JP2012219857A - Fluid control valve - Google Patents

Fluid control valve Download PDF

Info

Publication number
JP2012219857A
JP2012219857A JP2011083818A JP2011083818A JP2012219857A JP 2012219857 A JP2012219857 A JP 2012219857A JP 2011083818 A JP2011083818 A JP 2011083818A JP 2011083818 A JP2011083818 A JP 2011083818A JP 2012219857 A JP2012219857 A JP 2012219857A
Authority
JP
Japan
Prior art keywords
valve
valve seat
contact
valve body
seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011083818A
Other languages
Japanese (ja)
Other versions
JP5371153B2 (en
Inventor
Jutaro Kageyama
寿太郎 蔭山
Tetsuya Ishihara
哲哉 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2011083818A priority Critical patent/JP5371153B2/en
Publication of JP2012219857A publication Critical patent/JP2012219857A/en
Application granted granted Critical
Publication of JP5371153B2 publication Critical patent/JP5371153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lift Valve (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid control valve which includes two valve seats and two valve elements provided in upper and lower portions of a valve stem respectively and controls the flow of fluid by abutting or separating the two valve elements on or from each other, the fluid control valve having high productivity and manufactured inexpensively.SOLUTION: In a gas combustion composite valve, an upper valve seat-abutting part of an upper valve element 25U, at least abutted on an upper valve seat 15U and a lower valve seat-abutting part of a lower valve seat 15L, at least abutted on a lower valve element 25L, are each made of a rubber of predetermined hardness. In the upper valve seat-abutting part, a lower surface 27Ua that is a surface abutted on the upper valve seat 15U is formed in a plane shape. The lower valve seat-abutting part has, at an edge outside the diameter in the radial direction RD orthogonal with the axial direction AX, an abutment deformable part 29L which is protruded in a direction in which a component at a lower side in an axial direction AX and a component at an outside of a diameter in a radial direction RD are combined. The abutment deformable part 29L is elastically deformed and abutted on the lower valve seat 15L.

Description

この発明は、弁体を弁座に当接または離間させて流体の流れを制御する流体制御弁に関するものである。詳しくは、1つの弁軸に、上下に同軸上に設けた2つの弁体を、軸方向に移動させ、2つの弁座に当接させて閉弁する流体制御弁の弁座シール構造に関する。   The present invention relates to a fluid control valve that controls the flow of fluid by bringing a valve body into contact with or separating from a valve seat. More specifically, the present invention relates to a valve seat seal structure for a fluid control valve in which two valve bodies provided coaxially with each other on one valve shaft are moved in the axial direction so as to abut against the two valve seats to close.

従来、プロパン、都市ガス等の燃焼ガスの流れを制御する流体制御弁として、例えば、特許文献1に開示された弁及び/又は調圧器とその組立法が挙げられる。図14に、特許文献1に開示された弁の弁座シール構造を示す。図15は、図14中、E部の拡大図である。
特許文献1は、図14及び図15に示すように、1つの弁軸540に、上下に同軸上に設けた2つの上側弁体525Uと、この上側弁体525Uとは別体の下側弁体525Lとを、軸方向AXに移動させ、2つの上側弁座515U、下側弁座515Lに当接させて閉弁する弁座シール構造の弁である。
Conventionally, as a fluid control valve for controlling the flow of combustion gas such as propane and city gas, for example, a valve and / or a pressure regulator disclosed in Patent Document 1 and an assembling method thereof can be cited. FIG. 14 shows a valve seat seal structure disclosed in Patent Document 1. FIG. 15 is an enlarged view of a portion E in FIG.
As shown in FIGS. 14 and 15, Patent Document 1 discloses that two upper valve bodies 525 </ b> U provided coaxially on one valve shaft 540 vertically and a lower valve separate from the upper valve body 525 </ b> U. The body 525L is a valve having a valve seat seal structure that moves in the axial direction AX and closes the body by contacting the two upper valve seats 515U and the lower valve seat 515L.

下側弁体525Lでは、下方に突出したナイフエッジ状縁部529を外周縁に有した下側弾性プレート527Lが、下側弁支持部材526Lに取付けられ、上側弁体525Uでは、外周縁に平坦な接触面を有する上側弾性プレート527Uが、上側弁支持部材526Uに取り付けられている。
一方、下側弁座515Lは、平坦な接触面で形成され、上側弁座515Uは、上方に突出したナイフエッジ状縁部519を有した形態で形成されている。
特許文献1では、弁軸540が下方に移動すると、下側弁体525Lの下側弾性プレート527Lのナイフエッジ状縁部529が、弾性変形して下側弁座515Lに当接すると同時に、上側弁体525Uの上側弾性プレート527Uが、弾性変形してナイフエッジ状縁部519そのものの上側弁座515Uに当接して閉弁するようになっている。
In the lower valve body 525L, a lower elastic plate 527L having a knife edge-like edge portion 529 protruding downward on the outer peripheral edge is attached to the lower valve support member 526L, and in the upper valve body 525U, it is flat on the outer peripheral edge. An upper elastic plate 527U having a simple contact surface is attached to the upper valve support member 526U.
On the other hand, the lower valve seat 515L is formed with a flat contact surface, and the upper valve seat 515U is formed with a knife edge-like edge 519 protruding upward.
In Patent Document 1, when the valve shaft 540 moves downward, the knife edge-like edge portion 529 of the lower elastic plate 527L of the lower valve body 525L is elastically deformed and comes into contact with the lower valve seat 515L. The upper elastic plate 527U of the valve body 525U is elastically deformed and comes into contact with the upper valve seat 515U of the knife edge edge 519 itself to close the valve.

特許文献1のように、2つの弁座に対し1つの弁軸の移動で2つの弁体を当接させて閉弁する弁座シール構造(以下、「二段式弁座シール構造」という。)の流体制御弁で大流量の流体を制御すると、弁体が弁座に当接するとき、入力ポートを通じて流入した流体から弁体に受ける圧力(抗力)と、弁体の弁座へのシール力とが低減できる利点がある。
その一方、二段式弁座シール構造の流体制御弁では、弁軸の軸方向に対し、第1弁体において第1弁座と最初に当接する第1弁体接触位置と、第2弁体において第2弁座と最初に当接する第2弁体接触位置との弁体間距離と、第1弁座と第2弁座との弁座間距離とが、少なくとも同じにする必要がある。
As in Patent Document 1, a valve seat seal structure (hereinafter referred to as “two-stage valve seat seal structure”) in which two valve bodies are brought into contact with each other by moving one valve shaft against two valve seats. ) When a fluid with a large flow rate is controlled by the fluid control valve, the pressure (drag) received on the valve body from the fluid flowing in through the input port and the sealing force of the valve body on the valve seat when the valve body abuts the valve seat There is an advantage that can be reduced.
On the other hand, in the fluid control valve having the two-stage valve seat seal structure, the first valve body contact position first contacting the first valve seat in the first valve body with respect to the axial direction of the valve shaft, and the second valve body In this case, the distance between the valve bodies between the second valve body contact position first contacting the second valve seat and the distance between the valve seats between the first valve seat and the second valve seat must be at least the same.

ところが、弁座を有したボディや、弁体を構成する各部品の製造工程では、寸法公差内での寸法のバラツキが、製品毎に必然的に生じ、組み合わせる部品によって、弁体間距離が弁座間距離よりも小さい製品が製造されてしまうことも有り得る。弁体間距離が弁座間距離よりも小さいと、弁体と弁座との間に隙間が生じてしまい、完全に閉弁できず、流体漏れが生じてしまう。   However, in the manufacturing process of the body with a valve seat and the parts that make up the valve body, dimensional variations within the dimensional tolerances inevitably occur from product to product. It is possible that a product smaller than the inter-seat distance will be manufactured. If the distance between the valve bodies is smaller than the distance between the valve seats, a gap is generated between the valve body and the valve seat, the valve cannot be completely closed, and fluid leakage occurs.

特許文献1の弁は、その製造工程において、所定の押圧力で上側弁体525Uを下方に上側弁座515Uに当接させた状態で、下側弁体525Lと上側弁体525Uとの間に配置したコイルバネ564の付勢力により、下側弁体525Lを下側弁座515Lに当接させた後、弁軸540に対し、位置決めされた上側弁体525Uと下側弁体525Lとを接着剤で固定させている。
特許文献1では、上側弁座515U、下側弁座515L、上側弁体525U、及び下側弁体525Lに、それぞれ寸法のバラツキがあっても、上側弁体525U、下側弁体525Lを弁軸540に固定させる位置を、製品毎に対処して、弁体間距離と弁座間距離とが一致するように工夫されている。
In the manufacturing process, the valve of Patent Document 1 is located between the lower valve body 525L and the upper valve body 525U in a state where the upper valve body 525U is brought into contact with the upper valve seat 515U downward with a predetermined pressing force. After the lower valve body 525L is brought into contact with the lower valve seat 515L by the biasing force of the arranged coil spring 564, the upper valve body 525U and the lower valve body 525L positioned with respect to the valve shaft 540 are bonded to each other with an adhesive. It is fixed with.
In Patent Document 1, even if the upper valve seat 515U, the lower valve seat 515L, the upper valve body 525U, and the lower valve body 525L have dimensional variations, the upper valve body 525U and the lower valve body 525L are valved. The position fixed to the shaft 540 is dealt with for each product so that the distance between the valve bodies is equal to the distance between the valve seats.

特昭58−131479号公報Japanese Patent Publication No.58-131479

しかしながら、特許文献1には、以下の問題があった。
(1)製品の生産性が低い問題
弁軸540に対し、上側弁体525Uと下側弁体525Lとを、製品毎に位置決めしなければならず、製品の生産性が低く、二段式弁座シール構造の流体制御弁を量産で製造することが困難である。
また、上側弁体525Uと下側弁体525Lとを接着剤で弁軸540に固定するため、接着剤が硬化するまでに時間がかかる。また、流体制御弁の製造工程では、接着剤の塗布量、接着強度等の品質管理を行う必要があり、工程管理に手間と工数がかかる。
However, Patent Document 1 has the following problems.
(1) The problem of low product productivity The upper valve body 525U and the lower valve body 525L must be positioned for each product with respect to the valve shaft 540, resulting in low product productivity and a two-stage valve. It is difficult to manufacture a fluid control valve having a seat seal structure in mass production.
Further, since the upper valve body 525U and the lower valve body 525L are fixed to the valve shaft 540 with an adhesive, it takes time until the adhesive is cured. In addition, in the manufacturing process of the fluid control valve, it is necessary to perform quality control such as the amount of adhesive applied and the adhesive strength, which takes time and effort for process control.

(2)製品がコストアップになる問題
弁体間距離と弁座間距離とを一致させるためにだけに、コイルバネ564等の余分な部品を必要とし、部品点数の増加によって、製品がコストアップする。
また、製品の製造工程では、上側弁体525Uと下側弁体525Lとを弁軸540に固定するのに接着剤を用いているため、上述したような品質管理を行い、工程管理を実施することにより、製品に反映されるコストが上昇してしまう。
(2) The problem that the product increases in cost Only in order to make the distance between the valve bodies and the distance between the valve seats coincide with each other, an extra part such as the coil spring 564 is required, and the cost of the product increases due to an increase in the number of parts.
In the manufacturing process of the product, since the adhesive is used to fix the upper valve body 525U and the lower valve body 525L to the valve shaft 540, the quality control as described above is performed and the process control is performed. As a result, the cost reflected in the product increases.

本発明は、上記問題点を解決するためになされたものであり、2つの弁座に対し、1つの弁軸の上下に設けた2つの弁体を、それぞれ当接または離間させて流体の流れを制御する流体制御弁において、簡単な構造で生産性が高く、低コストで製造することができる流体制御弁を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. The two valve bodies provided on the upper and lower sides of one valve shaft are brought into contact with or separated from the two valve seats, respectively. An object of the present invention is to provide a fluid control valve that can control the fluid control valve with a simple structure, high productivity, and low cost.

上記の問題点を解決するために、本発明の流体制御弁は、次の構成を有している。
(1)第1弁座と第2弁座とが上下に形成されたボディと、第1弁体及び第2弁体として、1つの弁軸に2つの弁体とを有し、弁軸を当該流体制御弁の軸方向に移動させて、第1弁体を第1弁座に、第2弁体を第2弁座に、それぞれ当接または離間させて流体の流れを制御する流体制御弁において、第1弁体のうち、第1弁座と少なくとも当接する第1弁座当接部と、第2弁体のうち、第2弁座と少なくとも当接する第2弁座当接部とが、弾性を有する材質からなり、第1弁座当接部では、第1弁座との当接面が平面状に形成されていること、第2弁座当接部は、軸方向と直交する径方向の径外側の周縁に、軸方向下方側の成分と、径方向径外側の成分とを合成した向きに突出した当接変形部を有し、当接変形部が弾性変形して第2弁座と当接することを特徴とする。
(2)(1)に記載する流体制御弁において、流体はガスであることを特徴とする。
(3)(1)または(2)に記載する流体制御弁において、閉弁した状態では、第1弁座との当接による第1弁座当接部の当接面の弾性変形量は、第1潰し量h1(0<h1)であり、第2弁座との当接による第2弁座当接部の当接変形部の弾性変形量は、第2潰し量h2(0<h2)であり、第2潰し量h2は、第1潰し量h1より大きく設定されていることを特徴とする。
(4)(1)乃至(3)のいずれか1つに記載する流体制御弁において、第2弁座当接部の硬度は、第1弁座当接部の硬度より小さくなっていることを特徴とする。
(5)(1)乃至(4)のいずれか1つに記載する流体制御弁において、当接変形部の向きは、軸方向に対し、傾斜角θ=45°に形成されていることを特徴とする。
In order to solve the above problems, the fluid control valve of the present invention has the following configuration.
(1) The first valve seat and the second valve seat are vertically formed, and the first valve body and the second valve body have two valve bodies on one valve shaft, A fluid control valve that moves in the axial direction of the fluid control valve to control the flow of fluid by bringing the first valve body into contact with the first valve seat and the second valve body into contact with or away from the second valve seat. In the first valve body, a first valve seat abutting portion at least abutting on the first valve seat, and a second valve seat abutting portion at least abutting on the second valve seat among the second valve bodies are provided. The first valve seat abutting portion is made of a material having elasticity, and the abutting surface with the first valve seat is formed in a flat shape, and the second valve seat abutting portion is orthogonal to the axial direction. The outer peripheral edge of the radial direction has an abutting deformation part protruding in a direction in which the component on the lower side in the axial direction and the component on the outer side of the radial direction are combined. Valve seat and this Characterized in that it.
(2) In the fluid control valve described in (1), the fluid is a gas.
(3) In the fluid control valve described in (1) or (2), in the closed state, the amount of elastic deformation of the contact surface of the first valve seat contact portion due to contact with the first valve seat is The first crushing amount h1 (0 <h1), and the elastic deformation amount of the contact deformation portion of the second valve seat contact portion due to the contact with the second valve seat is the second crushing amount h2 (0 <h2). The second crushing amount h2 is set to be larger than the first crushing amount h1.
(4) In the fluid control valve according to any one of (1) to (3), the hardness of the second valve seat contact portion is smaller than the hardness of the first valve seat contact portion. Features.
(5) In the fluid control valve described in any one of (1) to (4), the direction of the contact deformation portion is formed at an inclination angle θ = 45 ° with respect to the axial direction. And

上記構成を有する本発明の流体制御弁の作用・効果について説明する。
本発明の流体制御弁では、
(1)第1弁座と第2弁座とが上下に形成されたボディと、第1弁体及び第2弁体として、1つの弁軸に2つの弁体とを有し、弁軸を当該流体制御弁の軸方向に移動させて、第1弁体を第1弁座に、第2弁体を第2弁座に、それぞれ当接または離間させて流体の流れを制御する流体制御弁において、第1弁体のうち、第1弁座と少なくとも当接する第1弁座当接部と、第2弁体のうち、第2弁座と少なくとも当接する第2弁座当接部とが、弾性を有する材質からなり、第1弁座当接部では、第1弁座との当接面が平面状に形成されていること、第2弁座当接部は、軸方向と直交する径方向の径外側の周縁に、軸方向下方側の成分と、径方向径外側の成分とを合成した向きに突出した当接変形部を有し、当接変形部が弾性変形して第2弁座と当接するので、ボディ、第1弁体、及び第2弁体等の各部品の製造工程で、寸法公差内での寸法のバラツキが、本発明の流体制御弁である製品(以下、単に「製品」という。)毎に生じるが、このような寸法のバラツキを有した各部品をそのまま組み付けて当該流体制御弁を構成しても、第1弁体が第1弁座に、第2弁体が第2弁座に、それぞれ洩れなく密着し閉弁することができるようになる。
よって、本発明の流体制御弁は、前述したように、2つの弁座に対し1つの弁軸の移動で2つの弁体を共に当接させて閉弁するという、いわゆる二段式弁座シール構造であっても、簡単な構造で生産性が高く、低コストで製造し提供することができる。
The operation and effect of the fluid control valve of the present invention having the above configuration will be described.
In the fluid control valve of the present invention,
(1) The first valve seat and the second valve seat are vertically formed, and the first valve body and the second valve body have two valve bodies on one valve shaft, A fluid control valve that moves in the axial direction of the fluid control valve to control the flow of fluid by bringing the first valve body into contact with the first valve seat and the second valve body into contact with or away from the second valve seat. In the first valve body, a first valve seat abutting portion at least abutting on the first valve seat, and a second valve seat abutting portion at least abutting on the second valve seat among the second valve bodies are provided. The first valve seat abutting portion is made of a material having elasticity, and the abutting surface with the first valve seat is formed in a flat shape, and the second valve seat abutting portion is orthogonal to the axial direction. The outer peripheral edge of the radial direction has an abutting deformation part protruding in a direction in which the component on the lower side in the axial direction and the component on the outer side of the radial direction are combined. Valve seat and this Therefore, in the manufacturing process of the parts such as the body, the first valve body, and the second valve body, the variation in the dimensions within the dimensional tolerance is a product that is the fluid control valve of the present invention (hereinafter simply “product”). However, even if components having such dimensional variations are assembled as they are to constitute the fluid control valve, the first valve body is the first valve seat and the second valve body is the second valve body. The two valve seats can be closed closely without leaking.
Therefore, as described above, the fluid control valve of the present invention is a so-called two-stage valve seat seal in which two valve bodies are brought into contact with each other by moving one valve shaft against two valve seats. Even if it is a structure, it has a simple structure, high productivity, and can be manufactured and provided at low cost.

すなわち、本発明の流体制御弁のような、いわゆる二段式弁座シール構造の流体制御弁では、その軸方向に対し、第1弁体の第1弁座当接部の当接面において第1弁座と最初に当接する第1弁体接触位置と、第2弁体の第2弁座当接部において第2弁座と最初に当接する第2弁体接触位置との弁体間距離と、第1弁座と第2弁座との弁座間距離との関係で、
L1≦L2…式1
L1:弁座間距離(mm)、L2:弁体間距離(mm)
上記式1を満たすことが、流体漏れを防ぐ前提となる。
That is, in a fluid control valve with a so-called two-stage valve seat seal structure, such as the fluid control valve of the present invention, the first valve seat abutting portion of the first valve body has a first contact surface with respect to the axial direction. The inter-valve distance between the first valve body contact position that first contacts the one valve seat and the second valve body contact position that first contacts the second valve seat at the second valve seat contact portion of the second valve body And the distance between the valve seats of the first valve seat and the second valve seat,
L1 ≦ L2 Formula 1
L1: Distance between valve seats (mm), L2: Distance between valve bodies (mm)
Satisfying the above formula 1 is a premise for preventing fluid leakage.

特許文献1のような従来の弁と同様、本発明の流体制御弁でも、その製造工程において、ボディ、第1弁体、第2弁体等、構成する各部品に寸法公差内での寸法のバラツキが、製品毎に生じ、各部品の組み付け後、弁座間距離や弁体間距離が、製品毎に、組付け精度の公差範囲内で異なり、上記式1を満たさない場合が生じ得る。
本発明の流体制御弁では、当該流体制御弁である製品に対し、個々の製品毎に公差内で生じ得る組付け寸法のバラツキ幅を考慮して、上記式1の関係を常に満たすように形成されている。
すなわち、第2弁体の第2弁座当接部は、その当接変形部自体が第2弁座に当接開始する位置から、弾性変形して第2弁座に当接した後、第1弁体の第1弁座当接部の当接面が第1弁座に当接して洩れなく密着できるよう、当接変形部の変形代に十分な余裕を持たせて形成されている。
Similar to the conventional valve as disclosed in Patent Document 1, the fluid control valve of the present invention has a dimension within a dimensional tolerance in each component constituting the body, the first valve body, the second valve body, and the like in the manufacturing process. Variations occur for each product, and after assembling each part, the distance between the valve seats and the distance between the valve bodies may be different for each product within the tolerance range of the assembly accuracy, and the above formula 1 may not be satisfied.
In the fluid control valve of the present invention, the product of the fluid control valve is formed so as to always satisfy the relationship of the above formula 1 in consideration of the variation width of the assembly dimension that can occur within the tolerance for each product. Has been.
That is, the second valve seat contact portion of the second valve body is elastically deformed from the position where the contact deformation portion itself starts to contact the second valve seat and contacts the second valve seat. The contact deformation portion of the contact deformation portion is formed with a sufficient margin so that the contact surface of the first valve seat contact portion of the one valve body can contact the first valve seat and be in close contact without leakage.

そのため、製品を構成する各部品に対し、寸法のバラツキがそれぞれ寸法公差内であれば、個々の製品に因らず、組付け後の寸法のバラツキを吸収することができ、第1弁体の第1弁座当接部の当接面が第1弁座に当接し密着し、かつ第2弁体の第2弁座当接部が第2弁座に当接し密着した状態で、本発明の流体制御弁を洩れなく閉弁することができる。   Therefore, if the dimensional variation is within the dimensional tolerance for each part constituting the product, the dimensional variation after assembly can be absorbed regardless of the individual product. In the state where the contact surface of the first valve seat contact portion contacts and closely contacts the first valve seat, and the second valve seat contact portion of the second valve body contacts and contacts the second valve seat. The fluid control valve can be closed without leakage.

また、特許文献1と異なり、本発明の流体制御弁では、その製造工程で、第1弁座に第1弁体の第1弁座当接部の当接面が当接開始する位置と、第2弁座に第2弁体の第2弁座当接部の当接変形部が当接開始する位置とを、予め位置決めする必要がなく、弁軸に位置決めされた第1弁体と第2弁体とを、接着剤で固定させる必要がない。
そのため、本発明の流体制御弁は、製品として、生産性が高い量産体制で製造することができる共に、従来、必要とされていた接着剤の使用に伴う工程管理を不要とし、製造時の手間や工数が低減できる。ひいては、本発明の流体制御弁は、安価に製造することができる。
Further, unlike Patent Document 1, in the fluid control valve of the present invention, in the manufacturing process, the position where the contact surface of the first valve seat contact portion of the first valve body starts to contact the first valve seat; It is not necessary to position the second valve seat at the position where the contact deformation portion of the second valve seat contact portion of the second valve body starts to contact in advance, and the first valve body positioned on the valve shaft and the second valve seat There is no need to fix the two-valve body with an adhesive.
Therefore, the fluid control valve of the present invention can be manufactured as a product in a mass-production system with high productivity, and does not require process management associated with the use of an adhesive that has been required in the past. And man-hours can be reduced. As a result, the fluid control valve of the present invention can be manufactured at low cost.

また、特許文献1では、弁体間距離と弁座間距離とを合わせるためだけに、コイルバネ等の余分な部品を弁に装着し、部品点数が増えてコスト高の要因となっていたが、本発明の流体制御弁は、製品毎に弁体間距離と弁座間距離とを一致させる余分な部品を必要とせず、簡単な構造で構成され、製品のコストアップが抑制できている。   Further, in Patent Document 1, an extra part such as a coil spring is attached to the valve only in order to match the distance between the valve bodies and the distance between the valve seats. The fluid control valve of the invention does not require an extra part for matching the distance between the valve bodies and the distance between the valve seats for each product, and is configured with a simple structure, thereby suppressing an increase in the cost of the product.

従って、本発明の流体制御弁は、2つの第1弁座、第2弁座に対し、1つの弁軸の上下に設けた2つの第1弁体、第2弁体を、それぞれ当接または離間させて流体の流れを制御する流体制御弁であっても、簡単な構造で生産性が高く、低コストで製造することができる、という優れた効果を奏する。   Therefore, in the fluid control valve of the present invention, the two first valve bodies and the second valve bodies provided above and below one valve shaft are brought into contact with or in contact with the two first valve seats and the second valve seats, respectively. Even a fluid control valve that controls the flow of fluid by separating it has an excellent effect that it has a simple structure, high productivity, and can be manufactured at low cost.

(2)また、流体はガスであるので、例えば、低圧で大流量の燃焼ガス等のガスを、圧力損失の小さい大口径の流路を通じて流通制御する場合に、2つの第1弁体、第2弁体を当接または離間させてガスの流れを制御するアクチュエータを小型化することができ、ひいては本発明の流体制御弁全体をコンパクトにすることができる。 (2) Since the fluid is a gas, for example, when the flow control of a gas such as a combustion gas having a low pressure and a large flow rate is performed through a large-diameter channel with a small pressure loss, the two first valve bodies, The actuator that controls the flow of gas by bringing the two valve bodies into contact with or apart from each other can be miniaturized. As a result, the entire fluid control valve of the present invention can be made compact.

すなわち、本発明の流体制御弁のように、ガスとして、例えば、燃焼ガスの流れを制御する燃焼ガス制御弁では、燃焼ガスは、数kPa〜数十kPaという比較的低圧で流通させるのが一般的である。そのため、このような燃焼ガス制御弁は、例えば、入力ポート及び出力ポート等、燃焼ガスの流路の口径をΦ50(mm)程度、流量を40(m3/hour)等、大流量の燃焼ガスが流通できる仕様となっている。
他方、燃焼ガス制御弁の小型化が、ユーザーから要求されている。燃焼ガス制御弁のメーカーは、燃焼ガスの流路を大口径で形成しつつ、燃焼ガスの流れを制御するアクチュエータを小型化して、燃焼ガス制御弁全体をコンパクトに収める開発を行っている。
That is, as in the fluid control valve of the present invention, as a gas, for example, in a combustion gas control valve that controls the flow of combustion gas, the combustion gas is generally circulated at a relatively low pressure of several kPa to several tens of kPa. Is. Therefore, such a combustion gas control valve, for example, has a large flow rate of combustion gas, such as an input port and an output port, and the diameter of the flow path of the combustion gas is about Φ50 (mm) and the flow rate is 40 (m 3 / hour). It is a specification that can be distributed.
On the other hand, downsizing of the combustion gas control valve is required by users. Combustion gas control valve manufacturers are developing a compact combustion gas control valve by reducing the size of the actuator that controls the flow of combustion gas while forming the combustion gas flow path with a large diameter.

本発明の流体制御弁は、2つの第1弁座、第2弁座に対し、1つの弁軸の上下に2つの第1弁体、第2弁体を、それぞれ当接または離間させてガスの流れを制御する。
この流体制御弁では、入力ポートに流入したガスは、第1弁座及び第1弁体で流通制御する第1流路と、第2弁座及び第2弁体で流通制御する第2流路との2つの流路に分流し出力ポートへと流れる。
第1弁体、第2弁体が軸方向下側に移動し、流体制御弁が閉弁したときには、第1弁体及び第2弁体が、入力ポートから弁室に流入したガスの圧力を受圧する。換言すれば、第1弁体が、軸方向下側からガスによる圧力を受ける一方で、第2弁体が、軸方向上側からガスによる圧力を受ける。
In the fluid control valve of the present invention, the two first valve bodies and the second valve bodies are brought into contact with or separated from the two first valve seats and the second valve seats above and below one valve shaft, respectively. To control the flow.
In this fluid control valve, the gas flowing into the input port has a first flow path that is controlled to flow by the first valve seat and the first valve body, and a second flow path that is controlled to flow by the second valve seat and the second valve body. And flow to the output port.
When the first valve body and the second valve body move downward in the axial direction and the fluid control valve closes, the first valve body and the second valve body adjust the pressure of the gas flowing into the valve chamber from the input port. Receive pressure. In other words, the first valve body receives gas pressure from the lower side in the axial direction, while the second valve body receives gas pressure from the upper side in the axial direction.

このとき、第1弁体がガスから受圧するガス圧の大きさと、第2弁体がガスから受圧するガス圧の大きさは、絶対値が同じである。第1弁体側のガス圧と、第2弁体側のガス圧とは、互いに反対方向にかかるため、第1弁体及び第2弁体にかかるガス圧は、実質的にキャンセルされる。
そのため、本発明の流体制御弁で流通制御するガスがたとえ大流量であっても、第1弁体及び第2弁体は、ガス圧の影響を受けることなく、第1弁体を第1弁座に、第2弁体を第2弁座に、それぞれ当接させて閉弁できるのに足りる比較的小さな押圧力だけで閉弁できるようになる。
At this time, the magnitude of the gas pressure received by the first valve body from the gas and the magnitude of the gas pressure received by the second valve body from the gas have the same absolute value. Since the gas pressure on the first valve body side and the gas pressure on the second valve body side are applied in opposite directions, the gas pressure applied to the first valve body and the second valve body is substantially canceled.
Therefore, even if the gas flow controlled by the fluid control valve of the present invention is a large flow rate, the first valve body and the second valve body are not affected by the gas pressure, and the first valve body is connected to the first valve body. The second valve body can be brought into contact with the second valve seat, and the valve can be closed with a relatively small pressing force sufficient to close the seat.

その一方で、本発明の流体制御弁を開弁するときには、第1弁体及び第2弁体を、第1弁座及び第2弁座から離間させる推力が必要となるが、この推力を発生させるアクチュエータは、第1弁体を第1弁座に、第2弁体を第2弁座に、それぞれ当接させるときの比較的小さな押圧力に打勝つのに必要な推力だけを発揮できれば良い。
よって、発揮する推力が小さくなれば、アクチュエータが小型化でき、ひいては、ガスの流れを制御する本発明の流体制御弁をコンパクトにすることができる。
On the other hand, when the fluid control valve of the present invention is opened, a thrust is required to separate the first valve body and the second valve body from the first valve seat and the second valve seat, and this thrust is generated. The actuator to be used only needs to be able to exert only the thrust necessary to overcome the relatively small pressing force when the first valve body is brought into contact with the first valve seat and the second valve body is brought into contact with the second valve seat. .
Therefore, if the thrust exerted becomes small, the actuator can be downsized, and the fluid control valve of the present invention for controlling the gas flow can be made compact.

(3)また、閉弁した状態では、第1弁座との当接による第1弁座当接部の当接面の弾性変形量は、第1潰し量h1(0<h1)であり、第2弁座との当接による第2弁座当接部の当接変形部の弾性変形量は、第2潰し量h2(0<h2)であり、第2潰し量h2は、第1潰し量h1より大きく設定されているので、はじめに第2弁座当接部の当接変形部が第2弁座と当接した後、当接変形部が、第2弁座と当接開始した位置から第2潰し量h2まで弾性変形して第2弁座と密着する間に、第1弁座当接部の当接面が、第1弁座と当接開始した位置から第1潰し量h1まで弾性変形して第1弁座と密着する。
よって、第1弁座と第1弁体とを、第2弁座と第2弁体とを、双方とも洩れなくシールすることができる。
(3) When the valve is closed, the elastic deformation amount of the contact surface of the first valve seat contact portion due to contact with the first valve seat is a first collapse amount h1 (0 <h1). The amount of elastic deformation of the contact deformation portion of the second valve seat contact portion due to contact with the second valve seat is the second squashed amount h2 (0 <h2), and the second squashed amount h2 is the first squashed amount. Since the amount is set to be larger than the amount h1, the position where the contact deforming portion of the second valve seat contact portion first contacts the second valve seat and then the contact deformation portion starts to contact the second valve seat. From the position where the contact surface of the first valve seat contact portion starts to contact the first valve seat while it is elastically deformed from the first collapse amount to the second collapse amount h2 and is in close contact with the second valve seat, the first collapse amount h1 Until it is elastically deformed and closely contacts the first valve seat.
Therefore, it is possible to seal both the first valve seat and the first valve body and the second valve seat and the second valve body without leakage.

(4)また、第2弁座当接部の硬度は、第1弁座当接部の硬度より小さくなっているので、第2弁座当接部のうち、当接変形部が、第1弁座当接部より弾性変形し易くなり、第2弁座と当接する当接変形部の接触面積をより大きく採ることができ、第1弁座と第1弁体とを密着させた上で、第2弁座と第2弁体とのシール力を大きくして、洩れなくより確かに閉弁することができる。 (4) Since the hardness of the second valve seat contact portion is smaller than the hardness of the first valve seat contact portion, the contact deforming portion of the second valve seat contact portion is the first It becomes easier to be elastically deformed than the valve seat abutting portion, the contact area of the abutting deformation portion that abuts the second valve seat can be taken larger, and the first valve seat and the first valve body are brought into close contact with each other By increasing the sealing force between the second valve seat and the second valve body, the valve can be closed more reliably without leakage.

すなわち、本発明の流体制御弁では、第1弁体及び第2弁体を第1弁座及び第2弁座に当接させる向きに弁軸を移動させたとき、はじめに第2弁座当接部のうち、当接変形部が主に弾性変形するが、このとき、当接変形部が第1弁座当接部の硬度より小さいと、当接変形部は、軸方向下方側に向けて押し潰され易く、第2弁座との接触面積をより大きくした状態で弾性変形して第2弁座と密着する。これにより、第2弁体と第2弁座との間でも一定の大きなシール力が確保できる。
その後に、弁軸が、必要に応じて、第2弁体を第2弁座に当接させる向きにさらに移動すると、弾性変形しようとする、あるいは弾性変形の最中にある第1弁体が、第1弁座と密着し、第1弁体と第1弁座との間で一定の大きなシール力が確保できる。
よって、第1弁座と第1弁体とのシール力と、第2弁座と第2弁体とのシール力とを、双方とも大きくすることができる。
That is, in the fluid control valve of the present invention, when the valve shaft is moved in the direction in which the first valve body and the second valve body are brought into contact with the first valve seat and the second valve seat, the second valve seat contact is first performed. Of these parts, the contact deformation part is mainly elastically deformed. At this time, if the contact deformation part is smaller than the hardness of the first valve seat contact part, the contact deformation part is directed downward in the axial direction. It is easily crushed, and elastically deforms in a state where the contact area with the second valve seat is further increased, thereby closely contacting the second valve seat. Thereby, a certain big sealing force is securable also between a 2nd valve body and a 2nd valve seat.
After that, if the valve shaft further moves in a direction in which the second valve body comes into contact with the second valve seat, if necessary, the first valve body that is about to undergo elastic deformation or is undergoing elastic deformation The first valve seat is in close contact, and a certain large sealing force can be secured between the first valve body and the first valve seat.
Therefore, both the sealing force between the first valve seat and the first valve body and the sealing force between the second valve seat and the second valve body can be increased.

なお、第2弁座当接部のうち、特に当接変形部は、例えば、デュロメータによる硬さ試験で硬度50°乃至70°の範囲内に相当する硬さで形成されていることが好ましい。   In addition, it is preferable that especially a contact deformation | transformation part is formed with the hardness corresponded in the range of hardness 50 degrees thru | or 70 degrees in the hardness test by a durometer among 2nd valve-seat contact parts, for example.

(5)また、当接変形部の向きは、軸方向に対し、傾斜角θ=45°に形成されているので、製品を構成する各部品の寸法が、製品毎に、それぞれ寸法公差内の範囲でバラツキを持って加工され組付けられていても、
(a)上述した式1を満たすこと、及び
(b)弾性変形した当接変形部による第2弁座への接触面積をより大きく採ること
の双方の必要十分条件を満たすのに、最適な傾斜角となる。
よって、本発明の流体制御弁は、いわゆる二段式弁座シール構造であっても、個々の製品に対し、構成する各部品の寸法精度に因らず、閉弁時のシール性が高い流体制御弁とすることができる。
(5) Further, since the direction of the contact deformation portion is formed at an inclination angle θ = 45 ° with respect to the axial direction, the dimensions of each part constituting the product are within the dimensional tolerance for each product. Even if it is processed and assembled with variations in range,
Optimum inclination to satisfy both the necessary and sufficient conditions of (a) satisfying the above-described expression 1 and (b) taking a larger contact area with the second valve seat by the elastically deformed contact deformation portion. It becomes a corner.
Therefore, even if the fluid control valve of the present invention has a so-called two-stage valve seat seal structure, the fluid control valve has a high sealing performance when the valve is closed regardless of the dimensional accuracy of each component constituting the product. It can be a control valve.

実施形態に係るガス燃焼複合弁を示す断面図であり、開弁状態を示す図である。It is sectional drawing which shows the gas combustion composite valve which concerns on embodiment, and is a figure which shows a valve opening state. 図1に示すガス燃焼複合弁の閉弁状態を示す図である。It is a figure which shows the valve closing state of the gas combustion composite valve shown in FIG. 図1に示すガス燃焼複合弁の弁体を説明する断面図である。It is sectional drawing explaining the valve body of the gas combustion composite valve shown in FIG. 図3中、A部の拡大図である。FIG. 4 is an enlarged view of part A in FIG. 3. 図3中、B部の拡大図である。FIG. 4 is an enlarged view of a portion B in FIG. 3. 図1に示すガス燃焼複合弁において、弁座間距離と弁シート間距離との関係を説明する図である。In the gas combustion composite valve shown in FIG. 1, it is a figure explaining the relationship between the distance between valve seats, and the distance between valve seats. 図1に示すガス燃焼複合弁において、燃焼ガスの流れを示す説明図である。FIG. 2 is an explanatory diagram showing the flow of combustion gas in the gas combustion composite valve shown in FIG. 1. 変形例に係る弁体を説明する図であり、(a)は弁体を示す断面図、(b)は(a)中、C部の拡大図である。It is a figure explaining the valve body which concerns on a modification, (a) is sectional drawing which shows a valve body, (b) is an enlarged view of the C section in (a). 比較例1に係る弁体を説明する図であり、(a)は弁体を示す断面図、(b)は(a)中、D部の拡大図である。It is a figure explaining the valve body which concerns on the comparative example 1, (a) is sectional drawing which shows a valve body, (b) is an enlarged view of the D section in (a). 当接変形部にかかる荷重と沈み込み量との関係について、実施例1,2及び比較例1,2を対比して示したグラフである。It is the graph which contrasted and showed Example 1, 2 and the comparative examples 1 and 2 about the relationship between the load concerning a contact deformation | transformation part, and the amount of sinking. 実施例1に係る下側弁シートに対するシミュレーションの解析結果である。It is an analysis result of the simulation with respect to the lower side valve seat which concerns on Example 1. FIG. 実施例2に係る下側弁シートに対するシミュレーションの解析結果である。It is an analysis result of the simulation with respect to the lower side valve seat concerning Example 2. 比較例1に係る下側弁シートに対するシミュレーションの解析結果である。It is an analysis result of the simulation with respect to the lower side valve seat concerning comparative example 1. 特許文献1に開示された弁の弁座シール構造の説明図である。It is explanatory drawing of the valve-seat seal structure of the valve disclosed by patent document 1. FIG. 図14中、E部の拡大図である。It is an enlarged view of the E section in FIG.

(実施形態)
以下、本発明に係る流体制御弁について、実施形態を図面に基づいて詳細に説明する。図1は、実施形態に係るガス燃焼複合弁を示す断面図であり、開弁状態を示す図である。図2は、図1に示すガス燃焼複合弁の閉弁状態を示す図である。
実施形態では、図1において、上下方向を軸方向AXとし、左右方向を軸方向AXと直交する径方向RDとする。図2以降の図面についても、図1に図示した方向に準じる。
(Embodiment)
Hereinafter, embodiments of a fluid control valve according to the present invention will be described in detail with reference to the drawings. Drawing 1 is a sectional view showing the gas combustion compound valve concerning an embodiment, and is a figure showing a valve open state. FIG. 2 is a view showing a closed state of the gas combustion composite valve shown in FIG.
In the embodiment, in FIG. 1, the vertical direction is the axial direction AX, and the horizontal direction is the radial direction RD orthogonal to the axial direction AX. The drawings subsequent to FIG. 2 also follow the directions shown in FIG.

本実施形態では、流体制御弁は、図1及び図2に示すように、流体の流れを制御する流体制御部を、同じ構造で並列に2つ備えたタンデム式の電磁弁であり、流体が、プロパン、都市ガス等の燃焼ガスGSであるガス燃焼複合弁1である。
ガス燃焼複合弁1は、上側弁座15U(第1弁座)と下側弁座15L(第2弁座)とが上下に形成されたボディ10と、上側弁体25U(第1弁体)及び下側弁体25L(第2弁体)として、1つの弁軸40に2つの弁体25U,25Lとを有する。このガス燃焼複合弁1は、弁軸40を当該ガス燃焼複合弁1の軸方向AXに移動させ、上側弁体25Uを上側弁座15Uに、下側弁体25Lを下側弁座15Lに、それぞれ当接または離間させて燃焼ガスGSの流れを制御する。
In this embodiment, the fluid control valve is a tandem electromagnetic valve having two fluid control units that control the flow of fluid in parallel with the same structure, as shown in FIGS. 1 and 2. A gas combustion composite valve 1 which is a combustion gas GS such as propane and city gas.
The gas combustion composite valve 1 includes a body 10 in which an upper valve seat 15U (first valve seat) and a lower valve seat 15L (second valve seat) are formed vertically, and an upper valve body 25U (first valve body). As the lower valve body 25L (second valve body), one valve shaft 40 has two valve bodies 25U and 25L. This gas combustion composite valve 1 moves the valve shaft 40 in the axial direction AX of the gas combustion composite valve 1, the upper valve body 25U to the upper valve seat 15U, the lower valve body 25L to the lower valve seat 15L, The flow of the combustion gas GS is controlled by making contact or separation, respectively.

はじめに、ガス燃焼複合弁1の全体的な構成について、図1及び図2を用いて簡単に説明する。
ガス燃焼複合弁1は、弁体20、弁軸40、コア61、コイル62、プランジャ63、付勢バネ64、及びガイド65をそれぞれ2つ有するほか、ボディ10と、支持部材66と、カバー67等から構成されている。
ガス燃焼複合弁1には、図1及び図2に示すように、コア61とプランジャ63とが、コイル62の径内に、弁軸40と同軸上に設けられている。コイル62は、図示しない電源と電気的に接続されている。プランジャ63は、ボディ10と接続する支持部材66で支持されたガイド65により、軸方向AXに移動可能に保持されている。コア61、コイル62、プランジャ63、ガイド65、及び支持部材66は、カバー67で覆われている。
First, the overall configuration of the gas combustion composite valve 1 will be briefly described with reference to FIGS. 1 and 2.
The gas combustion composite valve 1 includes the valve body 20, the valve shaft 40, the core 61, the coil 62, the plunger 63, the urging spring 64, and the guide 65, and the body 10, the support member 66, and the cover 67. Etc.
As shown in FIGS. 1 and 2, the gas combustion composite valve 1 is provided with a core 61 and a plunger 63 coaxially with the valve shaft 40 within the diameter of the coil 62. The coil 62 is electrically connected to a power source (not shown). The plunger 63 is held movably in the axial direction AX by a guide 65 supported by a support member 66 connected to the body 10. The core 61, the coil 62, the plunger 63, the guide 65, and the support member 66 are covered with a cover 67.

ボディ10について、説明する。
ボディ10は、金属からなり、本実施形態では、アルミダイキャスト製の素材に機械加工を施して形成されている。ボディ10は、入力ポート11と出力ポート12とを有し、入力ポート11と出力ポート12との間に弁室13が形成されている。入力ポート11と弁室13との間には、フィルタ18が設けられ、入力ポート11から流入する燃焼ガスGSに混在する塵等の異物が、フィルタ18により弁室13に流れ込まないようになっている。
弁室13には、入力ポート11側と出力ポート12側のそれぞれに、上側弁座15Uと下側弁座15Lとが、軸方向AXに沿って上下に形成されている。
The body 10 will be described.
The body 10 is made of metal, and is formed by machining an aluminum die-cast material in the present embodiment. The body 10 has an input port 11 and an output port 12, and a valve chamber 13 is formed between the input port 11 and the output port 12. A filter 18 is provided between the input port 11 and the valve chamber 13 so that foreign matter such as dust mixed in the combustion gas GS flowing from the input port 11 does not flow into the valve chamber 13 by the filter 18. Yes.
In the valve chamber 13, an upper valve seat 15U and a lower valve seat 15L are formed vertically along the axial direction AX on the input port 11 side and the output port 12 side, respectively.

次に、上側弁座15U及び下側弁座15Lについて、図6を用いて説明する。
図6に、ボディにおける弁座間距離と、弁体における弁シート間距離との関係を説明する図を示す。なお、図6は、弁座間距離における起点とその終点と、弁シート間距離における起点とその終点とを見易くするために、あえてボディと弁体との位置をオフセットして図示している。
上側弁座15Uは、図6に示すように、上側に突出し、最も高い部位に位置する頂点付近をR形状とする凸状に形成され、軸方向AXに沿う上側弁座15U、下側弁座15L、及び弁体20の軸心CLを中心とする円環状に形成されている。
Next, the upper valve seat 15U and the lower valve seat 15L will be described with reference to FIG.
FIG. 6 is a diagram for explaining the relationship between the distance between the valve seats in the body and the distance between the valve seats in the valve body. FIG. 6 intentionally offsets the positions of the body and the valve body in order to make it easier to see the starting point and the end point in the distance between the valve seats and the starting point and the end point in the distance between the valve seats.
As shown in FIG. 6, the upper valve seat 15U protrudes upward and is formed in a convex shape having an R shape near the apex located at the highest part. The upper valve seat 15U and the lower valve seat along the axial direction AX 15L and an annular shape centering on the axial center CL of the valve body 20.

その一方で、下側弁座15Lは、径方向RDに沿う方向に平面状で、弁体20の軸心CLを中心とする円環状に形成されている。
ガス燃焼複合弁1では、ボディ10は、軸方向AXに対し、上側弁座15Uの上記頂点と下側弁座15Lとの距離を所定の弁座間距離L1(0<L1)に設定して加工されている。
On the other hand, the lower valve seat 15L is planar in the direction along the radial direction RD and is formed in an annular shape centering on the axis CL of the valve body 20.
In the gas combustion composite valve 1, the body 10 is machined by setting the distance between the apex of the upper valve seat 15U and the lower valve seat 15L to a predetermined valve seat distance L1 (0 <L1) with respect to the axial direction AX. Has been.

次に、弁体20について、図3乃至図5を用いて説明する。
図3は、図1に示すガス燃焼複合弁の弁体を説明する断面図である。図4は、図3中、A部の拡大図、図5は、図3中、B部の拡大図である。
弁体20では、上側弁体25Uの上側弁本体部26U、下側弁体25Lの下側弁本体部26L、及び連結部21は、アルミニウム等の金属からなり、本実施形態では、図3に示すように、上側弁本体部26Uと下側弁本体部26Lとは、連結部21を介して一体に形成されている。
Next, the valve body 20 will be described with reference to FIGS. 3 to 5.
FIG. 3 is a cross-sectional view illustrating the valve body of the gas combustion composite valve shown in FIG. 4 is an enlarged view of a portion A in FIG. 3, and FIG. 5 is an enlarged view of a portion B in FIG.
In the valve body 20, the upper valve body portion 26U of the upper valve body 25U, the lower valve body portion 26L of the lower valve body 25L, and the connecting portion 21 are made of metal such as aluminum. In the present embodiment, FIG. As shown, the upper valve main body portion 26U and the lower valve main body portion 26L are integrally formed via a connecting portion 21.

上側弁本体部26Uは、径方向RDの径外側に突出した環状の凸部26Utを有し、下側弁本体部26Lは、径方向RDの径外側に突出した環状の凸部26Ltを有している。
上側弁本体部26U、下側弁本体部26L、及び連結部21は、その径方向RD中央に、軸方向AXに沿う弁軸挿通孔20Hを有している。
The upper valve main body portion 26U has an annular convex portion 26Ut protruding outward in the radial direction RD, and the lower valve main body portion 26L has an annular convex portion 26Lt protruding outward in the radial direction RD. ing.
The upper valve body portion 26U, the lower valve body portion 26L, and the connecting portion 21 have a valve shaft insertion hole 20H along the axial direction AX at the center in the radial direction RD.

弁体20は、上側弁体25Uのうち上側弁座15Uと少なくとも当接する上側弁シート27U(第1弁座当接部)と、下側弁体25Lのうち、下側弁座15Lと少なくとも当接する下側弁シート27L(第2弁座当接部)とを有している。
上側弁シート27Uと下側弁シート27Lとは、例えば、ニトリルゴム(NBR)、フッ素ゴム(FKM,FFKM)、エチレンプロピレンゴム(EPM,EPDM)、シリコンゴム(Q)等のゴム製で、弾性を有する材質からなる。
下側弁シート27Lの硬度は、上側弁シート27Uの硬度より小さくなっており、下側弁シート27Lの具体的な硬度については、後に詳述する。
The valve body 20 includes at least an upper valve seat 27U (first valve seat contact portion) that contacts at least the upper valve seat 15U of the upper valve body 25U and at least the lower valve seat 15L of the lower valve body 25L. It has a lower valve seat 27L (second valve seat contact portion) in contact therewith.
The upper valve seat 27U and the lower valve seat 27L are made of rubber such as nitrile rubber (NBR), fluorine rubber (FKM, FFKM), ethylene propylene rubber (EPM, EPDM), silicon rubber (Q), etc., and elastic. It consists of the material which has.
The hardness of the lower valve seat 27L is smaller than the hardness of the upper valve seat 27U, and the specific hardness of the lower valve seat 27L will be described in detail later.

上側弁シート27Uでは、上側弁座15Uとの当接面である下面27Uaが平面状に形成されている。この上側弁シート27Uは、ガス燃焼複合弁1が閉弁した状態では、上側弁座15Uとの当接による上側弁シート27Uの下面27Uaの弾性変形量は、図4に示すように、変形前後の大きさが第1潰し量h1(0<h1)である。   In the upper valve seat 27U, a lower surface 27Ua that is a contact surface with the upper valve seat 15U is formed in a flat shape. When the gas combustion composite valve 1 is closed, the upper valve seat 27U has an elastic deformation amount of the lower surface 27Ua of the upper valve seat 27U due to contact with the upper valve seat 15U before and after the deformation as shown in FIG. Is the first crushing amount h1 (0 <h1).

上側弁シート27Uは、図4に示すように、外周面27Ubが環状で、径方向RDの径外側に向けて凹設した凹部28Uを有している。
上側弁本体部26Uと上側弁シート27Uとは、凸部26Utと凹部28Uとをしっかりと密着させ、上側弁体25Uとして一体に固定されている。
As shown in FIG. 4, the upper valve seat 27 </ b> U has an outer peripheral surface 27 </ b> Ub and an indented portion 28 </ b> U that is recessed toward the radially outer side in the radial direction RD.
The upper valve body portion 26U and the upper valve seat 27U are firmly fixed as an upper valve body 25U with the convex portion 26Ut and the concave portion 28U being firmly adhered to each other.

下側弁シート27Lは、軸方向AXと直交する径方向RDの径外側の周縁に、軸方向AX下方側の成分と、径方向RD径外側の成分とを合成した向きに突出した当接変形部29Lを有し、当接変形部29Lが弾性変形して下側弁座15Lと当接するようになっている。
具体的には、当接変形部29Lは、図5に示すように、下面27Laと外周面27Lbとが交差する部分に設けられている。当接変形部29Lは、その向きが軸方向AXに沿う弁体20の軸心CLに対し、傾斜角θ=45°に凸状に延び、最も先端部位に当接変形部先端位置29Ltを有している。
The lower valve seat 27L has a contact deformation projecting in a direction in which a component on the lower side of the axial direction AX and a component on the outer side of the radial direction RD are combined on the outer periphery of the radial direction RD perpendicular to the axial direction AX. The contact deformation portion 29L is elastically deformed and comes into contact with the lower valve seat 15L.
Specifically, as shown in FIG. 5, the contact deformation portion 29L is provided at a portion where the lower surface 27La and the outer peripheral surface 27Lb intersect. The contact deformation portion 29L extends in a convex shape with an inclination angle θ = 45 ° with respect to the axis CL of the valve body 20 whose direction is along the axial direction AX, and has the contact deformation portion distal end position 29Lt at the most distal end portion. is doing.

下側弁シート27Lは、外周面27Lbが環状で、径方向RDの径外側に向けて凹設した凹部28Lを有している。
下側弁本体部26Lと下側弁シート27Lとは、凸部26Ltと凹部28Lとをしっかりと密着させ、下側弁体25Lとして一体に固定されている。
The lower valve seat 27L has an outer peripheral surface 27Lb and a recess 28L that is recessed toward the radially outer side in the radial direction RD.
The lower valve main body portion 26L and the lower valve seat 27L have the convex portion 26Lt and the concave portion 28L firmly adhered to each other, and are integrally fixed as the lower valve body 25L.

ガス燃焼複合弁1では、弁軸40は、弁軸挿通孔20Hに嵌合で挿通されて弁体20と一体化され、ネジ締結によりプランジャ63に固定し連結されている。弁体20は、支持部材66と上側弁本体部26Uとの間に配設された付勢バネ64により、軸方向AX下側に付勢されている。
また、弁体20は、軸方向AXに対し、上側弁シート27Uの下面27Uaと当接変形部29Lの当接変形部先端位置29Ltとの距離を弁シート間距離L2(0<L1<L2)(弁体間距離)に設定されている。軸方向AXに対する当接変形部29Lの高さs(0<s)は、(弁シート間距離L2−弁座間距離L1)の差より大きく設定されている。
In the gas combustion composite valve 1, the valve shaft 40 is inserted into the valve shaft insertion hole 20H by fitting and integrated with the valve body 20, and is fixedly connected to the plunger 63 by screw fastening. The valve body 20 is biased downward in the axial direction AX by a biasing spring 64 disposed between the support member 66 and the upper valve body 26U.
Further, the valve body 20 has a distance L2 between the valve seats L2 (0 <L1 <L2) with respect to the axial direction AX, and the distance between the lower surface 27Ua of the upper valve seat 27U and the contact deformation portion tip position 29Lt of the contact deformation portion 29L. (Distance between valve discs) is set. The height s (0 <s) of the contact deformation portion 29L with respect to the axial direction AX is set to be larger than the difference of (valve seat distance L2−valve seat distance L1).

下側弁シート27Lは、ガス燃焼複合弁1が閉弁した状態では、下側弁座15Lとの当接による当接変形部29Lの弾性変形量は、図5に示すように、当接変形部29Lの高さsより小さいものの、変形前後の大きさが第2潰し量h2(0<h2)である。この第2潰し量h2は、上側弁シート27Uの下面27Uaの第1潰し量h1より大きく設定されている。   When the gas combustion composite valve 1 is closed, the lower valve seat 27L has an elastic deformation amount of the contact deformation portion 29L due to contact with the lower valve seat 15L as shown in FIG. Although it is smaller than the height s of the portion 29L, the size before and after the deformation is the second crushing amount h2 (0 <h2). The second crushing amount h2 is set to be larger than the first crushing amount h1 of the lower surface 27Ua of the upper valve seat 27U.

次に、ガス燃焼複合弁1の動作について、図1、図2、及び図7を用いて説明する。図7は、ガス燃焼複合弁における燃焼ガスの流れを示す図である。
コイル62に通電していないと、弁体20が、付勢バネ64により、軸方向AX下側に付勢され、図2に示すように、上側弁体25Uが上側弁座15Uに、下側弁体25Lが下側弁座15Lに、それぞれ当接して、ガス燃焼複合弁1は閉弁する。
Next, operation | movement of the gas combustion composite valve 1 is demonstrated using FIG.1, FIG.2 and FIG.7. FIG. 7 is a diagram showing the flow of combustion gas in the gas combustion composite valve.
When the coil 62 is not energized, the valve body 20 is urged to the lower side in the axial direction AX by the urging spring 64, and as shown in FIG. The valve body 25L comes into contact with the lower valve seat 15L, and the gas combustion composite valve 1 is closed.

その一方、コイル62に通電すると、励磁されてコイル62内に磁界が軸方向AXに発生し、コア61が、付勢バネ64の付勢力に打勝つ磁力でプランジャ63を、軸方向AX上側に吸引し、プランジャ63、弁軸40及び弁体20が、一つになって上昇する。これにより、上側弁座15Uに当接していた上側弁体25Uと、下側弁座15Lに当接していた下側弁体25Lとが、同時に上側弁座15U、下側弁座15Lから離間して、ガス燃焼複合弁1は開弁する。   On the other hand, when the coil 62 is energized, it is excited to generate a magnetic field in the coil 62 in the axial direction AX, and the core 61 moves the plunger 63 upward in the axial direction AX with a magnetic force that overcomes the biasing force of the biasing spring 64. As a result, the plunger 63, the valve shaft 40, and the valve body 20 rise together as one. Accordingly, the upper valve body 25U that has been in contact with the upper valve seat 15U and the lower valve body 25L that has been in contact with the lower valve seat 15L are simultaneously separated from the upper valve seat 15U and the lower valve seat 15L. Thus, the gas combustion composite valve 1 is opened.

ガス燃焼複合弁1が開弁すると、燃焼ガスGSは、入力ポート11から弁室13を通じて出力ポート12に流れるが、フィルタ18を通過した燃焼ガスGSは、図7に示すように、弁室13内を、第1流路13Aと第2流路13Bとに分流して流れる。
第1流路13Aでは、燃焼ガスGSは、開弁した弁体20の上側弁体25Uと上側弁座15Uとの間を通じ、出力ポート12へと流れる。
第2流路13Bでは、燃焼ガスGSは、開弁した弁体20の下側弁体25Lと下側弁座15Lとの間を通じ、第1流路13Aを流れる燃焼ガスGSと、出力ポート12で合流し出力ポート12から吐出される。
When the gas combustion composite valve 1 is opened, the combustion gas GS flows from the input port 11 to the output port 12 through the valve chamber 13, but the combustion gas GS that has passed through the filter 18 is, as shown in FIG. The flow is divided into the first flow path 13A and the second flow path 13B.
In the first flow path 13A, the combustion gas GS flows to the output port 12 through the space between the upper valve body 25U and the upper valve seat 15U of the opened valve body 20.
In the second flow path 13B, the combustion gas GS passes between the lower valve body 25L and the lower valve seat 15L of the opened valve body 20 and the combustion gas GS flowing through the first flow path 13A and the output port 12 And then discharged from the output port 12.

次に、実施例1,2及び変形例に係る下側弁シートについて、図5及び図8を用いて説明する。
図8は、変形例に係る弁体を説明する図であり、(a)は弁体を示す断面図、(b)は(a)中、C部の拡大図である。
実施例1及び実施例2では、弁体20の形状は共通する。変形例では、上側弁体25U、及び下側弁体(第2弁体)の下側弁本体部26Lの形状は、実施例1及び実施例2と共通するが、下側弁シートの形状が異なる。
Next, the lower valve seats according to Examples 1 and 2 and the modification will be described with reference to FIGS. 5 and 8.
FIG. 8 is a view for explaining a valve body according to a modification, in which (a) is a cross-sectional view showing the valve body, and (b) is an enlarged view of a portion C in (a).
In Example 1 and Example 2, the shape of the valve body 20 is common. In the modification, the shapes of the upper valve body 25U and the lower valve body 26L of the lower valve body (second valve body) are the same as those of the first and second embodiments, but the shape of the lower valve seat is the same. Different.

(実施例1)
本実施例に係る当接変形部29Lは、前述したように、その向きが軸方向AXに沿う弁体20の軸心CLに対し、傾斜角θ=45°に凸状に延び、最も先端部位に当接変形部先端位置29Ltを有したものである(図5参照)。この当接変形部29Lを含む下側弁シート27Lの硬度は、デュロメータによる硬さ試験で硬度70°である。
Example 1
As described above, the contact deformation portion 29L according to the present embodiment extends convexly at an inclination angle θ = 45 ° with respect to the axis CL of the valve body 20 whose direction is along the axial direction AX, and is the most distal portion. Has a contact deformation portion tip position 29Lt (see FIG. 5). The hardness of the lower valve seat 27L including the contact deformation portion 29L is 70 ° in a hardness test using a durometer.

(実施例2)
本実施例に係る当接変形部29Lの形状は、図5に示すように、実施例1の当接変形部29Lと同様だが、本実施例に係る当接変形部29Lの硬度が、デュロメータによる硬さ試験で硬度60°である。
(Example 2)
As shown in FIG. 5, the shape of the contact deformation portion 29L according to the present embodiment is the same as that of the contact deformation portion 29L according to the first embodiment. However, the hardness of the contact deformation portion 29L according to the present embodiment is determined by a durometer. The hardness is 60 ° in the hardness test.

(変形例)
本変形例に係る下側弁体125Lでは、下側弁シート127Lの当接変形部129Lは、その向きが軸方向AXに沿う弁体20の軸心CLに対し、傾斜角θ=45°に突出して形成され、図8に示す断面形状で、下面127Laと外周面127Lbとを、幾何学的に変曲点のない曲線に沿う円弧状の面で繋いだ形状で形成されている。
下側弁本体部26Lと下側弁シート127Lとは、凸部26Ltと凹部128Lとを嵌め合わせることにより、下側弁体125Lとして一体に固定されている。
(Modification)
In the lower valve body 125L according to this modification, the contact deformation portion 129L of the lower valve seat 127L is inclined at an inclination angle θ = 45 ° with respect to the axis CL of the valve body 20 along the axial direction AX. 8 is formed so as to protrude, and is formed in a shape in which the lower surface 127La and the outer peripheral surface 127Lb are connected by an arcuate surface along a curved line having no inflection point geometrically.
The lower valve body 26L and the lower valve seat 127L are integrally fixed as a lower valve body 125L by fitting the convex portion 26Lt and the concave portion 128L.

次に、比較例1,2に係るガス燃焼複合弁について、参照する図6、及び図9を用いて説明する。
図9は、比較例1に係る弁体を説明する図であり、(a)は弁体を示す断面図、(b)は(a)中、D部の拡大図である。
Next, the gas combustion composite valve according to Comparative Examples 1 and 2 will be described with reference to FIGS. 6 and 9.
9A and 9B are diagrams for explaining a valve body according to Comparative Example 1. FIG. 9A is a cross-sectional view showing the valve body, and FIG. 9B is an enlarged view of a portion D in FIG.

(比較例1)
比較例1では、上側弁体25U、及び下側弁体(第2弁体)の下側弁本体部26Lの形状は、実施例1及び実施例2と共通するが、下側弁シートの形状が異なる。
具体的には、従来技術である比較例1に係る下側弁体225Lでは、下側弁シート227Lの当接変形部229Lは、その向きが外周面227Lbからそのまま軸方向AX下側に突出した形状に形成され、図9に示す断面形状で、下面227Laから軸方向AX下側に離れた位置で、下面227Laと外周面227Lbとが繋がれた形状で形成されている。下側弁体225Lの硬度は、デュロメータによる硬さ試験で硬度70°である。
下側弁本体部26Lと下側弁シート227Lとは、凸部26Ltと凹部228Lとを嵌め合わせることにより、下側弁体225Lとして一体に固定されている。
(Comparative Example 1)
In Comparative Example 1, the shapes of the upper valve body 25U and the lower valve body portion 26L of the lower valve body (second valve body) are the same as those of the first and second embodiments, but the shape of the lower valve seat Is different.
Specifically, in the lower valve body 225L according to the comparative example 1 which is the prior art, the contact deformation portion 229L of the lower valve seat 227L has its direction protruding from the outer peripheral surface 227Lb as it is downward in the axial direction AX. 9 is formed in a shape in which the lower surface 227La and the outer peripheral surface 227Lb are connected to each other at a position away from the lower surface 227La in the axial direction AX. The hardness of the lower valve body 225L is 70 ° in a hardness test using a durometer.
The lower valve body 26L and the lower valve seat 227L are integrally fixed as a lower valve body 225L by fitting the convex portion 26Lt and the concave portion 228L.

(比較例2)
参照する図6において、実施例1及び実施例2では、弁座間距離L1と弁シート間距離L2との関係が、L1<L2であったが、比較例2は、弁座間距離L1と弁シート間距離L2との関係が、L1>L2の場合である。
(Comparative Example 2)
In FIG. 6 to be referred to, in Example 1 and Example 2, the relationship between the distance L1 between the valve seats and the distance L2 between the valve seats was L1 <L2, but in Comparative Example 2, the distance L1 between the valve seats and the valve seats. This is a case where the relationship with the distance L2 is L1> L2.

ここで、閉弁により弁体にかかる荷重と、下側弁体の下側弁シートの沈み込み量との関係について、実施例1,2及び比較例1,2を対比した調査を行った。
調査条件は、一例として、
(1)弁体にかける荷重:数(N)から100(N)までの範囲で増大させた。
(2)弁座間距離L1:29.0(mm)で、公差幅を(±0.05)(mm)
(3)弁シート間距離L2:29.05(mm)で、公差幅を(0,+0.2)(mm)
とした。
(4)調査は、弁シート間距離L2と弁座間距離L1との距離差が0.3(mm)である場合を前提に実施した。
Here, the investigation which compared Example 1, 2, and the comparative examples 1 and 2 about the relationship between the load applied to a valve body by valve closing, and the amount of sinking of the lower valve seat of a lower valve body was performed.
The survey conditions are as an example.
(1) Load applied to the valve body: Increased in a range from several (N) to 100 (N).
(2) Distance between valve seats L1: 29.0 (mm) and tolerance width (± 0.05) (mm)
(3) Distance between valve seats L2: 29.05 (mm) and tolerance width (0, +0.2) (mm)
It was.
(4) The investigation was performed on the assumption that the distance difference between the valve seat distance L2 and the valve seat distance L1 was 0.3 (mm).

すなわち、このように例示した寸法公差の場合、ボディ10が、弁座間距離L1の公差下限値である28.95(mm)で形成される一方、弁体20が、弁シート間距離L2の公差上限値である29.25(mm)で形成されるときに、弁シート間距離L2と弁座間距離L1との距離差が、最大0.3(mm)となる。
複数のガス燃焼複合弁1を製造する製造工程で、製品毎に、ボディ10、弁体20,120等の各部品を組付けるときに、この最大距離差0.3(mm)は、弁シート間距離L2と弁座間距離L1との間で生じ得る。
That is, in the case of the dimensional tolerance illustrated in this way, the body 10 is formed with 28.95 (mm) which is the tolerance lower limit value of the distance L1 between the valve seats, while the valve body 20 is the tolerance of the distance L2 between the valve seats. When the upper limit value is 29.25 (mm), the distance difference between the valve seat distance L2 and the valve seat distance L1 is 0.3 (mm) at the maximum.
In the manufacturing process of manufacturing a plurality of gas combustion composite valves 1, when assembling the parts such as the body 10 and the valve bodies 20, 120 for each product, this maximum distance difference 0.3 (mm) is the valve seat. It may occur between the distance L2 and the distance L1 between the valve seats.

ガス燃焼複合弁1では、軸方向AX下側に向けて弁体20が移動すると、軸方向AX下側の成分を含む当接変形部29Lを有する下側弁シート27Lが、先に下側弁座15Lに当接した後、下面27Uaが平面である上側弁シート27Uが、上側弁座15Uに当接して、ガス燃焼複合弁1が閉弁する。
そのため、上側弁シート27Uが上側弁座15Uに当接してガス燃焼複合弁1が閉弁するのに、弁シート間距離L2と弁座間距離L1との最大距離差0.3(mm)が生じないようにする条件が必須となり、この条件を満たすためには、下側弁シート27Lの沈み込み量が少なくとも0.3(mm)必要となる。
In the gas combustion composite valve 1, when the valve body 20 moves toward the lower side in the axial direction AX, the lower valve seat 27L having the contact deformation portion 29L including the component on the lower side in the axial direction AX is first moved to the lower valve. After contacting the seat 15L, the upper valve seat 27U having a flat lower surface 27Ua contacts the upper valve seat 15U, and the gas combustion composite valve 1 is closed.
Therefore, when the upper valve seat 27U contacts the upper valve seat 15U and the gas combustion composite valve 1 is closed, a maximum distance difference 0.3 (mm) between the valve seat distance L2 and the valve seat distance L1 occurs. In order to satisfy this condition, the amount of depression of the lower valve seat 27L is required to be at least 0.3 (mm).

調査結果を図10に示す。実施例1,2及び比較例1では、図10から容易に理解できるように、沈み込み量0.3(mm)に達するまでの段階で、上側弁シート27Uが上側弁座15Uに当接せず、弁体20,220を押圧する荷重が、下側弁シート27L,227Lの当接変形部29L,229Lだけにかかる。
実施例1,2は、上記段階では、下側弁体25Lの硬度に違いがあるものの、荷重の増加に伴う沈み込み量の増加傾向に差異がない。
これに対し、比較例1の下側弁体225Lの硬度は、実施例2の下側弁体25Lと同じであるが、比較例1の下側弁体225Lの形状が、実施例1,2の下側弁体25Lの形状と異なるため、荷重の増加に伴って弾性変形し難い。
The survey results are shown in FIG. In Examples 1 and 2 and Comparative Example 1, as can be easily understood from FIG. 10, the upper valve seat 27 </ b> U is brought into contact with the upper valve seat 15 </ b> U in a stage until the sinking amount reaches 0.3 (mm). First, the load that presses the valve bodies 20 and 220 is applied only to the contact deformation portions 29L and 229L of the lower valve seats 27L and 227L.
In Examples 1 and 2, although there is a difference in hardness of the lower valve body 25L at the above stage, there is no difference in an increasing tendency of the sinking amount with an increase in load.
In contrast, the hardness of the lower valve body 225L of the first comparative example is the same as that of the lower valve body 25L of the second embodiment, but the shape of the lower valve body 225L of the first comparative example is that of the first and second embodiments. Since it is different from the shape of the lower valve body 25L, it is difficult to elastically deform as the load increases.

すなわち、弁体20,220を押圧する荷重がそれぞれ同じでも、実施例1,2では、当接変形部29Lの当接変形部先端位置29Ltと下側弁座15Lとの接点を支点とし、下面27La付近にある当接変形部29Lの根元でかかる曲げモーメントは大きくなる。
これに対し、比較例1では、当接変形部229Lの最下端位置と下側弁座15Lとの接点を支点とし、下面227La付近にある当接変形部229Lの根元でかかる曲げモーメントは小さい。
よって、弁体20,220を押圧する荷重が、実施例1,2と比較例1で同じであれば、沈み込み量0.3(mm)に達するまでの段階では、実施例1,2の沈み込み量が、比較例1より大きくなる。
That is, even if the load that presses the valve bodies 20 and 220 is the same, in the first and second embodiments, the contact point between the contact deformation portion tip position 29Lt of the contact deformation portion 29L and the lower valve seat 15L is used as a fulcrum. The bending moment applied at the base of the contact deformation portion 29L in the vicinity of 27La increases.
On the other hand, in Comparative Example 1, the bending moment applied at the base of the contact deformation portion 229L near the lower surface 227La is small with the contact point between the lowermost position of the contact deformation portion 229L and the lower valve seat 15L as a fulcrum.
Therefore, if the load which presses the valve bodies 20 and 220 is the same in Examples 1 and 2, and Comparative Example 1, in the stage until it reaches the sinking amount 0.3 (mm), The sinking amount is larger than that of Comparative Example 1.

その一方、沈み込み量が0.3(mm)を超える段階になると、実施例1と実施例2では、当接変形部29Lが同じ形状でも、当接変形部29Lの硬度が異なるため、硬度が実施例1より低い実施例2が、荷重の増加に伴って弾性変形し易いことが判る。
また、実施例1と比較例1では、当接変形部29Lと当接変形部229Lとが何れも硬度70°であっても、前述したように、実施例1の下側弁体25Lの形状と比較例1の下側弁体225Lの形状との違いにより、荷重の増加に伴う沈み込み量の増加傾向は異なり、荷重が同じでも、実施例1は、比較例1よりも弾性変形し易いことが判る。
On the other hand, when the amount of subsidence exceeds 0.3 (mm), the hardness of the contact deformation portion 29L differs between Example 1 and Example 2 even if the contact deformation portion 29L has the same shape. It can be seen that Example 2, which is lower than Example 1, is easily elastically deformed as the load increases.
Moreover, in Example 1 and Comparative Example 1, as described above, the shape of the lower valve body 25L of Example 1 is the same even if both the contact deformation part 29L and the contact deformation part 229L have a hardness of 70 °. Due to the difference between the shape of the lower valve body 225L of Comparative Example 1 and the increase in load, the tendency of increase in the amount of subsidence differs, and even if the load is the same, Example 1 is more elastically deformed than Comparative Example 1. I understand that.

他方、参考までに記載した比較例2では、弁体20を押圧する荷重が、100(N)になったところで、下側弁シート27Lの当接変形部29Lがやっと下側弁座15Lに当接し始めるが、この段階で、100(N)もの押圧荷重を弁体20にかけなければならないことは、アクチュエータとして好ましくない。   On the other hand, in Comparative Example 2 described for reference, when the load that presses the valve body 20 reaches 100 (N), the contact deformation portion 29L of the lower valve seat 27L finally hits the lower valve seat 15L. However, it is not preferable for the actuator to apply a pressing load of 100 (N) to the valve body 20 at this stage.

次に、実施例1,2に係る下側弁シート27Lと、比較例1に係る下側弁シート227Lとに対し、荷重付与時に弾性変形する変位量について、シミュレーションによる解析を行った。
シミュレーションの解析条件は、次の通りである。
(共通条件)
(1)シミュレーションでは、図2及び図4に示す弁体20の上側弁本体部26Uに、付勢バネ64による付勢力が作用する位置に相当する位置に、荷重を0<F<100(N)の範囲でかけ、荷重F=19.6(N)時におけるシミュレーション解析結果の画像を、後の説明に用いる図11乃至図14に示した。
(2)一体である上側弁本体部26U、連結部21及び下側弁本体部26Lは、アルミニウム製とし、ヤング率7400(Kgf/mm2)、ポアソン比0.34とした。
(3)下側弁座15Lを剛体とみなし、下側弁座15Lの表面を摩擦係数0.1とした。
(4)弁座間距離L1及び弁シート間距離L2ともL1=L2=29.05(mm)とした。
Next, the amount of displacement that is elastically deformed when a load is applied to the lower valve seat 27L according to Examples 1 and 2 and the lower valve seat 227L according to Comparative Example 1 was analyzed by simulation.
The analysis conditions for the simulation are as follows.
(Common conditions)
(1) In the simulation, the load is applied to a position corresponding to a position where the urging force by the urging spring 64 acts on the upper valve body 26U of the valve body 20 shown in FIGS. 2 and 4 at 0 <F <100 (N The images of the simulation analysis results at the load F = 19.6 (N) are shown in FIG. 11 to FIG. 14 used for later explanation.
(2) The upper valve body 26U, the connecting part 21 and the lower valve body 26L, which are integral, are made of aluminum, have a Young's modulus of 7400 (Kgf / mm 2 ), and a Poisson's ratio of 0.34.
(3) The lower valve seat 15L is regarded as a rigid body, and the surface of the lower valve seat 15L has a friction coefficient of 0.1.
(4) The distance L1 between the valve seats and the distance L2 between the valve seats were set to L1 = L2 = 29.05 (mm).

実施例1,2及び比較例1の各例で異なる部分のシミュレーションの解析条件を示す。
(実施例1)
上記実施例1であり、シミュレーションの解析条件を再掲すると、
(A)当接変形部29Lは、その向きが軸方向AXに沿う弁体20の軸心CLに対し、傾斜角θ=45°に凸状に延び、最も先端部位に当接変形部先端位置29Ltを有したものである(図5参照)。
(B)当接変形部29Lを含む下側弁シート27Lの硬度:デュロメータによる硬さ試験で硬度70°
The analysis conditions of the simulation of a different part in each example of Examples 1 and 2 and Comparative Example 1 are shown.
Example 1
In Example 1 above, when the simulation analysis conditions are listed again,
(A) The contact deformation portion 29L extends in a convex shape with an inclination angle θ = 45 ° with respect to the axis CL of the valve body 20 whose direction is along the axial direction AX, and the contact deformation portion tip position is located at the most distal end portion. 29Lt (see FIG. 5).
(B) Hardness of the lower valve seat 27L including the abutting deformation portion 29L: hardness 70 ° in a durometer hardness test

(実施例2)
上記実施例2であり、シミュレーションの解析条件を再掲すると、
(C)当接変形部29Lの形状は、上述した実施例1と同じ。
(D)当接変形部29Lを含む下側弁シート27Lの硬度:デュロメータによる硬さ試験で硬度60°
(Example 2)
In Example 2 above, when the analysis conditions for the simulation are listed again,
(C) The shape of the contact deformation portion 29L is the same as that of the first embodiment.
(D) Hardness of lower valve seat 27L including contact deformed portion 29L: hardness 60 ° in a durometer hardness test

(比較例1)
上記比較例1であり、シミュレーションの解析条件を再掲すると、
(E)当接変形部229Lは、その向きが外周面227Lbからそのまま軸方向AX下側に突出した形状に形成され、図9に示す断面形状で、下面227Laから軸方向AX下側に離れた位置で、下面227Laと外周面227Lbとが繋がれた形状で形成されている。
(F)当接変形部229Lを含む下側弁シート227Lの硬度:デュロメータによる硬さ試験で硬度70°
(Comparative Example 1)
It is the comparative example 1 and when the analysis conditions for the simulation are listed again,
(E) The contact deformation portion 229L is formed in a shape that protrudes directly from the outer peripheral surface 227Lb to the lower side in the axial direction AX, and has a cross-sectional shape shown in FIG. 9 and is separated from the lower surface 227La to the lower side in the axial direction AX. In this position, the lower surface 227La and the outer peripheral surface 227Lb are connected to each other.
(F) Hardness of lower valve seat 227L including abutting deformation portion 229L: hardness 70 ° in a durometer hardness test

図11乃至図13に、解析結果であるシミュレーション画像を示す。図11は、実施例1に係る下側弁シートに対するシミュレーションの解析結果である。図12は、実施例2に係る下側弁シートに対するシミュレーションの解析結果である。図13は、比較例1に係る下側弁シートに対するシミュレーションの解析結果である。
なお、図11乃至図13は、弾性変形した下側弁シートの沈み込み量(変位量)について、変形前の状態を変位量「0」とし、変形した状態の変位量にマイナスの符号を付して図示している。
11 to 13 show simulation images as analysis results. FIG. 11 is a simulation analysis result for the lower valve seat according to the first embodiment. FIG. 12 is a simulation analysis result for the lower valve seat according to the second embodiment. FIG. 13 is a simulation analysis result for the lower valve seat according to the first comparative example.
11 to 13, regarding the subsidence amount (displacement amount) of the elastically deformed lower valve seat, the state before the deformation is defined as the displacement amount “0”, and the displacement amount in the deformed state is assigned a minus sign. It is illustrated.

実施例1では、図11に示すように、下側弁シート27Lが荷重Fで押圧されると、下側弁シート27Lのうち、当接変形部29Lと、下面27La及び外周面27Lbにおける当接変形部29Lの付け根付近とが主に局部的に弾性変形し、その沈み込み(変位量)の分布は密となっている。図11から読み取れるように、この当接変形部29Lの付け根付近で最も大きい変位量は0.240(mm)に達している。他方、弁体20が軸方向AX下側に移動したストローク量も0.274(mm)となり、弁体20が荷重Fで押圧されると、弾性変形が、ほとんど当接変形部29Lとその付け根付近で、より大きく生じ易くなっていることが判かる。
このことは、当接変形部29Lが、下側弁シート27Lの径方向RD径外側の周縁に、軸方向AX下方側の成分と、径方向RD径外側の成分とを合成した向きに突出した形状で形成されていることで、弁体20が軸方向AX下側に押圧されると、主に当接変形部29Lで弾性変形し易いことを意味する。
In the first embodiment, as shown in FIG. 11, when the lower valve seat 27L is pressed by the load F, the contact deformed portion 29L, the lower surface 27La, and the outer peripheral surface 27Lb of the lower valve seat 27L are in contact. The vicinity of the base of the deformed portion 29L is mainly elastically deformed locally, and the distribution of the subsidence (displacement amount) is dense. As can be seen from FIG. 11, the largest displacement amount near the base of the contact deformation portion 29L reaches 0.240 (mm). On the other hand, the stroke amount by which the valve body 20 is moved downward in the axial direction AX is also 0.274 (mm), and when the valve body 20 is pressed by the load F, the elastic deformation is almost the contact deformation portion 29L and its root. It can be seen that it is more likely to occur in the vicinity.
This is because the contact deforming portion 29L protrudes in the direction in which the component on the lower side in the axial direction AX and the component on the outer side in the radial direction RD are combined with the peripheral edge on the outer side in the radial direction RD of the lower valve seat 27L. By being formed in a shape, it means that when the valve body 20 is pressed downward in the axial direction AX, it is easily elastically deformed mainly by the contact deformation portion 29L.

これに対し、比較例1では、下側弁シート227Lの硬度が、実施例1の下側弁シート27Lと同じ硬度70°であっても、図13に示すように、下側弁シート227Lが荷重Fで押圧されると、当接変形部229Lで弾性変形する変位量の分布は、実施例1に比べ疎になり、変位量の大きさも、実施例1に比べて半分程度となっている。
また、下側弁シート227Lでは、下面227La及び外周面227Lbにおける当接変形部229Lの付け根付近や、この付け根から径方向RD径内側(図13中、左側)にかけた範囲でも弾性変形が生じているが、最も大きい変位量は0.180(mm)である。
他方、弁体20が軸方向AX下側に移動したストローク量は0.156(mm)に留まり、弁体120が荷重Fで押圧されると、弾性変形が、ほとんど下側弁シート227L全体で生じ、当接変形部229Lにおける変位量が、実施例1に比べて全体的に小さいことが判かる。
このことは、下側弁シート227Lと下側弁シート27Lとの形状の違いから、弁体220が軸方向AX下側に押圧されても、実施例1に比べ、当接変形部229Lで弾性変形し難いことを意味する。
On the other hand, in Comparative Example 1, even if the hardness of the lower valve seat 227L is 70 °, which is the same as that of the lower valve seat 27L of Example 1, as shown in FIG. When pressed by a load F, the distribution of the amount of displacement that is elastically deformed by the contact deformation portion 229L is sparse compared to the first embodiment, and the magnitude of the displacement is also about half that of the first embodiment. .
Further, in the lower valve seat 227L, elastic deformation occurs even in the vicinity of the base of the contact deformation portion 229L on the lower surface 227La and the outer peripheral surface 227Lb, or in the range extending from the base to the inner side in the radial direction RD (left side in FIG. 13). However, the largest displacement is 0.180 (mm).
On the other hand, the stroke amount by which the valve body 20 moves downward in the axial direction AX remains at 0.156 (mm). When the valve body 120 is pressed by the load F, the elastic deformation is almost entirely in the entire lower valve seat 227L. As a result, it can be seen that the amount of displacement in the contact deformation portion 229L is smaller than that of the first embodiment.
This is because of the difference in shape between the lower valve seat 227L and the lower valve seat 27L, even when the valve body 220 is pressed downward in the axial direction AX, the contact deformation portion 229L is more elastic than the first embodiment. It means that it is difficult to deform.

また、実施例2の下側弁シート27L、及び比較例3の下側弁シート227Lは、何れも同じ硬度60°であり、実施例1及び比較例1と比べて低く、荷重Fで押圧されたときに、弾性変形し易い。   The lower valve seat 27L of Example 2 and the lower valve seat 227L of Comparative Example 3 both have the same hardness of 60 ° and are lower than those of Example 1 and Comparative Example 1 and are pressed by the load F. It is easily elastically deformed.

実施例2では、図12に示すように、下側弁シート27Lが荷重Fで押圧されると、実施例1と同様、下側弁シート27Lのうち、当接変形部29Lと、下面27La及び外周面27Lbにおける当接変形部29Lの付け根付近とが主に局部的に弾性変形し、その分布は密となる傾向にある。図12から読み取れるように、この当接変形部29Lの付け根付近で最も大きい変位量は0.30(mm)に達している。
他方、弁体20が軸方向AX下側に移動したストローク量も0.332(mm)となり、弁体20が荷重Fで押圧されると、弾性変形が、ほとんど当接変形部29Lとその付け根付近で、より大きく生じ易くなっていることが判かる。
このことは、弁体20が軸方向AX下側に押圧されたときに、実施例1において、下側弁シート27Lが硬度70°で形成する場合よりもさらに当接変形部29Lで弾性変形し易いことを意味する。
In the second embodiment, as shown in FIG. 12, when the lower valve seat 27L is pressed by the load F, as in the first embodiment, among the lower valve seat 27L, the contact deformation portion 29L, the lower surface 27La, and The vicinity of the base of the contact deformation portion 29L on the outer peripheral surface 27Lb is mainly elastically deformed locally, and the distribution tends to be dense. As can be seen from FIG. 12, the largest displacement amount near the base of the contact deformation portion 29L reaches 0.30 (mm).
On the other hand, when the valve body 20 is moved to the lower side in the axial direction AX, the stroke amount is 0.332 (mm), and when the valve body 20 is pressed by the load F, the elastic deformation is almost the contact deformation portion 29L and its root. It can be seen that it is more likely to occur in the vicinity.
This is because when the valve body 20 is pressed downward in the axial direction AX, in the first embodiment, the lower valve seat 27L is more elastically deformed by the contact deformation portion 29L than when the lower valve seat 27L is formed with a hardness of 70 °. Means easy.

前述した構成を有する本実施形態に係るガス燃焼複合弁1の作用・効果について説明する。
(1)本実施形態では、上側弁座15Uと下側弁座15Lとが上下に形成されたボディ10と、上側弁体25U及び下側弁体25Lとして、1つの弁軸40に2つの弁体25U,25Lとを有し、弁軸40を当該ガス燃焼複合弁1の軸方向AXに移動させて、上側弁体25Uを上側弁座15Uに、下側弁体25Lを下側弁座15Lに、それぞれ当接または離間させて燃焼ガスGSの流れを制御するガス燃焼複合弁1において、上側弁体25Uのうち、上側弁座15Uと少なくとも当接する上側弁シート27Uと、下側弁体25Lのうち、下側弁座15Lと少なくとも当接する下側弁シート27Lとが、所定硬度のゴムからなり、上側弁シート27Uでは、上側弁座15Uとの当接面である下面27Uaが平面状に形成されていること、下側弁シート27Lは、軸方向AXと直交する径方向RDの径外側の周縁に、軸方向AX下方側の成分と、径方向RD径外側の成分とを合成した向きに突出した当接変形部29Lを有し、当接変形部29Lが弾性変形して下側弁座15Lと当接するので、ボディ10、上側弁体25U、及び下側弁体25L等の各部品の製造工程で、寸法公差内での寸法のバラツキが、本実施形態のガス燃焼複合弁1である製品(以下、単に「製品」という。)毎に生じるが、このような寸法のバラツキを有した各部品をそのまま組み付けて当該ガス燃焼複合弁1を構成しても、上側弁体25Uが上側弁座15Uに、下側弁体25Lが下側弁座15Lに、それぞれ洩れなく密着し閉弁することができる。
The operation and effect of the gas combustion composite valve 1 according to this embodiment having the above-described configuration will be described.
(1) In this embodiment, the upper valve seat 15U and the lower valve seat 15L are vertically formed as the body 10, the upper valve body 25U, and the lower valve body 25L. And the valve shaft 40 is moved in the axial direction AX of the gas combustion composite valve 1, the upper valve body 25U is moved to the upper valve seat 15U, and the lower valve body 25L is moved to the lower valve seat 15L. In the gas combustion composite valve 1 that controls the flow of the combustion gas GS by abutting or separating from each other, of the upper valve body 25U, the upper valve seat 27U that is at least in contact with the upper valve seat 15U, and the lower valve body 25L Of these, the lower valve seat 27L at least in contact with the lower valve seat 15L is made of rubber having a predetermined hardness, and the upper valve seat 27U has a flat lower surface 27Ua that is a contact surface with the upper valve seat 15U. Formed, lower valve The seat 27L has an abutting deformation portion 29L projecting in a direction in which a component on the lower side of the axial direction AX and a component on the outer side of the radial direction RD are combined on the outer periphery of the radial direction RD perpendicular to the axial direction AX. Since the contact deformation portion 29L is elastically deformed and comes into contact with the lower valve seat 15L, within the manufacturing process of each part such as the body 10, the upper valve body 25U, the lower valve body 25L, etc. The variation in dimensions occurs for each product (hereinafter simply referred to as “product”) that is the gas combustion composite valve 1 of the present embodiment, and the components having such a dimension variation are assembled as they are. Even when the gas combustion composite valve 1 is configured, the upper valve body 25U can be in close contact with the upper valve seat 15U and the lower valve body 25L can be in close contact with the lower valve seat 15L without leaking.

よって、本実施形態のガス燃焼複合弁1は、2つの上側弁座15U、下側弁座15Lに対し1つの弁軸40の移動で2つの上側弁体25U、下側弁体25Lを共に当接させて閉弁するという、いわゆる二段式弁座シール構造であっても、簡単な構造で生産性が高く、低コストで製造し提供することができる。   Therefore, in the gas combustion composite valve 1 of the present embodiment, the two upper valve bodies 25U and the lower valve body 25L are brought into contact with each other by the movement of one valve shaft 40 with respect to the two upper valve seats 15U and the lower valve seat 15L. Even a so-called two-stage valve seat seal structure in which the valve is closed by contact can be manufactured and provided at a low cost with a simple structure, high productivity.

すなわち、本実施形態のガス燃焼複合弁1のような、いわゆる二段式弁座シール構造の流体制御弁では、ガス燃焼複合弁1を用いて説明すると、その軸方向AXに対し、上側弁体25Uの上側弁シート27Uの下面27Uaにおいて上側弁座15Uと最初に当接する第1弁体接触位置と、下側弁体25Lの下側弁シート27Lの当接変形部29Lにおいて下側弁座15Lと最初に当接する第2弁体接触位置(当接変形部先端位置29Lt近傍)との弁シート間距離と、上側弁座15Uと下側弁座15Lとの弁座間距離との関係で、
L1≦L2…式1
L1:弁座間距離(mm)、L2:弁シート間距離(mm)
上記式1を満たすことが、流体漏れを防ぐ前提となる(図6参照)。
That is, in a fluid control valve having a so-called two-stage valve seat seal structure such as the gas combustion composite valve 1 of the present embodiment, the upper valve body with respect to the axial direction AX will be described using the gas combustion composite valve 1. The first valve body contact position that first contacts the upper valve seat 15U on the lower surface 27Ua of the 25U upper valve seat 27U, and the lower valve seat 15L at the contact deformation portion 29L of the lower valve seat 27L of the lower valve body 25L. The relationship between the valve seat distance between the first and second valve body contact position (near the contact deformation portion tip position 29Lt) and the valve seat distance between the upper valve seat 15U and the lower valve seat 15L,
L1 ≦ L2 Formula 1
L1: Distance between valve seats (mm), L2: Distance between valve seats (mm)
Satisfying the above formula 1 is a premise for preventing fluid leakage (see FIG. 6).

特許文献1のような従来の弁と同様、本実施形態のガス燃焼複合弁1でも、その製造工程において、ボディ10、上側弁体25U、及び下側弁体25L等、構成する各部品に寸法公差内での寸法のバラツキが、製品毎に生じ、各部品の組み付け後、弁座間距離L1や弁シート間距離L2が、製品毎に、組付け精度の公差範囲内で異なり、上記式1を満たさない場合が生じ得る。
本実施形態のガス燃焼複合弁1では、当該ガス燃焼複合弁1である製品に対し、個々の製品毎に公差内で生じ得る組付け寸法のバラツキ幅を考慮して、上記式1の関係を常に満たすように形成されている。
すなわち、下側弁体25Lの下側弁シート27Lは、その当接変形部29L自体が下側弁座15Lに当接開始する位置から、弾性変形して下側弁座15Lに当接した後、上側弁体25Uの上側弁シート27Uの下面27Uaが上側弁座15Uに当接して洩れなく密着できるよう、当接変形部29Lの変形代に十分な余裕を持たせて形成されている。
Similarly to the conventional valve as disclosed in Patent Document 1, the gas combustion composite valve 1 of the present embodiment also has dimensions in the constituent parts such as the body 10, the upper valve body 25U, and the lower valve body 25L in the manufacturing process. Variation in dimensions within the tolerance occurs for each product, and after assembling each part, the distance L1 between the valve seats and the distance L2 between the valve seats differ for each product within the tolerance range of the assembly accuracy. There may be cases where it is not satisfied.
In the gas combustion composite valve 1 of the present embodiment, the relationship of the above formula 1 is considered in consideration of the variation width of the assembly dimension that can occur within the tolerance for each product for the product that is the gas combustion composite valve 1. It is always formed to satisfy.
That is, the lower valve seat 27L of the lower valve body 25L is elastically deformed from the position where the contact deformation portion 29L itself starts to contact the lower valve seat 15L and contacts the lower valve seat 15L. Further, the lower surface 27Ua of the upper valve seat 27U of the upper valve body 25U is formed with a sufficient allowance for the deformation allowance of the contact deformation portion 29L so that the upper valve seat 15U can contact the upper valve seat 15U and be adhered without leakage.

そのため、製品を構成する各部品に対し、寸法のバラツキがそれぞれ寸法公差内であれば、個々の製品に因らず、組付け後の寸法のバラツキを吸収することができる。
よって、本実施形態のガス燃焼複合弁1は、下側弁体25Lの下側弁シート27Lの当接変形部29Lが下側弁座15Lに当接し密着し、かつ上側弁体25Uの上側弁シート27Uの下面27Uaが上側弁座15Uに当接し密着した状態で、洩れなく閉弁することができる。
Therefore, if the dimensional variation is within the dimensional tolerance for each part constituting the product, the dimensional variation after assembly can be absorbed regardless of individual products.
Therefore, in the gas combustion composite valve 1 of the present embodiment, the contact deformation portion 29L of the lower valve seat 27L of the lower valve body 25L contacts and comes into close contact with the lower valve seat 15L, and the upper valve of the upper valve body 25U. With the lower surface 27Ua of the seat 27U in contact with and closely contacting the upper valve seat 15U, the valve can be closed without leakage.

また、特許文献1と異なり、本実施形態のガス燃焼複合弁1では、その製造工程で、下側弁座15Lに上側弁体25Uの上側弁シート27Uの下面27Uaが当接開始する位置と、下側弁座15Lに下側弁体25Lの下側弁シート27Lの当接変形部29Lが当接開始する位置とを、予め位置決めする必要がなく、弁軸40に位置決めされた上側弁体25Uと下側弁体25Lとを、接着剤で固定させる必要がない。
そのため、本実施形態のガス燃焼複合弁1は、製品として、生産性が高い量産体制で製造することができる共に、従来、必要とされていた接着剤の使用に伴う工程管理を不要とし、製造時の手間や工数が低減できる。ひいては、本実施形態のガス燃焼複合弁1は、安価に製造することができる。
Further, unlike the patent document 1, in the gas combustion composite valve 1 of the present embodiment, in the manufacturing process, a position where the lower surface 27Ua of the upper valve seat 27U of the upper valve body 25U starts to contact the lower valve seat 15L; The upper valve body 25U positioned on the valve shaft 40 does not need to be positioned in advance, and the position where the contact deformation portion 29L of the lower valve seat 27L of the lower valve body 25L starts to contact the lower valve seat 15L is not necessary. And the lower valve body 25L need not be fixed with an adhesive.
Therefore, the gas combustion composite valve 1 of the present embodiment can be manufactured as a product in a mass production system with high productivity and eliminates the need for process management associated with the use of an adhesive that has been conventionally required. Time and effort can be reduced. As a result, the gas combustion composite valve 1 of this embodiment can be manufactured at low cost.

また、特許文献1では、弁シート間距離と弁座間距離とを合わせるためだけに、コイルバネ564等の余分な部品を弁に装着し、部品点数が増えてコスト高の要因となっていたが、本実施形態のガス燃焼複合弁1は、製品毎に弁座間距離L1と弁シート間距離L2とを一致させる余分な部品を必要とせず、簡単な構造で構成され、製品のコストアップが抑制できている。   Further, in Patent Document 1, an extra part such as a coil spring 564 is attached to the valve only in order to match the distance between the valve seats and the distance between the valve seats, and the number of parts increases, which is a factor of high cost. The gas combustion composite valve 1 of the present embodiment does not require an extra part for matching the distance L1 between the valve seats and the distance L2 between the valve seats for each product, and is configured with a simple structure, thereby suppressing an increase in product cost. ing.

従って、本実施形態のガス燃焼複合弁1は、2つの上側弁座15U、下側弁座15Lに対し、1つの弁軸40の上下に2つの上側弁体25U、下側弁体25Lを、それぞれ当接または離間させて燃焼ガスGSの流れを制御する流体制御弁であっても、簡単な構造で生産性が高く、低コストで製造することができる、という優れた効果を奏する。   Therefore, the gas combustion composite valve 1 of the present embodiment has two upper valve bodies 25U and lower valve bodies 25L above and below one valve shaft 40 with respect to the two upper valve seats 15U and the lower valve seat 15L. Even the fluid control valves that control the flow of the combustion gas GS by contacting or separating from each other have an excellent effect that they can be manufactured with a simple structure, high productivity, and low cost.

(2)また、流体は燃焼ガスGSであるので、例えば、低圧で大流量の燃焼ガスGSを、圧力損失の小さい大口径の流路を通じて流通制御する場合に、弁体20を当接または離間させて燃焼ガスGSの流れを制御するアクチュエータを小型化することができ、ひいてはガス燃焼複合弁1全体をコンパクトにすることができる。 (2) Since the fluid is the combustion gas GS, for example, when the flow control of the combustion gas GS with a low pressure and a large flow rate is performed through a large-diameter channel with a small pressure loss, the valve body 20 is brought into contact with or separated from the valve body 20. Thus, the actuator for controlling the flow of the combustion gas GS can be reduced in size, and as a result, the entire gas combustion composite valve 1 can be made compact.

すなわち、本実施形態のガス燃焼複合弁1のような、燃焼ガスの流れを制御する燃焼ガス制御弁では、燃焼ガスは、数kPa〜数十kPaという比較的低圧で流通させるのが一般的である。そのため、このような燃焼ガス制御弁は、例えば、入力ポート及び出力ポート等、燃焼ガスの流路の口径をΦ50(mm)程度、流量を40(m3/hour)等、大流量の燃焼ガスが流通できる仕様となっている。
他方、燃焼ガス制御弁の小型化が、ユーザーから要求されている。燃焼ガス制御弁のメーカーは、燃焼ガスの流路を大口径で形成しつつ、燃焼ガスの流れを制御するアクチュエータを小型化して、燃焼ガス制御弁全体をコンパクトに収める開発を行っている。
That is, in a combustion gas control valve that controls the flow of combustion gas, such as the gas combustion composite valve 1 of this embodiment, the combustion gas is generally circulated at a relatively low pressure of several kPa to several tens of kPa. is there. Therefore, such a combustion gas control valve, for example, has a large flow rate of combustion gas, such as an input port and an output port, and the diameter of the flow path of the combustion gas is about Φ50 (mm) and the flow rate is 40 (m 3 / hour). It is a specification that can be distributed.
On the other hand, downsizing of the combustion gas control valve is required by users. Combustion gas control valve manufacturers are developing a compact combustion gas control valve by reducing the size of the actuator that controls the flow of combustion gas while forming the combustion gas flow path with a large diameter.

本実施形態のガス燃焼複合弁1は、2つの上側弁座15U、下側弁座15Lに対し、1つの弁軸40の上下に2つの上側弁体25U、下側弁体25L(弁体20)を、それぞれ当接または離間させて燃焼ガスGSの流れを制御する。
このガス燃焼複合弁1では、入力ポート11に流入した燃焼ガスGSは、上側弁座15U及び上側弁体25Uで流通制御する第1流路13Aと、下側弁座15L及び下側弁体25Lで流通制御する第2流路13Bとの2つの流路に分流し出力ポート12へと流れる。
弁体20が付勢バネ64により軸方向AX下側に付勢され、ガス燃焼複合弁1が閉弁したときには、弁体20が、図2及び、参照する図3に示すように、入力ポート11から弁室13に流入した燃焼ガスGSの圧力を受圧する。
換言すれば、弁体20の上側弁体25Uは、軸方向AX下側から燃焼ガスGSによる圧力を受ける一方で、弁体20の下側弁体25Lは、軸方向AX上側から燃焼ガスGSによる圧力を受ける。
In the gas combustion composite valve 1 of the present embodiment, two upper valve bodies 25U and lower valve bodies 25L (valve bodies 20L) above and below one valve shaft 40 with respect to the two upper valve seats 15U and the lower valve seat 15L. ) Are brought into contact with or separated from each other to control the flow of the combustion gas GS.
In this gas combustion composite valve 1, the combustion gas GS that flows into the input port 11 flows through the first flow path 13A, the lower valve seat 15L, and the lower valve body 25L that are controlled to flow through the upper valve seat 15U and the upper valve body 25U. The flow is divided into two flow paths, the second flow path 13 </ b> B whose flow control is performed, and flows to the output port 12.
When the valve body 20 is urged downward in the axial direction AX by the urging spring 64 and the gas combustion compound valve 1 is closed, the valve body 20 is connected to the input port as shown in FIG. 2 and FIG. 11 receives the pressure of the combustion gas GS flowing from 11 into the valve chamber 13.
In other words, the upper valve body 25U of the valve body 20 receives pressure from the combustion gas GS from the lower side in the axial direction AX, while the lower valve body 25L of the valve body 20 is driven from the combustion gas GS from the upper side in the axial direction AX. Under pressure.

このとき、上側弁体25Uが燃焼ガスGSにより受圧する燃焼ガス圧の大きさと、下側弁体25Lが燃焼ガスGSにより受圧する燃焼ガス圧の大きさは、絶対値が同じである。上側弁体25U側の燃焼ガス圧と、下側弁体25L側の燃焼ガス圧とは、互いに反対方向に作用するため、弁体20にかかる燃焼ガス圧は、実質的にキャンセルされる。
そのため、ガス燃焼複合弁1で流通制御する燃焼ガスGSがたとえ大流量であっても、弁体20は、燃焼ガス圧の影響を受けることなく、上側弁体25Uを上側弁座15Uに、下側弁体25Lを下側弁座15Lに、それぞれ当接させて閉弁できるのに足りる比較的小さな付勢バネ64の付勢力だけで閉弁できるようになる。
At this time, the magnitude of the combustion gas pressure received by the upper valve body 25U by the combustion gas GS and the magnitude of the combustion gas pressure received by the lower valve body 25L by the combustion gas GS have the same absolute value. Since the combustion gas pressure on the upper valve body 25U and the combustion gas pressure on the lower valve body 25L act in opposite directions, the combustion gas pressure applied to the valve body 20 is substantially canceled.
Therefore, even if the combustion gas GS that is flow-controlled by the gas combustion composite valve 1 has a large flow rate, the valve body 20 is not affected by the combustion gas pressure, and the upper valve body 25U is lowered to the upper valve seat 15U. The side valve body 25L can be closed with only the biasing force of a relatively small biasing spring 64 that is sufficient to bring the side valve body 25L into contact with the lower valve seat 15L.

その一方で、ガス燃焼複合弁1を開弁するときには、コイル62に通電することで、付勢バネ64の付勢力に打勝つ磁力(推力)でプランジャ63を、軸方向AX上側に吸引し、プランジャ63、弁軸40及び弁体20が、一つになって上昇する。
プランジャ63を上昇させて開弁するのには、小さく抑えた付勢バネ64の付勢力だけに打勝つ必要な推力が、コア61、コイル62、プランジャ63及び付勢バネ64等で構成されるアクチュエータで発揮できれば良い。
よって、発揮する推力が小さくなれば、アクチュエータが小型化でき、ひいては、燃焼ガスGSの流れを制御するガス燃焼複合弁1をコンパクトにすることができる。
On the other hand, when the gas combustion composite valve 1 is opened, by energizing the coil 62, the plunger 63 is attracted to the upper side in the axial direction AX with a magnetic force (thrust) that overcomes the biasing force of the biasing spring 64, The plunger 63, the valve shaft 40, and the valve body 20 are raised together.
In order to raise the plunger 63 and open the valve, the thrust required to overcome only the biasing force of the biasing spring 64 which is suppressed to a small value is constituted by the core 61, the coil 62, the plunger 63, the biasing spring 64, and the like. It only has to be demonstrated with an actuator.
Therefore, if the thrust exerted becomes small, the actuator can be downsized, and the gas combustion composite valve 1 that controls the flow of the combustion gas GS can be made compact.

(3)また、閉弁した状態では、上側弁座15Uとの当接による上側弁シート27Uの下面27Uaの弾性変形量は、第1潰し量h1(0<h1)であり、下側弁座15Lとの当接による下側弁シート27Lの当接変形部29Lの弾性変形量は、第2潰し量h2(0<h2)であり、第2潰し量h2は、第1潰し量h1より大きく設定されているので、はじめに下側弁シート27Lの当接変形部29Lが下側弁座15Lと当接した後、当接変形部29Lが、下側弁座15Lと当接開始した位置から第2潰し量h2まで弾性変形して下側弁座15Lと確実に密着する間に、上側弁シート27Uの下面27Uaが、上側弁座15Uと当接開始した位置から第1潰し量h1まで弾性変形して上側弁座15Uと確実に密着する。
よって、上側弁座15Uと上側弁体25Uとを、下側弁座15Lと下側弁体25Lとを、双方とも洩れなくシールすることができる。
(3) When the valve is closed, the elastic deformation amount of the lower surface 27Ua of the upper valve seat 27U due to contact with the upper valve seat 15U is the first collapse amount h1 (0 <h1), and the lower valve seat The elastic deformation amount of the contact deformation portion 29L of the lower valve seat 27L due to contact with 15L is the second crushed amount h2 (0 <h2), and the second crushed amount h2 is larger than the first crushed amount h1. Since the contact deformation portion 29L of the lower valve seat 27L first contacts the lower valve seat 15L, the contact deformation portion 29L starts from the position where the contact deformation portion 29L starts to contact the lower valve seat 15L. While elastically deforming up to 2 crushing amount h2 and securely contacting the lower valve seat 15L, the lower surface 27Ua of the upper valve seat 27U is elastically deformed from the position where it starts to contact the upper valve seat 15U to the first crushing amount h1. Then, the upper valve seat 15U is securely adhered.
Therefore, it is possible to seal the upper valve seat 15U and the upper valve body 25U, and the lower valve seat 15L and the lower valve body 25L without leakage.

(4)また、下側弁シート27Lの硬度は、上側弁シート27Uの硬度より小さくなっているので、下側弁シート27Lのうち、当接変形部29Lが、上側弁シート27Uより弾性変形し易くなり、下側弁座15Lと当接する当接変形部29Lの接触面積をより大きく採ることができ、上側弁座15Uと上側弁体25Uとを密着させた上で、下側弁座15Lと下側弁体25Lとのシール力を大きくして、洩れなくより確かに閉弁することができる。 (4) Also, since the hardness of the lower valve seat 27L is smaller than the hardness of the upper valve seat 27U, the contact deformation portion 29L of the lower valve seat 27L is elastically deformed from the upper valve seat 27U. The contact area of the contact deformation portion 29L that comes into contact with the lower valve seat 15L can be increased, and the upper valve seat 15U and the upper valve body 25U are brought into close contact with each other, and the lower valve seat 15L By increasing the sealing force with the lower valve body 25L, the valve can be closed more reliably without leakage.

すなわち、本実施形態のガス燃焼複合弁1では、上側弁体25U及び下側弁体25L(弁体20)を上側弁座15U及び下側弁座15Lに当接させる向き(軸方向AX下側)に弁軸40を移動させたとき、はじめに下側弁シート27Lのうち、当接変形部29Lが主に弾性変形するが、このとき、当接変形部29Lが上側弁シート27Uの硬度より小さいと、当接変形部29Lは、軸方向AX下方側に向けて押し潰され易く、下側弁座15Lとの接触面積をより大きくした状態で弾性変形して下側弁座15Lと密着する。これにより、下側弁体25Lと下側弁座15Lとの間でも一定の大きなシール力が確保できる。   That is, in the gas combustion composite valve 1 of the present embodiment, the upper valve body 25U and the lower valve body 25L (valve body 20) are in contact with the upper valve seat 15U and the lower valve seat 15L (on the lower side in the axial direction AX). ), The contact deformation portion 29L of the lower valve seat 27L is mainly elastically deformed. At this time, the contact deformation portion 29L is smaller than the hardness of the upper valve seat 27U. Then, the contact deforming portion 29L is easily crushed toward the lower side in the axial direction AX, and is elastically deformed in a state where the contact area with the lower valve seat 15L is further increased, thereby closely contacting the lower valve seat 15L. Thereby, a certain large sealing force can be secured even between the lower valve body 25L and the lower valve seat 15L.

その後に、弁軸40が、必要に応じて、下側弁体25Lを下側弁座15Lに当接させる向きにさらに移動すると、弾性変形しようとする、あるいは弾性変形の最中にある上側弁座15Uが、上側弁座15Uと密着し、上側弁体25Uと上側弁座15Uとの間で一定の大きなシール力が確保できる。
よって、上側弁座15Uと上側弁体25Uとのシール力と、下側弁座15Lと下側弁体25Lとのシール力とを、双方とも大きくすることができる。
Thereafter, if the valve shaft 40 further moves in a direction to bring the lower valve body 25L into contact with the lower valve seat 15L as necessary, the upper valve is about to be elastically deformed or is in the middle of elastic deformation. The seat 15U is in close contact with the upper valve seat 15U, and a certain large sealing force can be secured between the upper valve body 25U and the upper valve seat 15U.
Therefore, both the sealing force between the upper valve seat 15U and the upper valve body 25U and the sealing force between the lower valve seat 15L and the lower valve body 25L can be increased.

(5)また、当接変形部29Lの向きは、軸方向AXに対し、傾斜角θ=45°に形成されているので、ガス燃焼複合弁1である製品を構成する各部品の寸法が、製品毎に、それぞれ寸法公差内の範囲でバラツキを持って加工され組付けられていても、
(a)上述した式1を満たすこと、及び
(b)弾性変形した当接変形部29Lによる下側弁座15Lへの接触面積をより大きく採ること
の双方の必要十分条件を満たすのに、最適な傾斜角となる。
よって、本実施形態のガス燃焼複合弁1は、いわゆる二段式弁座シール構造であっても、個々の製品に対し、構成する各部品の寸法精度に因らず、閉弁時のシール性が高い流体制御弁とすることができる。
(5) In addition, since the direction of the contact deformation portion 29L is formed at an inclination angle θ = 45 ° with respect to the axial direction AX, the dimensions of the parts constituting the product that is the gas combustion composite valve 1 are Even if each product is processed and assembled with variation within the range of dimensional tolerance,
Optimum for satisfying both the necessary and sufficient conditions of (a) satisfying the above-mentioned formula 1 and (b) taking a larger contact area to the lower valve seat 15L by the elastically deformed contact deformation portion 29L. The tilt angle is
Therefore, even if the gas combustion composite valve 1 of the present embodiment has a so-called two-stage valve seat seal structure, the sealing performance at the time of closing the valve is not dependent on the dimensional accuracy of each component constituting the individual product. Can be a high fluid control valve.

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できる。
例えば、下側弁体25Lの下側弁シート27Lにおいて、当接変形部29Lを、軸方向AXに対し、傾斜角θ=45°としたが、軸方向に対する当接変形部の傾斜角は、例えば、45°未満でも良く、適宜変更可能である。
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above-described embodiments, and can be appropriately modified and applied without departing from the gist thereof.
For example, in the lower valve seat 27L of the lower valve body 25L, the contact deformation portion 29L has an inclination angle θ = 45 ° with respect to the axial direction AX, but the inclination angle of the contact deformation portion with respect to the axial direction is For example, it may be less than 45 ° and can be changed as appropriate.

1 ガス燃焼複合弁(流体制御弁)
10 ボディ
15U 上側弁座(第1弁座)
15L 下側弁座(第2弁座)
25U 上側弁体(第1弁体)
25L 下側弁体(第2弁体)
27U 上側弁シート(第1弁座当接部)
27Ua 下面(第1弁座当接部の当接面)
27L 下側弁シート(第2弁座当接部)
29L 当接変形部
40 弁軸
GS ガス(流体
h1 第1潰し量
h2 第2潰し量
AX 軸方向
RD 径方向
1 Gas combustion combined valve (fluid control valve)
10 Body 15U Upper valve seat (first valve seat)
15L Lower valve seat (second valve seat)
25U Upper valve body (first valve body)
25L Lower valve body (second valve body)
27U Upper valve seat (first valve seat contact part)
27Ua bottom surface (contact surface of first valve seat contact portion)
27L Lower valve seat (second valve seat contact part)
29L Contact deformation part 40 Valve shaft GS Gas (fluid h1 1st crushing amount h2 2nd crushing amount AX Axial direction RD Radial direction

Claims (5)

第1弁座と第2弁座とが上下に形成されたボディと、第1弁体及び第2弁体として、1つの弁軸に2つの弁体とを有し、前記弁軸を当該流体制御弁の軸方向に移動させて、前記第1弁体を前記第1弁座に、前記第2弁体を前記第2弁座に、それぞれ当接または離間させて流体の流れを制御する流体制御弁において、
前記第1弁体のうち、前記第1弁座と少なくとも当接する第1弁座当接部と、前記第2弁体のうち、前記第2弁座と少なくとも当接する第2弁座当接部とが、弾性を有する材質からなり、
前記第1弁座当接部では、前記第1弁座との当接面が平面状に形成されていること、
前記第2弁座当接部は、前記軸方向と直交する径方向の径外側の周縁に、前記軸方向下方側の成分と、前記径方向径外側の成分とを合成した向きに突出した当接変形部を有し、前記当接変形部が弾性変形して前記第2弁座と当接することを特徴とする流体制御弁。
A first valve seat and a second valve seat are vertically formed, and the first valve body and the second valve body have two valve bodies on one valve shaft, and the valve shaft is connected to the fluid Fluid that moves in the axial direction of the control valve to control the flow of fluid by bringing the first valve body into contact with or separating from the first valve seat and the second valve body against the second valve seat. In the control valve,
Of the first valve body, a first valve seat abutting portion that at least abuts on the first valve seat, and among the second valve body, a second valve seat abutment portion that at least abuts on the second valve seat. And made of elastic material,
In the first valve seat contact portion, the contact surface with the first valve seat is formed in a flat shape,
The second valve seat abutting portion protrudes in a direction in which a component on the lower side in the axial direction and a component on the outer side in the radial direction are combined with a peripheral edge on the radially outer side perpendicular to the axial direction. A fluid control valve having a contact deformation portion, wherein the contact deformation portion is elastically deformed and contacts the second valve seat.
請求項1に記載する流体制御弁において、
前記流体はガスであることを特徴とする流体制御弁。
The fluid control valve according to claim 1,
The fluid control valve, wherein the fluid is a gas.
請求項1または請求項2に記載する流体制御弁において、
閉弁した状態では、前記第1弁座との当接による前記第1弁座当接部の前記当接面の弾性変形量は、第1潰し量h1(0<h1)であり、
前記第2弁座との当接による前記第2弁座当接部の前記当接変形部の弾性変形量は、第2潰し量h2(0<h2)であり、
前記第2潰し量h2は、前記第1潰し量h1より大きく設定されていることを特徴とする流体制御弁。
In the fluid control valve according to claim 1 or 2,
In the closed state, the amount of elastic deformation of the contact surface of the first valve seat contact portion due to contact with the first valve seat is a first collapse amount h1 (0 <h1),
The amount of elastic deformation of the contact deformation portion of the second valve seat contact portion due to contact with the second valve seat is a second collapse amount h2 (0 <h2),
The fluid control valve, wherein the second crushing amount h2 is set to be larger than the first crushing amount h1.
請求項1乃至請求項3のいずれか1つに記載する流体制御弁において、
前記第2弁座当接部の硬度は、前記第1弁座当接部の硬度より小さくなっていることを特徴とする流体制御弁。
In the fluid control valve according to any one of claims 1 to 3,
The fluid control valve according to claim 1, wherein the hardness of the second valve seat contact portion is smaller than the hardness of the first valve seat contact portion.
請求項1乃至請求項4のいずれか1つに記載する流体制御弁において、
前記当接変形部の向きは、前記軸方向に対し、傾斜角θ=45°に形成されていることを特徴とする流体制御弁。
The fluid control valve according to any one of claims 1 to 4,
The fluid control valve according to claim 1, wherein the direction of the contact deformation portion is formed at an inclination angle θ = 45 ° with respect to the axial direction.
JP2011083818A 2011-04-05 2011-04-05 Fluid control valve Active JP5371153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011083818A JP5371153B2 (en) 2011-04-05 2011-04-05 Fluid control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011083818A JP5371153B2 (en) 2011-04-05 2011-04-05 Fluid control valve

Publications (2)

Publication Number Publication Date
JP2012219857A true JP2012219857A (en) 2012-11-12
JP5371153B2 JP5371153B2 (en) 2013-12-18

Family

ID=47271614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011083818A Active JP5371153B2 (en) 2011-04-05 2011-04-05 Fluid control valve

Country Status (1)

Country Link
JP (1) JP5371153B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105179789A (en) * 2015-10-18 2015-12-23 宜宾三江机械有限责任公司 Direct action type electric control on-off valve
CN106122500A (en) * 2016-06-27 2016-11-16 西安航空制动科技有限公司 A kind of encapsulated valve of air inlet having push rod and method for production thereof
JP2017101715A (en) * 2015-11-30 2017-06-08 愛三工業株式会社 Pressure adjustment valve
JP7055513B1 (en) 2020-12-03 2022-04-18 燕山大学 Self-holding dual valve core electromagnetic switch valve and how to use it
JP7325571B1 (en) 2022-04-19 2023-08-14 三菱電機株式会社 non-return valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019224Y1 (en) * 1969-02-17 1975-06-11
JPS5436135U (en) * 1977-08-17 1979-03-09
JPS58131479A (en) * 1981-11-25 1983-08-05 カ−ル・ドウングス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニ− Valve and/or pressure governor and its assembling method
JPH04124385U (en) * 1991-04-30 1992-11-12 エヌオーケー株式会社 switching valve
JP2000028010A (en) * 1998-07-14 2000-01-25 Nok Corp Valve device
JP2000122265A (en) * 1998-10-13 2000-04-28 Toppan Printing Co Ltd Photomask appearance inspection device
JP3167428U (en) * 2011-02-09 2011-04-21 Taco株式会社 Structure for preventing leakage of shut-off valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019224Y1 (en) * 1969-02-17 1975-06-11
JPS5436135U (en) * 1977-08-17 1979-03-09
JPS58131479A (en) * 1981-11-25 1983-08-05 カ−ル・ドウングス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニ− Valve and/or pressure governor and its assembling method
JPH04124385U (en) * 1991-04-30 1992-11-12 エヌオーケー株式会社 switching valve
JP2000028010A (en) * 1998-07-14 2000-01-25 Nok Corp Valve device
JP2000122265A (en) * 1998-10-13 2000-04-28 Toppan Printing Co Ltd Photomask appearance inspection device
JP3167428U (en) * 2011-02-09 2011-04-21 Taco株式会社 Structure for preventing leakage of shut-off valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105179789A (en) * 2015-10-18 2015-12-23 宜宾三江机械有限责任公司 Direct action type electric control on-off valve
JP2017101715A (en) * 2015-11-30 2017-06-08 愛三工業株式会社 Pressure adjustment valve
CN106122500A (en) * 2016-06-27 2016-11-16 西安航空制动科技有限公司 A kind of encapsulated valve of air inlet having push rod and method for production thereof
CN106122500B (en) * 2016-06-27 2019-08-16 西安航空制动科技有限公司 A kind of encapsulated valve of air inlet and its method for production having mandril
JP7055513B1 (en) 2020-12-03 2022-04-18 燕山大学 Self-holding dual valve core electromagnetic switch valve and how to use it
JP2022089187A (en) * 2020-12-03 2022-06-15 燕山大学 Self holding type dual valve core electromagnetic switch valve and method of using the same
JP7325571B1 (en) 2022-04-19 2023-08-14 三菱電機株式会社 non-return valve

Also Published As

Publication number Publication date
JP5371153B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5371153B2 (en) Fluid control valve
JP6391814B2 (en) Blow-off valve for an internal combustion engine compressor
KR20120040752A (en) Plunger seal for pump
US20180335145A1 (en) Sealing apparatus
JP5664604B2 (en) High pressure pump
US8695636B2 (en) One piece double membrane diaphragm valve
JP5861900B2 (en) High pressure pump
JP2009529634A (en) Valve with repulsive diaphragm
KR101584479B1 (en) Fluid controller actuator
CN1699802A (en) Expansion valve
US7418973B2 (en) Device to reduce noise in pressure regulators
CA3031687A1 (en) Seal, assembly, and retention method
US11274724B2 (en) Buffer
JP2008514859A (en) Pressure control device for fuel supply unit
JP2012047291A (en) Check valve
JP4770424B2 (en) Diaphragm type pump
US20180355983A1 (en) Diaphragm valve
JP5854005B2 (en) Pulsation damper and high-pressure pump equipped with the same
JP2011220192A (en) Pulsation damper, and pulsation reducing apparatus and high-pressure pump using the same
JP5214660B2 (en) Fluid control valve
JP4710642B2 (en) Piston pump
JP6467649B2 (en) Control valve
WO2019102982A1 (en) Metal diaphragm damper
WO2022137693A1 (en) Differential pressure valve and valve device having same
JP2015124813A (en) Valve assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5371153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150