JP2012220815A - Reflecting optical element - Google Patents

Reflecting optical element Download PDF

Info

Publication number
JP2012220815A
JP2012220815A JP2011087999A JP2011087999A JP2012220815A JP 2012220815 A JP2012220815 A JP 2012220815A JP 2011087999 A JP2011087999 A JP 2011087999A JP 2011087999 A JP2011087999 A JP 2011087999A JP 2012220815 A JP2012220815 A JP 2012220815A
Authority
JP
Japan
Prior art keywords
reflecting
small
light
irradiation area
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011087999A
Other languages
Japanese (ja)
Other versions
JP5724561B2 (en
Inventor
Kazuyoshi Yamada
一吉 山田
Yukimasa Saito
行正 齋藤
Yasubumi Kawanabe
保文 川鍋
Masahiro Sakai
雅寛 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2011087999A priority Critical patent/JP5724561B2/en
Publication of JP2012220815A publication Critical patent/JP2012220815A/en
Application granted granted Critical
Publication of JP5724561B2 publication Critical patent/JP5724561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a reflecting optical element capable of changing a direction of an optical path by a single body while having a function of solving illumination irregularity.SOLUTION: A reflecting mirror 8 is constituted by aligning a plurality of small reflecting surfaces 32 with a predetermined curvature radius r2 for reflecting light to constitute a reflecting surface 31, and placing the reflecting surface on one surface of a substrate 30. The reflecting mirror is configured that the respective small reflecting surfaces 32 reflect light towards a same irradiation surface and superimpose the reflected light Q on the irradiation surface.

Description

本発明は、反射型の光学素子に関する。   The present invention relates to a reflective optical element.

従来、光源と照射面との間に、フライアイレンズやロットレンズ等の光インテグレータを設けた照明システムが知られている(例えば、特許文献1、及び特許文献2参照)。この照明システムによれば、例えば光源が超高圧水銀灯等のランプ光源のように輝度ムラを生じる場合でも、光源の輝度ムラが光インテグレータの通過時に拡散されることで照射面の照度ムラが防止される。   Conventionally, an illumination system in which an optical integrator such as a fly-eye lens or a lot lens is provided between a light source and an irradiation surface is known (see, for example, Patent Document 1 and Patent Document 2). According to this illumination system, even when the light source causes uneven brightness, such as a lamp light source such as an ultra-high pressure mercury lamp, the uneven brightness of the illumination surface is prevented by diffusing the uneven brightness of the light source when passing through the optical integrator. The

特開2001−359026号公報JP 2001-359026 A 特開平5−45604号公報JP-A-5-45604

しかしながら、光インテグレータ単体では、光路の向きを変えることができず別途に反射型の光学素子が必要となり、光源と照射面との位置関係によっては照明光学系が備える光学素子の数が多くなる、という問題がある。   However, with the optical integrator alone, the direction of the optical path cannot be changed and a separate optical element is required, and depending on the positional relationship between the light source and the irradiation surface, the number of optical elements included in the illumination optical system increases. There is a problem.

本発明は、上述した事情に鑑みてなされたものであり、照度ムラを解消する機能を有しつつ、単体で光路の向きを変えることができる反射型光学素子を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a reflective optical element that can change the direction of an optical path by itself while having a function of eliminating illuminance unevenness.

上記目的を達成するために、本発明は、光を反射する所定曲率半径の複数の小反射面を並べて反射面を構成し、前記小反射面のそれぞれが同一の照射面に向けて光を反射し当該照射面で反射光を重畳することを特徴とする反射型光学素子を提供する。   In order to achieve the above object, according to the present invention, a plurality of small reflective surfaces having a predetermined radius of curvature that reflect light are arranged to form a reflective surface, and each of the small reflective surfaces reflects light toward the same irradiation surface. And providing a reflective optical element in which reflected light is superimposed on the irradiated surface.

また本発明は、上記反射型光学素子において、前記小反射面がそれぞれ同一の平面視形状を成すことを特徴とする。   According to the present invention, in the reflective optical element, the small reflective surfaces have the same planar view shape.

また本発明は、上記反射型光学素子において、前記反射面を、前記照射面で焦点を結ぶように曲率を持たせた面とし、当該面に各小反射面の輪郭の頂点を合わせて配置したことを特徴とする。   Further, the present invention provides the reflective optical element, wherein the reflective surface is a surface having a curvature so as to focus on the irradiated surface, and the vertex of the contour of each small reflective surface is aligned with the surface. It is characterized by that.

また本発明は、上記反射型光学素子において、前記反射面に前記小反射面を隙間無く設けたことを特徴とする。   According to the present invention, in the reflective optical element, the small reflective surface is provided on the reflective surface without any gap.

本発明によれば、反射面を構成する複数の小反射面のそれぞれが同一の照射面に向けて光を反射し当該照射面で反射光を重畳する構成であるため、入射光の光束にムラがある場合でも照射面での照度ムラが抑えられる。これに加え、反射型光学素子であることから、単体で光路の向きを変えることができる。   According to the present invention, each of the plurality of small reflecting surfaces constituting the reflecting surface is configured to reflect the light toward the same irradiation surface and superimpose the reflected light on the irradiation surface, so that the incident light flux is uneven. Even when there is, uneven illumination on the irradiated surface can be suppressed. In addition, since it is a reflective optical element, the direction of the optical path can be changed by itself.

本発明の実施形態に係る照明システムの模式図である。It is a schematic diagram of the illumination system which concerns on embodiment of this invention. 反射鏡の正面側をみた斜視図である。It is the perspective view which looked at the front side of a reflective mirror. 反射鏡による照射エリアの照度分布図である。It is an illumination intensity distribution map of the irradiation area by a reflecting mirror. 光源、反射鏡、小反射面、及び照射エリアの関係を示す図である。It is a figure which shows the relationship between a light source, a reflective mirror, a small reflective surface, and an irradiation area. 光源6の位置の説明図であり、(A)は光源が実像となる場合、(B)は光源が虚像となる場合を示す。It is explanatory drawing of the position of the light source 6, (A) shows the case where a light source becomes a real image, (B) shows the case where a light source becomes a virtual image. 小反射面、及び照射エリアの寸法比を示す図である。It is a figure which shows the dimensional ratio of a small reflective surface and an irradiation area. 入射光及び反射光のそれぞれの光軸を含む面の説明図である。It is explanatory drawing of the surface containing each optical axis of incident light and reflected light. 光源、反射鏡、小反射面、及び照射エリアの関係を示す図である。It is a figure which shows the relationship between a light source, a reflective mirror, a small reflective surface, and an irradiation area. 反射鏡の一面の分割数(小反射面の数)と照度分布の関係を示す図である。It is a figure which shows the relationship between the division | segmentation number (number of small reflective surfaces) of one surface of a reflective mirror, and illumination intensity distribution. 反射鏡の一面の分割数(小反射面の数)と照射光量、最大照度、及び照度ムラの関係を示す図である。It is a figure which shows the relationship between the division | segmentation number (number of small reflective surfaces) of one surface of a reflective mirror, irradiation light quantity, maximum illumination intensity, and illumination intensity nonuniformity. 本発明の変形例を示す図である。It is a figure which shows the modification of this invention. 本発明の他の変形例を示す図である。It is a figure which shows the other modification of this invention. 本発明の応用例に係る照明システムの模式図である。It is a schematic diagram of the illumination system which concerns on the application example of this invention.

以下、図面を参照して本発明の実施形態について説明する。
図1は、本実施形態に係る照明システム1の模式図である。
照明システム1は、所定の大きさの照射エリア4に光を照射して当該照射エリア4を照度ムラなく均一に、なおかつ照射エリア4のエッジのボケを抑えて照明するものであり、光源6と、この光源6の光を反射する反射型光学素子たる反射鏡8とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a lighting system 1 according to the present embodiment.
The illumination system 1 irradiates light to an irradiation area 4 of a predetermined size to illuminate the irradiation area 4 uniformly without uneven illuminance, and suppress blurring of the edge of the irradiation area 4. And a reflecting mirror 8 which is a reflective optical element for reflecting the light from the light source 6.

光源6は、出力が比較的大きな高圧水銀ランプ等の放電ランプ12と、放電ランプ12の光を出力する凹面鏡としてのリフレクター14とを備え、リフレクター14の光軸K上に反射鏡8が配置されている。なお、リフレクター14には、凹面が放物反射面の放物面鏡、或いは凹面が楕円反射面の楕円面鏡を用いることができる。
反射鏡8は、光源6の光軸K上に傾斜角α(図示例では45°)で配置され、光源6から入射する光を略直角に光路を折り曲げて対面する照射面3を所定の大きさの照射エリア4で照明する。
The light source 6 includes a discharge lamp 12 such as a high-pressure mercury lamp having a relatively large output, and a reflector 14 as a concave mirror that outputs light from the discharge lamp 12, and a reflecting mirror 8 is disposed on the optical axis K of the reflector 14. ing. The reflector 14 can be a parabolic mirror whose concave surface is a parabolic reflecting surface or an elliptical mirror whose concave surface is an elliptical reflecting surface.
The reflecting mirror 8 is disposed on the optical axis K of the light source 6 at an inclination angle α (45 ° in the illustrated example), and the irradiation surface 3 that faces the light incident from the light source 6 by bending the optical path at a substantially right angle is a predetermined size. Illuminate in the irradiation area 4.

この反射鏡8は、光源6の光束の断面形状にかかわらず、照射面3を所定大きさの矩形状の照射エリア4でエッジのボケを抑えて照明するものであり、かかる反射鏡8について以下に説明する。   The reflecting mirror 8 illuminates the irradiation surface 3 with a rectangular irradiation area 4 having a predetermined size while suppressing the blurring of the edge regardless of the cross-sectional shape of the light beam of the light source 6. Explained.

図2は反射鏡8の正面側をみた斜視図であり、図3は当該反射鏡8の反射光による照射例の一例たる照度分布図である。なお、図3において、四角枠Wは、反射鏡8により造られる照射エリア4の設計値である。
反射鏡8は、図2に示すように、板状の基体30を有し、当該基体30の表面側の一面に多数の小反射面32を設けて主たる反射面31が構成されている。
小反射面32はそれぞれ、所定の曲率半径r2を有する球面の凹面反射面を構成し、それぞれが同一箇所及び同一寸法の照射エリア4を狙って反射光を照射する。これにより、各小反射面32の反射光20が照射エリア4で重畳されることで、図3に示すように、照射エリア4での照度分布が一様となり照度ムラを解消される。換言すれば、多数の小反射面32のそれぞれがフライアイレンズにおける微小レンズと光学的に同様の機能を備えることで、かかる反射鏡8が光インテグレータとして機能する。
FIG. 2 is a perspective view of the front side of the reflecting mirror 8, and FIG. 3 is an illuminance distribution diagram as an example of irradiation by the reflected light of the reflecting mirror 8. In FIG. 3, a square frame W is a design value of the irradiation area 4 formed by the reflecting mirror 8.
As shown in FIG. 2, the reflecting mirror 8 has a plate-like base body 30, and a plurality of small reflecting surfaces 32 are provided on one surface side of the base body 30 to constitute a main reflecting surface 31.
Each of the small reflecting surfaces 32 constitutes a spherical concave reflecting surface having a predetermined radius of curvature r2, and each irradiates reflected light aiming at an irradiation area 4 having the same location and the same size. Thereby, the reflected light 20 of each small reflection surface 32 is superimposed on the irradiation area 4, so that the illuminance distribution in the irradiation area 4 becomes uniform and the illuminance unevenness is eliminated, as shown in FIG. In other words, each of the many small reflecting surfaces 32 has a function optically similar to that of the micro lens in the fly-eye lens, so that the reflecting mirror 8 functions as an optical integrator.

小反射面32のそれぞれは、全て平面視形状(基体30の一面を正対して見た形状)及び断面視形状が同一形状を成し、それぞれの反射光が照射面に同一の形状、及び同一寸法の照射エリア4を造る。照射面に反射光が直入射する状態では、照射エリア4の形状は小反射面32の平面視形状と略同一形状となる。すなわち、光源6の出力光の光束の断面形状にかかわらず、小反射面32の平面視形状で規定した形状と略合同な照射エリア4が造られることから、小反射面32の平面視形状を所望の形状に設定することで、所望の形状の照射エリア4を得ることができる。なお、小反射面32の曲率半径r2は、照射エリア4及び小反射面32の寸法や、光源6から反射鏡8までの距離によって決定されるが、これについては後述する。また、小反射面32においては、反射角にかかわらず、小反射面32の平面視形状と同じ形状の照射エリア4を造るべく、主軸入射光P(図4)と反射光Q(図4)の光線を含む面E(図4)が交差してできる交線Fの曲率半径r2eは曲率半径r2と異なっており、これについても後述する。   Each of the small reflective surfaces 32 has the same shape in plan view (a shape viewed from one surface of the substrate 30 facing the front) and the cross-sectional shape, and each reflected light has the same shape and the same on the irradiation surface. Build an irradiation area 4 of dimensions. In a state where the reflected light is directly incident on the irradiation surface, the shape of the irradiation area 4 is substantially the same as the shape of the small reflection surface 32 in plan view. That is, regardless of the cross-sectional shape of the light beam of the output light from the light source 6, the irradiation area 4 substantially the same as the shape defined by the plan view shape of the small reflection surface 32 is formed. By setting the desired shape, it is possible to obtain an irradiation area 4 having a desired shape. The radius of curvature r2 of the small reflecting surface 32 is determined by the dimensions of the irradiation area 4 and the small reflecting surface 32 and the distance from the light source 6 to the reflecting mirror 8, which will be described later. Further, in the small reflection surface 32, the main axis incident light P (FIG. 4) and the reflected light Q (FIG. 4) are formed so as to form the irradiation area 4 having the same shape as the planar view of the small reflection surface 32 regardless of the reflection angle. The curvature radius r2e of the intersecting line F formed by the intersection of the plane E (FIG. 4) including the light beam is different from the curvature radius r2, and this will also be described later.

基体30の一面においては、小反射面32同士の間の隙間が大きいほど、反射面3で反射がコントロールされない光が増えて、目標とする照射エリア4の光量が減り、さらに、コントロールされていない光(迷光)によって照射エリア4のエッジがボケてくる。
そこで本実施形態では、小反射面32のそれぞれを、基体30の一面に隙間無く配置可能な平面視多角形状(本実施形態では矩形状:図2参照)としている。これにより、光源6の出力光5を効率良く反射して照射エリア4の照度を高めることができ、シャープな照射エリア4が造られる。
なお、照射エリア4の形状によっては、基体30の一面に隙間無く小反射面32を設けることができない。この場合には、当該隙間となる箇所に無反射加工や光を散らす加工を施すことで、照射エリア4のエッジのボケを抑制しても良い。
On one surface of the substrate 30, the larger the gap between the small reflecting surfaces 32, the more light that is not controlled by the reflecting surface 3, and the less the amount of light in the target irradiation area 4 is. The edge of the irradiation area 4 is blurred by light (stray light).
Therefore, in the present embodiment, each of the small reflection surfaces 32 has a polygonal shape in plan view (rectangular shape in the present embodiment: see FIG. 2) that can be arranged on one surface of the base body 30 without a gap. Thereby, the output light 5 of the light source 6 can be efficiently reflected to increase the illuminance of the irradiation area 4, and a sharp irradiation area 4 is created.
Depending on the shape of the irradiation area 4, the small reflection surface 32 cannot be provided on one surface of the substrate 30 without a gap. In this case, blurring of the edge of the irradiation area 4 may be suppressed by performing non-reflective processing or processing that scatters light in the gap.

小反射面32のそれぞれが全て同一形状を成すことは上述の通りであるが、この場合、基体30の一面が平面であると、小反射面32のそれぞれが照射面を照射する箇所にズレが生じ、これに伴い照射エリア4のエッジの先鋭さが悪くなる。
そこで本実施形態では、図2に示すように、基体30の一面を、照射面3で焦点を結ぶ球面鏡の曲率半径r1を持つ凹面としている。
これにより、各小反射面32の照射面での照射エリア4の位置ズレが抑えられ、照射エリア4のエッジでのボケがより効果的に抑えられ明瞭にすることができる。
As described above, each of the small reflection surfaces 32 has the same shape. However, in this case, if one surface of the base 30 is a flat surface, the small reflection surfaces 32 are displaced from each other on the irradiation surface. As a result, the sharpness of the edge of the irradiation area 4 becomes worse.
Therefore, in this embodiment, as shown in FIG. 2, one surface of the substrate 30 is a concave surface having a radius of curvature r <b> 1 of a spherical mirror that is focused on the irradiation surface 3.
Thereby, the position shift of the irradiation area 4 on the irradiation surface of each small reflection surface 32 is suppressed, and blurring at the edge of the irradiation area 4 can be more effectively suppressed and clarified.

かかる反射鏡8の基体30の曲率半径r1、及び小反射面32の曲率半径r2は、次のようにして規定され、この規定に基づいて反射鏡8を設計することで、照度ムラ、及びエッジのボケを抑えた照射エリア4を造る反射鏡8が得られる。
すなわち、図4に示すように、反射鏡8に入る光束の起点もしくは等価的に1点と見なされる光源6の位置をA、反射鏡8の位置をB、照射エリア4の位置(すなわち照射面の位置)をCとする。また、反射鏡8、小反射面32及び照射エリア4の平面視形状は正方形であって、それぞれの1辺の長さがd1、d2、及びd3とする。また、光源6と反射鏡8の間の距離をL1、反射鏡8と照射面までの距離をL2とする。
なお、小反射面32は反射鏡8の一面を縦横に隙間無く配置して設けられており、反射鏡8、小反射面32、及び照射エリア4の縦及び横は共に同じ方向を向き、以下では、これらの縦の方向を鉛直方向、横の方向を水平方向と定義する。
基体30の曲率半径r1は、反射面31に小反射面32が設けられていない場合に光源像を照射エリア4に結像する当該反射面31の曲率であって、反射鏡8、光源6、及び照射エリア4の距離によって決まり次式(1)のように規定される。この基体30の曲率半径r1の曲率の面に、各小反射面32の輪郭の頂点を合わせて配置して上記反射面31が構成されている。
The radius of curvature r1 of the base 30 of the reflecting mirror 8 and the radius of curvature r2 of the small reflecting surface 32 are defined as follows, and by designing the reflecting mirror 8 based on this rule, uneven illuminance and edge Thus, the reflecting mirror 8 that makes the irradiation area 4 with reduced blur is obtained.
That is, as shown in FIG. 4, the position of the light source 6 that is regarded as the starting point of the light beam entering the reflecting mirror 8 or equivalently one point is A, the position of the reflecting mirror 8 is B, and the position of the irradiation area 4 (that is, the irradiation surface). C). Moreover, the planar view shape of the reflective mirror 8, the small reflective surface 32, and the irradiation area 4 is a square, and the length of each one side is set to d1, d2, and d3. The distance between the light source 6 and the reflecting mirror 8 is L1, and the distance between the reflecting mirror 8 and the irradiation surface is L2.
The small reflection surface 32 is provided by arranging one surface of the reflection mirror 8 in the vertical and horizontal directions without any gaps, and the vertical and horizontal directions of the reflection mirror 8, the small reflection surface 32, and the irradiation area 4 are all in the same direction. The vertical direction is defined as the vertical direction, and the horizontal direction is defined as the horizontal direction.
The curvature radius r1 of the base body 30 is a curvature of the reflection surface 31 that forms a light source image in the irradiation area 4 when the reflection surface 31 is not provided with the small reflection surface 32, and the reflection mirror 8, the light source 6, And it is determined by the distance of the irradiation area 4 and defined as the following equation (1). The reflecting surface 31 is configured by arranging the apex of the contour of each small reflecting surface 32 on the surface of the base 30 having the curvature radius r1.

なお、光源6と反射鏡8の間の距離をL1について補足すると、光源6の位置Aは光源6のランプ12の位置でも良いし、光源6が集光鏡たるリフレクター14を備えている場合には、当該リフレクター14により結像された点でも良い。リフレクター14の結像点を光源6の位置Aとする場合、図5(A)に示すように、リフレクター14の結像点が光源6と反射鏡8の間に位置することで光源6が実像になるときには、距離L1の符号は正となる。また図5(B)に示すように、リフレクター14の結像点が光源6からみて反射鏡8を超えたところに位置することで光源6が虚像になるときには、距離L1の符号は負となる。反射鏡8と照射面の距離L2については常に正の値である。   If the distance between the light source 6 and the reflecting mirror 8 is supplemented with respect to L1, the position A of the light source 6 may be the position of the lamp 12 of the light source 6, or the light source 6 includes a reflector 14 that is a condensing mirror. May be a point imaged by the reflector 14. When the imaging point of the reflector 14 is the position A of the light source 6, the light source 6 is a real image because the imaging point of the reflector 14 is positioned between the light source 6 and the reflecting mirror 8 as shown in FIG. The sign of the distance L1 is positive. As shown in FIG. 5B, when the light source 6 becomes a virtual image because the imaging point of the reflector 14 is located beyond the reflecting mirror 8 when viewed from the light source 6, the sign of the distance L1 is negative. . The distance L2 between the reflecting mirror 8 and the irradiation surface is always a positive value.

したがって、光源6が実像の場合(すなわちL1>0)、式(1)に基づき曲率半径r1は正の値となることから、図5(A)に示すように、反射鏡8の反射面31の曲面形状は光源6からみて凹面となる。
一方、光源6が虚像(すなわちL1<0)であって、距離L1と距離L2が等しい場合には、式(1)の分母がゼロとなることから曲率半径r1は無限大となり、略平面となる。
また光源6が虚像(すなわちL1<0)であって、距離L1の絶対値が距離L2より大きい場合には、式(1)に基づき曲率半径r1は負の値となることから、図5(B)に示すように、反射鏡8の反射面31の曲率形状は光源6からみて凸面となる。
Therefore, when the light source 6 is a real image (that is, L1> 0), the radius of curvature r1 is a positive value based on the equation (1). Therefore, as shown in FIG. The curved surface shape is concave when viewed from the light source 6.
On the other hand, when the light source 6 is a virtual image (that is, L1 <0) and the distance L1 and the distance L2 are equal, the denominator of the equation (1) becomes zero, so the radius of curvature r1 becomes infinite and is substantially flat. Become.
Further, when the light source 6 is a virtual image (ie, L1 <0) and the absolute value of the distance L1 is larger than the distance L2, the radius of curvature r1 becomes a negative value based on the equation (1). As shown in B), the curvature shape of the reflecting surface 31 of the reflecting mirror 8 is a convex surface when viewed from the light source 6.

また、反射鏡8と照射面との距離L2を、小反射面32の幅d2と照射面での照射エリア4の幅d3の比によってできる内分点M1によって図6(A)に示すように分け、反射鏡8から内分点M1までの距離をm1とすると、m1は、次式(2)により表され、また、このm1を用いて小反射面32の曲率半径r2は次式(3)によって規定される。   Further, as shown in FIG. 6A, the distance L2 between the reflecting mirror 8 and the irradiation surface is represented by an internal dividing point M1 formed by the ratio of the width d2 of the small reflection surface 32 and the width d3 of the irradiation area 4 on the irradiation surface. If the distance from the reflecting mirror 8 to the internal dividing point M1 is m1, m1 is expressed by the following equation (2), and the curvature radius r2 of the small reflecting surface 32 is expressed by the following equation (3) using this m1. ).

なお、小反射面32の球面反射面を凹面に代えて凸面とすることもできる。この場合には、図6(B)に示すように、反射鏡8と照射面との距離L2を、小反射面32の幅d2と照射エリア4の幅d3の比によってできる外分点M2によって分け、反射鏡8から外分点M2までの距離をm2とすると、このm2は、次式(4)により表され、また、このm2を用いて小反射面32の曲率半径r2は次式(5)によって規定される。   The spherical reflecting surface of the small reflecting surface 32 may be a convex surface instead of a concave surface. In this case, as shown in FIG. 6B, the distance L2 between the reflecting mirror 8 and the irradiation surface is determined by an external dividing point M2 that can be obtained by the ratio of the width d2 of the small reflection surface 32 and the width d3 of the irradiation area 4. Assuming that the distance from the reflecting mirror 8 to the outer dividing point M2 is m2, this m2 is expressed by the following equation (4), and the radius of curvature r2 of the small reflecting surface 32 is expressed by the following equation (2) using this m2. 5).

なお、上記式(1)、(3)、(5)で決められている曲率半径r1、r2は、反射鏡8の製造時に必ずしも厳密に適用される必要はなく多少のズレは許容されるものであり、設計上の目安になるものである。
すなわち、曲率半径r1においては、製造上の観点より略平面ではなく完全に平面にて実施する場合もあり、また反射角度と光源の大きさ等の関係より照射エリア4のエッジのボケを隅部で小さくするために、式(1)で計算される値より小さい場合もある。
曲率半径r2においては、式(1)で計算された値よりも曲率半径r1が小さい場合や平面である場合、光源6が大きさを持つ観点から照射エリア4での実行的な照度ムラを抑えるため、式(3)、(5)で計算される値より小さく設定することで、これら式(3)、(5)の等号が不等号(≦)となることもある。
Note that the radii of curvature r1 and r2 determined by the above formulas (1), (3), and (5) do not necessarily have to be strictly applied when the reflecting mirror 8 is manufactured, and some deviation is allowed. This is a design guide.
That is, with respect to the radius of curvature r1, there may be a case where the surface is not a substantially flat surface but a completely flat surface from the viewpoint of manufacturing. In some cases, the value is smaller than the value calculated by Equation (1).
In the case of the radius of curvature r2, if the radius of curvature r1 is smaller than the value calculated by the equation (1) or if it is a flat surface, effective illuminance unevenness in the irradiation area 4 is suppressed from the viewpoint of the size of the light source 6. For this reason, by setting the value smaller than the value calculated by the equations (3) and (5), the equal signs of these equations (3) and (5) may become inequality signs (≦).

また、図7、図8に示すように、反射鏡8からみて主軸入射光Pとその反射光Qを含む面Eを定義する。この図7において、点B0は反射鏡8と主軸入射光Pとの交点、C0は照射面と反射光Qの光軸との交点を示し、上記面Eは、光源6の位置Aと、点B0、C0の3点にて決められる面とも言える。なお、点Dは反射鏡8の曲率中心を示し、点Daは面Eと小反射面32が交わってできる交線(以下、曲率半径r2eと言う)の曲率中心を示す。
この面E内において、反射鏡8での反射角θ(主軸入射光Pに対する反射光Qの角度2θの2分の1)と、面E内での小反射面32の幅d2eは、小反射面32の上記幅d2に対して次式(6)の関係を有し、或いは、面E内での小反射面32の曲率半径r2eは、上記式(5)で規定された上記の曲率半径r2に対して次式(7)の関係を有する。
Further, as shown in FIGS. 7 and 8, a plane E including the principal axis incident light P and the reflected light Q is defined as viewed from the reflecting mirror 8. In FIG. 7, point B0 indicates the intersection between the reflecting mirror 8 and the principal axis incident light P, C0 indicates the intersection between the irradiation surface and the optical axis of the reflected light Q, and the surface E indicates the position A of the light source 6 and the point It can be said that the surface is determined by three points, B0 and C0. The point D indicates the center of curvature of the reflecting mirror 8, and the point Da indicates the center of curvature of an intersection line (hereinafter referred to as a curvature radius r2e) formed by the intersection of the surface E and the small reflecting surface 32.
Within this surface E, the reflection angle θ at the reflecting mirror 8 (1/2 of the angle 2θ of the reflected light Q with respect to the principal axis incident light P) and the width d2e of the small reflection surface 32 within the surface E are small reflections. It has the relationship of the following formula (6) with respect to the width d2 of the surface 32, or the radius of curvature r2e of the small reflective surface 32 in the surface E is the radius of curvature defined by the formula (5). It has the relationship of following Formula (7) with respect to r2.

上記式(6)、(7)の2式には相関関係があり、次式(8)が成立する。   There is a correlation between the two formulas (6) and (7), and the following formula (8) is established.

この式(8)を満たすように、小反射面32の寸法形状を決定することで、よりエッジを抑えた照射エリア4が得られる。   By determining the size and shape of the small reflective surface 32 so as to satisfy this equation (8), the irradiation area 4 with a further suppressed edge can be obtained.

前掲図1に示す光学配置を前提とし、光源6の光束の断面が略円形状であり、また照射エリア4及び小反射面32が略正方形であると仮定して、式(8)を満たす反射鏡8について更に詳述する。
今、入射光に対する反射光の角度2θ=90°とした場合、小反射面32の反射光Qの光束は反射方向(反射光Qの直進方向)に対し鉛直方向に1/cos45°≒1.41倍に伸張されて照射される。照射面で縦横同じ長さd3の照射エリア4とするには、上記式(6)に基づき面E内の幅d2eをcosθ倍小さくすれば良いが、反射鏡8全体としてみれば照射エリア4の寸法は、反射光Qの光束を45°で切った射影像で造られるため、鉛直方向が1/cos45°≒1.41倍だけ伸張されることを考慮すると、水平方向にも1/cosθだけ長くする必要がある。
Assuming the optical arrangement shown in FIG. 1 above, assuming that the cross section of the light beam of the light source 6 is substantially circular, and the irradiation area 4 and the small reflection surface 32 are substantially square, the reflection satisfying the equation (8) The mirror 8 will be further described in detail.
Now, assuming that the angle 2θ of the reflected light with respect to the incident light is 90 °, the light flux of the reflected light Q of the small reflecting surface 32 is 1 / cos 45 ° ≈1 in the vertical direction with respect to the reflecting direction (the straight traveling direction of the reflected light Q). Irradiated after being stretched 41 times. In order to make the irradiation area 4 having the same length d3 in the irradiation surface, the width d2e in the surface E may be reduced by cos θ times based on the above formula (6). Since the dimension is made by a projection image obtained by cutting the light flux of the reflected light Q at 45 °, considering that the vertical direction is extended by 1 / cos 45 ° ≈1.41 times, the horizontal direction is also 1 / cos θ. It needs to be long.

したがって、面E内に並んで配置される小反射面32の数は、当該面Eと垂直な方向に並んで配置される小反射面32の数に対して、1/cosθ/cosθ=1/cos2θ倍だけ必要となり、主軸入射光Pに対して反射鏡8を45°に傾けて配置した場合は、面Eに垂直な方向に並んで配置される小反射面32の数に対し2倍だけ必要となる。また、反射鏡8の一面において、面E内に並んで配置される小反射面32の数と、当該面Eと垂直な方向に並んで配置される小反射面32の数とを同じにするには幅d2eを1/cosθ長くし、d2e=d2/cosθとなる必要があるため、その時の上記面E内の曲率半径r2eについては、r2e=r2/cos2θが導かれ、上記の通り反射鏡8を45°に傾けて配置した場合は、上記曲率半径r2に対して2倍となる。 Therefore, the number of the small reflective surfaces 32 arranged side by side in the surface E is 1 / cos θ / cos θ = 1 / the number of the small reflective surfaces 32 arranged in the direction perpendicular to the surface E. Cos 2 θ times are required, and when the reflecting mirror 8 is inclined at 45 ° with respect to the principal axis incident light P, it is 2 for the number of small reflecting surfaces 32 arranged side by side in the direction perpendicular to the surface E. Only double is required. Further, on one surface of the reflecting mirror 8, the number of small reflection surfaces 32 arranged side by side in the surface E is the same as the number of small reflection surfaces 32 arranged in a direction perpendicular to the surface E. In this case, the width d2e needs to be increased by 1 / cos θ and d2e = d2 / cos θ, so that r2e = r2 / cos 2 θ is derived for the radius of curvature r2e in the surface E at that time, as described above. When the reflecting mirror 8 is disposed at an angle of 45 °, the reflecting mirror 8 is twice the curvature radius r2.

なお、上記式(6)〜(8)は、照射エリア4の縦横の比が同じ場合(すなわち、図8においてd3/d3e=1)に導かれるものである。照射エリア4の縦横比が1:1以外の場合には、その比率をν(すなわちd3/d3e=ν)と表記すると、上記式(6)〜(8)は、それぞれ式(9)〜(11)で表されることとなる。   In addition, said Formula (6)-(8) is guide | induced when the aspect ratio of the irradiation area 4 is the same (namely, d3 / d3e = 1 in FIG. 8). When the aspect ratio of the irradiation area 4 is other than 1: 1, when the ratio is expressed as ν (that is, d3 / d3e = ν), the above formulas (6) to (8) are expressed by the formulas (9) to (9), respectively. 11).

反射鏡8の設計時には、上記のようにして、光源6、照射面及び反射鏡8の配置や照射エリア4の寸法形状等から反射鏡8の基体30の曲率半径r1や小反射面32の曲率半径r2を決定する。
このとき、反射鏡8に設ける小反射面32の数、すなわち1個の小反射面32の寸法(縦横の幅d2)については、実験やシミュレーションを通じて、照射面の照射エリア4での照度ムラが抑えられる数値を求めることで決定される。
When designing the reflecting mirror 8, as described above, the radius of curvature r1 of the base 30 of the reflecting mirror 8 and the curvature of the small reflecting surface 32 are determined from the arrangement of the light source 6, the irradiation surface and the reflecting mirror 8, the size and shape of the irradiation area 4, and the like. The radius r2 is determined.
At this time, with respect to the number of small reflection surfaces 32 provided on the reflecting mirror 8, that is, the size (width and width d2) of one small reflection surface 32, illuminance unevenness in the irradiation area 4 of the irradiation surface is found through experiments and simulations. It is determined by finding a numerical value that can be suppressed.

すなわち、図9に示すように、矩形状の反射鏡8の一面を分割して矩形状の小反射面32を形成すると、縦×横の分割数を大きくほど照射エリア4での照度ムラは解消されるが、図10に示すように、分割数に対する照度ムラの変化量が飽和する閾値(図示例では、サンプル6の分割数)が存在する。この閾値の分割数で小反射面32を構成することで、製造の容易性と性能の両方のバランスがとれる。そして、この分割数に基づき小反射面32の寸法(上記幅d2)を求めて、最終的な小反射面32の寸法形状(幅d2や曲率半径r2)を決定することとなる。   That is, as shown in FIG. 9, when one surface of the rectangular reflecting mirror 8 is divided to form the rectangular small reflecting surface 32, the illuminance unevenness in the irradiation area 4 is resolved as the number of vertical and horizontal divisions increases. However, as shown in FIG. 10, there is a threshold (in the illustrated example, the number of divisions of sample 6) at which the amount of change in illuminance unevenness relative to the number of divisions is saturated. By configuring the small reflection surface 32 with the number of divisions of the threshold value, it is possible to balance both ease of manufacture and performance. Then, the dimension (the width d2) of the small reflection surface 32 is obtained based on the number of divisions, and the final dimension shape (width d2 and radius of curvature r2) of the small reflection surface 32 is determined.

なお、反射鏡8の小反射面32は、基体30の一面に形成した凹面にアルミニウム蒸着等の反射層形成処理を施して基体30と一体に形成するほかに、小反射面32を構成する凹面鏡を製造し、当該当面鏡を基体30の一面に並べて設けることで反射鏡8を構成してもよい。この構成によれば、基体30の一面への反射層形成処理が困難な大きさの反射鏡8でも簡単に製造でき、断面積が非常に大きな光束を反射して非常に大きな照射エリア4を造ることができる。   Note that the small reflecting surface 32 of the reflecting mirror 8 is formed integrally with the base body 30 by subjecting the concave surface formed on one surface of the base body 30 to a reflective layer forming process such as aluminum vapor deposition, and the concave mirror constituting the small reflecting surface 32. And the reflecting mirror 8 may be configured by arranging the temporary mirror side by side on one surface of the base 30. According to this configuration, the reflecting mirror 8 having a size that makes it difficult to form the reflecting layer on one surface of the substrate 30 can be easily manufactured, and a very large irradiation area 4 is formed by reflecting a light beam having a very large cross-sectional area. be able to.

以上説明したように、本実施形態によれば、基体30の一面に設けられた複数の小反射面32のそれぞれが同一の照射面に向けて光を反射し当該照射面で反射光を重畳して照射エリア4を照射する構成であるため、入射光に輝度ムラがある場合でも照射面での照度ムラが抑えられる。これに加え、反射型光学素子である反射鏡8であるから、単体で光路の向きを変えることもできる。   As described above, according to the present embodiment, each of the plurality of small reflection surfaces 32 provided on one surface of the substrate 30 reflects light toward the same irradiation surface, and the reflected light is superimposed on the irradiation surface. Therefore, even when the incident light has uneven brightness, uneven illumination on the irradiated surface can be suppressed. In addition, since the reflecting mirror 8 is a reflective optical element, the direction of the optical path can be changed alone.

さらに本実施形態によれば、小反射面32がそれぞれ同一の平面視形状を成す構成としたため、小反射面32の平面視形状に則した形状の照射エリアを照度ムラなく造ることができる。   Furthermore, according to the present embodiment, since the small reflection surfaces 32 have the same planar view shape, an irradiation area having a shape corresponding to the planar view shape of the small reflection surface 32 can be formed without uneven illuminance.

これに加え、本実施形態によれば、基体30の反射面31を、照射面で焦点を結ぶように曲率半径r1を持たせた面とし、当該曲率半径r1の面に各小反射面32の輪郭の頂点を合わせて配置したため、各小反射面32が造る照射エリアの位置ズレが抑えられエッジのボケが抑制される。
なお、上述したように、式(1)で求められる曲率半径r1が無限大となる場合には、反射面31を平面としても十分に近似できる。
In addition, according to the present embodiment, the reflecting surface 31 of the base body 30 is a surface having a radius of curvature r1 so as to focus on the irradiation surface, and each small reflecting surface 32 is formed on the surface of the curvature radius r1. Since the vertices of the contour are aligned, the positional deviation of the irradiation area formed by each small reflection surface 32 is suppressed, and blurring of the edge is suppressed.
As described above, when the curvature radius r1 obtained by the equation (1) is infinite, the reflection surface 31 can be sufficiently approximated to be a plane.

また本実施形態によれば、基体30の一面に小反射面32を隙間無く設けたため、コントロールされていない反射光を減らすことができ、照射エリアの照度を高め、なおかつエッジのボケも抑えることができる。   Further, according to the present embodiment, since the small reflection surface 32 is provided on one surface of the base body 30 without a gap, it is possible to reduce uncontrolled reflected light, increase the illumination intensity of the irradiation area, and suppress blurring of the edge. it can.

なお、上述した実施形態は、あくまでも本発明の一例を示すものであって、本発明の趣旨を逸脱しない範囲で任意に変形、及び応用が可能である。   The above-described embodiments are merely examples of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.

例えば、上述した実施形態では、小反射面32の球面状の反射面を凹面としたが凸面としても良い。また、小反射面32の平面視形状を矩形や正方形などの四角形としたが、これに限らず、所望の照射エリア4の形状に合わせて任意の形状を用いることができる。   For example, in the above-described embodiment, the spherical reflecting surface of the small reflecting surface 32 is a concave surface, but may be a convex surface. Moreover, although the planar view shape of the small reflective surface 32 was made into squares, such as a rectangle and a square, not only this but arbitrary shapes can be used according to the shape of the desired irradiation area 4. FIG.

また例えば、上述した実施形態では、反射鏡8への入射光を非平行光としたが、これに限らず、図11に示すように、平行光であっても良い。
また例えば図12に示すように、反射鏡8への入射光の入射角を90°以外としても良い。
For example, in the above-described embodiment, the incident light to the reflecting mirror 8 is non-parallel light. However, the present invention is not limited to this, and may be parallel light as shown in FIG.
For example, as shown in FIG. 12, the incident angle of the incident light to the reflecting mirror 8 may be other than 90 °.

また例えば、反射面31と小反射面32とが同一形状の反射鏡8を例示したが、これに限らない。すなわち、反射面31の形状を、例えば図2等に示す平面視矩形の反射面31を例えば円形状に切り取った形状としても良い。このような形状とした場合、反射面31の縁部の小反射面32では一部が切り落とされた形状となるが、反射面31を構成するそれぞれの小反射面32が同一の照射エリア4を照射するため、切り落とされた小反射面32の影響が抑制されて照射エリア4が均一に照射される。   Moreover, for example, although the reflective surface 31 and the small reflective surface 32 illustrated the reflective mirror 8 of the same shape, it is not restricted to this. That is, the shape of the reflective surface 31 may be a shape obtained by cutting the rectangular reflective surface 31 shown in FIG. In the case of such a shape, the small reflection surface 32 at the edge of the reflection surface 31 is partially cut off, but each small reflection surface 32 constituting the reflection surface 31 has the same irradiation area 4. In order to irradiate, the influence of the cut-off small reflection surface 32 is suppressed, and the irradiation area 4 is uniformly irradiated.

また例えば、光源として、反射鏡8の反射面に平行に延在するように配置された直管型のランプを用いても良い。この場合、反射鏡8の一面の形状を球状にするのではなく、ランプの延在方向に延び、なおかつ、ランプの延在方向に対し垂直方向に曲率半径r1の曲率を持つシリンドリカル形状としても良い。   Further, for example, a straight tube lamp arranged so as to extend in parallel with the reflecting surface of the reflecting mirror 8 may be used as the light source. In this case, the shape of one surface of the reflecting mirror 8 is not spherical, but may be a cylindrical shape that extends in the lamp extending direction and has a curvature radius r1 in a direction perpendicular to the lamp extending direction. .

<応用例>
次いで本発明の応用例について説明する。
図13は、本発明の応用例に係る照明システム100の模式図である。なお、同図において、図1で説明した部材には同一の符号を付し、その説明を省略する。
照明システム100は、高温環境室2の壁面9の所定の大きさの照射エリア4に光を照射して当該照射エリア4を照度ムラなく均一に、なおかつ照射エリア4のエッジのボケを抑えて照明するものである。
高温環境室2は、例えば材料生成や加工、或いは各種の化学反応が行われることで、通常の透過型光学素子の耐熱性を上回るほどに室内温度が上昇する部屋である。この高温環境室2の一面には、室内を室外から観察するための耐熱性の観察窓10が設けられている。
<Application example>
Next, application examples of the present invention will be described.
FIG. 13 is a schematic diagram of an illumination system 100 according to an application example of the present invention. In the figure, the members described in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
The illumination system 100 irradiates the irradiation area 4 having a predetermined size on the wall surface 9 of the high-temperature environment chamber 2 with light so that the irradiation area 4 is evenly uniform with no illuminance unevenness, and blurring of the edge of the irradiation area 4 is suppressed. To do.
The high-temperature environment chamber 2 is a chamber in which the room temperature rises to exceed the heat resistance of a normal transmission optical element, for example, through material generation, processing, or various chemical reactions. On one surface of the high-temperature environment chamber 2, a heat-resistant observation window 10 for observing the room from the outside is provided.

光源6は、高温環境室2の外に配置され、高温環境室2の観察窓10に対して出力光5の光軸Kが略垂直なる位置に配置され、当該観察窓10から出力光5を導入する。
また反射鏡8は、高温環境室2の室内温度に対して耐熱性を有する材料で製造されており、高温環境室2の中であって、観察窓10から導入される出力光5を壁面9に向けて反射する位置、すなわち本応用例では、光源6の光軸K上に45°の傾斜角αで配置される。これにより、反射鏡8は、観察窓10から導入されて入射する出力光5を略直角に光路を折り曲げて対面する壁面9に向けて反射し、当該壁面9を所定の大きさの照射エリア4で照明する。
The light source 6 is disposed outside the high-temperature environment chamber 2, is disposed at a position where the optical axis K of the output light 5 is substantially perpendicular to the observation window 10 of the high-temperature environment chamber 2, and outputs the output light 5 from the observation window 10. Introduce.
The reflecting mirror 8 is made of a material having heat resistance with respect to the room temperature of the high temperature environment chamber 2, and the output light 5 introduced from the observation window 10 is sent to the wall surface 9 in the high temperature environment chamber 2. In this application example, it is arranged at an inclination angle α of 45 ° on the optical axis K of the light source 6. As a result, the reflecting mirror 8 reflects the incident output light 5 introduced from the observation window 10 toward the wall 9 facing the optical path by folding the optical path at a substantially right angle, and the wall 9 is irradiated with the irradiation area 4 having a predetermined size. Illuminate with.

本応用例に係る照明システム100では、高温環境室2の外から光源6の出力光5を室内に導き反射鏡8で反射して壁面9を照明する構成であるから、光源6を耐熱構造とする必要がないため装置コストが抑えられる。また、電気を使用する光源6が高温環境室2の外に配置されるため、室内に引火性の気体が充満している場合であっても室内を安全に照明できる。
さらに、反射鏡8にあっては、基体30や小反射面32の材料の選択の幅が透過型光学系に比べて広く、高耐熱性材を用いることで高温環境下での使用が可能となり、また、金属の鋳型などによる大量生産が可能でコスト低減に効果が高い。
In the illumination system 100 according to this application example, since the output light 5 of the light source 6 is guided from the outside of the high temperature environment chamber 2 to the room and reflected by the reflecting mirror 8 to illuminate the wall surface 9, the light source 6 has a heat resistant structure. Since there is no need to do this, the apparatus cost can be reduced. Moreover, since the light source 6 using electricity is disposed outside the high-temperature environment chamber 2, the room can be safely illuminated even when the room is filled with flammable gas.
Further, the reflecting mirror 8 has a wider selection range of materials for the base 30 and the small reflecting surface 32 than the transmission optical system, and can be used in a high temperature environment by using a high heat resistant material. In addition, mass production using metal molds is possible, which is highly effective in reducing costs.

また反射面31が大面積の大型の反射鏡8を構成する場合には、同図13に示すように、基体30と小反射面32とを別々に成形した後、これらを接合することもできる。さらに、小反射面32のそれぞれを個別に成形するとともに、基体30の主表面30Aに上記曲率半径r1の曲率を形成し、この主表面30Aの面上に小反射面32のそれぞれを並べて配置することで反射面31を構成しても良い。このようにすることで、非常に大きな反射面31を簡単に製造できる。
特に、複数の小反射面32のそれぞれが同一の照射エリア4を照射するため、各小反射面32の表面にネジ等を通して基体30に取り付けても、当該ネジ等による影の発生を抑えることができる。
Further, when the reflecting surface 31 constitutes a large reflecting mirror 8 with a large area, as shown in FIG. 13, after the base 30 and the small reflecting surface 32 are separately formed, they can be joined. . Further, each of the small reflection surfaces 32 is individually molded, the curvature of the curvature radius r1 is formed on the main surface 30A of the base 30, and the small reflection surfaces 32 are arranged side by side on the surface of the main surface 30A. Thus, the reflecting surface 31 may be configured. By doing in this way, the very big reflective surface 31 can be manufactured easily.
In particular, since each of the plurality of small reflection surfaces 32 irradiates the same irradiation area 4, even if the surface of each small reflection surface 32 is attached to the base 30 through screws or the like, generation of shadows due to the screws or the like can be suppressed. it can.

なお、照明システム100は、高温環境室2の観察に限らず、これに限らず、透過型光学素子の物性に変化を及ぼす有機ガスや高出力電磁波が放射されている環境下の室内、或いは人体に有害な環境下の室内を、室外から観察する際に本発明を好適に用いることができる。   The illumination system 100 is not limited to the observation of the high temperature environment chamber 2, but is not limited to this. The present invention can be preferably used when observing a room in an environment harmful to the environment from the outside.

また本発明の反射鏡8は、規定形状の照射エリア4を形成でき、またエッジでのぼけが抑えられることから、漏光が問題となる例えば道路照明や看板照明に応用することもできる。
また、照射エリア4の形状を小反射面32の形状で規定できるため、投光器やプロジェクタ装置にも応用することができ、また例えば、建物外部から光を導入し屋内の壁面を照明する光ダクトに応用することもできる。
The reflecting mirror 8 of the present invention can also be applied to road lighting and signboard lighting where leakage of light is a problem because the irradiation area 4 having a prescribed shape can be formed and blurring at the edge can be suppressed.
In addition, since the shape of the irradiation area 4 can be defined by the shape of the small reflecting surface 32, it can be applied to a projector and a projector device. For example, it can be applied to an optical duct that illuminates an indoor wall surface by introducing light from outside the building. It can also be applied.

特に、投光器において、照度むらの発生を少なくして所定の範囲を照射する場合において、通常の拡散板を用いると中心付近の照度むらは、なだらかにできるが周辺光量は著しく減少する。これを避けるため拡散性の強い拡散板を用いると、所定の範囲を外れ、かなり広い範囲に光が拡散してしまう。
そこで、インテグレータレンズのような透過型光学素子を用いた場合、例えば建物の壁面や看板等の大面積を照明する大型の投光器に適用しようとすると、照射面積に比例して透過型光学素子が大きくなり重量、コストの面から実用的とは言い難いものであった。
これに対して、本発明に係る反射鏡8によれば、安価な金属製反射板で小反射面32を形成し、当該金属製反射板を多数個基体30の一面の上に並べて配置することにより、照度むらが少なく所定の範囲からの漏光が少ない照明を容易に実現できる。
In particular, in a projector where the occurrence of illuminance unevenness is reduced to irradiate a predetermined range, if a normal diffuser plate is used, the illuminance unevenness near the center can be made smooth, but the amount of peripheral light is significantly reduced. In order to avoid this, if a diffusing plate having a strong diffusivity is used, light is diffused in a considerably wide range outside the predetermined range.
Therefore, when a transmissive optical element such as an integrator lens is used, for example, if it is applied to a large projector that illuminates a large area such as a wall surface of a building or a signboard, the transmissive optical element increases in proportion to the irradiation area. Therefore, it was difficult to say that it was practical in terms of weight and cost.
On the other hand, according to the reflecting mirror 8 according to the present invention, the small reflecting surface 32 is formed by an inexpensive metal reflecting plate, and the metal reflecting plates are arranged side by side on one surface of the base body 30. Accordingly, it is possible to easily realize illumination with little illuminance unevenness and little light leakage from a predetermined range.

1 照明システム
2 高温環境室
3 照射面
4 照射エリア
5 出力光
6 光源
8 反射鏡(反射型光学素子)
20 反射光
30 基体
31 反射面
32 小反射面
r1 基体の曲率半径
r2、r2e 小反射面の曲率半径
DESCRIPTION OF SYMBOLS 1 Illumination system 2 High temperature environment room 3 Irradiation surface 4 Irradiation area 5 Output light 6 Light source 8 Reflective mirror (reflection type optical element)
20 Reflected light 30 Base 31 Reflecting surface 32 Small reflecting surface r1 Curvature radius of base r2, r2e Curvature radius of small reflecting surface

Claims (4)

光を反射する所定曲率半径の複数の小反射面を並べて反射面を構成し、前記小反射面のそれぞれが同一の照射面に向けて光を反射し当該照射面で反射光を重畳することを特徴とする反射型光学素子。   A plurality of small reflection surfaces having a predetermined radius of curvature that reflect light are arranged to form a reflection surface, each of the small reflection surfaces reflects light toward the same irradiation surface, and the reflected light is superimposed on the irradiation surface. A reflective optical element. 前記小反射面がそれぞれ同一の平面視形状を成すことを特徴とする請求項1に記載の反射型光学素子。   The reflective optical element according to claim 1, wherein the small reflective surfaces have the same planar view shape. 前記反射面を、前記照射面で焦点を結ぶように曲率を持たせた面とし、当該面に各小反射面の輪郭の頂点を合わせて配置したことを特徴とする請求項1又は2に記載の反射型光学素子。   3. The reflection surface according to claim 1, wherein the reflection surface is a surface having a curvature so as to be focused on the irradiation surface, and the vertex of the outline of each small reflection surface is aligned with the surface. Reflective optical element. 前記反射面に前記小反射面を隙間無く設けたことを特徴とする請求項1乃至3のいずれかに記載の反射型光学素子。   4. The reflective optical element according to claim 1, wherein the small reflective surface is provided on the reflective surface without any gap.
JP2011087999A 2011-04-12 2011-04-12 Reflective optical element Expired - Fee Related JP5724561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087999A JP5724561B2 (en) 2011-04-12 2011-04-12 Reflective optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087999A JP5724561B2 (en) 2011-04-12 2011-04-12 Reflective optical element

Publications (2)

Publication Number Publication Date
JP2012220815A true JP2012220815A (en) 2012-11-12
JP5724561B2 JP5724561B2 (en) 2015-05-27

Family

ID=47272363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087999A Expired - Fee Related JP5724561B2 (en) 2011-04-12 2011-04-12 Reflective optical element

Country Status (1)

Country Link
JP (1) JP5724561B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098439A1 (en) * 2014-12-16 2016-06-23 株式会社エンプラス Reflection member, illumination device, surface light source device, display device, and electronic apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151101A (en) * 1983-02-08 1984-08-29 Toshiba Corp Concave mirror
JPS6133304U (en) * 1984-07-31 1986-02-28 ウシオ電機株式会社 lighting equipment
JPH0388215U (en) * 1989-12-27 1991-09-10
JP2000305168A (en) * 1999-04-20 2000-11-02 Fujitsu General Ltd Beam-condensing unit
JP2001244168A (en) * 2000-02-25 2001-09-07 Nikon Corp Aligner and method of manufacturing microdevice using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151101A (en) * 1983-02-08 1984-08-29 Toshiba Corp Concave mirror
JPS6133304U (en) * 1984-07-31 1986-02-28 ウシオ電機株式会社 lighting equipment
JPH0388215U (en) * 1989-12-27 1991-09-10
JP2000305168A (en) * 1999-04-20 2000-11-02 Fujitsu General Ltd Beam-condensing unit
JP2001244168A (en) * 2000-02-25 2001-09-07 Nikon Corp Aligner and method of manufacturing microdevice using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098439A1 (en) * 2014-12-16 2016-06-23 株式会社エンプラス Reflection member, illumination device, surface light source device, display device, and electronic apparatus
JP2016114851A (en) * 2014-12-16 2016-06-23 株式会社エンプラス Reflection member, lighting system, surface light source device, display device, electronic apparatus
US10458622B2 (en) 2014-12-16 2019-10-29 Enplas Corporation Polygonally-shaped reflection member having inclined vertex portions for reflecting light from a light source

Also Published As

Publication number Publication date
JP5724561B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
EP2989375B1 (en) Thin luminaire
JP6370626B2 (en) Illumination optical system, illumination device, and illumination optical element
US9851069B2 (en) Lighting device, lens, system and method
JP3686887B2 (en) Illumination optical system and enlarged projection display device
JP6410094B2 (en) Head-up display
JP2019139163A (en) Diffusion plate, method for designing diffusion plate, display device, projection device, and illumination device
JP2006086008A (en) Fresnel lens and lighting system
JP2017009864A (en) Liquid crystal display device
JP2023539486A (en) Medialess projection system
US9638992B2 (en) Illumination optical system and image projection apparatus
JP5902499B2 (en) Lighting device
Tsai Design of free-form reflector for vehicle LED low-beam headlamp
JP5724561B2 (en) Reflective optical element
JP2014006331A (en) Luminous flux control member, light-emitting device, illumination device, and display device
CN113917684A (en) Reflective display
WO2016194798A1 (en) Planar light source device and liquid crystal display device
JP5532772B2 (en) Projection display
Ley et al. Imaging and non-imaging illumination of DLP for high resolution headlamps
JP5830828B2 (en) Backlight device and liquid crystal display
CN102661537B (en) Backlight module and liquid crystal display
WO2012104958A1 (en) Light source device and projection display device
JP2003043411A (en) Illumination optical system
JP5266660B2 (en) Projection display
JP2012181542A (en) Optical member, strobe device including optical member, and image recording apparatus incorporating strobe device
JP2006139202A (en) Optical pipe, illumination optical apparatus, and optical apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5724561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees