown in FIG. 1 is subjected to an extrusion operation using an aluminum alloy (material, quality: A7021-T6, proof stress: 380 MPa). This was used as test material 1. In the shock absorbing member (10) according to the test material 1, the distance between the outer surface of the front plate 12 and the outer surface of the back plate 14: H is 30 mm, and the length half of the width dimension of the back plate 14: L Was 30 mm. That is, (H / L) in the impact absorbing member (10) as the test material 1 was set to 1.00. Furthermore, the thickness of the front plate 12 and the back plate 14 is 3 mm, the thickness of the connecting plate 16 is t ′, 2 mm, the central axis: the distance from Z to the A1 point: a1 is 6.0 mm, and the central axis is Z. Center line: Angle formed by CL: θ was 5 °.

一方、比較のために、従来の構造とされた構造部材として、図2に示される如きものを準備した。即ち、横断面形状が略半円状の円弧形状の正面板22と、その円弧形状の両端部を繋いで中空構造を形成する直線状の背面板24と、かかる中空構造内に、背面板24の中央から垂直に立ち上がり、その途中から二股状に分かれて、それぞれの先端が正面板22に連結された形状(略Y字形状)の連結板26が配置されて、構成される衝撃吸収部材20を、試験材1と同様に、アルミニウム合金(材質、質別:A7021−T6、耐力:380MPa)を用いて、押出操作にて製作し、これを、試験材2とした。ここで、正面板22の外側面と背面板24の外側面との間の距離:Hは30mm、背面板24の幅寸法の半分の長さ:Lは30mmとし、正面板22及び背面板24の厚み:tは3mm、連結板26の厚み:t’は2mmとした。なお、ここでは、正面板22と背面板24の大きさや形状は、本発明に従う構造とされた試験材1のものと同等のものとされている。そして、連結板26は、背面板24の中央から垂直に10mm立ち上がり、その途中から二股状に分かれた部位は、曲率半径(r):30mmで延び、その先端と正面板22との交点をPとする場合に、中心線:Zから交点:Pまでの距離:pが15mmとなるようにした。なお、各試験材の長さ(断面の奥行き方向長さ)は、何れも20mmとした。   On the other hand, for comparison, a structural member having a conventional structure was prepared as shown in FIG. That is, an arc-shaped front plate 22 having a substantially semicircular cross section, a linear back plate 24 that connects both ends of the arc-shape to form a hollow structure, and the back plate 24 within the hollow structure. The shock absorbing member 20 is configured to be vertically arranged from the center of the head, and to be divided into two forks from the middle thereof, each of which is connected to the front plate 22 in a shape (substantially Y-shaped) connecting plate 26. Was produced by an extrusion operation using an aluminum alloy (material, quality: A7021-T6, yield strength: 380 MPa) in the same manner as the test material 1, and this was designated as test material 2. Here, the distance between the outer surface of the front plate 22 and the outer surface of the back plate 24: H is 30 mm, the length half the width of the back plate 24: L is 30 mm, the front plate 22 and the back plate 24. The thickness: t was 3 mm, and the thickness of the connecting plate 26: t ′ was 2 mm. Here, the size and shape of the front plate 22 and the back plate 24 are the same as those of the test material 1 having a structure according to the present invention. The connecting plate 26 rises 10 mm vertically from the center of the back plate 24, and a portion divided into two forks from the middle extends with a radius of curvature (r): 30 mm, and the intersection of the front end and the front plate 22 is P In this case, the distance from the center line: Z to the intersection: P: p was set to 15 mm. The length of each test material (the length in the depth direction of the cross section) was 20 mm.

次いで、このように準備した試験材1及び試験材2の衝撃吸収部材について、荷重を付加する試験を行い、衝撃吸収性の評価を行った。かかる評価としては、図3に示されるようなプレス装置30を用いて、圧縮試験を行った。このプレス装置30は、載置台32に対して昇降部34が昇降するように構成されており、両者の間に生じる荷重は、ここでは図示しないロードセルによって測定出来るようにされている。そして、本評価においては、図3に示される如く、載置台32と昇降部34との間に試験材1及び試験材2の衝撃吸収部材を挟みこんで、両者で徐々に圧縮する試験を行った。そして、その結果を、図4の荷重・変位線図に示した。なお、かかる荷重・変位線図においては、縦軸を荷重(kN)とし、横軸を変位(mm)として、それらの関係を示している。   Next, the impact absorbing members of the test material 1 and the test material 2 prepared as described above were subjected to a test for applying a load, and the impact absorbability was evaluated. As such an evaluation, a compression test was performed using a press device 30 as shown in FIG. The press device 30 is configured such that an elevating unit 34 is moved up and down with respect to the mounting table 32, and a load generated between the two can be measured by a load cell (not shown). In this evaluation, as shown in FIG. 3, an impact absorbing member of the test material 1 and the test material 2 is sandwiched between the mounting table 32 and the elevating part 34 and a test is performed in which both are gradually compressed. It was. The results are shown in the load / displacement diagram of FIG. In the load / displacement diagram, the vertical axis represents the load (kN) and the horizontal axis represents the displacement (mm), and the relationship is shown.

かかる図4の結果より明らかなように、本発明に従う構造とされた試験材1に係る衝撃吸収部材は、従来の構造とされた試験材2に係る衝撃吸収部材と比較して、同一荷重では、変位を小さくすることが出来ることが確認できる。一方、同一変位では、高荷重に耐えることが出来ることが確認できる。即ち、本発明に従う試験材1に係る衝撃吸収部材は、従来の試験材2に係る衝撃吸収部材よりも、衝撃吸収性が優れていることが解るのである。つまり、本発明の構成を適用した衝撃吸収部材は、従来の構成とされた衝撃吸収部材と同程度の性能を確保しようとした場合に、薄肉化や小型化をすることが出来、その結果、衝撃吸収部材の軽量化が可能となるのである。また、本発明の構成を適用した衝撃吸収部材を、従来の構成とされた衝撃吸収部材と同程度の大きさや板厚で作製する場合には、より高い衝撃吸収性能を有することとなるのである。   As is clear from the results of FIG. 4, the impact absorbing member according to the test material 1 having the structure according to the present invention has the same load as that of the impact absorbing member according to the test material 2 having the conventional structure. It can be confirmed that the displacement can be reduced. On the other hand, it can be confirmed that the same displacement can withstand a high load. That is, it can be seen that the shock absorbing member according to the test material 1 according to the present invention is superior in shock absorption to the shock absorbing member according to the conventional test material 2. That is, the impact absorbing member to which the configuration of the present invention is applied can be reduced in thickness and size when attempting to secure the same level of performance as the impact absorbing member having the conventional configuration. This makes it possible to reduce the weight of the shock absorbing member. In addition, when the impact absorbing member to which the configuration of the present invention is applied is manufactured with the same size and thickness as the impact absorbing member having the conventional configuration, it has higher impact absorbing performance. .

[実施例2]
前述した実施例1と同様に、本発明に従う横断面形状を有する衝撃吸収部材について、更に、距離:Hと長さ:Lの各値を変更した試験材を各種作製した後、それらについて、圧縮試験を実施して、その座屈形態を観察し、更にエネルギー吸収量を測定して、評価を行った。ここで準備した試験材は、図1に示される如く横断面形状を有する、本発明に従う構成とされた実施例としての3種類の試験材E31〜E33と、H/Lの関係が本発明の範囲外の値となる比較例としての2種類の試験材C31、C32とした。
[Example 2]
In the same manner as in Example 1 described above, for the impact absorbing member having the cross-sectional shape according to the present invention, various test materials with different values of distance: H and length: L were prepared, and then compressed. The test was carried out, the buckling form was observed, and the energy absorption was further measured and evaluated. The test materials prepared here have a cross-sectional shape as shown in FIG. 1, and three types of test materials E31 to E33 as examples according to the present invention and the relationship of H / L are in accordance with the present invention. Two types of test materials C31 and C32 as comparative examples having values outside the range were used.

なお、これらの各試験材の材質、質別及び耐力は、いずれも同じとし、材質はA7021、質別はT6、耐力は380MPaのアルミニウム合金とした。また、これらの試験材において、何れも、正面板12及び背面板14の厚み:tは3mm、連結板16の厚み:t’は2mmとし、中心軸:ZからA1点までの距離:a1はL/5mm、中心軸:Zと中心線:CLのなす角度:θは5°とした。更に、各試験材によって異なる値としたHとLの寸法及びH/Lの関係については、下記表1に示した。また、各試験材の長さ(断面の奥行き方向長さ)は、何れも20mmとした。   Note that the materials, qualities and proof stresses of these test materials were all the same, and the material was an A7021, the tempered material was T6, and the proof stress was 380 MPa aluminum alloy. In these test materials, the thickness of the front plate 12 and the back plate 14 is 3 mm, the thickness of the connecting plate 16 is 2 mm, and the distance from the central axis Z to the point A1 is a1. L / 5 mm, central axis: Z and central line: angle formed by CL: θ was 5 °. Further, Table 1 below shows the dimensions of H and L and the relationship between H / L, which are different values depending on each test material. The length of each test material (the length in the depth direction of the cross section) was 20 mm.

Figure 2012224202
Figure 2012224202

そして、それら準備した各試験材に対する圧縮試験は、実施例1と同様に、図3に示すようなプレス装置30を用いて、実施した。即ち、載置台32に対して昇降部34が昇降するように構成され、両者の間に生じる荷重が、ここでは図示しないロードセルによって測定出来るようにされているプレス装置30を用い、そのプレス装置30の載置台32と昇降部34との間に、各試験材を挟みこんで、両者で徐々に圧縮する試験を行った。なお、このように行った試験において、評価方法は、次のようにした。   And the compression test with respect to each prepared test material was implemented like Example 1 using the press apparatus 30 as shown in FIG. In other words, a press device 30 is used in which a lift 34 is configured to move up and down with respect to the mounting table 32, and a load generated between them can be measured by a load cell (not shown). Each of the test materials was sandwiched between the mounting table 32 and the elevating unit 34, and a test was performed in which both were gradually compressed. In the test conducted in this way, the evaluation method was as follows.

先ず、座屈形態は、図5に示す如く、発生する座屈形態、即ち、連結板16の変形形態が、L方向の対称軸(背面板14の幅方向中央の点:Oを通り、背面板14に直交する中心軸:Z)に関してほぼ対称である場合を、適正(○)とした。また、図6に示す如く、発生する座屈形態が、L方向の対称軸(中心軸:Z)に関して対称ではなく、一方に偏った非対称の場合を、不適正(×)とした。   First, as shown in FIG. 5, the buckling form is a buckling form that occurs, that is, the deformed form of the connecting plate 16 passes through a symmetrical axis in the L direction (a center point in the width direction of the back plate 14: O, The case where it was substantially symmetric with respect to the central axis (Z) orthogonal to the face plate 14 was determined as appropriate (◯). In addition, as shown in FIG. 6, when the generated buckling form is not symmetric with respect to the symmetry axis (center axis: Z) in the L direction but is asymmetrical toward one side, it is determined as inappropriate (×).

さらに、エネルギー吸収性能を評価するため、各試験材について得られた荷重・変位線図からエネルギー吸収量(N・m)をそれぞれ求めた。また、比較のために、図2に示されるような、横断面形状が略半円状の円弧形状の正面板22と、その円弧形状の両端部を繋いで中空構造を形成する直線状の背面板24と、かかる中空構造内に、背面板24の中央から垂直に立ち上がり、その途中から二股状に分かれて、それぞれの先端が正面板22と連結された形状(略Y字形状)の連結板26が配置されてなる、従来の構成とされた衝撃吸収部材において、HやL、及びtやt’の寸法が各試験材と同等のサイズのものを、比較材CE31,CE32,CE33,CC31,CC32として作製し、それらについても、同様の試験により、荷重・変位線図からエネルギー吸収量をそれぞれ求めた。なお、それら比較材の連結板26の背面板24からの立ち上がり寸法はH/3mmとし、Y字状に分かれた部位の曲率半径:rはLmm、中心線:Zから交点:Pまでの距離:pはL/2mmとなるようにした。そして、そのような各比較材のエネルギー吸収量と、対応する各試験材のエネルギー吸収量の比を、エネルギー吸収量比とした。   Furthermore, in order to evaluate energy absorption performance, the energy absorption amount (N · m) was obtained from the load / displacement diagram obtained for each test material. For comparison, as shown in FIG. 2, a straight plate that forms a hollow structure by connecting the arc-shaped front plate 22 with a substantially semicircular cross-sectional shape and both ends of the arc shape. A face plate 24 and a connecting plate having a shape (substantially Y-shaped) in which the front plate 22 rises vertically from the center of the back plate 24 and is bifurcated in the middle, and each tip is connected to the front plate 22. In the shock absorbing member having a conventional configuration, in which the dimensions of H and L, and t and t ′ are the same size as each test material, comparison materials CE31, CE32, CE33, and CC31 are provided. , CC32, and the energy absorption amount was obtained from the load / displacement diagram by the same test. The rising dimension from the back plate 24 of the connecting plate 26 of these comparative materials is H / 3 mm, the radius of curvature of the portion divided into Y-shape: r is Lmm, the distance from the center line: Z to the intersection: P: p was set to L / 2 mm. And ratio of the energy absorption amount of each such comparative material and the energy absorption amount of each corresponding test material was made into energy absorption amount ratio.

ここで、得られた荷重・変位線図の代表例として、図7には、試験材E32と比較材CE32についてのものを、また図8には、試験材C31と比較材CC31についてのものを、更に図9には、試験材C32と比較材CC32についてのものを、それぞれ示した。これらの図において、横軸は変位(mm)を、縦軸は荷重(kN、20mm幅)として示している。   Here, as representative examples of the obtained load / displacement diagrams, FIG. 7 shows the test material E32 and the comparative material CE32, and FIG. 8 shows the test material C31 and the comparative material CC31. Further, FIG. 9 shows the test material C32 and the comparative material CC32, respectively. In these drawings, the horizontal axis indicates displacement (mm), and the vertical axis indicates load (kN, 20 mm width).

以上の評価結果を、表1に併せて示した。なお、エネルギー吸収量(N・m)は、ストローク(変位量)10mmまでの値である。かかる表1から明らかなように、H/Lが本発明の範囲内である試験材E31、E32、E33は、全て座屈形態がL方向の対称軸について対称(図5参照)となり、且つ、従来の構造とされた比較材CE31、CE32、CE33に比べて、良好なエネルギー吸収性能を有していることが解る。   The above evaluation results are also shown in Table 1. The energy absorption amount (N · m) is a value up to a stroke (displacement) of 10 mm. As apparent from Table 1, the test materials E31, E32, and E33 whose H / L is within the scope of the present invention are all symmetric with respect to the symmetry axis in the L direction (see FIG. 5). It can be seen that the comparative materials CE31, CE32, and CE33 having a conventional structure have better energy absorption performance.

一方、試験材C31は、座屈形態は、L方向の対称軸についてほぼ対称な形態を示したものの、H/Lの関係が本発明の範囲外の値とされた0.50と下限を外れているため、従来の構造とされた比較材CC31と比べても、荷重・変位線図に大きな差がなく、エネルギー吸収性能の充分な向上効果が得られないことが解る。   On the other hand, although the test material C31 showed a substantially buckling shape with respect to the symmetry axis in the L direction, the H / L relationship was 0.50, which was outside the range of the present invention, and deviated from the lower limit. Therefore, even when compared with the comparative material CC31 having a conventional structure, it is understood that there is no large difference in the load / displacement diagram, and a sufficient improvement effect of energy absorption performance cannot be obtained.

また、試験材C32は、H/L=1.50と、本発明の範囲の上限を外れており、Lに対してHが大き過ぎるため、座屈形態がL方向の対称軸について非対称(図6参照)となった。このような非対称の座屈形態が容易に生じたことにより、エネルギー吸収量(耐荷重)の絶対値が低下して、充分なエネルギー吸収性能が得られなかった。ただし、従来の構造とされた比較材CC32も耐荷重の絶対値が低く、結果的には、形状的な効果によって、エネルギー吸収量比は適正な値となっている。   Further, the test material C32 is H / L = 1.50, which is outside the upper limit of the range of the present invention, and because H is too large with respect to L, the buckling form is asymmetric with respect to the symmetry axis in the L direction (see FIG. 6). Since such an asymmetric buckling form was easily generated, the absolute value of the amount of energy absorption (withstand load) was lowered, and sufficient energy absorption performance could not be obtained. However, the comparative material CC32 having a conventional structure also has a low absolute value of load resistance, and as a result, the energy absorption ratio is an appropriate value due to the shape effect.

総合的な評価として、座屈形態が適正(○)で、耐荷重の絶対値が比較的高く、且つ、エネルギー吸収量比が適正で従来形状よりも充分な向上効果が得られること、つまり、座屈形態とエネルギー吸収量比の両方が適正であることが必要である。   As a comprehensive evaluation, the buckling form is appropriate (◯), the absolute value of the load resistance is relatively high, and the energy absorption ratio is appropriate, and a sufficient improvement effect than the conventional shape can be obtained. It is necessary that both the buckling form and the energy absorption amount ratio are appropriate.

[実施例3]
ここで、実施例2の結果を補完するために、Hが20〜100mmの範囲内であることを前提とし、L及びHの値を変更した試験材31〜41を準備し、実施例2と同様の圧縮試験を行った。なお、これらの試験材において、L及びH以外の各値は、何れも、実施例2と同様とした。そして、実施例2と同様に、エネルギー吸収量及びエネルギー吸収量比を測定した。また、各試験材のエネルギー吸収量比を求めるために用いたそれぞれの比較材は、実施例2と同様の形状及び寸法とした。各試験材のLやHの値、及びその結果を、下記表2に示す。ここで、エネルギー吸収量は、400N・m以上を合格(○)とし、それ未満を不合格(×)として、評価した。
[Example 3]
Here, in order to complement the results of Example 2, on the premise that H is in the range of 20 to 100 mm, test materials 31 to 41 in which the values of L and H are changed are prepared. A similar compression test was performed. In these test materials, all values other than L and H were the same as in Example 2. Then, as in Example 2, the energy absorption amount and the energy absorption amount ratio were measured. Moreover, each comparison material used in order to obtain | require the energy absorption amount ratio of each test material was made into the same shape and dimension as Example 2. FIG. The values of L and H for each test material and the results are shown in Table 2 below. Here, the energy absorption amount was evaluated with 400 N · m or more as a pass (◯) and less than a reject (×).

Figure 2012224202
Figure 2012224202

かかる表2の結果から明らかなように、H/Lの値が0.60未満の場合には、エネルギー吸収量比が1.05を下回る場合が生じ、エネルギー吸収性能の充分な向上効果が得られなかった。さらに、H/Lの値が1.40を超える場合には、耐荷重が低く、エネルギー吸収量の絶対値が充分に得られなかった。   As is apparent from the results in Table 2, when the H / L value is less than 0.60, the energy absorption ratio may be less than 1.05, and a sufficient improvement effect of energy absorption performance is obtained. I couldn't. Furthermore, when the value of H / L exceeded 1.40, the load resistance was low, and the absolute value of the energy absorption amount was not sufficiently obtained.

[実施例4]
さらに、実施例2の結果を補完するために、Hが30mm、Lが30mm(H/L=1.00)の場合において、横断面形状における背面板14の中央部(O)に直交する中心軸:Zと、連結板16の厚さ方向の中心線:CLがなす角度:θと、連結板16の厚さ方向の中心線:CLと正面板12の外側面との交点:A1点から、中心軸:Zまでの距離:a1の値を各種変更した試験材42〜50を準備し、それぞれに対して、前記した実施例2と同様の圧縮試験を行った。そして、実施例2と同様に、エネルギー吸収量及びエネルギー吸収量比を測定した。各試験材の寸法とその試験結果を、下記表3に示す。ここで、エネルギー吸収量は、400N・m以上を合格(○)とし、それ未満を不合格(×)として、評価した。なお、各試験材のエネルギー吸収量比を求めるために用いたそれぞれの比較材は、実施例2と同様の形状及び寸法とした。
[Example 4]
Furthermore, in order to complement the results of Example 2, when H is 30 mm and L is 30 mm (H / L = 1.00), the center orthogonal to the central portion (O) of the back plate 14 in the cross-sectional shape Axis: Z, center line in the thickness direction of the connecting plate 16: angle formed by CL: θ, center line in the thickness direction of the connecting plate 16: intersection of CL and the outer surface of the front plate 12: from point A1 Further, test materials 42 to 50 having various values of the central axis: distance to Z: a1 were prepared, and the same compression test as in Example 2 was performed on each of the test materials. Then, as in Example 2, the energy absorption amount and the energy absorption amount ratio were measured. The dimensions of each test material and the test results are shown in Table 3 below. Here, the energy absorption amount was evaluated with 400 N · m or more as a pass (◯) and less than a reject (×). In addition, each comparison material used in order to obtain | require the energy absorption amount ratio of each test material was made into the shape and dimension similar to Example 2. FIG.

Figure 2012224202
Figure 2012224202

かかる表3の結果から明らかなように、a1/Lの値が1/6未満の場合には、変形初期において、連結板同士が接触するため、変形が不安定となり、エネルギー吸収性能の充分な向上効果が得られなかった。さらに、a1/Lの値が1/4を超える場合には、正面板が早期に座屈し、エネルギー吸収性能の充分な向上効果が得られなかった。また、θの値が3°未満の場合には、連結板が早期に座屈し、エネルギー吸収性能の充分な向上効果が得られなかった。さらに、θの値が7°を超える場合には、衝突面からの入力荷重を充分に分散できず、エネルギー吸収性能の充分な向上効果が得られなかった。   As is clear from the results of Table 3, when the value of a1 / L is less than 1/6, the connecting plates come into contact with each other in the initial stage of deformation, so that the deformation becomes unstable and the energy absorption performance is sufficient. Improvement effect was not obtained. Furthermore, when the value of a1 / L exceeds 1/4, the front plate buckled early and a sufficient improvement effect of energy absorption performance was not obtained. Moreover, when the value of θ was less than 3 °, the connecting plate was buckled early, and the effect of sufficiently improving the energy absorption performance could not be obtained. Further, when the value of θ exceeds 7 °, the input load from the collision surface cannot be sufficiently dispersed, and the effect of sufficiently improving the energy absorption performance cannot be obtained.

10 衝撃吸収部材
12 正面板
14 背面板
16 連結板
10 Shock absorbing member 12 Front plate 14 Back plate 16 Connecting plate

Claims (4)

横断面形状が円弧形状の正面板と、該正面板の円弧形状の両端部を繋いで、中空構造を形成する直線状の背面板と、該中空構造内において、それら正面板と背面板との間に配置され、それら両者を一体的に連結する2枚の連結板とよりなる中空の一体的な構造部材であって、
その横断面形状において、前記2枚の連結板は、前記背面板の前記正面板の両端部を繋ぐ方向となる幅方向の中央の点を通って該背面板に直交する中心軸に対して、該背面板に向かって拡開する方向に傾斜し、且つその傾斜方向が互いに逆方向であると共に、該中心軸に関して各連結板が線対称に配置されており、更に、前記正面板の外側面と該中心軸との交点と、前記背面板の外側面との間の距離:Hと、該背面板の幅寸法の半分の長さ:Lとが、次式:
20mm≦H≦100mm
0.60≦(H/L)≦1.40
を満足する関係にあり、そして前記連結板の厚さ方向の中心線と前記正面板の外側面との交点をA1点とした場合に、前記中心軸から該A1点までの距離:a1が
(L/6)≦a1≦(L/4)
の範囲内にあり、また該中心軸と該連結板の厚さ方向の中心線がなす角度:θが、3°乃至7°の範囲内にあることを特徴とする構造部材。
A cross-sectional shape of the front plate having a circular arc shape, a straight back plate that connects the both ends of the circular arc shape of the front plate, forming a hollow structure, and the front plate and the back plate in the hollow structure A hollow integrated structural member that is arranged between two connecting plates that are disposed between and integrally connect them,
In the cross-sectional shape, the two connecting plates pass through a central point in the width direction, which is a direction connecting both ends of the front plate of the back plate, with respect to a central axis orthogonal to the back plate, Inclined in the direction of expanding toward the back plate, the directions of inclination are opposite to each other, and each connecting plate is arranged symmetrically with respect to the central axis, and further, the outer surface of the front plate The distance between the intersection between the center axis and the outer surface of the back plate: H, and the half length L of the width of the back plate:
20mm ≦ H ≦ 100mm
0.60 ≦ (H / L) ≦ 1.40
When the intersection point between the center line in the thickness direction of the connecting plate and the outer surface of the front plate is defined as A1 point, the distance from the central axis to the A1 point: a1 is (1) L / 6) ≦ a1 ≦ (L / 4)
An angle θ between the central axis and the center line in the thickness direction of the connecting plate: θ is in the range of 3 ° to 7 °.
前記正面板の横断面形状が、以下の式:
(X/L)2+(Y/H)2=1
(ここで、横断面形状における背面板中央の点を原点:Oとした場合において、Xは正 面板横断面形状の水平方向の座標であり、Yは正面板横断面形状の垂直方向の座標で あり、L及びHは、それぞれ先に規定の通りである)
によって、定められることを特徴とする請求項1に記載の構造部材。
The cross-sectional shape of the front plate has the following formula:
(X / L) 2 + (Y / H) 2 = 1
(Here, when the center point of the back plate in the cross-sectional shape is the origin: O, X is the horizontal coordinate of the front plate cross-sectional shape, and Y is the vertical coordinate of the front plate cross-sectional shape. Yes, L and H are as defined above)
The structural member according to claim 1, defined by:
前記正面板、前記背面板、及び前記連結板の厚みは、それぞれ、1mm乃至4mmの範囲内にあることを特徴とする請求項1又は請求項2に記載の構造部材。   The structural member according to claim 1 or 2, wherein thicknesses of the front plate, the back plate, and the connecting plate are in a range of 1 mm to 4 mm, respectively. 前記正面板、前記背面板、及び前記連結板は、アルミニウム合金にて一体的に形成されていることを特徴とする請求項1乃至請求項3の何れか一つに記載の構造部材。
The structural member according to any one of claims 1 to 3, wherein the front plate, the back plate, and the connecting plate are integrally formed of an aluminum alloy.
JP2011093367A 2011-04-19 2011-04-19 Structural member excellent in collapse characteristic Withdrawn JP2012224202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011093367A JP2012224202A (en) 2011-04-19 2011-04-19 Structural member excellent in collapse characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011093367A JP2012224202A (en) 2011-04-19 2011-04-19 Structural member excellent in collapse characteristic

Publications (1)

Publication Number Publication Date
JP2012224202A true JP2012224202A (en) 2012-11-15

Family

ID=47274879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011093367A Withdrawn JP2012224202A (en) 2011-04-19 2011-04-19 Structural member excellent in collapse characteristic

Country Status (1)

Country Link
JP (1) JP2012224202A (en)

Similar Documents

Publication Publication Date Title
JP4471904B2 (en) Bumper beam for automobile
EP2889188A1 (en) Crash box and automobile body
JP2014238103A (en) Crash box
WO2017030191A1 (en) Steel sheet member combination structure, automobile structural member, center pillar, bumper, and door beam
JP5795332B2 (en) Vehicle underrun protector
KR100619295B1 (en) Automobile strength member
JP2010019414A (en) Shock absorbing member
JP6285217B2 (en) Car bumper beam
WO2019035185A1 (en) Bumper beam and vehicle
JP2020138726A (en) Vehicle structure member
JP2010083381A (en) Bumper system and method for manufacturing the same
WO2013168378A1 (en) Automobile door reinforcing member
JP2010195187A (en) Collision reinforcing material for vehicle
JP2011152860A (en) Shock absorbing member
JP2012224202A (en) Structural member excellent in collapse characteristic
JP5965282B2 (en) Exterior beam for vehicles
JP6747928B2 (en) Shock absorber
JP2021187433A (en) Automobile structural component, and method for manufacture thereof
JP6566173B1 (en) Front pillar outer
JP2011152859A (en) Shock absorbing member
JP2012081861A (en) Shock absorbing member
JP2016000558A (en) Vehicle structural member
WO2022234792A1 (en) Skeleton member
JP2016078710A (en) Vehicle front structure
JP7181846B2 (en) Shock-absorbing structural members for vehicles

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131023

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701