JP2012221542A - Heat-assisted magnetic recording medium and magnetic storage device - Google Patents

Heat-assisted magnetic recording medium and magnetic storage device Download PDF

Info

Publication number
JP2012221542A
JP2012221542A JP2011090071A JP2011090071A JP2012221542A JP 2012221542 A JP2012221542 A JP 2012221542A JP 2011090071 A JP2011090071 A JP 2011090071A JP 2011090071 A JP2011090071 A JP 2011090071A JP 2012221542 A JP2012221542 A JP 2012221542A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
recording medium
layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011090071A
Other languages
Japanese (ja)
Other versions
JP5804591B2 (en
Inventor
Tetsuya Kanbe
哲也 神邊
Kazuya Niwa
和也 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2011090071A priority Critical patent/JP5804591B2/en
Publication of JP2012221542A publication Critical patent/JP2012221542A/en
Application granted granted Critical
Publication of JP5804591B2 publication Critical patent/JP5804591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To achieve a heat-assisted recording medium which is segmented by the uniform grain boundary width and has a magnetic layer comprising magnetic crystal grains grown with column, and to provide a magnetic storage device having a low error rate using the heat-assisted recording medium.SOLUTION: A magnetic recording medium comprises a substrate, a plurality of foundation layers formed on the substrate, and a magnetic layer containing an alloy having an L1structure as a main component. The magnetic layer has a two-layer structure constituted of a first magnetic layer comprising an FePt alloy having an L1structure and C, and a second magnetic layer comprising an FePt alloy having an L1structure, and CrO, YOor TaO. Moreover, a non-magnetic intermediate layer for controlling exchange coupling is provided between the first magnetic layer and the second magnetic layer.

Description

本発明は熱アシスト磁気記録媒体、及びそれを用いた磁気記憶装置に関する。   The present invention relates to a heat-assisted magnetic recording medium and a magnetic storage device using the same.

媒体に近接場光等を照射して表面を局所的に加熱し、媒体の保磁力を低下させて書き込みを行う熱アシスト記録は、1Tbit/inchクラスの面記録密度を実現できる次世代記録方式として注目されている。熱アシスト記録媒体としては、磁性層に、L1型結晶構造を有するFePt合金や、同じくL1型結晶構造を有するCoPt合金を用いた媒体が用いられる。上記L1型結晶構造を有する規則合金は、10J/m台の高い結晶磁気異方性Kuを有するため、熱安定性を維持したまま、結晶粒径を6nm程度以下まで微細化できる。これにより、熱安定性を維持したまま、媒体ノイズを大幅に低減できる。 Thermally assisted recording, in which writing is performed by irradiating the medium with near-field light to locally heat the surface and reducing the coercive force of the medium, the next-generation recording method that can realize a surface recording density of 1 Tbit / inch 2 class It is attracting attention as. The thermally-assisted recording medium, the magnetic layer, and FePt alloy having an L1 0 type crystal structure, is also medium using CoPt alloy having an L1 0 type crystal structure is used. Ordered alloy having the L1 0 type crystal structure, because it has a 10 6 J / m 3 units high magnetocrystalline anisotropy Ku, while maintaining the thermal stability can refining crystal grain size to less than about 6nm . Thereby, the medium noise can be greatly reduced while maintaining the thermal stability.

熱アシスト記録媒体の媒体ノイズを低減するには、磁性粒径の微細化に加え、磁性粒子間の交換結合を低減する必要がある。このためには、磁性層に粒界材料を添加して、磁性結晶粒が粒界材料で分断されたグラニュラー構造とすることが望ましい。特許文献1には、L1型FePt合金を含む磁性層に、粒界材料としてSiO、TiO、Taを添加することが記載されている。また、特許文献2には、粒界材料として、MgO、C、SiO、TiO、Ta、Al、BN、SiNx、BCを添加することが記載されている。 In order to reduce the medium noise of the heat-assisted recording medium, it is necessary to reduce exchange coupling between the magnetic particles in addition to miniaturization of the magnetic particle diameter. For this purpose, it is desirable to add a grain boundary material to the magnetic layer to form a granular structure in which the magnetic crystal grains are divided by the grain boundary material. Patent Document 1, the magnetic layer containing the L1 0 type FePt alloy, it is described that the addition of SiO 2, TiO 2, Ta 2 O 5 as a grain boundary material. Patent Document 2 describes that MgO, C, SiO 2 , TiO 2 , Ta 2 O 5 , Al 2 O 3 , BN, SiNx, and B 4 C are added as grain boundary materials.

一方、グラニュラー構造を有する磁性膜上に、連続膜を形成することが提案されている。例えば特許文献3には、L1−FePt合金と酸化物からなるグラニュラー構造を有する磁性層の上に、FePtやCoCrPtB合金からなる連続膜をキャップ層として形成することにより、書き込み特性が改善されることが開示されている。また、特許文献4には、グラニュラー構造を有する磁性層の上に、非晶質構造を有するTbFeCo膜を形成することにより、TbFeCo膜に微細な磁区構造を形成でき、記録分解能を向上できることが開示されている。 On the other hand, it has been proposed to form a continuous film on a magnetic film having a granular structure. For example, in Patent Document 3, writing characteristics are improved by forming a continuous film made of FePt or CoCrPtB alloy as a cap layer on a magnetic layer having a granular structure made of an L1 0 -FePt alloy and an oxide. It is disclosed. Further, Patent Document 4 discloses that by forming a TbFeCo film having an amorphous structure on a magnetic layer having a granular structure, a fine magnetic domain structure can be formed in the TbFeCo film and recording resolution can be improved. Has been.

特開2009−158054号公報JP 2009-158054 A 特開2010−176829号公報JP 2010-176829 A 特開2009−158053号公報JP 2009-158053 A 特開2008−159177号公報JP 2008-159177 A

磁性粒子間の交換結合を低減するには、磁性粒が酸化物等からなる粒界相で取り囲まれたグラニュラー構造をとっていることが望ましい。但し、粒界相の幅は可能な限り均一である必要がある。粒界幅が不均一になると、磁性粒子間の交換結合の強さが不均一となり、反転磁界分散SFD(Switching Field Distribution)が大きくなる。   In order to reduce exchange coupling between the magnetic particles, it is desirable to have a granular structure in which the magnetic particles are surrounded by a grain boundary phase made of an oxide or the like. However, the width of the grain boundary phase needs to be as uniform as possible. If the grain boundary width becomes non-uniform, the strength of exchange coupling between the magnetic grains becomes non-uniform and the switching field distribution SFD (Switching Field Distribution) increases.

一方、磁性結晶粒は、初期成長部から上部にかけて粒径を一定に保って連続成長したコラム構造をとる必要がある。現在、提案されている粒界材料を単独で用いた場合、上記条件を満たせていない。磁性粒子が均一な粒界幅で分断されており、かつ、磁性粒がコラム成長した構造を実現させることが、熱アシスト記録媒体の高記録密度化を図る上で重要な課題となっている。   On the other hand, the magnetic crystal grains need to have a column structure in which the grain size is kept constant from the initial growth portion to the upper portion and is continuously grown. Currently, when the proposed grain boundary material is used alone, the above conditions cannot be satisfied. Realization of a structure in which magnetic grains are divided by a uniform grain boundary width and the magnetic grains are column-grown is an important issue for achieving a high recording density of the heat-assisted recording medium.

上記課題は、基板と、該基板上に形成された複数の下地層と、L1構造を有する合金を主成分とする磁性層からなる磁気記録媒体において、該磁性層が、L1構造を有するFePt合金とCからなる第1の磁性層と、L1構造を有するFePt合金とCr、YもしくはTaからなる第2の磁性層で構成された2層構成とすることで解決できる。すなわち本願発明は下記に関する。 The above object includes a substrate, a plurality of base layer formed on the substrate, a magnetic recording medium comprising a magnetic layer mainly composed of an alloy having an L1 0 structure, the magnetic layer is an L1 0 structure A two-layer configuration including a first magnetic layer made of FePt alloy and C, a FePt alloy having an L1 0 structure and a second magnetic layer made of Cr 2 O 3 , Y 2 O 3 or Ta 2 O 5 ; This can be solved. That is, the present invention relates to the following.

(1)基板と、該基板上に形成された複数の下地層と、L1構造を有する合金を主成分とする磁性層を含む磁気記録媒体において、該磁性層が、L1構造を有するFePt合金とCからなる第1の磁性層と、L1構造を有するFePt合金とCr、YもしくはTaからなる第2の磁性層を含むことを特徴とする磁気記録媒体。
(2)第1の磁性層の膜厚が6nm以下であることを特徴とする(1)に記載の磁気記録媒体。
(3)第1の磁性層と、第2の磁性層の間に、交換結合を制御するための非磁性中間層を有することを特徴とする(1)または(2)に記載の磁気記録媒体。
(4)磁性層が、更に、結晶粒と粒界相からなるグラニュラー構造ではない第3の磁性層を含むことを特徴とする(1)乃至(3)の何れか1項に記載の磁気記録媒体。
(5)第3の磁性層が、FeもしくはCoを主成分とし、Nd、Sm、Gd、Tb、Dyから選択される少なくとも1種類の元素を含有する非晶質構造、もしくは微結晶構造を有する合金であることを特徴とする(4)に記載の磁気記録媒体。
(6)第3の磁性層が、FeもしくはCoを主成分とし、Ta、Nb、Zr、Si、Bから選択される少なくとも1種類の元素を含有する非晶質構造、もしくは微結晶構造を有する合金であることを特徴とする(4)に記載の磁気記録媒体。
(7)第2の磁性層と、第3の磁性層の間に、交換結合を制御するための非磁性中間層を有することを特徴とする(4)乃至(6)の何れか1項に記載の磁気記録媒体。
(8)磁気記録媒体と、該磁気記録媒体を回転させるための駆動部と、該磁気記録媒体を加熱するためのレーザー発生部と、該レーザー発生部から発生したレーザー光をヘッド先端まで導く導波路と、ヘッド先端に取り付けられた近接場光発生部を備えた磁気ヘッドと、該磁気ヘッドを移動させるための駆動部と、記録再生信号処理系から構成さる磁気記憶装置において、該磁気記録媒体が(1)乃至(7)の何れか1項に記載の磁気記録媒体であることを特徴とする磁気記憶装置。
(1) FePt having a substrate, a plurality of base layer formed on the substrate, a magnetic recording medium comprising a magnetic layer mainly composed of an alloy having an L1 0 structure, the magnetic layer is an L1 0 structure A magnetic recording comprising: a first magnetic layer made of an alloy and C; and a second magnetic layer made of a FePt alloy having an L1 0 structure and Cr 2 O 3 , Y 2 O 3 or Ta 2 O 5. Medium.
(2) The magnetic recording medium according to (1), wherein the thickness of the first magnetic layer is 6 nm or less.
(3) The magnetic recording medium according to (1) or (2), wherein a nonmagnetic intermediate layer for controlling exchange coupling is provided between the first magnetic layer and the second magnetic layer. .
(4) The magnetic recording according to any one of (1) to (3), wherein the magnetic layer further includes a third magnetic layer not having a granular structure composed of crystal grains and a grain boundary phase. Medium.
(5) The third magnetic layer has an amorphous structure or a microcrystalline structure containing Fe or Co as a main component and containing at least one element selected from Nd, Sm, Gd, Tb, and Dy. The magnetic recording medium according to (4), which is an alloy.
(6) The third magnetic layer has an amorphous structure or a microcrystalline structure containing Fe or Co as a main component and containing at least one element selected from Ta, Nb, Zr, Si, and B. The magnetic recording medium according to (4), which is an alloy.
(7) In any one of (4) to (6), a nonmagnetic intermediate layer for controlling exchange coupling is provided between the second magnetic layer and the third magnetic layer. The magnetic recording medium described.
(8) A magnetic recording medium, a driving unit for rotating the magnetic recording medium, a laser generating unit for heating the magnetic recording medium, and a laser beam generated from the laser generating unit for guiding the laser light to the head tip. In a magnetic storage device comprising a waveguide, a magnetic head having a near-field light generating unit attached to the tip of the head, a driving unit for moving the magnetic head, and a recording / reproducing signal processing system, the magnetic recording medium A magnetic storage device according to any one of (1) to (7).

本発明により、磁性層中の磁性粒子が均一な粒界幅で分断されており、かつ、磁性粒がコラム成長した熱アシスト用磁気記録媒体が得られる。これにより、反転磁界分散SFDの狭い熱アシスト記録媒体が実現され、これを用いたエラーレートの低い磁気記憶装置を提供することができる。   According to the present invention, it is possible to obtain a heat-assisted magnetic recording medium in which the magnetic particles in the magnetic layer are divided at a uniform grain boundary width and the magnetic particles are column-grown. As a result, a heat-assisted recording medium having a narrow switching field dispersion SFD is realized, and a magnetic storage device having a low error rate using the medium can be provided.

本発明の磁気記録媒体の層構成の一例を表す図The figure showing an example of the laminated constitution of the magnetic recording medium of this invention 磁性層中の粒成長を模式的に表す図Schematic representation of grain growth in the magnetic layer 本発明の磁気記録媒体の層構成の一例を表す図The figure showing an example of the laminated constitution of the magnetic recording medium of this invention 本発明の磁気ヘッドを表す図The figure showing the magnetic head of this invention 本発明の磁気記憶装置の傾視図The perspective view of the magnetic storage device of the present invention

以下、本発明の実施の形態について、図面を参照して詳細に説明するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments.

本発明は、基板と、基板上に形成された複数の下地層と、L1構造を有する合金を主成分とする磁性層を含む磁気記録媒体において、磁性層が、L1構造を有するFePt合金とCからなる第1の磁性層と、L1構造を有するFePt合金とCr、YもしくはTaからなる第2の磁性層を含むことを特徴とする。図1に本発明の実施形態の一例を示すが、基板101上に第1の下地層102、第2の下地層103、第3の下地層104、第1の磁性層105、第2の磁性層106、保護膜107が形成されている。 The present invention relates to a magnetic recording medium including a substrate, a plurality of underlayers formed on the substrate, and a magnetic layer mainly composed of an alloy having an L1 0 structure, wherein the magnetic layer has an FePt alloy having the L1 0 structure. And a second magnetic layer comprising an FePt alloy having an L1 0 structure and Cr 2 O 3 , Y 2 O 3 or Ta 2 O 5 . FIG. 1 shows an example of an embodiment of the present invention. A first underlayer 102, a second underlayer 103, a third underlayer 104, a first magnetic layer 105, and a second magnetic layer are shown on a substrate 101. A layer 106 and a protective film 107 are formed.

本発明の磁気記録媒体の製造では、磁性層に用いるFePt合金に良好なL1規則構造をとらせるため、450℃以上の基板加熱を必要とする。よって、基板には、軟化温度が500℃以上の耐熱ガラス基板を用いるのが望ましい。 In the manufacture of magnetic recording medium of the present invention, since assume a good L1 0 ordered structure in FePt alloy used in the magnetic layer, it requires heating the substrate above 450 ° C.. Therefore, it is desirable to use a heat-resistant glass substrate having a softening temperature of 500 ° C. or higher as the substrate.

第1の下地層は、非晶質合金を用いることが望ましい。具体的には、Co−50at%Ta、Co−50at%Ti、Ni−50at%Ta、Ni−50at%Ti、Cr−50at%Ti合金等を用いることができる。シード層の膜厚が10nmを下回ると、赤外線加熱によって、基板温度を上げることが困難となるので、膜厚は10nm以上が望ましい。   It is desirable to use an amorphous alloy for the first underlayer. Specifically, Co-50 at% Ta, Co-50 at% Ti, Ni-50 at% Ta, Ni-50 at% Ti, Cr-50 at% Ti alloy, or the like can be used. If the film thickness of the seed layer is less than 10 nm, it is difficult to raise the substrate temperature by infrared heating. Therefore, the film thickness is desirably 10 nm or more.

第2の下地層には、B2構造を有するRuAl、NiAlを用いることができる。150℃以上に加熱した非晶質合金下地層上に、上記B2構造を有する下地層を形成することにより、該下地層にB2(100)配向をとらせることができる。これにより、後述する第3の下地層に(100)配向をとらせることができる。また、第2の下地層にCr、もしくはCrを主成分とし、Ti、V、Mo、W、Mn、Ruのうちの少なくとも1種類を含有したBCC構造の合金を用いてもよい。これらの合金も、150℃以上に加熱した非晶質合金下地層上に形成することによって(100)配向をとらせることができる。   For the second underlayer, RuAl or NiAl having a B2 structure can be used. By forming the base layer having the B2 structure on the amorphous alloy base layer heated to 150 ° C. or higher, the base layer can be made to have B2 (100) orientation. Thereby, the (100) orientation can be made to the 3rd underlayer mentioned later. Further, Cr or an alloy having a BCC structure containing Cr as a main component and containing at least one of Ti, V, Mo, W, Mn, and Ru may be used for the second underlayer. These alloys can also be (100) oriented by forming on an amorphous alloy underlayer heated to 150 ° C. or higher.

第3の下地層には、NaCl構造を有するTiN、TiC、MgO、NiO等を用いることができる。これらの合金を、(100)配向したB2構造の下地層、もしくは(100)配向したBCC構造の下地層の上に形成した場合、エピタキシャル成長により、(100)配向を示す。これにより、第3の下地層上に形成されるL1−FePt合金に(001)配向をとらせることが可能となる。尚、第3の下地層に用いられる上記材料は、熱伝導率が低いため、熱バリア層としても機能する。このため、磁性層をより高温に加熱することができる。但し、記録ヘッドの媒体加熱能力が十分である場合は、第3の下地層は特に設けなくてもよい。 For the third underlayer, TiN, TiC, MgO, NiO or the like having a NaCl structure can be used. When these alloys are formed on a (100) -oriented base layer of B2 structure or a (100) -oriented base layer of BCC structure, (100) orientation is exhibited by epitaxial growth. As a result, the (001) orientation can be taken in the L1 0 -FePt alloy formed on the third underlayer. The material used for the third underlayer also functions as a thermal barrier layer because of its low thermal conductivity. For this reason, the magnetic layer can be heated to a higher temperature. However, when the medium heating capacity of the recording head is sufficient, the third underlayer is not necessarily provided.

磁性層は、L1構造を有するFePt合金とC粒界相からなる第1の磁性層と、L1構造を有するFePt合金とCr、Y、もしくはTa粒界相からなる第2の磁性層で構成された2層構成とするのが好ましい。基板温度を450℃以上に加熱した後に磁性層を形成することにより、磁性層中のFePt合金に規則度の高いL1構造をとらせ、かつ(001)配向をとらせることができる。第1の磁性層のC添加量は、30at%以上とすることが望ましい。これにより、L1−FePt合金結晶粒が、均一幅のC粒界相で分断されたグラニュラー構造をとらせることができる。但し、第1の磁性層の膜厚は6nm以下が望ましい。6nmを上回ると、第1の磁性層105中のFePt結晶粒は、膜面垂直方向に連続成長したコラム構造をとらなくなり、図2に模式的に示すような、初期成長部201と、その上にC粒界相202を介して球状に成長した2次成長部(2次成長粒)203から構成される2段構造をとる。なお、第1の磁性層の膜厚の下限は1nmとするのが好ましい。第1の磁性層の層厚が1nm未満となると、第1の磁性層が上述のコラム構造となりにくくなる。 The magnetic layer includes a first magnetic layer composed of an FePt alloy having an L1 0 structure and a C grain boundary phase, an FePt alloy having an L1 0 structure and a Cr 2 O 3 , Y 2 O 3 , or Ta 2 O 5 grain boundary. A two-layer structure including a second magnetic layer made of a phase is preferable. By forming a magnetic layer after heating the substrate temperature above 450 ° C., to assume a high L1 0 structure regularity degree FePt alloy in the magnetic layer, and (001) can assume an orientation. The amount of C added to the first magnetic layer is desirably 30 at% or more. Thereby, the L1 0 -FePt alloy crystal grains can have a granular structure divided by a C grain boundary phase having a uniform width. However, the thickness of the first magnetic layer is desirably 6 nm or less. If it exceeds 6 nm, the FePt crystal grains in the first magnetic layer 105 do not take the column structure continuously grown in the direction perpendicular to the film surface, and the initial growth portion 201 and the upper portion thereof as schematically shown in FIG. In addition, a two-stage structure composed of secondary growth portions (secondary growth grains) 203 grown in a spherical shape via the C grain boundary phase 202 is adopted. Note that the lower limit of the thickness of the first magnetic layer is preferably 1 nm. When the thickness of the first magnetic layer is less than 1 nm, the first magnetic layer is less likely to have the column structure described above.

図2の符号203に示す2次成長部のFePt結晶は、ランダム配向しており、規則度も低い。このため、反転磁界分散SFDが著しく広くなり、媒体SNRが著しく低下する。高いSNRを得るには、媒体の再生出力を高く設定する必要があるため、磁性層の合計膜厚は、8nm以上であることが望ましい。しかし、上述のようにFePt磁性粒とC粒界相からなる磁性層単独で膜厚を8nm以上に設定することは困難である。   The FePt crystal in the secondary growth portion indicated by reference numeral 203 in FIG. 2 is randomly oriented and has a low degree of order. For this reason, the reversed magnetic field dispersion SFD is remarkably widened, and the medium SNR is remarkably lowered. In order to obtain a high SNR, it is necessary to set the reproduction output of the medium high. Therefore, the total film thickness of the magnetic layer is desirably 8 nm or more. However, as described above, it is difficult to set the film thickness to 8 nm or more with a single magnetic layer composed of FePt magnetic grains and a C grain boundary phase.

そこで、第1の磁性層の膜厚を6nm以下に設定し、該第1の磁性層上に、L1構造を有するFePt合金とCr、Y、もしくはTaからなる第2の磁性層を形成して磁性層の総膜厚を8nm以上にするのが望ましい。第2の磁性層は、第1の磁性層上に形成されることにより、FePt結晶がCr、Y、もしくはTaからなる均一な粒界相で分断されたグラニュラー構造をとる。また、第2の磁性層中のFePt合金は、第1の磁性層中のL1−FePt合金上にエピタキシャル成長して(001)配向をとり、かつ、規則度の高いL1構造をとる。これにより、膜厚が8nm以上で、磁性結晶粒が均一な粒界幅で分断された磁性層を形成することができる。上記、2層構造の磁性層を用いることにより、反転磁界分散SFDが狭く、媒体SNRの高い熱アシスト媒体が得られる。 Therefore, the thickness of the first magnetic layer is set to 6 nm or less, and an FePt alloy having an L1 0 structure and Cr 2 O 3 , Y 2 O 3 , or Ta 2 O 5 are formed on the first magnetic layer. The second magnetic layer is preferably formed so that the total thickness of the magnetic layer is 8 nm or more. The second magnetic layer is formed on the first magnetic layer, whereby the FePt crystal is separated by a uniform grain boundary phase made of Cr 2 O 3 , Y 2 O 3 , or Ta 2 O 5. Take the structure. Further, FePt alloy of the second magnetic layer is on the L1 0 -FePt alloy of the first magnetic layer epitaxially grown (001) takes the orientation, and take a high degree of order L1 0 structure. As a result, a magnetic layer having a thickness of 8 nm or more and magnetic crystal grains separated by a uniform grain boundary width can be formed. By using the magnetic layer having the two-layer structure, a heat assist medium having a narrow switching field dispersion SFD and a high medium SNR can be obtained.

第1の磁性層、もしくは第2の磁性層中のFePt合金にAg、Cu等を添加してもよい。これにより、規則度が向上し、磁気異方性を高めることができる。また、Niを添加してもよい。これにより、キュリー温度が低下し、記録温度を低く設定できる。   Ag, Cu, or the like may be added to the FePt alloy in the first magnetic layer or the second magnetic layer. Thereby, the degree of order can be improved and the magnetic anisotropy can be increased. Ni may also be added. Thereby, the Curie temperature is lowered and the recording temperature can be set low.

第1の磁性層中のC濃度、及び第2の磁性層中のCr、Y、もしくはTa濃度を膜厚方向に連続的、もしくは段階的に変化させてもよい。即ち、第1の磁性層はC濃度の異なる複数の層で構成されていても良いし、第2の磁性層もCr、Y、もしくはTa濃度の異なる複数の層で構成されていても良い。また、Ag、Cu、Ni等の添加元素の濃度も磁性層の膜厚方向に変化させてもよい。ヘッドからの距離に応じて、磁性層中の磁気特性、交換結合の強さ等を膜厚方向に変化させることにより、記録再生特性を更に改善できる。 Even if the C concentration in the first magnetic layer and the Cr 2 O 3 , Y 2 O 3 , or Ta 2 O 5 concentration in the second magnetic layer are changed continuously or stepwise in the film thickness direction. Good. That is, the first magnetic layer may be composed of a plurality of layers having different C concentrations, and the second magnetic layer may be composed of a plurality of Cr 2 O 3 , Y 2 O 3 , or Ta 2 O 5 concentrations. It may be composed of layers. Further, the concentration of additive elements such as Ag, Cu, and Ni may be changed in the thickness direction of the magnetic layer. The recording / reproducing characteristics can be further improved by changing the magnetic characteristics in the magnetic layer, the strength of exchange coupling, and the like in the film thickness direction according to the distance from the head.

第1の磁性層と第2の磁性層の間に、交換結合を制御するための中間層を形成してもよい。この場合、該中間層は第1の磁性層上にエピタキシャル成長する材料であることが望ましい。これにより、第2の磁性層を該中間層上にエピタキシャル成長させることができる。中間層は非磁性材料が望ましいが、100emu/cc以下の弱い磁化であれば、磁性材料であってもよい。具体的には、CrTi、CrW、CrMo等のCr合金や、MgO、TiN、TiC等、第2の下地層、もしくは第3の下地層に用いる材料を用いることができる。但し、第1の磁性層、及び第2の磁性層との格子ミスフィットが概ね10%以下であれば、中間層材料に特に制限はない。上記中間層を設け、第1の磁性層と第2の磁性層間の層間結合を最適化することにより、反転磁界分散SFDを更に低減できる。   An intermediate layer for controlling exchange coupling may be formed between the first magnetic layer and the second magnetic layer. In this case, the intermediate layer is preferably made of a material that is epitaxially grown on the first magnetic layer. Thereby, the second magnetic layer can be epitaxially grown on the intermediate layer. The intermediate layer is preferably a non-magnetic material, but may be a magnetic material as long as it has a weak magnetization of 100 emu / cc or less. Specifically, a Cr alloy such as CrTi, CrW, or CrMo, a material used for the second underlayer or the third underlayer, such as MgO, TiN, or TiC, can be used. However, the material for the intermediate layer is not particularly limited as long as the lattice misfit with the first magnetic layer and the second magnetic layer is approximately 10% or less. By providing the intermediate layer and optimizing the interlayer coupling between the first magnetic layer and the second magnetic layer, the switching field dispersion SFD can be further reduced.

図3に本発明の実施形態の他の一例を示す。第2の磁性層の上に、更に第3の磁性層301が形成されている。第3の磁性層は、CやCr等の酸化物を含有せず、磁気的、構造的に均一な、グラニュラー構造ではない連続膜であることが望ましい。ここで、磁気的、構造的に均一とは、膜中に組成むらがなく、磁化や磁気異方性の局所的なむらがないことを意味する。磁気的に均一な第3の磁性層を導入することにより、第1と第2の磁性層中のFePt磁性粒間に均一な交換結合を導入することができ、反転磁界分散を更に低減できる。第3の磁性層は非晶質合金であることが望ましい。結晶質合金は、格子欠陥、組成偏析、磁化容易軸のランダム方向等に起因した磁気的、構造的な不均一性が大きいため、均一な交換結合を導入できないので好ましくない。具体的には、CoZrTa、CoZrNb、CoFeB、CoFeTa、CoFeTaZr、CoFeTaB、CoFeTaSi、CoFeTaZr等の非晶質合金を使用できる。また、TbFeCo、SmCo等の希土類元素を含有する非晶質合金でもよい。 FIG. 3 shows another example of the embodiment of the present invention. A third magnetic layer 301 is further formed on the second magnetic layer. The third magnetic layer preferably does not contain an oxide such as C or Cr 2 O 3 and is a continuous film that is magnetically and structurally uniform and does not have a granular structure. Here, magnetically and structurally uniform means that there is no composition unevenness in the film and there is no local unevenness of magnetization and magnetic anisotropy. By introducing the magnetically uniform third magnetic layer, uniform exchange coupling can be introduced between the FePt magnetic grains in the first and second magnetic layers, and the switching field dispersion can be further reduced. The third magnetic layer is preferably an amorphous alloy. A crystalline alloy is not preferred because it has a large magnetic and structural non-uniformity due to lattice defects, compositional segregation, random direction of easy magnetization axis, etc., and uniform exchange coupling cannot be introduced. Specifically, amorphous alloys such as CoZrTa, CoZrNb, CoFeB, CoFeTa, CoFeTaZr, CoFeTaB, CoFeTaSi, and CoFeTaZr can be used. Further, an amorphous alloy containing a rare earth element such as TbFeCo or SmCo may be used.

上記第3の磁性層を導入することにより、均一な交換結合を導入し、SFDを狭くできる。但し、この場合、第2の磁性層は、均一な粒界相で分断され、かつ、コラム成長したグラニュラー構造である必要がある。第2の磁性層中の結晶粒の分離が不十分であると、第3の磁性層を導入しても、均一な交換結合を導入できない。よって、反転磁界分散SFDを狭くすることが出来ず、良好な記録再生特性が得られない。また、交換結合導入により磁気クラスターサイズが増大する。良好な記録再生特性、特に高い媒体SNRを実現するには、SFDを狭くすると同時に磁気クラスターサイズを低減する必要がある。よって、第3の磁性層の磁化や膜厚は、SFDと磁気クラスターサイズの適切なバランスを考慮して設計する必要がある。   By introducing the third magnetic layer, uniform exchange coupling can be introduced and the SFD can be narrowed. However, in this case, the second magnetic layer needs to have a granular structure that is divided by a uniform grain boundary phase and column-grown. If the separation of crystal grains in the second magnetic layer is insufficient, uniform exchange coupling cannot be introduced even if the third magnetic layer is introduced. Therefore, the reversal magnetic field dispersion SFD cannot be reduced, and good recording / reproduction characteristics cannot be obtained. In addition, the magnetic cluster size increases due to the introduction of exchange coupling. In order to achieve good recording / reproduction characteristics, particularly high medium SNR, it is necessary to narrow the SFD and simultaneously reduce the magnetic cluster size. Therefore, it is necessary to design the magnetization and film thickness of the third magnetic layer in consideration of an appropriate balance between the SFD and the magnetic cluster size.

第2の磁性層と第3の磁性層の間に、交換結合を制御するための中間層を形成してもよい。この場合、中間層は結晶質でも非晶質でもよい。また、非磁性材料でも良いし、100emu/cc以下の弱い磁化であれば、磁性材料であってもよい。上記中間層により、第2の磁性層と第3の磁性層間の層間結合を最適化することにより、反転磁界が低減されオーバーライト特性を改善することができる。   An intermediate layer for controlling exchange coupling may be formed between the second magnetic layer and the third magnetic layer. In this case, the intermediate layer may be crystalline or amorphous. Further, a non-magnetic material may be used, and a magnetic material may be used as long as it has a weak magnetization of 100 emu / cc or less. By optimizing the interlayer coupling between the second magnetic layer and the third magnetic layer by the intermediate layer, the reversal magnetic field can be reduced and the overwrite characteristic can be improved.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の
実施例に限定されるものではない。
Hereinafter, the effects of the present invention will be made clearer by examples. The present invention is not limited to the following examples.

(実施例1)
ガラス基板上に、第1の下地層として50nmのCo−50at%Ti、第2の下地層として10nmのCr−10at%Ruを形成し、250℃の基板加熱を行ったのち、第3の下地層として10nmのTiN下地層を順次形成した。その後、再度、520℃の基板加熱を行い、第1の磁性層として5nmの(Fe−50at%Pt)−40at%Cを形成し、第2の磁性層として5nmの(Fe−45at%Pt)−15mol%Cr(実施例1.1)、(Fe−50at%Pt−3at%Cu)−9.5mol%Y(実施例1.2)、もしくは(Fe−45at%Pt−5at%Ag)−8mol%Ta(実施例1.3)を形成し、更に3nmのDLC保護膜を形成した。
Example 1
On the glass substrate, 50 nm Co-50 at% Ti as the first underlayer and 10 nm Cr-10 at% Ru as the second underlayer are formed. After heating the substrate at 250 ° C., the third underlayer is formed. A TiN underlayer having a thickness of 10 nm was sequentially formed as a base layer. Thereafter, the substrate is heated again at 520 ° C. to form 5 nm (Fe-50 at% Pt) -40 at% C as the first magnetic layer, and 5 nm (Fe-45 at% Pt) as the second magnetic layer. -15mol% Cr 2 O 3 (example 1.1), (Fe-50at% Pt-3at% Cu) -9.5mol% Y 2 O 3 ( example 1.2), or (Fe-45at% Pt −5 at% Ag) -8 mol% Ta 2 O 5 (Example 1.3) was formed, and a DLC protective film of 3 nm was further formed.

比較例として、磁性層が単層膜で構成される媒体を作製した。単層膜としては、10nmの(Fe−50at%Pt)−40at%C(比較例1.1)、(Fe−45at%Pt)−15mol%Cr(比較例1.2)、(Fe−50at%Pt−3at%Cu)−9.5mol%Y(比較例1.3)、もしくは(Fe−45at%Pt−5at%Ag)−8mol%Ta(比較例1.4)を用いた。 As a comparative example, a medium in which the magnetic layer is a single layer film was produced. As the monolayer film, 10 nm of (Fe-50 at% Pt) -40 at% C (Comparative Example 1.1), (Fe-45 at% Pt) -15 mol% Cr 2 O 3 (Comparative Example 1.2), ( Fe-50 at% Pt-3 at% Cu) -9.5 mol% Y 2 O 3 (Comparative Example 1.3) or (Fe-45 at% Pt-5 at% Ag) -8 mol% Ta 2 O 5 (Comparative Example 1) .4) was used.

本実施例1.1〜1.3のX線回折測定を行ったところ、全ての媒体において磁性層からはL1−FePt(001)回折ピークと、L1−FePt(002)回折ピークとFCC−FePt(200)ピークの混合ピークのみが観察された。また、CoTi下地層からは明瞭な回折ピークが観察されなかったが、CrRu下地層、及びTiN下地層からは(200)ピークのみが観察された。これより、CoTi下地層は非晶質で、その上に形成されたCrRu下地層は(100)配向をとり、更にその上のTiN下地層もエピタキシャル成長により(100)配向をとっていることがわかった。磁性層が上記配向をとっているのは、TiN下地層上にエピタキシャル成長したためと考えられる。 When X-ray diffraction measurement of Examples 1.1 to 1.3 was performed, the L1 0 -FePt (001) diffraction peak, the L1 0 -FePt (002) diffraction peak, and the FCC from the magnetic layer in all the media. Only a mixed peak of -FePt (200) peak was observed. Further, no clear diffraction peak was observed from the CoTi underlayer, but only the (200) peak was observed from the CrRu underlayer and TiN underlayer. From this, it can be seen that the CoTi underlayer is amorphous, the CrRu underlayer formed thereon has a (100) orientation, and the TiN underlayer thereon has also a (100) orientation by epitaxial growth. It was. The reason why the magnetic layer has the above-mentioned orientation is considered to be due to epitaxial growth on the TiN underlayer.

次に、本実施例媒体の平面TEM観察を行ったところ、磁性粒が粒界相で分断されたグラニュラー構造をとっていた。表1に本実施例媒体の平均粒径<D>と、平均粒径で規格化した粒径分散σ/<D>を示す。本実施例媒体の平均粒径は全て6nm以下で、粒径分散は20%以下であった。また、本実施例媒体の断面TEM観察を行ったところ、磁性結晶粒は、膜面垂直方向に連続成長したコラム構造をとっていることがわかった。   Next, a planar TEM observation of the medium of this example was performed, and a granular structure in which the magnetic grains were divided at the grain boundary phase was taken. Table 1 shows the average particle size <D> of the medium of this example and the particle size dispersion σ / <D> normalized by the average particle size. The average particle size of all of the media of this example was 6 nm or less, and the particle size dispersion was 20% or less. Further, when a cross-sectional TEM observation of the medium of this example was performed, it was found that the magnetic crystal grains had a column structure continuously grown in the direction perpendicular to the film surface.

Figure 2012221542
Figure 2012221542

一方、粒界相にCを用いた比較例媒体1.1の平面TEM観察を行ったところ、実施例媒体と同様、粒径が概ね5−7nm程度の結晶粒が粒界で分断されたグラニュラー構造をとっていた。但し、上記結晶粒に加えて、粒径が2−3nm以下の極めて微細な結晶粒が、粒界、もしくは粒内に多数観察された。比較例1.1の断面TEM観察を行ったところ、磁性層は、5−6nmの高さで成長が停止したドーム形状の初期成長結晶粒と、その上に粒界を介して成長した球状の2次成長結晶粒からなる二段構成をとっていた。よって、平面TEM像で観察された2−3nm以下の微細な結晶粒は、上記2次成長した結晶粒と考えられる。   On the other hand, when a plane TEM observation was performed on the comparative example medium 1.1 using C as the grain boundary phase, the granular material in which crystal grains having a grain size of about 5 to 7 nm were divided at the grain boundaries as in the example medium. It had a structure. However, in addition to the crystal grains, a large number of extremely fine crystal grains having a grain size of 2-3 nm or less were observed at the grain boundaries or within the grains. When the cross-sectional TEM observation of Comparative Example 1.1 was performed, the magnetic layer had a dome-shaped initially grown crystal grain that stopped growing at a height of 5-6 nm, and a spherical shape grown on the dome-shaped crystal grain via the grain boundary. It has a two-stage structure composed of secondary grown crystal grains. Therefore, the fine crystal grains of 2-3 nm or less observed in the planar TEM image are considered as the secondary grown crystal grains.

次に、粒界相にCr、Y、Taを用いた比較例媒体1.2〜1.4の平面TEM観察を行ったところ、磁性粒が粒界相で完全に分断されておらず、隣接する磁性粒子がつながった部分が多数観察された。 Next, when plane TEM observation was performed on the comparative example media 1.2 to 1.4 using Cr 2 O 3 , Y 2 O 3 , and Ta 2 O 5 as the grain boundary phase, the magnetic grains were in the grain boundary phase. Many portions where adjacent magnetic particles were connected were observed without being completely divided.

表2に比較例媒体の平均粒径<D>と、平均粒径で規格化した粒径分散σ/<D>を示す。尚、TEM像中で互いにつながった隣接粒子は1個の粒子とみなしている。比較例媒体1.1の平均粒径は、5.4nmで実施例媒体とほぼ同程度であったが、規格化粒径分散は著しく高い値を示した。これは、著しく粒径が微細な2次成長粒が多数存在している影響と考えられる。また、比較例媒体1.2〜1.4は、平均粒径、粒径分散共に実施例媒体より著しく高かった。これは、互いにつながった隣接粒子が多数存在しているためと考えられる。   Table 2 shows the average particle size <D> of the comparative example medium and the particle size dispersion σ / <D> normalized by the average particle size. Note that adjacent particles connected to each other in the TEM image are regarded as one particle. The average particle diameter of Comparative Example Medium 1.1 was 5.4 nm, which was almost the same as that of the Example Medium, but the normalized particle diameter dispersion showed a remarkably high value. This is considered to be due to the presence of a large number of secondary growth grains having a remarkably fine grain size. Comparative media 1.2 to 1.4 were significantly higher in average particle size and particle size dispersion than the example media. This is presumably because there are many adjacent particles connected to each other.

Figure 2012221542
Figure 2012221542

以上より、磁性層をFePt合金とC粒界相からなる第1の磁性層と、L1構造を有するFePt合金とCr、Y、もしくはTa粒界相からなる第2の磁性層で構成された2層構成とすることにより、磁性結晶粒が粒界相によって完全に分断され、かつ、磁性結晶粒が膜面垂直方向に連続成長したコラム構造をとらせることができることがわかった。また、これにより粒径分散を平均粒径の20%以下に低減できることがわかった。 From the above, consisting of a first magnetic layer, FePt alloy having an L1 0 structure and the Cr 2 O 3, Y 2 O 3, or Ta 2 O 5 grain boundary phase composed of the magnetic layer from FePt alloy and C grain boundary phase By adopting a two-layer structure composed of the second magnetic layer, a column structure in which the magnetic crystal grains are completely divided by the grain boundary phase and the magnetic crystal grains are continuously grown in the direction perpendicular to the film surface is adopted. I found out that It was also found that this can reduce the particle size dispersion to 20% or less of the average particle size.

表3に、上記実施例媒体と比較例媒体の保磁力Hcと規格化保磁力分散ΔHc/Hcを示す。ここで、HcはPPMSにより7Tの磁界を印加して室温で測定した。また、ΔHc/Hcは、「IEEE Trans. Magn., vol.27, pp4975−4977, 1991」に記載の方法で測定した。具体的には、7Tの最大磁界を印加して室温で測定したメジャーループ、及びマイナーループにおいて、磁化の値が飽和値の50%となるときの磁界を測定し、両者の差分から、Hc分布がガウス分布であると仮定してΔHc/Hcを算出した。ΔHc/Hcは、反転磁界分散に相当するパラメーターであり、この値が低いほど、高い媒体SNRが得られるため、望ましい。   Table 3 shows the coercive force Hc and the normalized coercive force dispersion ΔHc / Hc of the above example medium and the comparative example medium. Here, Hc was measured at room temperature by applying a 7T magnetic field by PPMS. ΔHc / Hc was measured by the method described in “IEEE Trans. Magn., Vol. 27, pp 4975-4777, 1991”. Specifically, in the major loop and the minor loop measured at room temperature by applying a maximum magnetic field of 7T, the magnetic field when the magnetization value is 50% of the saturation value is measured, and the Hc distribution is calculated from the difference between the two. ΔHc / Hc was calculated on the assumption that is a Gaussian distribution. ΔHc / Hc is a parameter corresponding to reversal magnetic field dispersion, and a lower value is desirable because a higher medium SNR can be obtained.

Figure 2012221542
Figure 2012221542

本実施例媒体1.1〜1.3は、全て32kOe以上の高い保磁力を示し、保磁力分散も0.29以下であった。一方、比較例媒体に関しては、比較例媒体1.1の保磁力は実施例とほぼ同程度であったが、比較例媒体1.2〜1.4の保磁力は、実施例に比べて大幅に低かった。これは、磁性粒子間の交換結合が強いためと考えられる。また、比較例媒体の保磁力分散は、実施例媒体に比べて著しく広がっていた。これは、上述のように、比較例媒体の粒径分散が、実施例媒体に比べて著しく大きいことに起因していると考えられる。以上より、本実施例媒体は、粒径分散が狭いと同時に保磁力分散も狭いことがわかった。   All of the media of Examples 1.1 to 1.3 showed a high coercive force of 32 kOe or more, and the coercive force dispersion was 0.29 or less. On the other hand, for the comparative example medium, the coercive force of the comparative example medium 1.1 was almost the same as that of the example, but the coercive force of the comparative example mediums 1.2 to 1.4 was significantly larger than that of the example. It was low. This is considered because the exchange coupling between magnetic particles is strong. Further, the coercive force dispersion of the comparative example medium was remarkably wide as compared with the example medium. As described above, this is considered to be due to the fact that the particle size dispersion of the comparative example medium is significantly larger than that of the example medium. From the above, it was found that the medium of this example had a narrow particle size dispersion and a narrow coercive force dispersion.

(実施例2)
ガラス基板上に、50nmのCu−12.5at%Pd合金からなるヒートシンク層、50nmのCo−15at%Ta−10at%Zr合金からなる軟磁性下地層を形成し、550℃の基板加熱を行ったのち、25nmのRu−50at%Al下地層を形成した。次いで、4nmのTiN下地層を形成し、第1の磁性層として3nmの(Fe−45at%Pt−5at%Ni)−45at%C、第2の磁性層として8nmの(Fe−50at%Pt)−12mol%Cr(実施例2.1)、(Fe−50at%Pt)−7mol%Y(実施例2.2)、もしくは(Fe−50at%Pt)−6.5mol%Ta(実施例2.3)を形成し、2.5mnのDLC保護膜を形成した。また、比較例として、第2の磁性層に8nmの(Fe−50at%Pt)−12mol%SiO(比較例2.1)、(Fe−50at%Pt)−17.5mol%TiO(比較例2.2)を使用した媒体を作製した。
(Example 2)
A heat sink layer made of a 50 nm Cu-12.5 at% Pd alloy and a soft magnetic underlayer made of a 50 nm Co-15 at% Ta-10 at% Zr alloy were formed on a glass substrate, and the substrate was heated at 550 ° C. Thereafter, a Ru-50 at% Al underlayer of 25 nm was formed. Next, a 4 nm TiN underlayer is formed, 3 nm (Fe-45 at% Pt-5 at% Ni) -45 at% C as the first magnetic layer, and 8 nm (Fe-50 at% Pt) as the second magnetic layer. -12mol% Cr 2 O 3 (example 2.1), (Fe-50at% Pt) -7mol% Y 2 O 3 ( example 2.2), or (Fe-50at% Pt) -6.5mol % Ta 2 O 5 (Example 2.3) was formed, and a 2.5 mn DLC protective film was formed. In addition, as a comparative example, the second magnetic layer has 8 nm of (Fe-50 at% Pt) -12 mol% SiO 2 (Comparative Example 2.1), (Fe-50 at% Pt) -17.5 mol% TiO 2 (Comparison A medium using Example 2.2) was prepared.

表4に本実施例媒体2.1〜2.3の保磁力Hc、及び規格化保磁力分散ΔHc/Hcを示す。ここで、HcとΔHc/Hcは実施例1と同様の手法で求めた。本実施例媒体のHcはいずれも36kOe以上であり、ΔHc/Hcは0.24以下であった。これに対して、比較例媒体2.1〜2.2のHcは24kOe以下と低く、ΔHc/Hcは0.35以上であった。   Table 4 shows the coercive force Hc and the normalized coercive force dispersion ΔHc / Hc of Example Media 2.1 to 2.3. Here, Hc and ΔHc / Hc were obtained in the same manner as in Example 1. In all of the media of this example, Hc was 36 kOe or more, and ΔHc / Hc was 0.24 or less. On the other hand, Hc of Comparative Example Media 2.1 to 2.2 was as low as 24 kOe or less, and ΔHc / Hc was 0.35 or more.

Figure 2012221542
Figure 2012221542

本実施例媒体2.1〜2.3の平面TEM観察を行ったところ、平均粒径が5.5−6.3nmの磁性粒子が粒界相で分断されたグラニュラー構造をとっていた。一方、比較例媒体2.1〜2.2の平面TEM観察を行ったところ、粒界相による粒分離が不十分であり、互いにつながった隣接粒子が多数観察された。比較例媒体のΔHc/Hcが大きかったのは、このためと考えられる。   When planar TEM observation of the media of Examples 2.1 to 2.3 was performed, a granular structure in which magnetic particles having an average particle size of 5.5 to 6.3 nm were divided by a grain boundary phase was taken. On the other hand, when plane TEM observation of Comparative Example Media 2.1 to 2.2 was performed, grain separation due to the grain boundary phase was insufficient, and many adjacent particles connected to each other were observed. This is considered to be the reason why ΔHc / Hc of the comparative example medium was large.

以上より、第2の磁性層に、L1構造を有するFePt合金とCr、YもしくはTaからなる材料を用いることにより、ΔHc/Hcが低い媒体が得られることがわかった。 From the above, the second magnetic layer, by using the FePt alloy and Cr 2 O 3, Y 2 O consists of 3 or Ta 2 O 5 material having an L1 0 structure, it .DELTA.Hc / Hc is low medium is obtained I understood.

(実施例3)
実施例2と同一下地構成で、第1の磁性層に(Fe−45at%Pt−5at%Ni)−40at%C、第2の磁性層に(Fe−50at%Pt)−5mol%Taを使用した。ここで、第1の磁性層の膜厚を1nm、3nm、5nmとし、第1の磁性層と第2の磁性層の合計膜厚を10nm一定とした。また、比較例として第1の磁性層の膜厚を9nm、7nm、5nmとした媒体を作製した。
(Example 3)
With the same underlayer structure as in Example 2, the first magnetic layer was (Fe-45 at% Pt-5 at% Ni) -40 at% C, and the second magnetic layer was (Fe-50 at% Pt) -5 mol% Ta 2 O. 5 was used. Here, the thickness of the first magnetic layer was set to 1 nm, 3 nm, and 5 nm, and the total thickness of the first magnetic layer and the second magnetic layer was set to 10 nm. As a comparative example, a medium in which the thickness of the first magnetic layer was 9 nm, 7 nm, and 5 nm was manufactured.

本実施例媒体、及び比較例媒体の断面TEM観察を行ったところ、実施例媒体の磁性層では、コラム成長した結晶粒が見られたのに対し、比較例媒体の磁性層中には、磁性層の表面付近に二次成長した球状の結晶粒が多数観察された。表5に本実施例媒体、及び比較例媒体のHcとΔHc/Hcを示す。第1の磁性層の膜厚増加に伴いΔHc/Hcは増加傾向にあるが、第1の磁性層の膜厚を5nm以下とした本実施例媒体では、ΔHc/Hcは0.27以下の低い値に抑えられている。これは、上述のように、二次成長粒の生成が抑制されているためと考えられる。以上より、磁性結晶粒をコラム成長させ、ΔHc/Hcを低い値に抑制するには、第1の磁性層の膜厚は6nm以下が好ましいことがわかった。   As a result of cross-sectional TEM observation of this example medium and the comparative example medium, column-grown crystal grains were observed in the magnetic layer of the example medium, whereas in the magnetic layer of the comparative example medium, magnetic properties were observed. Many spherical crystal grains secondary grown near the surface of the layer were observed. Table 5 shows Hc and ΔHc / Hc of the medium of this example and the comparative medium. Although ΔHc / Hc tends to increase as the thickness of the first magnetic layer increases, ΔHc / Hc is as low as 0.27 or less in this example medium in which the thickness of the first magnetic layer is 5 nm or less. The value is suppressed. This is considered because the production | generation of a secondary growth grain is suppressed as mentioned above. From the above, it was found that the thickness of the first magnetic layer is preferably 6 nm or less in order to grow magnetic crystal grains in a column and to suppress ΔHc / Hc to a low value.

Figure 2012221542
Figure 2012221542

(実施例4)
実施例1と同様の層構成で、第2の磁性層として、5nmの(Fe−50at%Pt)−8mol%Taを形成し、更に第3の磁性層を形成した。第3の磁性層には、4nmのCo−20at%Nb−5at%Zr(実施例4.1)、Co−27at%Fe−5at%Zr−5at%Si(実施例4.2)、Fe−10at%Ta−10at%B(実施例4.3)、Fe−10at%Ta−10at%C(実施例4.4)、Fe−28at%Tb−12at%Co(実施例4.5)、Co−20at%Sm(実施例4.6)合金を使用した。また、比較例として第3の磁性層に、4nmのCo−12at%Cr−14at%Pt−8at%B(比較例4.1)を形成した媒体を作製した。更に比較例として、第2の磁性層に5nmの(Fe−50at%Pt)−16mol%SiO(比較例4.2)、もしくは5nmの(Fe−50at%Pt)−21.5mol%TiO(比較例4.3)を使用し、第3の磁性層に4nmのCo−20at%Nb−5at%Zr(比較例4.2)(比較例4.2、4.3)を使用した媒体を作製した。
Example 4
In the same layer configuration as in Example 1, (Fe-50 at% Pt) -8 mol% Ta 2 O 5 of 5 nm was formed as the second magnetic layer, and a third magnetic layer was further formed. The third magnetic layer has 4 nm of Co-20 at% Nb-5 at% Zr (Example 4.1), Co-27 at% Fe-5 at% Zr-5 at% Si (Example 4.2), Fe- 10 at% Ta-10 at% B (Example 4.3), Fe-10 at% Ta-10 at% C (Example 4.4), Fe-28 at% Tb-12 at% Co (Example 4.5), Co An alloy of −20 at% Sm (Example 4.6) was used. Further, as a comparative example, a medium in which 4 nm of Co-12 at% Cr-14 at% Pt-8 at% B (Comparative Example 4.1) was formed on the third magnetic layer was produced. Furthermore, as a comparative example, 5 nm of (Fe-50 at% Pt) -16 mol% SiO 2 (Comparative Example 4.2) or 5 nm of (Fe-50 at% Pt) -21.5 mol% TiO 2 was used for the second magnetic layer. (Comparative Example 4.3) and a medium using 4 nm Co-20 at% Nb-5 at% Zr (Comparative Example 4.2) (Comparative Example 4.2, 4.3) for the third magnetic layer Was made.

本実施例媒体4.1〜4.6の断面TEM観察を行ったところ、第3の磁性層からは明瞭な格子縞が観察されなかった。よって、これらの合金は、非晶質、もしくは微結晶構造をとっていると考えられる。一方、比較例媒体4.1の第3の磁性層に用いられているCoCrPtB合金は、HCP構造をとっていることが確認できた。   When cross-sectional TEM observation of the media of Examples 4.1 to 4.6 was performed, clear lattice fringes were not observed from the third magnetic layer. Therefore, these alloys are considered to have an amorphous or microcrystalline structure. On the other hand, it was confirmed that the CoCrPtB alloy used for the third magnetic layer of Comparative Example Medium 4.1 had an HCP structure.

表6に本実施例媒体の保磁力Hc、及び規格化保磁力分散ΔHc/Hcを示す。ここで、HcとΔHc/Hcは実施例1と同様の手法で求めた。本実施例媒体4.1〜4.6のHcはいずれも25kOe以上であり、ΔHc/Hcは0.25以下であった。本結果を表3に示した実施例1の媒体と比較することにより、第3の磁性層を形成することによってΔHc/Hcを更に低減できることがわかる。本実施例媒体のうち、FeもしくはCoを主成分とし、Ta、Nb、Zr、Si、B、Cを含有する合金を第3の磁性層に用いた実施例媒体4.1〜4.4は、0.22以下の特に低いΔHc/Hcを示した。また、FeTeCoや CoSm等の希土類合金を含んだ非晶質合金を第3の磁性層に用いた実施例媒体4.5〜4.6は、28kOe以上の高いHcを示した。   Table 6 shows the coercive force Hc and the normalized coercive force dispersion ΔHc / Hc of the medium of this example. Here, Hc and ΔHc / Hc were obtained in the same manner as in Example 1. In all of Examples 4.1 to 4.6, Hc was 25 kOe or more, and ΔHc / Hc was 0.25 or less. By comparing this result with the medium of Example 1 shown in Table 3, it can be seen that ΔHc / Hc can be further reduced by forming the third magnetic layer. Example media 4.1 to 4.4 in which an alloy containing Fe or Co as a main component and containing Ta, Nb, Zr, Si, B, and C is used for the third magnetic layer among the example media. A particularly low ΔHc / Hc of 0.22 or less was exhibited. In addition, Examples Media 4.5 to 4.6 using an amorphous alloy containing a rare earth alloy such as FeTeCo or CoSm for the third magnetic layer showed a high Hc of 28 kOe or more.

Figure 2012221542
Figure 2012221542

一方、比較例媒体4.1は、実施例媒体よりHcが低く、ΔHc/Hcは実施例媒体より著しく大きかった。これより、第3の磁性層には、HCP構造のCo合金よりも非晶質合金を用いた方が、ΔHc/Hcの低減には有効であることがわかる。但し、第3の磁性層に非晶質合金であるCoNbZr合金を用いた場合でも、第2の磁性層にFePt−SiO、もしくはFePt−TiOを用いた比較例媒体4.2、比較例媒体4.3のΔHc/Hcは実施例媒体に比べて高い。これは、実施例2で示したように、第2の磁性層にFePt−SiO、もしくはFePt−TiOを用いた場合、磁性結晶粒の分離が不十分であり、不均一な交換結合が導入されているためと考えられる。よって、第3の磁性層形成によりΔHc/Hcを効果的に低減するには、第2の下地層に添加する粒界相材料はCr、YもしくはTaであることが望ましいことがわかった。 On the other hand, Comparative Example Medium 4.1 had a lower Hc than the Example Medium, and ΔHc / Hc was significantly larger than the Example Medium. From this, it can be seen that using an amorphous alloy for the third magnetic layer is more effective in reducing ΔHc / Hc than a Co alloy having an HCP structure. However, even when a CoNbZr alloy, which is an amorphous alloy, is used for the third magnetic layer, the comparative example medium 4.2 using FePt—SiO 2 or FePt—TiO 2 for the second magnetic layer, the comparative example The ΔHc / Hc of the medium 4.3 is higher than that of the example medium. This is because, as shown in Example 2, when FePt—SiO 2 or FePt—TiO 2 is used for the second magnetic layer, the separation of the magnetic crystal grains is insufficient and non-uniform exchange coupling occurs. This is probably because it has been introduced. Therefore, in order to effectively reduce ΔHc / Hc by forming the third magnetic layer, the grain boundary phase material added to the second underlayer is Cr 2 O 3 , Y 2 O 3 or Ta 2 O 5 . I found it desirable.

(実施例5)
実施例4で示した媒体にパーフルオルエーテル系の潤滑剤を塗布し、熱アシスト記録用ヘッドを用いてRW特性を評価した。使用したヘッドは、図4に示すように、主磁極401、補助磁極402、磁界を発生させるためのコイル403、レーザーダイオードLD404、LDから発生したレーザー光405を近接場発生素子406まで伝達するための導波路407から構成される記録ヘッド408、及びシールド409で挟まれた再生素子410から構成される再生ヘッド411からなる。近接場光素子から発生した近接場光により媒体412を加熱し、媒体の保磁力をヘッド磁界以下まで低下させて記録できる。
(Example 5)
A perfluoroether-based lubricant was applied to the medium shown in Example 4, and the RW characteristics were evaluated using a heat-assisted recording head. As shown in FIG. 4, the used head transmits a main magnetic pole 401, an auxiliary magnetic pole 402, a coil 403 for generating a magnetic field, a laser diode LD404, and a laser beam 405 generated from the LD to a near-field generating element 406. The recording head 408 is composed of a waveguide 407, and the reproducing head 411 is composed of a reproducing element 410 sandwiched between shields 409. Recording can be performed by heating the medium 412 with near-field light generated from the near-field light element and reducing the coercivity of the medium to a head magnetic field or less.

表7に、上記ヘッドを用いて線記録密度1400kFCIのオールワンパターン信号を記録して測定した媒体SNRと、トラック幅MWWを示す。ここで、トラック幅は、トラックプロファイルの半値幅と定義した。実施例媒体4.1〜4.6はいずれも15dB以上の高いSNRと、80nm以下の狭いトラック幅を示した。特に、第3の磁性層にCoを使用した実施例媒体4.1〜4.3は16dB以上の高いSNRを示した。これは、ΔHc/Hcが低いためと考えられる。一方、実施例媒体4.4〜4.6はトラック幅が特に狭かった。これに対し、比較例媒体4.1〜4.3のSNRは著しく低く、トラック幅も広がっていた。これより、第3の磁性層に、非晶質合金を用いることにより、SNRが高く、かつ、トラック幅の狭い熱アシスト記録媒体が得られることがわかった。   Table 7 shows the medium SNR and the track width MWW measured by recording an all-one pattern signal with a linear recording density of 1400 kFCI using the head. Here, the track width is defined as the half width of the track profile. Each of the example media 4.1 to 4.6 showed a high SNR of 15 dB or more and a narrow track width of 80 nm or less. In particular, the example media 4.1 to 4.3 using Co for the third magnetic layer exhibited a high SNR of 16 dB or more. This is considered to be because ΔHc / Hc is low. On the other hand, the track widths of the example media 4.4 to 4.6 were particularly narrow. On the other hand, the SNRs of the comparative example media 4.1 to 4.3 were extremely low and the track width was widened. From this, it was found that a heat-assisted recording medium having a high SNR and a narrow track width can be obtained by using an amorphous alloy for the third magnetic layer.

Figure 2012221542
Figure 2012221542

(実施例6)
実施例1で示した媒体(実施例媒体1.1〜1.3、比較例媒体1.1〜1.4)、及び実施例2で示した媒体(実施例媒体2.1〜2.3、比較例媒体2.1〜1.2)に、パーフルオルエーテル系の潤滑剤を塗布し、図5に示す磁気記憶装置に組み込んだ。本磁気記憶装置は、磁気記録媒体412と、磁気記録媒体を回転させるための駆動部502と、磁気ヘッド503と、ヘッドを移動させるための駆動部504と、記録再生信号処理系505から構成される。磁気ヘッドは、実施例5で述べた熱アシスト記録用ヘッドを用いた。
(Example 6)
The medium shown in Example 1 (Example Medium 1.1 to 1.3, Comparative Example Medium 1.1 to 1.4) and the medium shown in Example 2 (Example Medium 2.1 to 2.3) Comparative Examples Media 2.1 to 1.2) were coated with a perfluoroether lubricant and incorporated into the magnetic storage device shown in FIG. This magnetic storage device includes a magnetic recording medium 412, a driving unit 502 for rotating the magnetic recording medium, a magnetic head 503, a driving unit 504 for moving the head, and a recording / reproducing signal processing system 505. The As the magnetic head, the heat-assisted recording head described in Example 5 was used.

上記磁気記憶装置により、線記録密度1600kFCI、トラック密度400kFCI(面記録密度640Gbit/inch)の条件で記録し、ビットエラーレートBERを評価した結果を表8に示す。実施例媒体1.1〜1.3と実施例媒体2.1〜2.3を組み込んだ磁気記憶装置は、1×10−6台の低いエラーレートを示した。一方、比較例媒体1.1〜1.4、比較例媒体2.1〜1.2のエラーレートは1×10−4以上で、実施例媒体に比べて悪化していた。 Table 8 shows the result of evaluating the bit error rate BER by recording with the magnetic storage device under the conditions of a linear recording density of 1600 kFCI and a track density of 400 kFCI (surface recording density of 640 Gbit / inch 2 ). Magnetic storage devices incorporating the example media 1.1 to 1.3 and the example media 2.1 to 2.3 showed a low error rate of 1 × 10 −6 units. On the other hand, the error rate of Comparative Example Medium 1.1 to 1.4 and Comparative Example Medium 2.1 to 1.2 was 1 × 10 −4 or more, which was worse than that of Example Medium.

Figure 2012221542
Figure 2012221542

以上より、磁性層が、L1構造を有するFePt合金とCからなる第1の磁性層と、L1構造を有するFePt合金とCr、YもしくはTaからなる第2の磁性層で構成された媒体を用いることにより、エラーレートの低い磁気記憶装置が実現できることがわかった。 As described above, the magnetic layer is the first magnetic layer made of FePt alloy having the L1 0 structure and C, the FePt alloy having the L1 0 structure and Cr 2 O 3 , Y 2 O 3 or Ta 2 O 5 . It was found that a magnetic memory device with a low error rate can be realized by using a medium composed of two magnetic layers.

101…ガラス基板
102…第1の下地層
103…第2の下地層
104…第2の下地層
105…第1の磁性層
106…第1の磁性層
107…DLC保護膜
201…初期成長部
202…粒界相
203…2次成長部(2次成長粒)
301…第3の磁性層
401…主磁極
402…補助磁極
403…コイル
404…半導体レーザーダイオード
405…レーザー光
406…近接場光発生部
407…導波路
408…記録ヘッド
409…シールド
410…再生素子
411…再生ヘッド
412…磁気記録媒体
502…媒体駆動部
503…磁気ヘッド
504…ヘッド駆動部
505…記録再生信号処理系
DESCRIPTION OF SYMBOLS 101 ... Glass substrate 102 ... 1st base layer 103 ... 2nd base layer 104 ... 2nd base layer 105 ... 1st magnetic layer 106 ... 1st magnetic layer 107 ... DLC protective film 201 ... Initial growth part 202 ... Grain boundary phase 203 ... Secondary growth part (secondary growth grains)
301 ... third magnetic layer 401 ... main magnetic pole 402 ... auxiliary magnetic pole 403 ... coil 404 ... semiconductor laser diode 405 ... laser light 406 ... near-field light generator 407 ... waveguide 408 ... recording head 409 ... shield 410 ... reproducing element 411 ... reproducing head 412 ... magnetic recording medium 502 ... medium driving unit 503 ... magnetic head 504 ... head driving unit 505 ... recording / reproducing signal processing system

Claims (8)

基板と、該基板上に形成された複数の下地層と、L1構造を有する合金を主成分とする磁性層を含む磁気記録媒体において、該磁性層が、L1構造を有するFePt合金とCからなる第1の磁性層と、L1構造を有するFePt合金とCr、YもしくはTaからなる第2の磁性層を含むことを特徴とする磁気記録媒体。 A substrate, a plurality of base layer formed on the substrate, a magnetic recording medium comprising a magnetic layer mainly composed of an alloy having an L1 0 structure, the magnetic layer is, FePt alloy and C having an L1 0 structure And a second magnetic layer comprising a FePt alloy having an L1 0 structure and Cr 2 O 3 , Y 2 O 3 or Ta 2 O 5 . 第1の磁性層の膜厚が6nm以下であることを特徴とする請求項1に記載の磁気記録媒体。 The magnetic recording medium according to claim 1, wherein the thickness of the first magnetic layer is 6 nm or less. 第1の磁性層と、第2の磁性層の間に、交換結合を制御するための非磁性中間層を有することを特徴とする請求項1または2に記載の磁気記録媒体。 3. The magnetic recording medium according to claim 1, further comprising a nonmagnetic intermediate layer for controlling exchange coupling between the first magnetic layer and the second magnetic layer. 磁性層が、更に、結晶粒と粒界相からなるグラニュラー構造ではない第3の磁性層を含むことを特徴とする請求項1乃至3の何れか1項に記載の磁気記録媒体。 4. The magnetic recording medium according to claim 1, wherein the magnetic layer further includes a third magnetic layer not having a granular structure composed of crystal grains and a grain boundary phase. 5. 第3の磁性層が、FeもしくはCoを主成分とし、Nd、Sm、Gd、Tb、Dyから選択される少なくとも1種類の元素を含有する非晶質構造、もしくは微結晶構造を有する合金であることを特徴とする請求項4に記載の磁気記録媒体。 The third magnetic layer is an alloy having an amorphous structure or a microcrystalline structure containing Fe or Co as a main component and containing at least one element selected from Nd, Sm, Gd, Tb, and Dy. The magnetic recording medium according to claim 4. 第3の磁性層が、FeもしくはCoを主成分とし、Ta、Nb、Zr、Si、Bから選択される少なくとも1種類の元素を含有する非晶質構造、もしくは微結晶構造を有する合金であることを特徴とする請求項4に記載の磁気記録媒体。 The third magnetic layer is an alloy having an amorphous structure or a microcrystalline structure containing Fe or Co as a main component and containing at least one element selected from Ta, Nb, Zr, Si, and B The magnetic recording medium according to claim 4. 第2の磁性層と、第3の磁性層の間に、交換結合を制御するための非磁性中間層を有することを特徴とする請求項4乃至6の何れか1項に記載の磁気記録媒体。 7. The magnetic recording medium according to claim 4, further comprising a nonmagnetic intermediate layer for controlling exchange coupling between the second magnetic layer and the third magnetic layer. . 磁気記録媒体と、該磁気記録媒体を回転させるための駆動部と、該磁気記録媒体を加熱するためのレーザー発生部と、該レーザー発生部から発生したレーザー光をヘッド先端まで導く導波路と、ヘッド先端に取り付けられた近接場光発生部を備えた磁気ヘッドと、該磁気ヘッドを移動させるための駆動部と、記録再生信号処理系から構成さる磁気記憶装置において、該磁気記録媒体が請求項1乃至7の何れか1項に記載の磁気記録媒体であることを特徴とする磁気記憶装置。
A magnetic recording medium, a driving unit for rotating the magnetic recording medium, a laser generating unit for heating the magnetic recording medium, a waveguide for guiding laser light generated from the laser generating unit to the head tip, In a magnetic storage device comprising a magnetic head having a near-field light generating unit attached to the tip of the head, a driving unit for moving the magnetic head, and a recording / reproducing signal processing system, the magnetic recording medium is claimed. A magnetic recording device according to any one of 1 to 7, wherein the magnetic storage device is a magnetic recording device.
JP2011090071A 2011-04-14 2011-04-14 Thermally assisted magnetic recording medium and magnetic storage device Active JP5804591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011090071A JP5804591B2 (en) 2011-04-14 2011-04-14 Thermally assisted magnetic recording medium and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090071A JP5804591B2 (en) 2011-04-14 2011-04-14 Thermally assisted magnetic recording medium and magnetic storage device

Publications (2)

Publication Number Publication Date
JP2012221542A true JP2012221542A (en) 2012-11-12
JP5804591B2 JP5804591B2 (en) 2015-11-04

Family

ID=47272886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090071A Active JP5804591B2 (en) 2011-04-14 2011-04-14 Thermally assisted magnetic recording medium and magnetic storage device

Country Status (1)

Country Link
JP (1) JP5804591B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037425A1 (en) * 2013-09-12 2015-03-19 独立行政法人物質・材料研究機構 Perpendicular magnetic recording medium and method for manufacturing same
JP2016051497A (en) * 2014-08-29 2016-04-11 シーゲイト テクノロジー エルエルシー Device with thermally assisted data recording media, and data recording media
JPWO2017002348A1 (en) * 2015-07-02 2017-11-24 富士電機株式会社 Magnetic recording medium
US10714138B2 (en) 2015-09-17 2020-07-14 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159177A (en) * 2006-12-25 2008-07-10 Canon Inc Magnetic recording medium and method for manufacturing the same
JP2009245478A (en) * 2008-03-28 2009-10-22 Hoya Corp Method for manufacturing perpendicular magnetic recording medium and perpendicular magnetic recording medium
JP2010129163A (en) * 2008-12-01 2010-06-10 Showa Denko Kk Thermally-assisted magnetic recording medium, and magnetic recording and reproducing device
WO2011021652A1 (en) * 2009-08-20 2011-02-24 昭和電工株式会社 Heat-assisted magnetic recording medium and magnetic storage device
US20120225325A1 (en) * 2011-03-02 2012-09-06 Hitachi, Ltd. Magnetic recording medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159177A (en) * 2006-12-25 2008-07-10 Canon Inc Magnetic recording medium and method for manufacturing the same
JP2009245478A (en) * 2008-03-28 2009-10-22 Hoya Corp Method for manufacturing perpendicular magnetic recording medium and perpendicular magnetic recording medium
JP2010129163A (en) * 2008-12-01 2010-06-10 Showa Denko Kk Thermally-assisted magnetic recording medium, and magnetic recording and reproducing device
US20100182714A1 (en) * 2008-12-01 2010-07-22 Showa Denko K.K. Thermal-assist magnetic recording medium and magnetic recording and reproducing apparatus
WO2011021652A1 (en) * 2009-08-20 2011-02-24 昭和電工株式会社 Heat-assisted magnetic recording medium and magnetic storage device
US20120225325A1 (en) * 2011-03-02 2012-09-06 Hitachi, Ltd. Magnetic recording medium
JP2012181902A (en) * 2011-03-02 2012-09-20 Hitachi Ltd Magnetic recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037425A1 (en) * 2013-09-12 2015-03-19 独立行政法人物質・材料研究機構 Perpendicular magnetic recording medium and method for manufacturing same
JPWO2015037425A1 (en) * 2013-09-12 2017-03-02 国立研究開発法人物質・材料研究機構 Perpendicular magnetic recording medium and manufacturing method thereof
JP2016051497A (en) * 2014-08-29 2016-04-11 シーゲイト テクノロジー エルエルシー Device with thermally assisted data recording media, and data recording media
JPWO2017002348A1 (en) * 2015-07-02 2017-11-24 富士電機株式会社 Magnetic recording medium
US10304485B2 (en) 2015-07-02 2019-05-28 Fuji Electric Co., Ltd. Magnetic recording medium
US10714138B2 (en) 2015-09-17 2020-07-14 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium

Also Published As

Publication number Publication date
JP5804591B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5670638B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP5015901B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP5923324B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP5961490B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US20180182423A1 (en) Magnetic recording medium and magnetic storage apparatus
US8351309B2 (en) Thermally assisted magnetic recording medium and magnetic recording storage
JP6014385B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US20110235479A1 (en) Thermally assisted magnetic recording medium and magnetic recording storage
JP5938224B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JPWO2008038664A1 (en) Magnetic recording medium
JP2005222669A (en) Magnetic recording medium and magnetic storage device
JP2008117506A (en) Perpendicular magnetic recording medium
JP5506604B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP6009055B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP4534711B2 (en) Perpendicular magnetic recording medium
JP5804591B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP2018147548A (en) Assisted magnetic recording medium and magnetic storage device
JP5923152B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP4892073B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP5730047B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP5858634B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP4367326B2 (en) Perpendicular magnetic recording medium
JP5112533B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2012226792A (en) Magnetic recording medium
JP2011086356A (en) Magnetic recording medium and magnetic recording and playback device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150828

R150 Certificate of patent or registration of utility model

Ref document number: 5804591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350