JP2012220853A - Retardation film for glasses, optical sheet for 3d glasses, and 3d glasses - Google Patents

Retardation film for glasses, optical sheet for 3d glasses, and 3d glasses Download PDF

Info

Publication number
JP2012220853A
JP2012220853A JP2011088695A JP2011088695A JP2012220853A JP 2012220853 A JP2012220853 A JP 2012220853A JP 2011088695 A JP2011088695 A JP 2011088695A JP 2011088695 A JP2011088695 A JP 2011088695A JP 2012220853 A JP2012220853 A JP 2012220853A
Authority
JP
Japan
Prior art keywords
glasses
lens
retardation film
axis direction
optical sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011088695A
Other languages
Japanese (ja)
Inventor
Motohiko Okabe
元彦 岡部
Yoshito Nishino
嘉人 西野
Akira Furuta
旭 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keiwa Inc
Original Assignee
Keiwa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keiwa Inc filed Critical Keiwa Inc
Priority to JP2011088695A priority Critical patent/JP2012220853A/en
Priority to KR1020120037512A priority patent/KR20120116357A/en
Priority to CN201210105538.XA priority patent/CN102736162B/en
Priority to TW101112945A priority patent/TWI452325B/en
Publication of JP2012220853A publication Critical patent/JP2012220853A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/008Aspects relating to glasses for viewing stereoscopic images

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Eyeglasses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a retardation film for glasses providing desired refractive indices even when being formed into a curved surface shape, an optical sheet for 3D glasses, and 3D glasses.SOLUTION: The retardation film for glasses according to the present invention includes, as a primary polymer, cyclo olefin copolymer or cyclo olefin polymer and has birefringence in the plane direction. Even when a lens is formed into a three-dimensionally curved shape, the retardation film for glasses is used for a lens of the 3D glasses, so that a phase difference of the retardation film for the glasses due to heat and stress is reduced, a change in birefringence of the retardation film for the glasses scarcely occurs, and desired light can be transmitted to the lens.

Description

本発明は、メガネ用位相差フィルム、これを用いた3Dメガネ用光学シート、及びこれを用いた3Dメガネに関するものである。   The present invention relates to a retardation film for glasses, an optical sheet for 3D glasses using the same, and 3D glasses using the same.

近年、3Dメガネは、3D(3次元)立体画像表示装置から出射された映像光を視認する際に視認者が装着して用いられる。この3D立体画像表示装置は、視差を有する右目用映像光線と左目用映像光線とを出射し、右目用レンズと左目用レンズとで光学性能の異なる3Dメガネを通して視認者が視認することにより、視認者が3D立体画像を認識できるよう設けられている(例えば特開2011−48236号公報参照)。   In recent years, 3D glasses are used by a viewer when viewing video light emitted from a 3D (three-dimensional) stereoscopic image display device. This 3D stereoscopic image display device emits a right-eye video beam and a left-eye video beam having parallax, and the viewer visually recognizes through the 3D glasses having different optical performance between the right-eye lens and the left-eye lens. It is provided so that a person can recognize a 3D stereoscopic image (for example, refer to JP 2011-48236 A).

具体的には、3D立体画像表示装置から出射される右目用映像光線と左目用映像光線とは、回転方向の異なる円偏光として出射されている。そして、3Dメガネは、3D立体画像表示装置側に1/4波長板を有している。そして、この1/4波長板によって円偏光である右目用映像光線と左目用映像光線とが直線偏光に変換されて透過する。ここで、右目用映像光線と左目用映像光線とは回転方向の異なる円偏光であるため、1/4波長板の進相軸に対して、右回転の映像光線が右回転側に45°、左回転の映像光線が左回転側に45°傾斜した方向の直線偏光に変換される。   Specifically, the right-eye video light beam and the left-eye video light beam emitted from the 3D stereoscopic image display device are emitted as circularly polarized light having different rotation directions. The 3D glasses have a ¼ wavelength plate on the 3D stereoscopic image display device side. The quarter-wave plate converts the circularly polarized right-eye image light beam and left-eye image light beam into linearly polarized light and transmits it. Here, since the right eye image light beam and the left eye image light beam are circularly polarized light having different rotation directions, the right rotation image light beam is 45 ° to the right rotation side with respect to the fast axis of the quarter wave plate. The left-rotated image light beam is converted into linearly polarized light in a direction inclined 45 ° to the left-rotation side.

また、3Dメガネは、視認者側に偏光板を有している。この偏光板は、各レンズにおいて、1/4波長板の進相軸方向に対して透過軸方向が、一方のレンズでは一方向(例えば右回転方向)に傾斜し、他方のレンズでは他方向(左回転方向)に傾斜して配設されている。このため、上記のように1/4波長板で直線偏光に変換された直線偏光のうち、一方のレンズでは、左回転の映像光線が変換された直線偏光は通過せずに右回転の映像光線が変換された直線偏光のみが通過する。一方、他方のレンズでは、右回転の映像光線が変換された直線偏光は通過せずに左回転の映像光線が変換された直線偏光のみが通過することになる。これにより、装着者の右目と左目とで、それぞれ右目用映像光線に基づく映像と左目用映像光線に基づく映像とを視認でき、3D立体画像を視認者が認識できることになる。   The 3D glasses have a polarizing plate on the viewer side. In each lens, the transmission axis direction in each lens is inclined in one direction (for example, clockwise direction) in one lens with respect to the fast axis direction of the quarter wavelength plate, and in the other direction in the other lens ( Inclined in the left rotation direction). For this reason, among the linearly polarized light converted into the linearly polarized light by the quarter wavelength plate as described above, in one lens, the linearly polarized light obtained by converting the left rotated image light beam does not pass and the right rotated image light beam is passed. Only the linearly polarized light that has been converted passes through. On the other hand, in the other lens, the linearly polarized light converted from the right-rotating image light beam does not pass through, but only the linearly polarized light converted from the left-turned image light beam passes through it. As a result, the right eye and the left eye of the wearer can visually recognize the video based on the right eye video light beam and the video based on the left eye video light beam, respectively, and the viewer can recognize the 3D stereoscopic image.

この上記3Dメガネのレンズに用いられる1/4波長板としては、ポリカーボネートを主ポリマーとしてシート体を形成し、このシート体を延伸させた光学シートを用いることが公知である。   As a quarter wavelength plate used for the lens of the 3D glasses, it is known to use an optical sheet in which a sheet body is formed using polycarbonate as a main polymer and the sheet body is stretched.

しかしながら、ポリカーボネートからなるシート体にあっては、熱成形等すると、複屈折率が変わってしまうため、この光学シートを用いた3Dメガネのレンズは、平面的な形状とならざるを得ない。つまり、デザイン性等を考慮して3Dメガネのレンズに例えば3次元的な曲面を持たせると、この曲面形状の形成に際してレンズの位相差フィルムの複屈折率が変化してしまい、その結果、所望の映像光線がレンズを透過することができず、3D立体画像を視認者が認識できなくなるという不都合が生ずる。   However, in the case of a sheet body made of polycarbonate, the birefringence index is changed by thermoforming or the like. Therefore, the lens of 3D glasses using this optical sheet has to have a planar shape. That is, if the lens of the 3D glasses is given a three-dimensional curved surface in consideration of design, etc., the birefringence of the retardation film of the lens changes when the curved surface is formed. Image light cannot pass through the lens, and the viewer cannot recognize the 3D stereoscopic image.

特開2011−48236号公報JP 2011-48236 A

本発明はこれらの不都合に鑑みてなされたものであり、曲面形状等の形状に形成しても、所望の複屈折性が得られるメガネ用位相差フィルム、これを用いた3Dメガネ用光学シート、及びこれを用いた3Dメガネを提供することを目的とする。   The present invention has been made in view of these inconveniences, and even if formed into a curved shape or the like, a retardation film for glasses that can obtain a desired birefringence, an optical sheet for 3D glasses using the same, And it aims at providing 3D glasses using the same.

上記課題を解決するためになされた本発明のメガネ用位相差フィルムは、
主ポリマーとしてシクロオレフィンコポリマーまたはシクロオレフィンポリマーを含み、
平面方向に複屈折性を有する。
The retardation film for eyeglasses of the present invention made to solve the above problems,
Containing a cycloolefin copolymer or cycloolefin polymer as the main polymer,
It has birefringence in the plane direction.

当該メガネ用位相差フィルムの主ポリマーはシクロオレフィンコポリマーまたはシクロオレフィンポリマーであるため、曲面形状等を形成するために熱成形を行う等、当該メガネ用位相差フィルムに熱や応力を付加しても複屈折性の変化が生じ難い。つまり、シクロオレフィンコポリマーまたはシクロオレフィンポリマーは、熱や応力による位相差の変化が小さいので、熱成形などに際しても複屈折性が維持されやすい。このため、例えばメガネのレンズに用い、このレンズに曲面形状等を形成しても、所望の複屈折性を有したレンズとすることができる。   Since the main polymer of the retardation film for glasses is a cycloolefin copolymer or a cycloolefin polymer, even if heat or stress is applied to the retardation film for glasses, such as thermoforming to form a curved shape or the like. Birefringence change hardly occurs. In other words, the cycloolefin copolymer or cycloolefin polymer has a small change in phase difference due to heat and stress, and thus birefringence is easily maintained during thermoforming. For this reason, even if it uses for a lens of eyeglasses and forms a curved surface shape etc. in this lens, it can be set as the lens which has desired birefringence.

また、当該メガネ用位相差フィルムは、一軸延伸により形成されている構成を採用することが好ましい。これにより、当該メガネ用位相差フィルムを一軸延伸して所望の複屈折性を付与することができる。   Moreover, it is preferable that the said retardation film for spectacles employ | adopts the structure currently formed by uniaxial stretching. Thereby, the said retardation film for spectacles can be uniaxially stretched, and desired birefringence can be provided.

また、当該メガネ用位相差フィルムは、1/4波長板であることが好ましい。これにより、当該メガネ用位相差フィルムは、円偏光を直線偏光に変換することができるので、例えば3Dメガネのレンズに好適に用いることができる。   Moreover, it is preferable that the said phase difference film for glasses is a quarter wavelength plate. Thereby, since the said retardation film for glasses can convert circularly polarized light into linearly polarized light, it can be used suitably for the lens of 3D glasses, for example.

さらに、上記課題を解決するためになされた本発明の3Dメガネ用光学シートは、上記1/4波長板である当該メガネ用位相差フィルムと、このメガネ用位相差フィルムに積層される偏光板とを備える。   Further, the optical sheet for 3D glasses of the present invention made to solve the above-mentioned problems is the above-mentioned retardation film for glasses which is the ¼ wavelength plate, and a polarizing plate laminated on this retardation film for glasses. Is provided.

当該3Dメガネ用光学シートは、3Dメガネのレンズとして好適に用いることができ、つまり熱成形などによって曲面形状等に変形させても、複屈折性の変化が生じ難く、このため、曲面形状等に形成しても、所望の複屈折性を有したものとすることができ、レンズに所望の光線を透過させることができる。   The optical sheet for 3D glasses can be suitably used as a lens for 3D glasses. That is, even when deformed into a curved shape by thermoforming or the like, birefringence hardly changes. Even if formed, it can have a desired birefringence, and a desired light beam can be transmitted through the lens.

また、当該3Dメガネ用光学シートは、三次元で湾曲している構成を具備することが好ましく、これによりデザイン性に優れた製品とすることが可能であるとともに、上述のように所望の複屈折性を有するものゆえ所望の光線を透過させることができるので、3Dメガネのレンズに好適に用いられる。   In addition, the optical sheet for 3D glasses preferably has a three-dimensionally curved configuration, which enables a product having excellent design properties and a desired birefringence as described above. Since it has the property, it can transmit a desired light beam, it is preferably used for a lens of 3D glasses.

また、当該3Dメガネ用光学シートは、メガネ用位相差フィルムの進相軸方向と偏光板の透過軸方向とが約45°の角度で配設されている構成を採用することが好ましい。   The optical sheet for 3D glasses preferably employs a configuration in which the fast axis direction of the retardation film for glasses and the transmission axis direction of the polarizing plate are arranged at an angle of about 45 °.

かかる構成からなる3Dメガネ用光学シートによれば、メガネ用位相差フィルムに円偏光が入射されると、円偏光が直線偏光に変換されてメガネ用位相差フィルムを透過する。この透過した直線偏光の偏光方向(振動方向)は円偏光の回転方向及びメガネ用位相差フィルムの進相軸方向によって決定される。具体的には、円偏光が光の進行方向から見て右回転である場合には、透過した直線偏光の偏光方向は、メガネ用位相差フィルムの進相軸方向に対して光の進行方向から見て右回転側に45°傾斜した方向となる。一方、円偏光が光の進行方向から見て左回転である場合には、透過した直線偏光の偏光方向は、メガネ用位相差フィルムの進相軸方向に対して光の進行方向から見て左回転側に45°傾斜した方向となる。このため、上記のように進相軸方向と透過軸方向とが約45°の角度で配設することにより、偏光板は、一方向の回転方向の円偏光が変換された直線偏光(透過軸方向と偏光方向が一致した直線偏光)のみを透過し、他方向の回転方向の円偏光が変換された直線偏光(透過軸方向に対して垂直な偏光方向となる直線偏光)を透過しないことになる。これにより、上記構成からなる3Dメガネ用光学シートは、3Dメガネのレンズとして好適に用いることができる。   According to the optical sheet for 3D glasses having such a configuration, when circularly polarized light is incident on the retardation film for glasses, the circularly polarized light is converted into linearly polarized light and transmitted through the retardation film for glasses. The polarization direction (vibration direction) of the transmitted linearly polarized light is determined by the rotation direction of the circularly polarized light and the fast axis direction of the retardation film for glasses. Specifically, when the circularly polarized light is clockwise when viewed from the traveling direction of light, the polarization direction of the transmitted linearly polarized light is from the traveling direction of light with respect to the fast axis direction of the retardation film for glasses. The direction is 45 ° inclined to the right rotation side as viewed. On the other hand, when the circularly polarized light is rotated counterclockwise when viewed from the light traveling direction, the polarization direction of the transmitted linearly polarized light is left when viewed from the light traveling direction with respect to the fast axis direction of the phase difference film for glasses. The direction is 45 ° inclined to the rotation side. Therefore, by arranging the fast axis direction and the transmission axis direction at an angle of about 45 ° as described above, the polarizing plate is linearly polarized light (transmission axis) obtained by converting circularly polarized light in one rotational direction. Only linearly polarized light whose direction and polarization direction coincide with each other, and does not transmit linearly polarized light obtained by converting circularly polarized light in the rotational direction of the other direction (linearly polarized light perpendicular to the transmission axis direction). Become. Thereby, the optical sheet for 3D glasses having the above-described configuration can be suitably used as a lens of 3D glasses.

さらに、上記課題を解決するためになされた本発明の3Dメガネは、
上記のように進相軸方向と透過軸方向とを配設した当該3Dメガネ用光学シートをそれぞれ含む右目用レンズ及び左目用レンズを備え、
右目用レンズ及び左眼用レンズのうち一方のレンズのメガネ用位相差フィルムの進相軸方向が、一方のレンズの偏光板の透過軸方向に対して一方向側で約45°の角度に配設されており、
右目用レンズ及び左眼用レンズのうち他方のレンズのメガネ用位相差フィルムの進相軸方向が、他方のレンズの偏光板の透過軸方向に対して他方向側で約45°の角度に配設されている。
Furthermore, the 3D glasses of the present invention made to solve the above problems are
A right-eye lens and a left-eye lens each including the optical sheet for 3D glasses in which the fast axis direction and the transmission axis direction are arranged as described above,
One of the right-eye lens and the left-eye lens has a phase advance axis direction of the eyeglass retardation film at an angle of about 45 ° on one side with respect to the transmission axis direction of the polarizing plate of one lens. Has been established,
The fast axis direction of the retardation film for eyeglasses of the other lens of the right eye lens and the left eye lens is arranged at an angle of about 45 ° on the other direction side with respect to the transmission axis direction of the polarizing plate of the other lens. It is installed.

当該3Dメガネは、3Dメガネのレンズのメガネ用位相差フィルムの主ポリマーはシクロオレフィンコポリマーまたはシクロオレフィンポリマーであるため、レンズに曲面形状等を形成するために熱成形を行う等、当該メガネ用位相差フィルムに熱や応力を付加しても複屈折性の変化が生じ難い。また、一方のレンズの進相軸方向が透過軸方向に対して一方向側で約45°の角度に配設され、他方のレンズの進相軸方向が透過軸方向に対して他方向側で約45°の角度に配設されているので、一方のレンズには一方向の回転方向の円偏光のみが透過し、他方のレンズには他方向の回転方向の円偏光のみが透過することになる。このため、立体画像表示装置から出射される右目用映像光線と左目用映像光線とをそれぞれ右目と左目とで視認することができ、視認者は3D立体画像が認識できる。   In the 3D glasses, since the main polymer of the retardation film for glasses of the lens of the 3D glasses is a cycloolefin copolymer or a cycloolefin polymer, thermoforming is performed to form a curved surface shape or the like on the lens. Even if heat or stress is applied to the phase difference film, the change in birefringence hardly occurs. Further, the fast axis direction of one lens is disposed at an angle of about 45 ° on one side with respect to the transmission axis direction, and the fast axis direction of the other lens is on the other direction side with respect to the transmission axis direction. Since it is disposed at an angle of about 45 °, only one circularly polarized light in one direction is transmitted through one lens and only one circularly polarized light in the other direction is transmitted through the other lens. Become. Therefore, the right-eye video light beam and the left-eye video light beam emitted from the stereoscopic image display device can be visually recognized by the right eye and the left eye, respectively, and the viewer can recognize the 3D stereoscopic image.

以上説明したように、本発明のメガネ用位相差フィルムは、レンズを曲面形状等の所望形状に形成しても、この形状に形成する際に複屈折性が維持されやすく、このため曲面形状等に形成しても所望の光線を透過することができる。このため、3Dメガネ用光学シート及び3Dメガネに用いても、デザイン性を高めつつ、3D立体画像を的確且つ確実に認識することができる。   As described above, even if the retardation film for glasses of the present invention is formed in a desired shape such as a curved surface, the birefringence is easily maintained when the lens is formed in this shape. Even if it is formed, a desired light beam can be transmitted. For this reason, even if it uses for the optical sheet for 3D glasses, and 3D glasses, a 3D stereo image can be recognized correctly and reliably, improving design property.

本発明の一実施形態に係る3Dメガネを示す模式的斜視図である。It is a typical perspective view showing 3D glasses concerning one embodiment of the present invention. 図1の3Dメガネに用いられる光学シートの概略的断面図である。It is a schematic sectional drawing of the optical sheet used for 3D glasses of FIG.

以下、本発明の一実施形態について、3Dメガネ1を例にとり説明する。   Hereinafter, an embodiment of the present invention will be described by taking 3D glasses 1 as an example.

当該3Dメガネ1は、フレーム2と、このフレーム2に取付けられた右目用レンズ3及び左目用レンズ3を備えている。   The 3D glasses 1 include a frame 2 and a right-eye lens 3 and a left-eye lens 3 attached to the frame 2.

上記右目用レンズ3及び左目用レンズ3は、シート積層体からなる光学シート10(3Dメガネ用光学シート)を有し、この右目用レンズ3及び左目用レンズ3は、光学シート10が熱成形されることにより三次元で湾曲した形状を有し、レンズ3の中央側が外側(立体画像表示装置側)に湾出した形状となっている。   The right-eye lens 3 and the left-eye lens 3 have an optical sheet 10 (optical sheet for 3D glasses) made of a sheet laminate, and the right-eye lens 3 and the left-eye lens 3 are obtained by thermoforming the optical sheet 10. Thus, the lens 3 has a three-dimensional curved shape, and the center side of the lens 3 protrudes to the outside (stereoscopic image display device side).

上記光学シート10は、図2に示すように1/4波長板11(メガネ用位相差フィルム)と偏光板12とを有し、偏光板12の外側に1/4波長板11が積層されている。換言すれば、1/4波長板11は、偏光板12よりもレンズ3の湾出側に配設されている。なお、1/4波長板11と偏光板12とは、種々の方法により固着され、例えば接着剤等を介して積層固着されている。なお、接着剤を用いる場合には、透明な接着剤を用いることが好ましい。なお、図2は、熱成形前の光学シート10を図示している。   As shown in FIG. 2, the optical sheet 10 includes a quarter-wave plate 11 (glasses retardation film) and a polarizing plate 12, and the quarter-wave plate 11 is laminated outside the polarizing plate 12. Yes. In other words, the quarter wavelength plate 11 is disposed on the bay side of the lens 3 with respect to the polarizing plate 12. The quarter-wave plate 11 and the polarizing plate 12 are fixed by various methods, for example, laminated and fixed via an adhesive or the like. In addition, when using an adhesive agent, it is preferable to use a transparent adhesive agent. FIG. 2 shows the optical sheet 10 before thermoforming.

上記偏光板12は、一定方向の振動方向の光線のみを透過するよう設けられたシート状部材である。この偏光板12としては、種々の偏光板12を用いることができるが、例えば、ポリビニルアルコールを主体にヨウ素化合分子を吸着配向させたものを用いることができ、これに保護層等の層を設けたものを用いることも可能である。   The polarizing plate 12 is a sheet-like member that is provided so as to transmit only light beams in a certain vibration direction. As this polarizing plate 12, various polarizing plates 12 can be used. For example, a material obtained by adsorbing and orienting iodine compound molecules mainly composed of polyvinyl alcohol can be used, and a protective layer or the like is provided thereon. It is also possible to use one.

上記1/4波長板11は、平面方向に複屈折性を有するシート状部材であり、シクロオレフィンコポリマーまたはシクロオレフィンポリマーを主ポリマーとしてシート状に成形されている。この1/4波長板11は、目的に応じて各種添加材を添加することが可能である。また、1/4波長板11は、一軸延伸により形成されており、これにより平面方向に複屈折性が付与されている。   The quarter wavelength plate 11 is a sheet-like member having birefringence in the plane direction, and is formed into a sheet shape using a cycloolefin copolymer or a cycloolefin polymer as a main polymer. The quarter-wave plate 11 can be added with various additives according to the purpose. The quarter-wave plate 11 is formed by uniaxial stretching, and thereby birefringence is imparted in the plane direction.

また、1/4波長板11は、ガラス転移温度Tgが100℃以上170℃以下となるよう設けることが好ましく、より好ましくは105℃以上160℃以下であり、さらに好ましくは、110℃以上150℃以下となるよう設けることが好ましい。このようなガラス転移温度の範囲とすることにより、熱成形が容易且つ確実に行えるとともに、熱成形に際して複屈折性が維持されやすい。   The quarter-wave plate 11 is preferably provided such that the glass transition temperature Tg is 100 ° C. or higher and 170 ° C. or lower, more preferably 105 ° C. or higher and 160 ° C. or lower, and still more preferably 110 ° C. or higher and 150 ° C. It is preferable to provide the following. By setting the glass transition temperature in such a range, thermoforming can be performed easily and reliably, and birefringence is easily maintained during thermoforming.

右目用レンズ3の1/4波長板11の進相軸方向は、右目用レンズ3の偏光板12の透過軸方向に対して右回転側で約45°の角度に配設されている。また、左眼用レンズ3の1/4波長板11の進相軸方向は、左目用レンズ3の偏光板12の透過軸方向に対して左回転方向で約45°の角度に配設されている。   The fast axis direction of the quarter wavelength plate 11 of the right-eye lens 3 is arranged at an angle of about 45 ° on the right rotation side with respect to the transmission axis direction of the polarizing plate 12 of the right-eye lens 3. Further, the fast axis direction of the quarter wavelength plate 11 of the left eye lens 3 is arranged at an angle of about 45 ° in the left rotation direction with respect to the transmission axis direction of the polarizing plate 12 of the left eye lens 3. Yes.

より具体的に説明するために一具体例を挙げて説明すると、右目用レンズ3及び左目用レンズ3は、偏光板12の透過軸方向が水平方向(右目用レンズ3と左目用レンズ3とが並べて配置される方向)に配設されている。そして、右目用レンズ3の1/4波長板11の進相軸方向は、水平方向に対して左回転側に約45°傾斜して配設され、左目用レンズ3の1/4波長板11の進相軸方向は、水平方向に対して右回転側に約45°傾斜して配設されている。   In order to explain more specifically, a specific example will be described. In the right-eye lens 3 and the left-eye lens 3, the transmission axis direction of the polarizing plate 12 is horizontal (the right-eye lens 3 and the left-eye lens 3 are Are arranged side by side). The fast axis direction of the quarter-wave plate 11 of the right-eye lens 3 is arranged to be inclined by about 45 ° to the left rotation side with respect to the horizontal direction, and the quarter-wave plate 11 of the left-eye lens 3 is arranged. The fast axis direction is inclined about 45 ° to the right side with respect to the horizontal direction.

上記構成からなる3Dメガネ1にあっては、装着者に3D立体画像表示装置からの映像光線に基づいて3D立体画像を認識させることができる。つまり、右目用映像光線は、右目用レンズ3を透過するが左目用レンズ3は透過せず、左目用映像光線は、左目用レンズ3を透過するが右目用レンズ3を透過しない。   In the 3D glasses 1 having the above-described configuration, the wearer can recognize the 3D stereoscopic image based on the video light from the 3D stereoscopic image display device. That is, the right-eye video light beam passes through the right-eye lens 3 but does not pass through the left-eye lens 3, and the left-eye video beam passes through the left-eye lens 3 but does not pass through the right-eye lens 3.

より具体的に説明すると、例えば、右目用映像光線が右回転の円偏光である場合、この円偏光は、右目用レンズ3の1/4波長板11を透過すると、この1/4波長板11は、水平方向に対して左回転側に約45°傾斜した進相軸を有するので、偏光方向が水平方向の直線偏光に変換される。この場合には、左目用映像光線は左回転であるので、この円偏光は、右目用レンズ3の1/4波長板11を透過すると、偏光方向が上下方向(水平方向に対して垂直方向)の直線偏光に変更される。偏光板12の透過軸方向は水平方向であるため、右目用映像光線の円偏光を変換した直線偏光(偏光方向が水平方向)のみが偏光板12を透過し、左目用映像光線の円偏光を変換した直線偏光(偏光方向が上下方向)は偏光板12を透過しない。   More specifically, for example, when the right-eye image light beam is circularly polarized light rotated to the right, when the circularly polarized light passes through the quarter-wave plate 11 of the right-eye lens 3, the quarter-wave plate 11 Has a fast axis inclined about 45 ° to the left rotation side with respect to the horizontal direction, so that the polarization direction is converted into horizontal linearly polarized light. In this case, since the left-eye image light beam is rotated counterclockwise, when this circularly polarized light is transmitted through the quarter-wave plate 11 of the right-eye lens 3, the polarization direction is vertical (perpendicular to the horizontal direction). Is changed to linearly polarized light. Since the transmission axis direction of the polarizing plate 12 is the horizontal direction, only linearly polarized light (polarization direction is the horizontal direction) obtained by converting the circularly polarized light of the right-eye image light beam is transmitted through the polarizing plate 12, and the circularly polarized light of the left-eye image light beam is changed. The converted linearly polarized light (the polarization direction is the vertical direction) does not pass through the polarizing plate 12.

また、左目用レンズ3については、左目用映像光線が左回転の円偏光である場合、この円偏光は、左目用レンズ3の1/4波長板11を透過すると、この1/4波長板11は、水平方向に対して右回転側に約45°傾斜した進相軸を有するので、偏光方向が水平方向の直線偏光に変換される。この場合には、右目用映像光線は右回転であるので、この円偏光は、左目用レンズ3の1/4波長板11を透過すると、偏光方向が上下方向(水平方向に対して垂直方向)の直線偏光に変更される。偏光板12の透過軸方向は水平方向であるため、左目用映像光線の円偏光を変換した直線偏光(偏光方向が水平方向)のみが偏光板12を透過し、右目用映像光線の円偏光を変換した直線偏光(偏光方向が上下方向)は偏光板12を透過しない。   For the left-eye lens 3, when the left-eye image light beam is counterclockwise circularly polarized light, when the circularly polarized light passes through the quarter-wave plate 11 of the left-eye lens 3, the quarter-wave plate 11 Has a fast axis inclined about 45 ° clockwise relative to the horizontal direction, so that the polarization direction is converted into horizontal linearly polarized light. In this case, since the right-eye image light beam is rotated to the right, when the circularly polarized light passes through the quarter-wave plate 11 of the left-eye lens 3, the polarization direction is vertical (perpendicular to the horizontal direction). Is changed to linearly polarized light. Since the transmission axis direction of the polarizing plate 12 is the horizontal direction, only the linearly polarized light (polarization direction is the horizontal direction) obtained by converting the circularly polarized light of the left-eye image light beam is transmitted through the polarizing plate 12 and the circularly polarized light of the right-eye image light beam is changed. The converted linearly polarized light (the polarization direction is the vertical direction) does not pass through the polarizing plate 12.

このように、右目用映像光線の円偏光を変換した直線偏光のみが右目用レンズ3を透過し、左目用映像光線の円偏光を変換した直線偏光のみが左目用レンズ3を透過するので、上記構成からなる3Dメガネ1を装着することにより、3D画像表示装置からの映像光線に基づいて3D立体画像を認識することができる。   As described above, only the linearly polarized light obtained by converting the circularly polarized light of the right-eye image light beam is transmitted through the right-eye lens 3, and only the linearly polarized light obtained by converting the circularly polarized light of the left-eye image light beam is transmitted through the left-eye lens 3. By wearing the 3D glasses 1 having the configuration, it is possible to recognize a 3D stereoscopic image based on video rays from the 3D image display device.

また、当該3Dメガネ1にあっては、レンズ3が三次元で湾曲しているので、デザイン性に優れた製品とすることができる。このため、3D画像表示装置を見るためにのみ用いることなく、例えば屋外などの偏光サングラスの用途にも用いることも可能となる。   Further, in the 3D glasses 1, since the lens 3 is curved in three dimensions, a product having excellent design can be obtained. For this reason, it can be used not only for viewing the 3D image display device but also for the application of polarized sunglasses such as outdoors.

しかも、1/4波長板11の主ポリマーが、シクロオレフィンコポリマーまたはシクロオレフィンポリマーであるため、上記のように三次元で湾曲させるために熱成形等を行う際に、1/4波長板11に熱や応力が付加されても、熱や応力による位相差の変化が小さく、1/4波長板11の複屈折性の変化が生じ難い。このため、レンズ3に上述したような所望の光線を透過させることができる。   In addition, since the main polymer of the quarter wavelength plate 11 is a cycloolefin copolymer or a cycloolefin polymer, when the thermoforming or the like is performed to be curved in three dimensions as described above, Even when heat or stress is applied, the change in phase difference due to heat or stress is small, and the change in birefringence of the quarter-wave plate 11 hardly occurs. For this reason, the desired light beam as described above can be transmitted through the lens 3.

また、1/4波長板11は一軸延伸により形成されているので、所望の複屈折性を容易且つ確実に得ることができる。   Moreover, since the quarter wavelength plate 11 is formed by uniaxial stretching, desired birefringence can be obtained easily and reliably.

なお、上記実施形態は上述の構成を有し、上述の利点を奏するものであったが、本発明はこれに限定されるものではなく、本発明の意図する範囲内において適宜設計変更可能である。   In addition, although the said embodiment has the above-mentioned structure and produced the above-mentioned advantage, this invention is not limited to this, A design change is possible suitably within the range which this invention intends. .

つまり、上記実施形態の3Dメガネにおいては、右目用レンズの偏光板の透過軸方向と左目用レンズの偏光板の透過軸方向とを一致させたものについて説明したが、本発明はこれに限定されない。つまり、例えば、右目用レンズの偏光板の透過軸方向と左目用レンズの偏光板の透過軸方向とを互いに直交するよう配設して(例えば、水平方向に対して、一方を左回転方向45°傾斜させ、他方を右回転方向に45°傾斜させて配設して)、右目用レンズの1/4波長板の進相軸方向と左目用レンズの1/4波長板の進相軸方向とを一致させ、上記各透過軸方向に対して約45°の角度に配設する(進相軸方向を水平方向に配設する)ことも可能である。   That is, in the 3D glasses of the above embodiment, the description has been given of the case where the transmission axis direction of the polarizing plate of the right-eye lens and the transmission axis direction of the polarizing plate of the left-eye lens are matched, but the present invention is not limited to this. . That is, for example, the transmission axis direction of the polarizing plate of the right-eye lens and the transmission axis direction of the polarizing plate of the left-eye lens are disposed so as to be orthogonal to each other (for example, one of the rotation direction is 45 in the left rotation direction). Inclined by 45 ° and the other inclining to the right by 45 °), the fast axis direction of the quarter-wave plate of the right-eye lens and the fast axis direction of the quarter-wave plate of the left-eye lens Can be arranged at an angle of about 45 ° with respect to each of the transmission axis directions (the fast axis direction is arranged in the horizontal direction).

また、上記実施形態の3Dメガネ用光学シートは偏光板と1/4波長板との二層構造のものについて説明したが、本発明の3Dメガネ用光学シートはこれに限定されるものではない。例えば、偏光板と1/4波長板との間に基材層を設けることも適宜設計変更可能である。具体的には、基材層の一面に偏光板を積層接着し、他方の面に1/4波長板を積層接着することも可能である。なお、基材層は、偏光板又は1/4波長板の外面に設けることも適宜設計変更可能である。   Moreover, although the optical sheet for 3D glasses of the said embodiment demonstrated the thing of the two-layer structure of a polarizing plate and a quarter wavelength plate, the optical sheet for 3D glasses of this invention is not limited to this. For example, providing a base material layer between the polarizing plate and the quarter-wave plate can be appropriately changed in design. Specifically, a polarizing plate can be laminated and adhered to one surface of the base material layer, and a quarter wavelength plate can be laminated and adhered to the other surface. The base layer can be appropriately changed in design by providing it on the outer surface of the polarizing plate or quarter-wave plate.

また、例えば、偏光板又は/及び1/4波長板の外面に保護層等の層を設けることも適宜設計変更可能である。なお、保護層等の層を偏光板又は/及び1/4波長板の外面に設ける場合には、コーティング層とすることが好ましい。また、このようなコーティング層の塗布は、三次元立体形状に形成した後に行うことが好ましい。これにより、コーティング層が複屈折性を有さず、3Dメガネとして好適に用いることができる。   In addition, for example, providing a layer such as a protective layer on the outer surface of the polarizing plate and / or the quarter-wave plate can be appropriately changed in design. In addition, when providing layers, such as a protective layer, on the outer surface of a polarizing plate or / and a quarter wavelength plate, it is preferable to set it as a coating layer. Moreover, it is preferable to perform application | coating of such a coating layer, after forming in three-dimensional solid shape. Thereby, the coating layer does not have birefringence and can be suitably used as 3D glasses.

以上のように、本発明のメガネ用位相差フィルム、これを用いた3Dメガネ用光学シート及びこれを用いた3Dメガネは、3D立体画像表示装置を視認する際に好適に用いることができる。   As described above, the retardation film for glasses of the present invention, the optical sheet for 3D glasses using the same, and the 3D glasses using the same can be suitably used for visually recognizing the 3D stereoscopic image display device.

1 メガネ
2 フレーム
3 レンズ
10 光学シート
11 波長板
12 偏光板
1 Glasses 2 Frame 3 Lens 10 Optical Sheet 11 Wave Plate 12 Polarizing Plate

Claims (7)

主ポリマーとしてシクロオレフィンコポリマーまたはシクロオレフィンポリマーを含み、
平面方向に複屈折性を有するメガネ用位相差フィルム。
Containing a cycloolefin copolymer or cycloolefin polymer as the main polymer,
A retardation film for eyeglasses having birefringence in a planar direction.
一軸延伸により形成されている請求項1に記載のメガネ用位相差フィルム。   The retardation film for glasses according to claim 1, wherein the retardation film is formed by uniaxial stretching. 1/4波長板である請求項1または請求項2に記載のメガネ用位相差フィルム。   The retardation film for spectacles according to claim 1, wherein the retardation film is a quarter wave plate. 請求項1、請求項2または請求項3に記載のメガネ用位相差フィルムと、このメガネ用位相差フィルムに積層される偏光板とを備える3Dメガネ用光学シート。   An optical sheet for 3D glasses comprising the retardation film for glasses according to claim 1, claim 2 or claim 3 and a polarizing plate laminated on the retardation film for glasses. 三次元で湾曲している請求項4に記載の3Dメガネ用光学シート。   The optical sheet for 3D glasses according to claim 4, which is curved in three dimensions. メガネ用位相差フィルムの進相軸方向と偏光板の透過軸方向とが約45°の角度で配設されている請求項4または請求項5に記載の3Dメガネ用光学シート。   The optical sheet for 3D glasses according to claim 4 or 5, wherein the fast axis direction of the retardation film for glasses and the transmission axis direction of the polarizing plate are disposed at an angle of about 45 °. 請求項6に記載の3Dメガネ用光学シートをそれぞれ含む右目用レンズ及び左目用レンズを備え、
右目用レンズ及び左眼用レンズのうち一方のレンズの眼鏡用位相差フィルムの進相軸方向が、一方のレンズの偏光板の透過軸方向に対して一方向側で約45°の角度に配設されており、
右目用レンズ及び左眼用レンズのうち他方のレンズの眼鏡用位相差フィルムの進相軸方向が、他方のレンズの偏光板の透過軸方向に対して他方向側で約45°の角度に配設されている3Dメガネ。

A right-eye lens and a left-eye lens each including the optical sheet for 3D glasses according to claim 6,
One of the right-eye lens and the left-eye lens has a fast axis direction of the phase difference film for spectacles arranged at an angle of about 45 ° on one side with respect to the transmission axis direction of the polarizing plate of one lens. Has been established,
The fast axis direction of the spectacle phase difference film of the other lens of the right eye lens and the left eye lens is arranged at an angle of about 45 ° on the other direction side with respect to the transmission axis direction of the polarizing plate of the other lens. 3D glasses installed.

JP2011088695A 2011-04-12 2011-04-12 Retardation film for glasses, optical sheet for 3d glasses, and 3d glasses Pending JP2012220853A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011088695A JP2012220853A (en) 2011-04-12 2011-04-12 Retardation film for glasses, optical sheet for 3d glasses, and 3d glasses
KR1020120037512A KR20120116357A (en) 2011-04-12 2012-04-10 Phase difference film for glasses, optical sheet for 3d glasses and 3d glasses
CN201210105538.XA CN102736162B (en) 2011-04-12 2012-04-11 Phase difference film for glasses, optical slice for 3D glasses and 3D glasses
TW101112945A TWI452325B (en) 2011-04-12 2012-04-12 3D glasses with phase difference film, 3D glasses with optical film and 3D glasses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011088695A JP2012220853A (en) 2011-04-12 2011-04-12 Retardation film for glasses, optical sheet for 3d glasses, and 3d glasses

Publications (1)

Publication Number Publication Date
JP2012220853A true JP2012220853A (en) 2012-11-12

Family

ID=46991977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011088695A Pending JP2012220853A (en) 2011-04-12 2011-04-12 Retardation film for glasses, optical sheet for 3d glasses, and 3d glasses

Country Status (4)

Country Link
JP (1) JP2012220853A (en)
KR (1) KR20120116357A (en)
CN (1) CN102736162B (en)
TW (1) TWI452325B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760678B (en) * 2013-12-25 2016-04-13 深圳市华星光电技术有限公司 Three-dimensional stereo glasses
JP2022539680A (en) * 2019-07-02 2022-09-13 エルジー・ケム・リミテッド Injection molded product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148592A (en) * 2000-08-31 2002-05-22 Sumitomo Chem Co Ltd Liquid crystal display device
JP2002169155A (en) * 2000-12-04 2002-06-14 Toshiba Corp Liquid crystal display
JP2003014936A (en) * 2001-04-16 2003-01-15 Nitto Denko Corp Optical member and liquid crystal display device
WO2010044414A1 (en) * 2008-10-15 2010-04-22 ソニー株式会社 Phase difference element and display device
JP2010105188A (en) * 2008-10-28 2010-05-13 Idemitsu Unitech Co Ltd Device and method for manufacturing thermoplastic resin sheet, and thermoplastic resin sheet obtained thereby
JP2010151954A (en) * 2008-12-24 2010-07-08 Ic Japan:Kk Polarizing glasses and method of manufacturing the same
JP2011501821A (en) * 2007-10-11 2011-01-13 リアルディー インコーポレイテッド Curved optical filter
JP2011197629A (en) * 2010-02-23 2011-10-06 Yamamoto Kogaku Co Ltd Circularly polarizing plate, circularly polarizing lens and circularly polarizing glasses

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767962B2 (en) * 1997-02-19 2006-04-19 シャープ株式会社 Video display system
JP3817015B2 (en) * 1997-04-14 2006-08-30 三井化学株式会社 Cyclic olefin copolymer and use thereof
GB2331883A (en) * 1997-11-26 1999-06-02 Sharp Kk Dual image viewing system
JP2006145581A (en) * 2004-11-16 2006-06-08 Tsutsunaka Plast Ind Co Ltd Polarizing plate for antidazzle lens
CN101918869B (en) * 2007-11-20 2013-05-29 陶氏环球技术有限责任公司 Optical compensation film
US8846180B2 (en) * 2008-11-07 2014-09-30 Teijin Chemicals, Ltd. Retardation film
CN101872073B (en) * 2009-04-24 2011-10-19 财团法人工业技术研究院 Three-dimensional display device
CN101598830B (en) * 2009-07-10 2010-09-08 深圳市三利谱光电科技有限公司 Reusable three-dimensional polarized glass polarizer and glasses using same
CN101819328B (en) * 2010-04-30 2012-01-25 友达光电股份有限公司 Stereoscopic display

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148592A (en) * 2000-08-31 2002-05-22 Sumitomo Chem Co Ltd Liquid crystal display device
JP2002169155A (en) * 2000-12-04 2002-06-14 Toshiba Corp Liquid crystal display
JP2003014936A (en) * 2001-04-16 2003-01-15 Nitto Denko Corp Optical member and liquid crystal display device
JP2011501821A (en) * 2007-10-11 2011-01-13 リアルディー インコーポレイテッド Curved optical filter
WO2010044414A1 (en) * 2008-10-15 2010-04-22 ソニー株式会社 Phase difference element and display device
JP2010105188A (en) * 2008-10-28 2010-05-13 Idemitsu Unitech Co Ltd Device and method for manufacturing thermoplastic resin sheet, and thermoplastic resin sheet obtained thereby
JP2010151954A (en) * 2008-12-24 2010-07-08 Ic Japan:Kk Polarizing glasses and method of manufacturing the same
JP2011197629A (en) * 2010-02-23 2011-10-06 Yamamoto Kogaku Co Ltd Circularly polarizing plate, circularly polarizing lens and circularly polarizing glasses

Also Published As

Publication number Publication date
TWI452325B (en) 2014-09-11
TW201248185A (en) 2012-12-01
CN102736162B (en) 2015-03-04
CN102736162A (en) 2012-10-17
KR20120116357A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP6687805B2 (en) Optical system for head mounted display
US8922724B2 (en) Active shutter glasses and three-dimensional image recognition unit
JP2010151954A (en) Polarizing glasses and method of manufacturing the same
US10061129B2 (en) Birefringent ocular for augmented reality imaging
CN110268301B (en) Optical system for head-mounted display
JP2012098515A (en) Glasses for appreciating stereoscopic image and method for manufacturing the same
KR101323072B1 (en) Polarizing plate assembly having patterned retard and fabricating method thereof and image display device using it
KR101298874B1 (en) Polarizing Glasses
TWI470276B (en) 3D glasses with optical film and 3D glasses
KR101291806B1 (en) Stereoscopic Image Display
JP5833847B2 (en) Stereoscopic image display system
US20110261315A1 (en) Vision correction lens assembly for viewing three-dimensional (3d) images
JP2012220853A (en) Retardation film for glasses, optical sheet for 3d glasses, and 3d glasses
JP3796414B2 (en) 3D image display device and polarized glasses for 3D image display device
JP6266856B2 (en) Polarized sunglasses
JP2019534484A (en) Optical lens and eyewear including optical lens
US20110261316A1 (en) Lens assembly for viewing three-dimensional (3d) images
WO2011111267A1 (en) Active shutter glasses, passive glasses, and three-dimensional video recognition system
JP2011227432A (en) Lens assembly for viewing three-dimensional images
US8922725B2 (en) 3D image system and 3D glasses
KR20110107531A (en) Stereoscopic image system
JP2011039532A (en) Image separating device
JP2014025957A (en) Optical element, spectacle, image forming apparatus, and stereoscopic image display system
JP2016066092A (en) Polarizing lens sheet, polarizing sunglasses, and manufacturing method of lens
KR20140115188A (en) Filter for selecting polarization of light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150519