JP2012222374A - On-vehicle camera system - Google Patents

On-vehicle camera system Download PDF

Info

Publication number
JP2012222374A
JP2012222374A JP2011082394A JP2011082394A JP2012222374A JP 2012222374 A JP2012222374 A JP 2012222374A JP 2011082394 A JP2011082394 A JP 2011082394A JP 2011082394 A JP2011082394 A JP 2011082394A JP 2012222374 A JP2012222374 A JP 2012222374A
Authority
JP
Japan
Prior art keywords
vehicle
camera
vehicle camera
image
camera system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011082394A
Other languages
Japanese (ja)
Inventor
Shinichi Nonaka
進一 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Consumer Electronics Co Ltd
Original Assignee
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Consumer Electronics Co Ltd
Priority to JP2011082394A priority Critical patent/JP2012222374A/en
Publication of JP2012222374A publication Critical patent/JP2012222374A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve distortion of a captured image which occurs when a CMOS imaging element of a rolling shutter system is applied to an on-vehicle camera system.SOLUTION: The on-vehicle camera system is provided with means which acquires speed information of a vehicle from a control computer of the vehicle, predicts the distortion caused by a rolling shutter on the basis of the acquired speed information, and corrects the acquired image from the CMOS imaging element using the prediction result.

Description

本発明は、車載カメラシステムに関する。   The present invention relates to an in-vehicle camera system.

本発明の背景技術として、例えば、特開2003−250081号公報(特許文献1)がある。該公報には「[課題]被写体の照度が最低照度以下となる夜間等においても明瞭な画像信号を車載モニタに出力することができる車載カメラを提供する。[解決手段]本発明の車載カメラでは、フレーム数を最低被写体照度を確保できるフレーム数に低減補正してCCD素子の電荷蓄積時間を増大させる機能を有することによって、被写体の照度が最低照度以下となる夜間等において、十分に明るい画像信号を車載モニタに出力することができる。また、フレーム数をリアルタイム性が確保できる範囲に低減補正する機能を有することによって、ギクシャクした感じのない映像が得られる。」と記載されている(要約参照)。   As background art of the present invention, for example, there is JP-A-2003-250081 (Patent Document 1). In this publication, “[Problem] To provide an in-vehicle camera capable of outputting a clear image signal to an in-vehicle monitor even at night when the illuminance of the subject is below the minimum illuminance. [Solution] In the in-vehicle camera of the present invention. The image signal is bright enough at night when the illuminance of the subject is below the minimum illuminance by having the function of increasing the charge accumulation time of the CCD device by reducing the number of frames to the number of frames that can ensure the minimum illuminance. It can also be output to an in-vehicle monitor, and by having the function of reducing and correcting the number of frames within a range where real-time performance can be ensured, a jerky video can be obtained ”(see summary). ).

特開2003−250081号公報JP 2003-250081 A

自動車において運転者が安全の確認を行うことを目的として、固体撮像素子を用いて周囲の状況を撮影するためのカメラが利用されている。従来の車載カメラでは固体撮像装置として特許文献1にあるように感度に優れたCCD撮像素子を用いることが一般的であった。   For the purpose of a driver confirming safety in an automobile, a camera for photographing a surrounding situation using a solid-state image sensor is used. In a conventional in-vehicle camera, a CCD image pickup device having excellent sensitivity is generally used as a solid-state image pickup device as disclosed in Patent Document 1.

ところが、近年CMOS撮像素子の技術が向上したことと、車載カメラの高画素数化への要望が高まったことから、構造的に多くの画素の信号を高速に読み出すことに好適なCMOS撮像素子が車載カメラへ適用されるようになってきた。   However, in recent years, CMOS image sensor technology has improved, and demands for increasing the number of pixels in in-vehicle cameras have increased. Therefore, a CMOS image sensor suitable for structurally reading out signals from many pixels at high speed is provided. It has come to be applied to in-vehicle cameras.

しかしながら、CMOS撮像素子では多くの場合、感度を優先するローリングシャッタ構造をとっており、高速移動しながら撮影する車載カメラにローリングシャッタ方式のCMOS撮像素子を適用すると撮影画像が歪んでしまうという問題がある。 本発明は、車載カメラシステムにおいてローリングシャッタ方式のCMOS撮像素子を適用した場合に発生する撮影画像の歪を改善することを課題とする。   However, in many cases, a CMOS image sensor has a rolling shutter structure that gives priority to sensitivity, and if a rolling shutter type CMOS image sensor is applied to an in-vehicle camera that takes an image while moving at high speed, the captured image is distorted. is there. An object of the present invention is to improve the distortion of a captured image that occurs when a rolling shutter type CMOS image sensor is applied to an in-vehicle camera system.

上記課題は、特許請求の範囲に記載の発明により解決または改善される。例えば、自動車の制御コンピュータから自動車の速度情報を取得して、取得した速度情報からローリングシャッタで発生する歪を予測し、その予測結果を用いてCMOS撮像素子からの取得画像を補正する手段を設ける。   The above-described problems are solved or improved by the invention described in the claims. For example, there is provided means for acquiring vehicle speed information from a vehicle control computer, predicting distortion generated by the rolling shutter from the acquired speed information, and correcting the acquired image from the CMOS image sensor using the prediction result. .

本発明によれば、ローリングシャッタ方式のCMOS撮像素子を用いた車載カメラシステムにおいて、車の走行による撮像位置の変化により発生する取得画像の歪を改善できる。   ADVANTAGE OF THE INVENTION According to this invention, in the vehicle-mounted camera system using a rolling shutter type CMOS image sensor, the distortion of the acquired image generated by the change of the imaging position by driving | running | working of a vehicle can be improved.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

車載カメラのシステム構成図の例(実施例1)である。It is an example (Example 1) of the system block diagram of a vehicle-mounted camera. 撮影画像で発生する歪の補正の様子を説明する図である。It is a figure explaining the mode of correction of distortion generated in a photographed image. 車載カメラを車載認識システムに応用した例(実施例2)である。It is an example (Example 2) which applied the vehicle-mounted camera to the vehicle-mounted recognition system.

図1に本発明における車載カメラシステム構成の一例を示す。同図において101はレンズ、102はCMOS撮像素子、103はカメラ信号処理手段、104は座標変換処理手段、105はカメラ制御マイコン、106は通信ポート、107は映像信号出力端子、108は自動車制御マイコン、109はセンシング手段群、110は表示処理手段を示している。また、破線で囲まれた111は本発明における車載カメラを示している。   FIG. 1 shows an example of a vehicle camera system configuration according to the present invention. In the figure, 101 is a lens, 102 is a CMOS image sensor, 103 is camera signal processing means, 104 is coordinate transformation processing means, 105 is a camera control microcomputer, 106 is a communication port, 107 is a video signal output terminal, and 108 is an automobile control microcomputer. 109 denotes a sensing means group, and 110 denotes a display processing means. Moreover, 111 enclosed with the broken line has shown the vehicle-mounted camera in this invention.

101のレンズは、撮影対象物から到来する光を102のCMOS撮像素子の撮像面に結像させる。   A lens 101 forms an image of light coming from an object to be photographed on an imaging surface of a CMOS image sensor 102.

102のCMOS撮像素子は、該撮像面上にアレー上に配置された光電変換素子(以降、一般的に表現に倣って画素と称する)で該撮像面上に結像された光を電気的エネルギーに変換する。画素で蓄積される該電気的エネルギーは該画素の露光量に比例し、蓄積された電気的エネルギーは撮像信号としてCMOS撮像素子から順次読み出しされ103のカメラ信号処理手段に供給される。   The CMOS image sensor 102 has a photoelectric conversion element (hereinafter generally referred to as a pixel according to the expression) arranged on an array on the imaging surface, and converts the light imaged on the imaging surface into electrical energy. Convert to The electrical energy accumulated in the pixel is proportional to the exposure amount of the pixel, and the accumulated electrical energy is sequentially read out from the CMOS image sensor as an imaging signal and supplied to the camera signal processing means 103.

103のカメラ信号処理手段は、撮像信号に空間フィルタ処理(一般的に2次元)と表示デバイスの特性に合わせるガンマ処理を行って、輝度信号と色差信号(色差信号はカラーカメラの場合)からなる映像信号を生成する。   The camera signal processing unit 103 performs a spatial filter process (generally two-dimensional) on the imaging signal and a gamma process that matches the characteristics of the display device, and includes a luminance signal and a color difference signal (when the color difference signal is a color camera). Generate a video signal.

104の座標変換手段は、入力映像信号である輝度信号Yin(x,y)と色差信号Cin(x,y)におけるローリングシャッタ起因の画像歪を補正して、新たな輝度信号Yout(x,y)と色差信号Cout(x,y)を生成し映像信号として出力する。該輝度信号Yout(x,y)と色差信号Cout(x,y)は、該輝度信号Yout(x,y)と色差信号Cout(x,y)の座標(x,y)ごとに指定される参照座標(fx[v],fy[v])における該輝度信号Yin(x,y)と色差信号Cin(x,y)の値を参照して生成する。このとき参照座標の値は必ずしも整数で有る必要はなく、少数以下の値を有する場合は、該少数以下の値に応じて参照座標近隣の該輝度信号Yin(x,y)と色差信号Cin(x,y)の値から補間信号を生成することで該輝度信号Yout(x,y)と色差信号Cout(x,y)を取得する。ここで、該参照座標(fx[v],fy[v])は、一般的にカメラの移動速度を変数とする関数で表されるので、カメラの移動速度に応じて変化する方式をとるものとする。ここで、該参照座標(fx[v],fy[v])はカメラの移動速度を変数として、リアルタイムで計算することが理想ではあれるが、あらかじめ計算しておいたデータベースを用いて演算処理を簡略化してもよい。   The coordinate conversion unit 104 corrects image distortion caused by the rolling shutter in the luminance signal Yin (x, y) and the color difference signal Cin (x, y) that are input video signals, and generates a new luminance signal Yout (x, y). ) And a color difference signal Cout (x, y) are generated and output as a video signal. The luminance signal Yout (x, y) and the color difference signal Cout (x, y) are specified for each coordinate (x, y) of the luminance signal Yout (x, y) and the color difference signal Cout (x, y). It is generated with reference to the values of the luminance signal Yin (x, y) and the color difference signal Cin (x, y) at the reference coordinates (fx [v], fy [v]). At this time, the value of the reference coordinate does not necessarily have to be an integer, and when it has a value less than a decimal, the luminance signal Yin (x, y) and the color difference signal Cin ( The luminance signal Yout (x, y) and the color difference signal Cout (x, y) are acquired by generating an interpolation signal from the value of x, y). Here, since the reference coordinates (fx [v], fy [v]) are generally expressed by a function having the moving speed of the camera as a variable, the reference coordinates (fx [v], fy [v]) take a method that changes according to the moving speed of the camera. And Here, the reference coordinates (fx [v], fy [v]) are ideally calculated in real time using the moving speed of the camera as a variable, but are calculated using a database calculated in advance. May be simplified.

105のカメラ制御マイコンは、102のCMOS撮像素子、103のカメラ信号処理手段、104の座標変換手段を制御するカメラ制御手段である。カメラ制御マイコンにおける具体的な制御内容としては、Auto Exposure制御、White Balance制御、及び座標変換手段における参照座標制御がある。このうちAuto Exposure制御は該カメラ信号処理手段から映像信号の輝度レベルを取得して、該CMOS撮像素子の露光時間や映像信号のゲインを調整する。また、White Balance制御は該カメラ信号処理手段から白の信号成分を取得して白い被写体を白く見せるようにRGB成分のゲインを調整する。そして、座標変換手段における参照座標制御は、カメラの移動速度に応じて参照座標を変更させる。   A camera control microcomputer 105 is a camera control unit that controls a CMOS image sensor 102, a camera signal processing unit 103, and a coordinate conversion unit 104. Specific control contents in the camera control microcomputer include Auto Exposure control, White Balance control, and reference coordinate control in the coordinate conversion means. Of these, Auto Exposure control acquires the luminance level of the video signal from the camera signal processing means, and adjusts the exposure time of the CMOS image sensor and the gain of the video signal. In addition, the white balance control acquires a white signal component from the camera signal processing means and adjusts the gain of the RGB component so that a white subject looks white. The reference coordinate control in the coordinate conversion means changes the reference coordinates according to the moving speed of the camera.

106の通信ポートは108の自動車制御マイコンと通信を行うための通信ポートであり、この通信ポートを経由して、カメラ制御マイコンが自動車制御マイコンから自動車の移動速度情報を取得する。   The communication port 106 is a communication port for communicating with the automobile control microcomputer 108, and the camera control microcomputer acquires the moving speed information of the automobile from the automobile control microcomputer via the communication port.

107の映像信号出力端子は、111の車載カメラで撮影された映像信号を出力する端子である。該映像信号出力端子には110の表示処理手段が接続されており、該表示処理手段には該車載カメラで撮影された映像を表示することが出来る。   A video signal output terminal 107 is a terminal for outputting a video signal photographed by a vehicle-mounted camera 111. 110 display processing means are connected to the video signal output terminal, and images taken by the in-vehicle camera can be displayed on the display processing means.

また、108の自動車制御マイコンは、該自動車制御マイコンに接続された109のセンシング手段群を通じて自動車各部の動作状態を検出して、その検出情報を元に自動車の動作を制御する。   Further, the automobile control microcomputer 108 detects the operating state of each part of the automobile through 109 sensing means connected to the automobile control microcomputer, and controls the operation of the automobile based on the detected information.

図2は、撮影画像で発生する歪の補正の様子を説明する図であり、特に自動車の進行方向を撮影する場合について示すものである。同図において、201は撮影開始時の画角、202は撮影終了時の画角、203は歪補正された画像の例を示している。   FIG. 2 is a diagram for explaining a state of correcting distortion generated in a photographed image, and particularly shows a case where the traveling direction of the automobile is photographed. In the figure, 201 is an angle of view at the start of photographing, 202 is an angle of view at the end of photographing, and 203 is an example of a distortion-corrected image.

ローリングシャッタ方式のCMOS撮像素子では、ライン順次で画素が露光されるため、該撮像素子を用いたカメラを移動体に設置して撮像を行った場合、撮影開始時と撮影終了時の画角が変化してしまう。例えば、移動体の進行方向に向けて設置されたカメラでは、あるフレーム画像の撮影初期の段階では図2の201の如き画角であったのに対して、該フレーム画像の終了段階では、図2の202に示すような画角に変わってしまう。ここで、該フレーム画像が画像上部からライン順次で撮影されるとした場合、撮影映像をそのまま表示処理手段の画面に表示すると、画面下部(露光タイミングの遅い部分)に行くほど画像が拡大されていくような映像が表示されることになる。   In a rolling shutter type CMOS image sensor, pixels are exposed in line sequential order. Therefore, when a camera using the image sensor is installed on a moving body and imaging is performed, the angle of view at the start and end of shooting is different. It will change. For example, a camera installed in the moving direction of the moving body has an angle of view as indicated by 201 in FIG. 2 at the initial stage of shooting a certain frame image, whereas at the end stage of the frame image, 2 changes to the angle of view as shown at 202 in FIG. Here, assuming that the frame image is taken in line sequential from the upper part of the image, when the photographed image is displayed on the screen of the display processing means as it is, the image is enlarged as it goes to the lower part of the screen (the part with the slower exposure timing). A video like that will be displayed.

そこでかかる問題を解決するにあたり、本発明の車載カメラでは、104の座標変換手段を用いて撮影画像に対して、画面下部に行くほど画像を縮小するように座標の変換を行い映像信号として出力する。このとき表示処理手段に表示されるフレーム画像はローリングシャッタ方式に起因する画像の歪が補正された画像となり、凡そ図2の203に示すようなものとすることが出来る。   Therefore, in order to solve such a problem, the vehicle-mounted camera of the present invention converts the coordinates of the captured image using the coordinate conversion means 104 so that the image is reduced toward the lower part of the screen and outputs it as a video signal. . At this time, the frame image displayed on the display processing means is an image in which the distortion of the image due to the rolling shutter method is corrected, and can be as shown in 203 of FIG.

また、進行方向と反対方向に向けて設置されたカメラでは、図2における撮影開始時の画角と撮影終了時の画角関係が逆転して、カメラで撮影されるフレーム画像は画面下部に行くほど縮小される画像になるため、座標変換手段を用いて撮影画像に対して、画面下部に行くほど画像を拡大するように座標の変換を行い映像信号として出力する。   Further, in the camera installed in the direction opposite to the traveling direction, the relationship between the angle of view at the start of shooting and the angle of view at the end of shooting in FIG. 2 is reversed, and the frame image shot by the camera goes to the bottom of the screen. Since the image is reduced further, the coordinate conversion unit is used to convert the coordinates of the captured image so that the image is enlarged toward the lower portion of the screen and output as a video signal.

さらに進行方向に対して垂直方向に向けて設置されたカメラでは、画面下部に行くほど進行方向に撮影範囲がずれるので、座標変換手段でそれを補正して映像信号として出力する。   Furthermore, in a camera installed in a direction perpendicular to the traveling direction, the shooting range shifts in the traveling direction as it goes to the lower part of the screen.

以上によれば、本発明を用いることで、ローリングシャッタ方式のCMOS撮像素子を用いた車載カメラシステムにおいて、車の走行による撮像位置の変化により発生する取得画像の歪を改善可能であることが示される。   According to the above, it is shown that the use of the present invention can improve the distortion of the acquired image caused by the change of the imaging position due to the traveling of the vehicle in the in-vehicle camera system using the rolling shutter type CMOS image sensor. It is.

図3は、本発明の車載カメラを車載認識システムに応用した例である。同図に301は画像認識エンジンを示しており、その他、図1と同じ符号をつけたものについては、図1同様である。   FIG. 3 shows an example in which the in-vehicle camera of the present invention is applied to an in-vehicle recognition system. In the figure, reference numeral 301 denotes an image recognition engine, and other components denoted by the same reference numerals as those in FIG. 1 are the same as those in FIG.

一般的な認識エンジンでは、入力画像にフィルタ処理を行って画像の特徴量を抽出して、認識エンジンに格納されたデータベースとのマッチングを行って認識処理を行う。そのため、入力画像に幾何学的な歪が存在する場合、データベースとのマッチング処理がスムーズに行えず、認識の処理に時間が掛かってしまったり、認識制度が低下してしまったりする場合がある。   In a general recognition engine, a filtering process is performed on an input image to extract an image feature amount, and matching is performed with a database stored in the recognition engine to perform a recognition process. Therefore, when there is a geometric distortion in the input image, the matching process with the database cannot be performed smoothly, and the recognition process may take a long time or the recognition system may be degraded.

本発明によれば、カメラで幾何学的な歪が補正されるため、認識処理速度や制度の低下を改善することが可能になる。   According to the present invention, since geometric distortion is corrected by the camera, it is possible to improve the reduction in recognition processing speed and system.

101 レンズ
102 CMOS撮像素子
103 カメラ信号処理手段
104 座標変換処理手段
105 カメラ制御マイコン
106 通信ポート
107 映像信号出力端子
108 自動車制御マイコン
109 センシング手段群
110 表示処理手段
111 本発明における車載カメラ
201 撮影開始時の画角
202 撮影終了時の画角
203 歪補正された画像の例
301 画像認識エンジン
DESCRIPTION OF SYMBOLS 101 Lens 102 CMOS image pick-up element 103 Camera signal processing means 104 Coordinate conversion processing means 105 Camera control microcomputer 106 Communication port 107 Image signal output terminal 108 Car control microcomputer 109 Sensing means group 110 Display processing means 111 Car-mounted camera 201 in this invention At the time of imaging | photography start Angle of view 202 Angle of view 203 at the end of shooting Example of distortion-corrected image 301 Image recognition engine

Claims (3)

撮影対象物から到来する光を結像するレンズと、該結像された光を電気的エネルギーに変換するCMOS撮像素子と、該CMOS撮像素子から出力される撮像信号を処理して映像信号を生成するカメラ信号処理手段と、該映像信号に生ずる歪を補正する座標変換処理手段と、を有して構成される車載カメラであって、
該車載カメラの移動速度に応じて、該座標変換手段で行われる補正量を変更する車載カメラ。
A lens that forms an image of light coming from an object to be imaged, a CMOS image sensor that converts the imaged light into electrical energy, and an image signal output from the CMOS image sensor is processed to generate a video signal An in-vehicle camera configured to include a camera signal processing unit that performs a coordinate conversion processing unit that corrects distortion generated in the video signal,
An in-vehicle camera that changes a correction amount performed by the coordinate conversion unit in accordance with a moving speed of the in-vehicle camera.
請求項1に記載の車載カメラを利用する車載カメラシステムであって、
該車載カメラで撮影した映像信号を表示する表示処理手段を有する車載カメラシステム。
An in-vehicle camera system using the in-vehicle camera according to claim 1,
An in-vehicle camera system having display processing means for displaying a video signal photographed by the in-vehicle camera.
請求項1に記載の車載カメラを利用する車載カメラシステムであって、
該車載カメラで撮影した映像信号から特徴量の抽出を行って認識処理を行う画像認識エンジンを有する車載カメラシステム。
An in-vehicle camera system using the in-vehicle camera according to claim 1,
A vehicle-mounted camera system having an image recognition engine that performs a recognition process by extracting a feature amount from a video signal photographed by the vehicle-mounted camera.
JP2011082394A 2011-04-04 2011-04-04 On-vehicle camera system Pending JP2012222374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011082394A JP2012222374A (en) 2011-04-04 2011-04-04 On-vehicle camera system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011082394A JP2012222374A (en) 2011-04-04 2011-04-04 On-vehicle camera system

Publications (1)

Publication Number Publication Date
JP2012222374A true JP2012222374A (en) 2012-11-12

Family

ID=47273495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011082394A Pending JP2012222374A (en) 2011-04-04 2011-04-04 On-vehicle camera system

Country Status (1)

Country Link
JP (1) JP2012222374A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5901812B1 (en) * 2015-03-05 2016-04-13 三菱電機株式会社 Vehicle image processing device
GB2548970A (en) * 2016-02-25 2017-10-04 Bosch Gmbh Robert Method and device for generating an image of an area surrounding a vehicle
JP2019046434A (en) * 2017-08-29 2019-03-22 株式会社東芝 System and method for image motion compensation
US10778893B2 (en) 2017-12-22 2020-09-15 Seiko Epson Corporation Detection device, display device and detection method
JP2020162142A (en) * 2013-01-15 2020-10-01 モービルアイ ビジョン テクノロジーズ リミテッド Stereo support with rolling shutter
US10834323B2 (en) 2017-09-14 2020-11-10 Seiko Epson Corporation Electronic apparatus, motion sensor, position change detection program, and position change detection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002150279A (en) * 2000-11-16 2002-05-24 Nippon Telegr & Teleph Corp <Ntt> Image calibration method, image calibration device, and program recording medium
JP2003317033A (en) * 2002-04-23 2003-11-07 Ikegami Tsushinki Co Ltd Affine transformation coefficient calculating method for image processing and image processor
JP2004096498A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Moving object imaging system
JP2006074678A (en) * 2004-09-06 2006-03-16 Mitsubishi Electric Corp Portable device with camera
JP2007116394A (en) * 2005-10-20 2007-05-10 Victor Co Of Japan Ltd On-vehicle camera
JP2009512381A (en) * 2005-10-21 2009-03-19 ノキア コーポレイション Method and apparatus for reducing motion distortion in digital imaging
JP2009211624A (en) * 2008-03-06 2009-09-17 Aisin Aw Co Ltd Driving support device, driving support method, and computer program
JP2010218058A (en) * 2009-03-13 2010-09-30 Denso It Laboratory Inc Device and method for supporting driving

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002150279A (en) * 2000-11-16 2002-05-24 Nippon Telegr & Teleph Corp <Ntt> Image calibration method, image calibration device, and program recording medium
JP2003317033A (en) * 2002-04-23 2003-11-07 Ikegami Tsushinki Co Ltd Affine transformation coefficient calculating method for image processing and image processor
JP2004096498A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Moving object imaging system
JP2006074678A (en) * 2004-09-06 2006-03-16 Mitsubishi Electric Corp Portable device with camera
JP2007116394A (en) * 2005-10-20 2007-05-10 Victor Co Of Japan Ltd On-vehicle camera
JP2009512381A (en) * 2005-10-21 2009-03-19 ノキア コーポレイション Method and apparatus for reducing motion distortion in digital imaging
JP2009211624A (en) * 2008-03-06 2009-09-17 Aisin Aw Co Ltd Driving support device, driving support method, and computer program
JP2010218058A (en) * 2009-03-13 2010-09-30 Denso It Laboratory Inc Device and method for supporting driving

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162142A (en) * 2013-01-15 2020-10-01 モービルアイ ビジョン テクノロジーズ リミテッド Stereo support with rolling shutter
JP7074801B2 (en) 2013-01-15 2022-05-24 モービルアイ ビジョン テクノロジーズ リミテッド Stereo support with rolling shutter
JP5901812B1 (en) * 2015-03-05 2016-04-13 三菱電機株式会社 Vehicle image processing device
JP2016163286A (en) * 2015-03-05 2016-09-05 三菱電機株式会社 Vehicle image processor
GB2548970A (en) * 2016-02-25 2017-10-04 Bosch Gmbh Robert Method and device for generating an image of an area surrounding a vehicle
US10616555B2 (en) 2016-02-25 2020-04-07 Robert Bosch Gmbh Method and device for ascertaining an image of the surroundings of a vehicle
GB2548970B (en) * 2016-02-25 2022-01-19 Bosch Gmbh Robert Method and device for generating an image of an area surrounding a vehicle
JP2019046434A (en) * 2017-08-29 2019-03-22 株式会社東芝 System and method for image motion compensation
US10834323B2 (en) 2017-09-14 2020-11-10 Seiko Epson Corporation Electronic apparatus, motion sensor, position change detection program, and position change detection method
US10778893B2 (en) 2017-12-22 2020-09-15 Seiko Epson Corporation Detection device, display device and detection method

Similar Documents

Publication Publication Date Title
JP6319340B2 (en) Movie imaging device
US9055181B2 (en) Solid-state imaging device, image processing apparatus, and a camera module having an image synthesizer configured to synthesize color information
US20090009604A1 (en) Image processing system and method
US20110080494A1 (en) Imaging apparatus detecting foreign object adhering to lens
JP3974633B1 (en) Imaging apparatus and imaging method
US9307207B2 (en) Glaring reduction for dynamic rearview mirror
KR101367637B1 (en) Monitoring apparatus
US11082626B2 (en) Image processing device, imaging device, and image processing method
JP2010141653A (en) Image processing device and imaging apparatus
JP2012222374A (en) On-vehicle camera system
US20130021497A1 (en) Image pickup apparatus and dark current correction method therefor
JP3974634B2 (en) Imaging apparatus and imaging method
US11172173B2 (en) Image processing device, image processing method, program, and imaging device
JP2010073009A (en) Image processing apparatus
US11758283B2 (en) Image capture device and image adjusting method
US10455159B2 (en) Imaging setting changing apparatus, imaging system, and imaging setting changing method
US20070269133A1 (en) Image-data noise reduction apparatus and method of controlling same
KR102177878B1 (en) Apparatus and method for processing image
JP2008160561A (en) Imaging system and imaging apparatus
JP2009253447A (en) Solid state image sensor for both near-infrared light and visible light, and solid-state imaging apparatus
WO2016121406A1 (en) Image processing apparatus, image processing system, vehicle, imaging apparatus, and image processing method
WO2015141860A1 (en) Image processing apparatus, imaging apparatus, image processing program, and image processing method
JP2011155454A (en) Image pickup device, image processor, image processing method, and program
JP4611898B2 (en) Image display system
JP2005167831A (en) Imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140312

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310