JP2012219194A - Nano particle group and method for producing the same - Google Patents

Nano particle group and method for producing the same Download PDF

Info

Publication number
JP2012219194A
JP2012219194A JP2011086603A JP2011086603A JP2012219194A JP 2012219194 A JP2012219194 A JP 2012219194A JP 2011086603 A JP2011086603 A JP 2011086603A JP 2011086603 A JP2011086603 A JP 2011086603A JP 2012219194 A JP2012219194 A JP 2012219194A
Authority
JP
Japan
Prior art keywords
nanoparticles
group
wavelength conversion
mixing step
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011086603A
Other languages
Japanese (ja)
Other versions
JP5770518B2 (en
Inventor
Tomoki Takagi
高木  知己
Shoichi Kawai
川井  正一
Susumu Sofue
進 祖父江
Daiki Kin
大貴 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Osaka University NUC
Osaka City University
Original Assignee
Denso Corp
Osaka University NUC
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Osaka University NUC, Osaka City University filed Critical Denso Corp
Priority to JP2011086603A priority Critical patent/JP5770518B2/en
Publication of JP2012219194A publication Critical patent/JP2012219194A/en
Application granted granted Critical
Publication of JP5770518B2 publication Critical patent/JP5770518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nano particle group produced by suitably aggregating wave length conversion nano particles and having a good emission intensity, and to provide a method for producing the same.SOLUTION: The wave length conversion nano particles (ZnSe:Mn) are produced by mixing an aqueous solution containing a Zn ion source and NAC with an aqueous solution containing a Mn ion source and NAC, adjusting the pH, adding a Se ion source, adjusting the pH, and then heating at 200°C under a high pressure. When the produced wave length conversion nano particles are left in the solution, the NAC is coordinated on the peripheries of the wave length conversion nano particles, and the nano particles are aggregated without being integrated with each other, and exhibit a largely improved emission intensity as shown in the figure.

Description

本発明は、吸収した光とは異なる波長の光を発生する波長変換ナノ粒子が凝集してなるナノ粒子群、及び、その製造方法に関する。   The present invention relates to a group of nanoparticles formed by aggregation of wavelength conversion nanoparticles that generate light having a wavelength different from that of absorbed light, and a method for producing the same.

吸収した光とは異なる波長の光を発生する波長変換ナノ粒子は、LEDの表面に配設されて当該LEDの発光色を変更したり、太陽電池の表面に設けられて入射光の波長を変換することにより当該太陽電池の効率を向上させたりと、種々の用途に応用されている。   Wavelength-converting nanoparticles that generate light with a wavelength different from the absorbed light are placed on the surface of the LED to change the emission color of the LED, or provided on the surface of the solar cell to convert the wavelength of incident light This improves the efficiency of the solar cell and is applied to various applications.

従来、このような波長変換ナノ粒子としては、CdSを含むものが提案されているが、波長変換ナノ粒子の廃棄処理を容易にするために、ZnSe等を使用して波長変換ナノ粒子を製造することが提案されている(例えば、非特許文献1参照)。   Conventionally, as such wavelength conversion nanoparticles, those containing CdS have been proposed. In order to facilitate disposal of the wavelength conversion nanoparticles, the wavelength conversion nanoparticles are manufactured using ZnSe or the like. (For example, refer nonpatent literature 1).

非特許文献1に記載の製造方法では、有機溶媒中で波長変換ナノ粒子を製造しているが、溶媒の廃棄処理を容易にするために、水系溶媒中で波長変換ナノ粒子を製造することも提案されている(例えば、非特許文献2,3参照)。   In the manufacturing method described in Non-Patent Document 1, wavelength conversion nanoparticles are manufactured in an organic solvent. However, in order to facilitate disposal of the solvent, the wavelength conversion nanoparticles may be manufactured in an aqueous solvent. It has been proposed (see, for example, Non-Patent Documents 2 and 3).

Narayan Pradhan and Xiaogang Peng,J.AM.CHEM.SOC.VOL.129,NO.11,2007,3339-3347Narayan Pradhan and Xiaogang Peng, J.AM.CHEM.SOC.VOL.129, NO.11,2007,3339-3347 Narayan Pradhan,David M. Battaglia,Yongcheng Liu, and Xiaogang Peng,Nano Lett., Vol.7,No.2,2007,312-317Narayan Pradhan, David M. Battaglia, Yongcheng Liu, and Xiaogang Peng, Nano Lett., Vol. 7, No. 2, 2007, 312-317 Abdelhay Aboulaich,Malgorzata Geszke,Lavinia Balan,Jaafar Ghanbaja,Ghouti Medjahdi,and Raphael Schneider,Inorg.Chem.,VOL.49,2010,10940-10948Abdelhay Aboulaich, Malgorzata Geszke, Lavinia Balan, Jaafar Ghanbaja, Ghouti Medjahdi, and Raphael Schneider, Inorg.Chem., VOL.49,2010,10940-10948

ところが、前記各非特許文献では、波長変換ナノ粒子の製造後の特性変化については何ら検証されていない。また、従来は、製造された波長変換ナノ粒子ができるだけ安定して溶液中に分散するように研究がなされたり、製造後の波長変換ナノ粒子が凝集等によって特性変化する前にできるだけ早く使用することに努力が払われたりしていた。   However, in each of the non-patent documents, any change in characteristics after the production of the wavelength conversion nanoparticles is not verified. Also, in the past, research has been done to disperse the produced wavelength conversion nanoparticles in the solution as stably as possible, or use them as soon as possible before the wavelength conversion nanoparticles after production change their properties due to aggregation, etc. Efforts have been made.

これに対して、本願出願人は、波長変換ナノ粒子がある程度凝集した方が、却って発光強度が向上することを発見した。そこで、本発明は、波長変換ナノ粒子が適度に凝集して良好な発光強度を有するナノ粒子群、及びその製造方法を提供することを目的としてなされた。   In contrast, the applicant of the present application has found that the light emission intensity is improved when the wavelength conversion nanoparticles are aggregated to some extent. Then, this invention was made | formed for the purpose of providing the nanoparticle group which the wavelength conversion nanoparticle aggregates moderately, and has favorable light emission intensity, and its manufacturing method.

前記目的を達するためになされた本発明は、粒子経が10nm以下で、吸収した光とは異なる波長の光を発生する複数の波長変換ナノ粒子によって構成され、前記各波長変換ナノ粒子は、各々の周囲に配位子が配位したことによって互いに一体化することなく、直径20〜100nmの大きさに凝集したことを特徴とするナノ粒子群を要旨としている。   The present invention made to achieve the above-mentioned object is composed of a plurality of wavelength-converting nanoparticles having a particle diameter of 10 nm or less and generating light having a wavelength different from the absorbed light. The gist of the present invention is a group of nanoparticles characterized in that they are aggregated to a size of 20 to 100 nm in diameter without being integrated with each other due to coordination of ligands around.

このように構成された本発明のナノ粒子群は、各波長変換ナノ粒子が分散した状態よりも、良好な発光強度を呈した。この理由は、次のように推察することができる。すなわち、粒子経が10nm以下の波長変換ナノ粒子が、一体化することなく直径20〜100nmの大きさに凝集しているので、各波長変換ナノ粒子が発生した光が重なって、良好な発光強度が得られる。また、各波長変換ナノ粒子は吸収した光とは異なる波長の光を発生するので、各波長変換ナノ粒子が互いに発生した光を吸収し合うこともない。   The nanoparticle group of the present invention configured as described above exhibited better emission intensity than the state where each wavelength conversion nanoparticle was dispersed. The reason can be inferred as follows. That is, since the wavelength conversion nanoparticles having a particle size of 10 nm or less are aggregated to a diameter of 20 to 100 nm without being integrated, the light generated by each wavelength conversion nanoparticle is overlapped, resulting in good emission intensity. Is obtained. In addition, since each wavelength conversion nanoparticle generates light having a wavelength different from that of the absorbed light, each wavelength conversion nanoparticle does not absorb light generated by each other.

更に、多数の波長変換ナノ粒子が凝集によって一体化してしまうと、吸収する光の波長が長波長化するなどの特性変化が生じるが、本発明では、各波長変換ナノ粒子の周囲に配位子が配位することによってそのような一体化を抑制している。従って、前記凝集によって、特性変化を生じることなく発光強度を向上させることができる。   Furthermore, when a large number of wavelength conversion nanoparticles are integrated by aggregation, a characteristic change such as a longer wavelength of light to be absorbed occurs. In the present invention, a ligand is formed around each wavelength conversion nanoparticle. Coordination suppresses such integration. Therefore, the light emission intensity can be improved by the aggregation without causing a characteristic change.

なお、本発明において、前記波長変換ナノ粒子は、Zn,Se,S,Cd,またはTeの少なくともいずれかを含んでもよい。その場合、前記発光強度を一層良好に向上させることができる。   In the present invention, the wavelength conversion nanoparticles may include at least one of Zn, Se, S, Cd, and Te. In that case, the emission intensity can be further improved.

また、前記波長変換ナノ粒子は、Mn,Er,Eu,Ybの少なくともいずれかによってドープされてもよい。その場合、各波長変換ナノ粒子は、一層良好に、吸収した光とは異なる波長の光を発生する。   The wavelength conversion nanoparticles may be doped with at least one of Mn, Er, Eu, and Yb. In that case, each wavelength converting nanoparticle generates light of a wavelength different from the absorbed light even better.

また、前記配位子が親水性の配位子であってもよい。その場合、水系溶媒中で前記波長変換ナノ粒子を生成して凝集させることが容易にでき、ナノ粒子群製造後の溶媒の廃棄も一層容易になる。   Further, the ligand may be a hydrophilic ligand. In this case, the wavelength conversion nanoparticles can be easily generated and aggregated in an aqueous solvent, and the disposal of the solvent after the production of the nanoparticle group is further facilitated.

そして、その場合、前記配位子は、親水性官能基としてのOH基を有するものであってもよい。OH基は良好な親水性を呈するので、前述のように水系溶媒中で前記波長変換ナノ粒子を生成して凝集させることが一層容易にできる。なお、ここでいうOH基は、カルボキシル基に属するものであってもよい。   In that case, the ligand may have an OH group as a hydrophilic functional group. Since the OH group exhibits good hydrophilicity, the wavelength conversion nanoparticles can be more easily generated and aggregated in an aqueous solvent as described above. The OH group referred to here may belong to a carboxyl group.

また、前記目的を達するためになされた本発明は、Mnを提供するイオン源と、無機ナノ粒子を構成する原子を提供するイオン源と、親水性の配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う混合工程と、前記pH調整後の前記溶液を加熱して粒子経が10nm以下の波長変換ナノ粒子を生成する加熱工程と、前記生成された波長変換ナノ粒子を含む溶液を放置することによって、その波長変換ナノ粒子を直径20〜100nmの大きさに凝集させた後、基材に塗布する凝集工程と、を備えたことを特徴とするナノ粒子群の製造方法を要旨としている。   Further, the present invention made to achieve the above object is to mix an ion source that provides Mn, an ion source that provides atoms constituting the inorganic nanoparticles, and a hydrophilic ligand in an aqueous solvent. A mixing step for adjusting the pH of the obtained solution, a heating step for heating the solution after the pH adjustment to generate wavelength conversion nanoparticles having a particle size of 10 nm or less, and the generated wavelength conversion nano An aggregating step of aggregating the wavelength-converting nanoparticles to a size of 20 to 100 nm by allowing the solution containing the particles to stand, and then applying the agglomeration step to a substrate; The manufacturing method is the gist.

本発明の方法では、先ず、混合工程にて、Mnを提供するイオン源と、無機ナノ粒子を構成する原子を提供するイオン源と、親水性の配位子と、を水系溶媒中で混合し、得られた溶液のpH調整する。続いて、加熱工程にて、前記pH調整後の前記溶液を加熱して粒子経が10nm以下の波長変換ナノ粒子を生成する。更に、凝集工程にて、前記生成された波長変換ナノ粒子を含む溶液を放置することによって、その波長変換ナノ粒子を直径20〜100nmの大きさに凝集させた後、基材に塗布する。   In the method of the present invention, first, in the mixing step, an ion source that provides Mn, an ion source that provides atoms constituting the inorganic nanoparticles, and a hydrophilic ligand are mixed in an aqueous solvent. The pH of the obtained solution is adjusted. Subsequently, in the heating step, the pH-adjusted solution is heated to produce wavelength conversion nanoparticles having a particle size of 10 nm or less. Furthermore, in the aggregation step, the wavelength conversion nanoparticles are agglomerated to a size of 20 to 100 nm by leaving the solution containing the generated wavelength conversion nanoparticles, and then applied to the substrate.

このため、混合工程及び加熱工程により、粒子経が10nm以下でMnによるドープがなされた波長変換ナノ粒子を、水系溶媒中で良好に製造することができる。更に、凝集工程において、凝集によって得られたナノ粒子群を基材に塗布することにより、そのナノ粒子群は直径20〜100nmの大きさを維持することができる。従って、本発明の方法では、Mnによるドープがなされた波長変換ナノ粒子からなる前記発明のナノ粒子群を、容易に製造することができる。   For this reason, the wavelength conversion nanoparticles with a particle size of 10 nm or less and doped with Mn can be satisfactorily produced in an aqueous solvent by the mixing step and the heating step. Furthermore, in the aggregation step, by applying the nanoparticle group obtained by the aggregation to the base material, the nanoparticle group can maintain a size of 20 to 100 nm in diameter. Therefore, in the method of the present invention, the nanoparticle group of the present invention composed of wavelength conversion nanoparticles doped with Mn can be easily produced.

なお、本発明の方法において、前記無機ナノ粒子を構成する原子としてZnを含んでもよい。その場合、本発明の方法よって製造されたナノ粒子群の発光強度を、一層良好に向上させることができる。   In the method of the present invention, Zn may be included as an atom constituting the inorganic nanoparticles. In that case, the emission intensity of the nanoparticle group produced by the method of the present invention can be further improved.

そして、その場合、前記配位子がN−アセチル−L−システインであり、前記混合工程では、Mnを提供する前記イオン源とN−アセチル−L−システインとを含む溶液と、Znを提供する前記イオン源とN−アセチル−L−システインとを含む溶液とを、混合してもよい。その場合、前記ナノ粒子群を水系溶媒中で一層良好に製造することができる。   In that case, the ligand is N-acetyl-L-cysteine, and in the mixing step, a solution containing the ion source providing Mn and N-acetyl-L-cysteine, and Zn are provided. The ion source and a solution containing N-acetyl-L-cysteine may be mixed. In that case, the said nanoparticle group can be manufactured more favorably in an aqueous medium.

また、本発明の方法において、前記無機ナノ粒子を構成する原子としてSeを含んでもよい。その場合、本発明の方法よって製造されたナノ粒子群の発光強度を、一層良好に向上させることができる。   In the method of the present invention, Se may be included as an atom constituting the inorganic nanoparticles. In that case, the emission intensity of the nanoparticle group produced by the method of the present invention can be further improved.

また、本発明の方法において、前記加熱工程における加熱温度が150℃〜250℃であってもよい。本願出願人は、水系溶媒中で波長変換ナノ粒子を製造する場合、150℃〜250℃に加熱して製造すると、良好な発光強度を有する波長変換ナノ粒子が得られることを発見した。これは、高温でナノ粒子を生成することにより、きれいな結晶ができるためと考えられる。   In the method of the present invention, the heating temperature in the heating step may be 150 ° C. to 250 ° C. The applicant of the present application has discovered that when wavelength-converted nanoparticles are produced in an aqueous solvent, wavelength-converted nanoparticles having good emission intensity can be obtained by heating to 150 ° C. to 250 ° C. This is thought to be because clean crystals can be formed by producing nanoparticles at a high temperature.

但し、250℃より高温に加熱すると、自己清浄化効果によってドープの効果が低減される傾向が生じる。すなわち、波長変換ナノ粒子では、無機ナノ粒子が吸収した例えば紫外領域の光のエネルギを、Mnが可視領域の光に変換する。しかしながら、250℃より高温で結晶を製造した場合、無機ナノ粒子の結晶からMnが排除される傾向が生じるのである。また、逆に、150℃未満の温度で波長変換ナノ粒子した場合は、加熱の効果が十分に得られず、従来の方法で水系溶媒中で生成された波長変換ナノ粒子と余り発光強度の差が出ない。なお、このような、高温下での波長変換ナノ粒子の生成は、必要に応じて適宜の高圧下にて行われることはいうまでもない。   However, when heated to a temperature higher than 250 ° C., the dope effect tends to be reduced due to the self-cleaning effect. That is, in the wavelength conversion nanoparticles, Mn converts light energy in the ultraviolet region, for example, absorbed by the inorganic nanoparticles into light in the visible region. However, when the crystal is produced at a temperature higher than 250 ° C., there is a tendency that Mn is excluded from the crystal of the inorganic nanoparticles. On the other hand, when the wavelength conversion nanoparticles are formed at a temperature of less than 150 ° C., the effect of heating cannot be sufficiently obtained, and the difference in emission intensity from the wavelength conversion nanoparticles generated in an aqueous solvent by a conventional method is excessive. Does not come out. Needless to say, the generation of the wavelength conversion nanoparticles at a high temperature is performed under an appropriate high pressure as necessary.

従って、この場合、前述のように良好な発光強度を有する波長変換ナノ粒子によって前記ナノ粒子群を製造することができるので、得られるナノ粒子群の発光強度を一層良好に向上させることができる。   Therefore, in this case, as described above, the nanoparticle group can be produced with the wavelength conversion nanoparticles having good light emission intensity, so that the light emission intensity of the obtained nanoparticle group can be further improved.

また、本発明の方法において、前記無機ナノ粒子を構成する原子として、SとSeとを含み、前記混合工程は、前記無機ナノ粒子を構成するSe以外の各原子を各々提供する前記各イオン源と、前記配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う第1混合工程と、前記無機ナノ粒子を構成するS以外の各原子を各々提供する前記各イオン源と、前記配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う第2混合工程と、前記第1混合工程で得られた前記pH調整後の溶液と、前記第2混合工程で得られた前記pH調整後の溶液とを混合する第3混合工程と、からなり、前記Mnを提供するイオン源は、前記第1混合工程または前記第2混合工程で前記溶液に混合されてもよい。   In the method of the present invention, each ion source includes S and Se as atoms constituting the inorganic nanoparticles, and the mixing step provides each atom other than Se constituting the inorganic nanoparticles. A first mixing step in which the ligand is mixed in an aqueous solvent and the pH of the resulting solution is adjusted, and each ion that provides each atom other than S constituting the inorganic nanoparticles. A second mixing step of mixing the source and the ligand in an aqueous solvent and adjusting the pH of the resulting solution, the solution after the pH adjustment obtained in the first mixing step, And a third mixing step of mixing the pH-adjusted solution obtained in the second mixing step, wherein the ion source providing Mn is the solution in the first mixing step or the second mixing step. May be mixed.

無機ナノ粒子を構成する原子としてSとSeとを含む場合、混晶からなる無機ナノ粒子が生成され、SとSeとの比率を適切に調整することで前記発光強度を極めて良好に向上させることができる。ところが、SとSeとでは、そのイオン源を反応系に追加する際に適切なpHが大きく異なる。   When S and Se are included as atoms constituting the inorganic nanoparticles, inorganic nanoparticles composed of mixed crystals are generated, and the emission intensity is improved extremely well by appropriately adjusting the ratio of S and Se. Can do. However, the appropriate pH differs greatly between S and Se when the ion source is added to the reaction system.

そこで、前述のように、第1混合工程にて、無機ナノ粒子を構成するSe以外の各原子(Sも含む)を各々提供する前記各イオン源と前記配位子とを水系溶媒中で混合して得られた溶液のpHを調整し、第2混合工程にて、無機ナノ粒子を構成するS以外の各原子(Seも含む)を各々提供する前記各イオン源と前記配位子とを水系溶媒中で混合して得られた溶液のpHを調整し、それらのpH調整後の溶液を第3混合工程で混合すればよい。なお、Mnを提供するイオン源は、前記第1混合工程または前記第2混合工程で前記溶液に混合される。こうすることによって、前述のような混晶からなる波長変換ナノ粒子を良好に製造することができ、ひいては、その波長変換ナノ粒子を凝集させて得られるナノ粒子群の発光強度も一層良好に向上させることができる。   Therefore, as described above, in the first mixing step, each ion source that provides each atom (including S) other than Se constituting the inorganic nanoparticles and the ligand are mixed in an aqueous solvent. The pH of the resulting solution is adjusted, and in the second mixing step, each ion source that provides each atom (including Se) other than S constituting the inorganic nanoparticles and the ligand are provided. What is necessary is just to adjust the pH of the solution obtained by mixing in an aqueous solvent, and to mix the solution after those pH adjustments at a 3rd mixing process. The ion source that provides Mn is mixed with the solution in the first mixing step or the second mixing step. By doing so, it is possible to satisfactorily produce the wavelength conversion nanoparticles composed of the mixed crystals as described above. As a result, the emission intensity of the nanoparticle group obtained by aggregating the wavelength conversion nanoparticles is further improved. Can be made.

また、本発明の方法において、前記混合工程終了後の前記溶液はpH9〜11に調整されていてもよく、その場合、その溶液を加熱することによって、極めて良好な発光強度を有する波長変換ナノ粒子を製造することができる。従って、その波長変換ナノ粒子を凝集させて得られるナノ粒子群の発光強度も一層良好に向上させることができる。   In the method of the present invention, the solution after completion of the mixing step may be adjusted to pH 9 to 11, and in that case, the wavelength-converting nanoparticles having extremely good emission intensity by heating the solution. Can be manufactured. Therefore, the emission intensity of the nanoparticle group obtained by aggregating the wavelength conversion nanoparticles can be further improved.

本発明が適用されたナノ粒子群の製造方法を表す説明図である。It is explanatory drawing showing the manufacturing method of the nanoparticle group to which this invention was applied. その方法で得られた中間生成物としての波長変換ナノ粒子の、放置による輝度変化を表すグラフである。It is a graph showing the brightness | luminance change by standing of the wavelength conversion nanoparticle as an intermediate product obtained by the method. その方法で得られたナノ粒子群を表すTEM像である。It is a TEM image showing the nanoparticle group obtained by the method. そのナノ粒子群の発光スペクトルを表すグラフである。It is a graph showing the emission spectrum of the nanoparticle group. その方法の原理を模式的に表す説明図である。It is explanatory drawing which represents the principle of the method typically. 前記ナノ粒子群の使用例及びその効果を表す説明図である。It is explanatory drawing showing the usage example and effect of the said nanoparticle group. そのナノ粒子群の各波長に対する透過率を表すグラフである。It is a graph showing the transmittance | permeability with respect to each wavelength of the nanoparticle group.

次に、本発明の実施の形態を、図面と共に説明する。図1は、本発明が適用されたナノ粒子群の製造方法を表す説明図である。図1(A)に示すように、本実施の形態では、先ず、Znイオン源(例えば、過塩素酸亜鉛)とN−アセチル−L−システイン(以下、NACという)とを1:4.8のモル比で含む水溶液と、Mnイオン源(例えば、過塩素酸マンガン)とNACとを1:1のモル比で含む水溶液とを混合した。なお、前者の水溶液と後者の水溶液とは10:1の割合で混合し、混合後の水溶液全体に対するMnの濃度が2mol%となるようにした。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing a method for producing a group of nanoparticles to which the present invention is applied. As shown in FIG. 1A, in this embodiment, first, a Zn ion source (for example, zinc perchlorate) and N-acetyl-L-cysteine (hereinafter referred to as NAC) are 1: 4.8. And an aqueous solution containing a Mn ion source (for example, manganese perchlorate) and NAC at a molar ratio of 1: 1 were mixed. The former aqueous solution and the latter aqueous solution were mixed at a ratio of 10: 1 so that the Mn concentration with respect to the entire aqueous solution after mixing was 2 mol%.

続いて、その水溶液にNaOHを添加することによってpH8.5に調整し、更に、図1(B)に示すように、Seイオン源(例えばNaHSe)を1.2mmol添加した。なお、このときのZn:Seのモル比は(1:0.6)である。また、この水溶液(ZnMnSeのPrecursor)では、金属原子にNACのSH基が配位し、NACのカルボキシル基が水系溶媒への溶解を促進しているものと推察される。その水溶液に更にNaOHを添加することによって、図1(C)に示すようにpH10.5に調整した後、高圧下(例えば6気圧)で200℃に加熱することによって、波長変換ナノ粒子(ZnSe:Mn)を製造した。なお、加熱時間は20分とした。   Subsequently, pH was adjusted to 8.5 by adding NaOH to the aqueous solution, and 1.2 mmol of a Se ion source (for example, NaHSe) was further added as shown in FIG. In this case, the molar ratio of Zn: Se is (1: 0.6). Further, in this aqueous solution (Precursor of ZnMnSe), it is presumed that the SH group of NAC is coordinated to the metal atom, and the carboxyl group of NAC promotes dissolution in the aqueous solvent. By further adding NaOH to the aqueous solution, the pH is adjusted to 10.5 as shown in FIG. 1 (C), and then heated to 200 ° C. under high pressure (for example, 6 atm), thereby converting the wavelength conversion nanoparticles (ZnSe). : Mn). The heating time was 20 minutes.

次に、図2は、前述のように製造された波長変換ナノ粒子を、前記溶液中で放置した場合の輝度変化を表すグラフである。また、図2には、20℃,25℃,70℃の各種温度で保管した場合について、輝度変化を示した。なお、輝度の測定は、波長変換ナノ粒子が凝集して出来たナノ粒子群が沈殿した時点で終了した。   Next, FIG. 2 is a graph showing the change in luminance when the wavelength conversion nanoparticles produced as described above are left in the solution. Further, FIG. 2 shows changes in luminance when stored at various temperatures of 20 ° C., 25 ° C., and 70 ° C. In addition, the measurement of luminance was completed when the nanoparticle group formed by aggregation of the wavelength conversion nanoparticles was precipitated.

図2に示すように、いずれの温度でも、放置によって発光強度は大幅に向上した。また、20℃または25℃で保管した例では、太い矢印で示す時点で白濁化した後、輝度は低下した。また、発光強度は、温度が高いほど短い期間で向上した。   As shown in FIG. 2, at any temperature, the emission intensity was significantly improved by being left standing. Moreover, in the example stored at 20 ° C. or 25 ° C., the brightness decreased after becoming cloudy at the time indicated by the thick arrow. Also, the emission intensity improved in a shorter period as the temperature was higher.

また、図3は、前述のように製造された波長変換ナノ粒子が分散した溶液にバインダとしてのプルランを添加し、室温でSi基板上に2日放置し、固化させた後の状態を透過型電子顕微鏡(Transmission Electron Microscope)で観察したTEM像である。なお、図3(B)は図3(A)の丸で囲んだ部分を拡大したTEM像であり、図3(C)は図3(B)の丸で囲んだ部分を拡大したTEM像である。前述のように製造された波長変換ナノ粒子は、製造直後は3〜5nmの粒子経を有しているが、図3のTEM像から、前記放置によって波長変換ナノ粒子が凝集し、直径20〜60nmのナノ粒子群を形成していることが分かる。   Also, FIG. 3 shows the state after adding pullulan as a binder to the solution in which the wavelength conversion nanoparticles prepared as described above are dispersed and leaving it on a Si substrate at room temperature for 2 days to solidify it. It is the TEM image observed with the electron microscope (Transmission Electron Microscope). 3B is an enlarged TEM image of the circled portion of FIG. 3A, and FIG. 3C is an enlarged TEM image of the circled portion of FIG. 3B. is there. The wavelength-converted nanoparticles produced as described above have a particle size of 3 to 5 nm immediately after production. From the TEM image of FIG. It can be seen that 60 nm nanoparticle groups are formed.

更に、図4に示す前記ナノ粒子群の発光スペクトルから、そのナノ粒子群は、580nmに発光強度のピークを有することが分かった。Zn及びSeから構成された無機ナノ粒子にMnをドープして得られる波長変換ナノ粒子(ZnSe:Mn)も、同様の位置に発光強度のピークを有することが知られている。従って、前記ナノ粒子群は、製造直後の粒子経を維持したまま、一体化することなく前記大きさに凝集したものと推察される。   Furthermore, from the emission spectrum of the nanoparticle group shown in FIG. 4, it was found that the nanoparticle group had a peak of emission intensity at 580 nm. It is known that wavelength conversion nanoparticles (ZnSe: Mn) obtained by doping Mn into inorganic nanoparticles composed of Zn and Se also have emission intensity peaks at similar positions. Therefore, the nanoparticle group is presumed to be aggregated to the size without being integrated while maintaining the particle size immediately after production.

これは、図5(A)に模式的に示すように、波長変換ナノ粒子10の周囲にNACからなる配位子11が配位しており、これによって、波長変換ナノ粒子10が凝集してナノ粒子群20を形成した後も、各波長変換ナノ粒子10は一体化せずに個々に光を吸収して異なる波長(580nm前後)の光を発生しているものと推察される。すなわち、図5(B)に模式的に示すように、波長変換ナノ粒子10が凝集して一体化し、粒子経の大きい波長変換ナノ粒子10を形成したと仮定すると、下記の式から導けるように吸収する光の波長が長波長化するが、図4のグラフからそのような仮定は否定される。また、図5(C)に模式的に示すように、波長変換ナノ粒子10が製造直後と同様の分散状態を維持しているのであれば、発光強度は変化しないはずである。   As schematically shown in FIG. 5 (A), the ligand 11 made of NAC is coordinated around the wavelength conversion nanoparticle 10, and the wavelength conversion nanoparticle 10 is thereby aggregated. Even after the nanoparticle group 20 is formed, it is presumed that the wavelength conversion nanoparticles 10 are not integrated but absorb light individually and generate light of different wavelengths (around 580 nm). That is, as schematically shown in FIG. 5B, assuming that the wavelength conversion nanoparticles 10 are aggregated and integrated to form the wavelength conversion nanoparticles 10 having a large particle diameter, the following formula can be derived. Although the wavelength of light to be absorbed becomes longer, such an assumption is denied from the graph of FIG. Further, as schematically shown in FIG. 5C, if the wavelength conversion nanoparticle 10 maintains the same dispersion state as that immediately after the production, the emission intensity should not change.

従って、本実施の形態では、図5(A)に模式的に示すように、波長変換ナノ粒子10が一体化せずに凝集し、それによって効率が向上して、波長特性を変化させることなく発光強度を向上させることができたものと推察することができる。なお、図5(D)に模式的に示すように、プルラン等のバインダ30を用いて凝集を促進した場合、適切な温度,放置時間等の各種パラメータは変化する可能性がある。 Therefore, in this embodiment, as schematically shown in FIG. 5A, the wavelength conversion nanoparticles 10 are aggregated without being integrated, thereby improving the efficiency without changing the wavelength characteristics. It can be inferred that the emission intensity could be improved. As schematically shown in FIG. 5D, when aggregation is promoted using a binder 30 such as pullulan, various parameters such as an appropriate temperature and a standing time may change.

そこで、本実施の形態の製造方法では、白濁する直前のナノ粒子群20を溶媒40と共に採取し、図6(A)に示すように基材の一例としてのガラス板50に塗布し、更にその表面にもう1枚のガラス板51を積層してナノ粒子群20の大きさを前記白濁する直前の状態に維持した。このように、ナノ粒子群20を溶媒40と共にガラス板50,51で挟んでなるフィルタは、紫外線を吸収して可視光に変換する特性を有する。このため、このようなフィルタを太陽電池の表面に配設すれば、その太陽電池の効率を向上させることができる。   Therefore, in the manufacturing method of the present embodiment, the nanoparticle group 20 immediately before clouding is collected together with the solvent 40 and applied to a glass plate 50 as an example of a substrate as shown in FIG. Another glass plate 51 was laminated on the surface, and the size of the nanoparticle group 20 was maintained in the state immediately before clouding. As described above, the filter in which the nanoparticle group 20 is sandwiched between the glass plate 50 and 51 together with the solvent 40 has a characteristic of absorbing ultraviolet light and converting it into visible light. For this reason, if such a filter is arrange | positioned on the surface of a solar cell, the efficiency of the solar cell can be improved.

また、このようにガラス板50,51に挟む実験では、波長変換ナノ粒子10が凝集して得られたナノ粒子群20は、ガラス板50の表面に均一に塗布するのが容易で、しかも、挟んだ後から偏析が起こりにくいことも分かった。すなわち、製造直後の波長変換ナノ粒子10を、図6(B)に示すように溶媒40と共にガラス板50,51で挟むと、時間の経過に伴って、図6(C)に示すように波長変換ナノ粒子10がガラス板50,51の周囲に偏析するが、ナノ粒子群20ではそのような現象は確認されなかった。なお、実験では、ガラス板50,51の間に、プルランとナノ粒子溶液を1:1で混合した溶液1.5mlを挟んで固化させた。溶液の固形物量はおよそ0.02重量%であるが、プルランが水分を含み固化し、ガラス板50,51の面積が100cm2 であるため、貼り付け直後のガラス板50,51の対向面の間隔は0.15mmと推定される。 Further, in the experiment sandwiched between the glass plates 50 and 51 in this way, the nanoparticle group 20 obtained by aggregating the wavelength conversion nanoparticles 10 can be easily applied uniformly to the surface of the glass plate 50, It was also found that segregation hardly occurs after sandwiching. That is, when the wavelength-converting nanoparticles 10 immediately after production are sandwiched between the glass plates 50 and 51 together with the solvent 40 as shown in FIG. 6B, the wavelength changes as shown in FIG. 6C with the passage of time. Although the conversion nanoparticles 10 segregate around the glass plates 50 and 51, such a phenomenon was not confirmed in the nanoparticle group 20. In the experiment, 1.5 ml of a solution in which pullulan and the nanoparticle solution were mixed at a ratio of 1: 1 between the glass plates 50 and 51 was solidified. The amount of solids in the solution is approximately 0.02% by weight, but pullulan solidifies with moisture, and the area of the glass plates 50 and 51 is 100 cm 2 . The spacing is estimated to be 0.15 mm.

図7は、そのようなフィルタの各波長に対する透過率を、ナノ粒子群20の濃度を種々に変えて測定した実験結果を表すグラフである。図7に示すように、濃度倍率(1倍が0.02重量%に相当)を高くするほど、紫外線は良好に吸収されるが、可視光線はいずれの濃度倍率でも良好に透過されることが分かった。なお、白濁した後に採取されたナノ粒子群20では、可視光線の透過率も低下した。このように、前記フィルタは、紫外線を可視光線に変換するフィルタとして良好に使用できることが分かった。   FIG. 7 is a graph showing experimental results obtained by measuring the transmittance of each filter for each wavelength while changing the concentration of the nanoparticle group 20 in various ways. As shown in FIG. 7, the higher the concentration magnification (1 time corresponds to 0.02% by weight), the better the ultraviolet light is absorbed, but the visible light can be transmitted well at any concentration magnification. I understood. In addition, in the nanoparticle group 20 collected after becoming cloudy, the transmittance of visible light also decreased. Thus, it was found that the filter can be used favorably as a filter that converts ultraviolet light into visible light.

なお、本発明は前記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の形態で実施することができる。例えば、Znイオン源としては、前述の過塩素酸亜鉛の他、塩化亜鉛,酢酸亜鉛,硝酸亜鉛等が使用できる。また、Mnイオン源としては、前述の過塩素酸マンガンの他、塩化マンガン,酢酸マンガン,臭化マンガン等が使用できる。また、Seイオン源としては、前述のNaHSeの他、セレノウレア,セレン化水素ガス等が使用できる。更に、配位子としては、前述のNACの他、メルカプト酢酸,メルカプトプロピオン酸,メルカプトこはく酸等が使用できる。   In addition, this invention is not limited to the said embodiment at all, It can implement with a various form in the range which does not deviate from the summary of this invention. For example, as the Zn ion source, zinc chloride, zinc acetate, zinc nitrate, etc. can be used in addition to the above-described zinc perchlorate. In addition to the above-described manganese perchlorate, manganese chloride, manganese acetate, manganese bromide, and the like can be used as the Mn ion source. Further, as the Se ion source, selenourea, hydrogen selenide gas, etc. can be used in addition to the above-mentioned NaHSe. Further, as the ligand, mercaptoacetic acid, mercaptopropionic acid, mercaptosuccinic acid and the like can be used in addition to the aforementioned NAC.

また更に、Seの代わりにSを使用してもよい。その場合も、図1(A)の工程の後にはpHを10.5に調整するのが望ましい。また、その場合、図1(B)の工程で用いるSイオン源としては、硫化ナトリウム,チオ尿素,硫化水素ガス等が使用でき、Zn:Sのモル比が1:0.6となるようにするのが望ましい。   Furthermore, S may be used instead of Se. Even in that case, it is desirable to adjust the pH to 10.5 after the step of FIG. In that case, sodium sulfide, thiourea, hydrogen sulfide gas, or the like can be used as the S ion source used in the step of FIG. 1B so that the molar ratio of Zn: S is 1: 0.6. It is desirable to do.

また、無機ナノ粒子を構成するアニオンとしてSeを用いる場合とSを用いる場合とでは、図1(A)の工程の後において調整すべきpHの値が異なる。そこで、次のような方法により、アニオンとしてSeとSとの両方を用いたいわゆる混晶半導体としての無機ナノ粒子をMnでドープした波長変換ナノ粒子を、製造することができる。   Moreover, the value of pH which should be adjusted after the process of FIG. 1 (A) differs by the case where Se is used as the anion which comprises an inorganic nanoparticle, and the case where S is used. Therefore, by the following method, wavelength conversion nanoparticles in which inorganic nanoparticles as so-called mixed crystal semiconductors using both Se and S as anions are doped with Mn can be produced.

すなわち、前述の図1(A),(B)の工程によって製造されたZnMnSeの前駆体(Precursor)溶液と、その図1(A),(B)の工程において前述のようにSeの代わりにSを使用して製造されたZnS:Mnの前駆体溶液とを、別々に製造する。そして、pH10.5に調整の後、両者を混合して200℃で20分加熱することによってSeとSとの両方を含む波長変換ナノ粒子を得ることができる。この波長変換ナノ粒子では、SeとSとの比は自由に調整でき、ZnSeX1-X:Mn(0<X<1)なる一般式で表すことができる。この波長変換ナノ粒子を、前述のように放置してガラス板50等の基材に塗布することで、本発明の実施の形態としてのナノ粒子群を得ることができる。 That is, the ZnMnSe precursor solution prepared by the above-described steps of FIGS. 1A and 1B, and in place of Se in the steps of FIGS. 1A and 1B, as described above. A ZnS: Mn precursor solution prepared using S is prepared separately. And after adjusting to pH10.5, both can be mixed, and the wavelength conversion nanoparticle containing both Se and S can be obtained by heating at 200 degreeC for 20 minutes. In this wavelength conversion nanoparticle, the ratio of Se and S can be freely adjusted, and can be expressed by the general formula ZnSe X S 1-X : Mn (0 <X <1). By leaving the wavelength-converted nanoparticles as described above and applying them to a substrate such as the glass plate 50, a group of nanoparticles as an embodiment of the present invention can be obtained.

また、前記実施の形態では、カチオンとしてZn,Mnを使用しているが、Mnの代わりにCdを用いるなど、カチオンの種類も種々に変更することができる。更に、SまたはSeと、Mnと、Znとは、どういう順番で混ぜてもよい。また更に、波長変換ナノ粒子が分散された溶液には塩などを添加してもよく、その場合、ナノ粒子群の形成速度等を調整することができる。   Moreover, in the said embodiment, although Zn and Mn are used as a cation, the kind of cation can be changed variously, such as using Cd instead of Mn. Furthermore, S or Se, Mn, and Zn may be mixed in any order. Furthermore, a salt or the like may be added to the solution in which the wavelength conversion nanoparticles are dispersed. In this case, the formation rate of the nanoparticle group can be adjusted.

また、本発明のナノ粒子群を構成する波長変換ナノ粒子は、前記方法で製造されたものに限定されるものではなく、例えば、有機溶媒中で製造された波長変換ナノ粒子など、種々の波長変換ナノ粒子を利用することができる。更に、ナノ粒子群が塗布される基材としてもガラスの他、プラスチック,大理石等、種々の基材を利用することができる。   Further, the wavelength conversion nanoparticles constituting the nanoparticle group of the present invention are not limited to those produced by the above-described method, and various wavelengths such as wavelength conversion nanoparticles produced in an organic solvent, for example. Conversion nanoparticles can be utilized. Furthermore, various base materials such as plastic and marble can be used as the base material to which the nanoparticle group is applied.

10…波長変換ナノ粒子 11…配位子 20…ナノ粒子群
30…バインダ 40…溶媒 50,51…ガラス板
DESCRIPTION OF SYMBOLS 10 ... Wavelength conversion nanoparticle 11 ... Ligand 20 ... Nanoparticle group 30 ... Binder 40 ... Solvent 50, 51 ... Glass plate

Claims (12)

粒子経が10nm以下で、吸収した光とは異なる波長の光を発生する複数の波長変換ナノ粒子によって構成され、
前記各波長変換ナノ粒子は、各々の周囲に配位子が配位したことによって互いに一体化することなく、直径20〜100nmの大きさに凝集したことを特徴とするナノ粒子群。
The particle diameter is 10 nm or less, and is composed of a plurality of wavelength conversion nanoparticles that generate light having a wavelength different from the absorbed light,
Each of the wavelength conversion nanoparticles is a group of nanoparticles characterized in that they are aggregated to a diameter of 20 to 100 nm without being integrated with each other by coordination of a ligand around each of the wavelength conversion nanoparticles.
前記波長変換ナノ粒子は、Zn,Se,S,Cd,またはTeの少なくともいずれかを含むことを特徴とする請求項1に記載のナノ粒子群。   The group of nanoparticles according to claim 1, wherein the wavelength conversion nanoparticles include at least one of Zn, Se, S, Cd, and Te. 前記波長変換ナノ粒子は、Mn,Er,Eu,Ybの少なくともいずれかによってドープされたことを特徴とする請求項1または2に記載のナノ粒子群。   The nanoparticle group according to claim 1 or 2, wherein the wavelength conversion nanoparticles are doped with at least one of Mn, Er, Eu, and Yb. 前記配位子が親水性の配位子であることを特徴とする請求項1〜3のいずれか1項に記載のナノ粒子群。   The nanoparticle group according to any one of claims 1 to 3, wherein the ligand is a hydrophilic ligand. 前記配位子が親水性官能基としてのOH基を有することを特徴する請求項4に記載のナノ粒子群。   The group of nanoparticles according to claim 4, wherein the ligand has an OH group as a hydrophilic functional group. Mnを提供するイオン源と、無機ナノ粒子を構成する原子を提供するイオン源と、親水性の配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う混合工程と、
前記pH調整後の前記溶液を加熱して粒子経が10nm以下の波長変換ナノ粒子を生成する加熱工程と、
前記生成された波長変換ナノ粒子を含む溶液を放置することによって、その波長変換ナノ粒子を直径20〜100nmの大きさに凝集させた後、基材に塗布する凝集工程と、
を備えたことを特徴とするナノ粒子群の製造方法。
An ion source that provides Mn, an ion source that provides atoms constituting the inorganic nanoparticles, and a hydrophilic ligand in an aqueous solvent, and a mixing step for adjusting the pH of the resulting solution; ,
A heating step of heating the solution after the pH adjustment to generate wavelength conversion nanoparticles having a particle size of 10 nm or less;
An aggregating step of aggregating the wavelength-converted nanoparticles into a size of 20 to 100 nm in diameter by allowing the solution containing the generated wavelength-converted nanoparticles to stand;
A method for producing a group of nanoparticles, comprising:
前記無機ナノ粒子を構成する原子としてZnを含むことを特徴とする請求項6に記載のナノ粒子群の製造方法。   The method for producing a nanoparticle group according to claim 6, wherein Zn is contained as an atom constituting the inorganic nanoparticle. 前記配位子がN−アセチル−L−システインであり、
前記混合工程では、N−アセチル−L−システインと前記イオン源中のMn原子とを1:1のモル比で含む溶液と、N−アセチル−L−システインと前記イオン源中のZn原子とを1:4.8のモル比で含む溶液とを、混合することを特徴とする請求項7に記載のナノ粒子群の製造方法。
The ligand is N-acetyl-L-cysteine;
In the mixing step, a solution containing N-acetyl-L-cysteine and Mn atoms in the ion source in a molar ratio of 1: 1; N-acetyl-L-cysteine and Zn atoms in the ion source; The method for producing a group of nanoparticles according to claim 7, wherein a solution containing a molar ratio of 1: 4.8 is mixed.
前記無機ナノ粒子を構成する原子としてSeを含むことを特徴とする請求項6〜8のいずれか1項に記載のナノ粒子群の製造方法。   The method for producing a group of nanoparticles according to any one of claims 6 to 8, wherein Se is contained as an atom constituting the inorganic nanoparticles. 前記加熱工程における加熱温度が150℃〜250℃であることを特徴とする請求項6〜9のいずれか1項に記載のナノ粒子群の製造方法。   The heating temperature in the said heating process is 150 to 250 degreeC, The manufacturing method of the nanoparticle group of any one of Claims 6-9 characterized by the above-mentioned. 前記無機ナノ粒子を構成する原子として、SとSeとを含み、
前記混合工程は、
前記無機ナノ粒子を構成するSe以外の各原子を各々提供する前記各イオン源と、前記配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う第1混合工程と、
前記無機ナノ粒子を構成するS以外の各原子を各々提供する前記各イオン源と、前記配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う第2混合工程と、
前記第1混合工程で得られた前記pH調整後の溶液と、前記第2混合工程で得られた前記pH調整後の溶液とを混合する第3混合工程と、
からなり、
前記Mnを提供するイオン源は、前記第1混合工程または前記第2混合工程で前記溶液に混合されることを特徴とする請求項6〜10のいずれか1項に記載のナノ粒子群の製造方法。
As atoms constituting the inorganic nanoparticles, S and Se are included,
The mixing step includes
A first mixing step of adjusting the pH of the resulting solution by mixing each ion source providing each atom other than Se constituting the inorganic nanoparticles and the ligand in an aqueous solvent; ,
A second mixing step of adjusting the pH of the resulting solution by mixing each ion source that provides each atom other than S constituting the inorganic nanoparticles and the ligand in an aqueous solvent; ,
A third mixing step of mixing the solution after pH adjustment obtained in the first mixing step and the solution after pH adjustment obtained in the second mixing step;
Consists of
The nanoparticle group production according to any one of claims 6 to 10, wherein the ion source providing Mn is mixed with the solution in the first mixing step or the second mixing step. Method.
前記混合工程終了後の前記溶液はpH9〜11に調整されていることを特徴とする請求項6〜11のいずれか1項に記載のナノ粒子群の製造方法。   The method for producing a group of nanoparticles according to any one of claims 6 to 11, wherein the solution after completion of the mixing step is adjusted to a pH of 9 to 11.
JP2011086603A 2011-04-08 2011-04-08 Method for producing nanoparticles Expired - Fee Related JP5770518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011086603A JP5770518B2 (en) 2011-04-08 2011-04-08 Method for producing nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011086603A JP5770518B2 (en) 2011-04-08 2011-04-08 Method for producing nanoparticles

Publications (2)

Publication Number Publication Date
JP2012219194A true JP2012219194A (en) 2012-11-12
JP5770518B2 JP5770518B2 (en) 2015-08-26

Family

ID=47271063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011086603A Expired - Fee Related JP5770518B2 (en) 2011-04-08 2011-04-08 Method for producing nanoparticles

Country Status (1)

Country Link
JP (1) JP5770518B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10160649B2 (en) 2013-08-05 2018-12-25 Samsung Electronics Co., Ltd. Processes for synthesizing nanocrystals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272795A (en) * 2003-11-10 2005-10-06 Fuji Photo Film Co Ltd Dope-type metal sulfide phosphor nanoparticle, dispersion of the same, and method for producing the same
CN1721585A (en) * 2005-05-24 2006-01-18 吉林大学 Preparation method of water soluble manganese added zinc sulfide nano-crystalline with high fluorescence efficiency
CN101139524A (en) * 2007-10-11 2008-03-12 复旦大学 Method for preparing near-infrared light-emitting tellurium cadmium sulfide quantum point
JP2010058984A (en) * 2008-09-01 2010-03-18 Tohoku Univ Synthetic process of organic modified metal sulfide nanoparticles by supercritical hydrothermal synthesis method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272795A (en) * 2003-11-10 2005-10-06 Fuji Photo Film Co Ltd Dope-type metal sulfide phosphor nanoparticle, dispersion of the same, and method for producing the same
CN1721585A (en) * 2005-05-24 2006-01-18 吉林大学 Preparation method of water soluble manganese added zinc sulfide nano-crystalline with high fluorescence efficiency
CN101139524A (en) * 2007-10-11 2008-03-12 复旦大学 Method for preparing near-infrared light-emitting tellurium cadmium sulfide quantum point
JP2010058984A (en) * 2008-09-01 2010-03-18 Tohoku Univ Synthetic process of organic modified metal sulfide nanoparticles by supercritical hydrothermal synthesis method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6014044091; Journal of China Pharmaceutical University 41(5), pp.456-461, 2010 *
JPN6014044092; Journal of Physical Chemistry C Vol.113(2009), pp.1293-1300, 2009 *
JPN6014044093; Nanotechnology Vol.18(2007), 485611, pp.1-7, 2007 *
JPN6014044094; NANO LETTERS Vol.7(2007), No.2, pp.312-317, 2007 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10160649B2 (en) 2013-08-05 2018-12-25 Samsung Electronics Co., Ltd. Processes for synthesizing nanocrystals
US10717649B2 (en) 2013-08-05 2020-07-21 Samsung Electronics Co., Ltd. Processes for synthesizing nanocrystals

Also Published As

Publication number Publication date
JP5770518B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
Ketavath et al. Deciphering the ultrafast nonlinear optical properties and dynamics of pristine and Ni-doped CsPbBr3 colloidal two-dimensional nanocrystals
Hemalatha et al. Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: a composition dependent study
Yayapao et al. Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties
Kumar et al. Structural, morphological, optical and photocatalytic properties of Ag-doped ZnO nanoparticles
Firdous et al. Electrical and optical studies of pure and Ni-doped CdS quantum dots
Salem et al. Simple synthesis of ZnSe nanoparticles by thermal treatment and their characterization
Zhu et al. Intense visible emission from ZnO/PAAX (X= H or Na) nanocomposite synthesized via a simple and scalable sol-gel method
Koao et al. Synthesis and characterization of PbS nanowires doped with Tb 3+ ions by using chemical bath deposition method
Liang et al. In situ phase-transition crystallization of all-inorganic water-resistant exciton-radiative heteroepitaxial CsPbBr3–CsPb2Br5 core–shell perovskite nanocrystals
Pradhan Journey of making cesium lead halide perovskite nanocrystals: what’s next
Al-Hada et al. Structural, morphological and optical behaviour of PVP capped binary (ZnO) 0.4 (CdO) 0.6 nanoparticles synthesised by a facile thermal route
Di Luccio et al. Controlled nucleation and growth of CdS nanoparticles in a polymer matrix
Rahdar Effect of 2-mercaptoethanol as capping agent on ZnS nanoparticles: structural and optical characterization
Li et al. Synthesis of colloidal SnSe quantum dots by electron beam irradiation
Han et al. Role of redox reaction and electrostatics in transition-metal impurity-promoted photoluminescence evolution of water-soluble ZnSe nanocrystals
Thawarkar et al. Ni-doped CsPbBr3 perovskite: synthesis of highly stable nanocubes
Marandi et al. Synthesis of highly luminescent CdTe/CdS core-shell nanocrystals by optimization of the core and shell growth parameters
Ling et al. Interfacial synthesis of SnSe quantum dots for sensitized solar cells
Talwatkar et al. Surface passivation by l-arginine and enhanced optical properties of CdS quantum dots co-doped with Nd 3+–Li+
Sakthivel et al. Structural, optical, photoluminescence and electrochemical behaviours of Mg, Mn dual-doped ZnS quantum dots
Dhage et al. Morphological variations in cadmium sulfide nanocrystals without phase transformation
Raj et al. Study on the synergistic effect of terbium-doped SnO 2 thin film photocatalysts for dye degradation
Sreeja et al. Impurity mediated large three photon absorption in ZnS: Cu nanophosphors
Gao et al. Synthesis and fluorescence properties of CdTe: Eu 3+ nanocrystals and core–shell SiO 2-coated CdTe: Eu 3+ nanospheres
Krishnamoorthy et al. Role of Bi3+ ions on structural, optical, photoluminescence and electrical performance of Cd0. 9-xZn0. 1BixS QDs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150625

R150 Certificate of patent or registration of utility model

Ref document number: 5770518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees