JP2012217410A - Apparatus and method for feeding solid organic matter decomposition type liquid fertilizer - Google Patents

Apparatus and method for feeding solid organic matter decomposition type liquid fertilizer Download PDF

Info

Publication number
JP2012217410A
JP2012217410A JP2011088089A JP2011088089A JP2012217410A JP 2012217410 A JP2012217410 A JP 2012217410A JP 2011088089 A JP2011088089 A JP 2011088089A JP 2011088089 A JP2011088089 A JP 2011088089A JP 2012217410 A JP2012217410 A JP 2012217410A
Authority
JP
Japan
Prior art keywords
water
elution
organic matter
solid organic
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011088089A
Other languages
Japanese (ja)
Other versions
JP5305047B2 (en
Inventor
Yuji Sakai
裕司 酒井
Isao Toba
功 鳥羽
Kazutaka Nakamura
一孝 中村
Shunji Eto
俊司 衛藤
Nagahisa Uki
永久 浮
Moichi Horiie
茂一 堀家
Masato Enoki
正人 榎
Takatsugu Wakamatsu
敬継 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AQUA TEC KK
ECO GREEN KK
MIYAMOTOGUMI CO Ltd
YAMAKOU CONSTRUCTION CO Ltd
YAMAZAKI CONSTRUCTION CO Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
AQUA TEC KK
ECO GREEN KK
MIYAMOTOGUMI CO Ltd
YAMAKOU CONSTRUCTION CO Ltd
YAMAZAKI CONSTRUCTION CO Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AQUA TEC KK, ECO GREEN KK, MIYAMOTOGUMI CO Ltd, YAMAKOU CONSTRUCTION CO Ltd, YAMAZAKI CONSTRUCTION CO Ltd, Tokyo Electric Power Co Inc filed Critical AQUA TEC KK
Priority to JP2011088089A priority Critical patent/JP5305047B2/en
Publication of JP2012217410A publication Critical patent/JP2012217410A/en
Application granted granted Critical
Publication of JP5305047B2 publication Critical patent/JP5305047B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Cultivation Of Seaweed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for feeding a solid organic matter decomposition type liquid fertilizer that efficiently feeds a nutrient and avoids environmental deterioration by solid organic matter.SOLUTION: The apparatus for feeding the solid organic matter decomposition type liquid fertilizer includes a first elution water tank 3 for eluting iron fulvate in water, a second elution water tank 4 that decomposes solid organic matter in polluted water by a massive cleaning material 20 put inside the tank and prepares a nutrient liquid fertilizer and an elution component-containing water feeding apparatus that selects elution component-containing water in one or both of the elution water tanks of the first elution water tank and the second elution water tank and supplies the water to the sea and supplies the elution component-containing water to the sea. The second elution water tank is arranged so that an aerobic region in which oxygen-containing bubbles rise in water and an anaerobic region apart from the aerobic region alternately appear in the middle of a flow, a cleaning zone is filled with a massive cleaning material, polluted water is alternately passed through the aerobic region and the anaerobic region while being brought into contact with the massive cleaning material in the middle of passing the cleaning zone to decompose solid organic matter in sludge water.

Description

本発明は、コンブなどの海藻が繁殖し易く、成長を促進するために、特に、腐植酸鉄等や窒素とリン等を含有した栄養塩を海中に供給する固形有機物分解型液肥供給装置、および固形有機物分解型液肥供給方法に関するものである。   In order to facilitate the growth of seaweeds such as kombu and promote growth, the present invention particularly provides a solid organic matter decomposition type liquid fertilizer supply device that supplies nutrient salts containing iron humate and the like, nitrogen and phosphorus, etc. to the sea, and The present invention relates to a solid organic matter decomposition type liquid fertilizer supply method.

近年、沿岸部などでは、海藻が減少して石灰藻で覆われる磯焼けが進行し、昆布、ウニ、アワビ等の沿岸水産資源の減少が顕著になっている。これは、従前であれば、森林の腐植土壌中で生成する水溶性のフルボ酸鉄(フルボ酸と二価の鉄がキレート化したもの)が河川から流れ込んでいたが、近年、森林の荒廃などによってフルボ酸鉄の供給が減少していることに起因しているといわれている。すなわち、水生植物が活発に光合成を行うために必要とされる海水中の有機態鉄(二価鉄イオン)が不足し、これにより昆布などの水生植物の繁殖、生育が悪化し、その結果としてウニやアワビ等の沿岸水産資源の減少を招いていると考えられている。   In recent years, in coastal areas and the like, seaweeds have been reduced, and burning with lime algae has progressed, and coastal fishery resources such as kelp, sea urchins, and abalone have been significantly reduced. In the past, water-soluble iron fulvic acid (chelates of fulvic acid and divalent iron) produced in the humus soil of the forest flowed from the river. It is said that this is caused by a decrease in the supply of iron fulvic acid. In other words, there is a shortage of organic iron (divalent iron ions) in seawater that is necessary for the aquatic plants to actively carry out photosynthesis, which deteriorates the propagation and growth of aquatic plants such as kelp. It is thought to have caused a decrease in coastal fishery resources such as sea urchins and abalone.

このような問題を解決するために、例えば、石炭溶融灰、製鋼スラグなどの二価鉄含有物を嫌気性発酵させた腐植物質と共にココナッツ繊維袋に詰め、これを沿岸部に埋設したり、あるいは海中に沈め、ここから二価鉄を徐々に海中に放出し、これにより海藻や珪藻等の水生植物の繁茂に必要な鉄分を供給し、効率よく水生植物を繁茂させようとする磯焼け修復方法や水域環境保全材料などの技術が提案されている(特許文献1)。   In order to solve such a problem, for example, coconut fiber bags are filled with humic substances fermented with anaerobic fermented iron, such as coal molten ash and steel slag, and buried in the coastal area, or A method for repairing burnt bonfire that sinks into the sea and gradually releases divalent iron into the sea, thereby supplying iron necessary for the growth of aquatic plants such as seaweeds and diatoms, etc. Technology such as water environment conservation materials has been proposed (Patent Document 1).

特開2005−34140号公報JP 2005-34140 A

ところで、前記した二価鉄含有物の海中への放出は、確かに海藻の繁茂に効果が認められたが、本願発明者の研究によると、二価鉄含有物だけを単に海中に放出するだけではなく、海藻の生育を促進させる窒素やリンに代表される栄養塩の補給が効果的であることが判明した。
しかしながら、窒素やリン等の栄養塩を単に海中に放出しようとすると、栄養塩が短期間に溶出してしまい、溶出した割りに海藻の生育促進に寄与せず、効率が極めて低かった。
By the way, the release of the divalent iron-containing material into the sea has been confirmed to have an effect on the growth of seaweed, but according to the study of the present inventor, only the divalent iron-containing material is released into the sea. Instead, supplementation with nutrients such as nitrogen and phosphorus, which promote the growth of seaweeds, proved effective.
However, when simply trying to release nutrient salts such as nitrogen and phosphorus into the sea, the nutrient salts were eluted in a short period of time, and although they were eluted, they did not contribute to the promotion of seaweed growth and the efficiency was extremely low.

また、水産加工残渣や食品加工残渣などのバイオマスを含む混合液をそのまま海中に放出すると、海水中の固形有機物含有量が過多となりかえって環境汚染を引き起こしてしまう。   Moreover, if a mixed liquid containing biomass such as fishery processing residues and food processing residues is released into the sea as it is, the content of solid organic matter in the seawater becomes excessive, which causes environmental pollution.

本発明は、これらの事情に鑑みて提案されたものであり、栄養塩を効率良く供給することができ、しかも固形有機物による環境悪化を回避することができる固形有機物分解型液肥供給装置、および固形有機物分解型液肥供給方法を提供することを目的とする。   The present invention has been proposed in view of these circumstances, a solid organic matter decomposition type liquid fertilizer supply device capable of efficiently supplying nutrient salts and avoiding environmental deterioration due to solid organic matter, and a solid It aims at providing the organic matter decomposition type liquid fertilizer supply method.

本発明は、上記した目的を達成するためになされたもので、請求項1記載のものは、フルボ酸鉄を水に溶出可能な第1溶出用水槽と、
水産加工残渣や食品加工残渣などのバイオマスと水との混合物である汚濁水を供給し、内部に入れた塊状浄化材により前記汚濁水の固形有機物を分解して窒素とリンを主成分とする栄養塩を水に溶かした栄養塩液肥を調整する第2溶出用水槽と、
第1溶出用水槽と第2溶出用水槽とのいずれか一方または両方の溶出用水槽内の溶出成分含有水を選択して供給可能な溶出成分含有水供給装置と、
を設置し、
海底に生育する海藻の生活史に対応させて前記溶出成分含有水供給装置により選択して前記溶出用水槽の溶出成分含有水を液肥として供給する固形有機物分解型液肥供給装置であって、
前記第2溶出用水槽は、処理する汚濁水が入れられる上流側から栄養塩液肥を取り出す下流側の流出口の間に浄化域を設定し、該浄化域の底部に酸素含有気体供給ノズルを所定の間隔を開けて複数備えることにより、酸素含有気体供給ノズルから供給された酸素含有気泡が水中を上昇する好気性領域と該好気性領域から外れた嫌気性領域とが前記上流側から流出口へ向かう流れの途中に交互に出現するように配置し、前記浄化域には表面に複数の開口を有して各開口から内部に通じる隙間が形成された塊状浄化材を複数充填し、前記浄化域を通過する途中で汚濁水を塊状浄化材に接触させながら好気性領域と嫌気性領域とを交互に通過させて汚泥水中の固形有機物を分解することを特徴とする固形有機物分解型液肥供給装置である。
The present invention has been made in order to achieve the above-described object, and the one according to claim 1 includes a first elution tank capable of eluting iron fulvic acid into water,
Nutrients mainly composed of nitrogen and phosphorus by supplying polluted water, which is a mixture of biomass and water, such as fishery processing residues and food processing residues, and decomposing the solid organic matter of the polluted water with a bulk purification material placed inside A second elution tank for adjusting a nutrient solution fertilizer prepared by dissolving salt in water;
An elution component-containing water supply device capable of selecting and supplying elution component-containing water in either one or both of the first elution water tank and the second elution water tank;
Install
In accordance with the life history of seaweed growing on the seabed, it is a solid organic matter decomposition type liquid fertilizer supply device that selects the elution component-containing water supply device and supplies the elution component-containing water of the elution water tank as liquid fertilizer,
The second elution water tank has a purification zone set between downstream outlets for removing nutrient solution fertilizer from the upstream side where the contaminated water to be treated is placed, and an oxygen-containing gas supply nozzle is provided at the bottom of the purification zone. The aerobic region where the oxygen-containing bubbles supplied from the oxygen-containing gas supply nozzle rise in the water and the anaerobic region outside the aerobic region are provided from the upstream side to the outlet. It arranges so that it may appear alternately in the middle of the flow to which it goes, and the purification zone is filled with a plurality of massive purification materials having a plurality of openings on the surface and forming gaps leading from the openings to the inside, and the purification zone A solid organic matter decomposition type liquid fertilizer supply device that decomposes solid organic matter in sludge water by alternately passing aerobic regions and anaerobic regions while contacting the contaminated water with the bulk purification material in the middle of passing through is there.

請求項2に記載のものは、海藻の生活史の一部であって芽胞体発生後の光合成による成長期には、前記第1溶出用水槽と第2溶出用水槽との両溶出用水槽から溶出成分含有水を海中に供給し、成長期以外の時期は第2溶出用水槽から溶出成分含有水の供給を停止することを特徴とする請求項1に記載の固形有機物分解型液肥供給装置である。   According to a second aspect of the present invention, there is a part of the life history of seaweed, and in the growth period by photosynthesis after the generation of spores, from both the first elution tank and the second elution tank. 2. The solid organic matter decomposition type liquid fertilizer supply device according to claim 1, wherein the elution component-containing water is supplied into the sea, and the supply of the elution component-containing water is stopped from the second elution tank during periods other than the growth period. is there.

請求項3に記載のものは、前記塊状浄化材は、複数の砕石をバインダーにより結合して表面に複数の凹凸を形成して構成され、砕石同士の隙間が表面に開口し、且つ内部で互いに連通する複数の連絡路となっていることを特徴とする浄化材を使用する請求項1または2に記載の固形有機物分解型液肥供給装置である。   According to a third aspect of the present invention, the bulk purification material is formed by combining a plurality of crushed stones with a binder to form a plurality of irregularities on the surface, and a gap between the crushed stones opens on the surface, and the inside is mutually mutually 3. The solid organic matter decomposition type liquid fertilizer supply device according to claim 1, wherein the purification material uses a plurality of communication paths communicating with each other. 4.

請求項4に記載のものは、前記した第1溶出用水槽および第2溶出用水槽内の水が淡水であることを特徴とする請求項1から3のいずれかに記載の固形有機物分解型液肥供給装置である。   4. The solid organic matter decomposition type liquid fertilizer according to any one of claims 1 to 3, wherein the water in the first elution water tank and the second elution water tank is fresh water. It is a supply device.

請求項5に記載のものは、第2溶出水槽の下流側から上流側に水を循環させる循環路を備えたことを特徴とする請求項1から4のいずれかに記載の固形有機物分解型液肥供給装置である。   5. The solid organic matter decomposition type liquid fertilizer according to claim 1, further comprising a circulation path for circulating water from the downstream side to the upstream side of the second elution water tank. It is a supply device.

請求項6に記載のものは、水槽内で、フルボ酸鉄を水に溶出してフルボ酸鉄溶出水を調整し、このフルボ酸鉄溶出水を藻場となる海域に移動して海水中に供給するフルボ酸鉄溶出水供給工程と、
水槽内で、水産加工残渣や食品加工残渣などのバイオマスと水との混合物である汚濁水を供給し、当該水槽の底部の酸素含有気体供給ノズルから供給された酸素含有気泡が水中を上昇する好気性領域と該好気性領域から外れた嫌気性領域とを流れの途中で交互に通過させ、好気性領域と嫌気性領域には、表面に複数の開口を有して各開口から内部に通じる隙間が形成された塊状浄化材を複数充填し、流れの途中で汚濁水を塊状浄化材に接触させながら汚泥水中の固形有機物を分解して窒素とリンを主成分とする栄養塩を水に溶かした栄養塩液肥を調整し、この窒素及びリン栄養塩溶出水を藻場の海藻の生活史に対応させて、海藻の芽胞体が発生した後の光合成による成長期に前記海域に移動して海水中に供給する窒素及びリン栄養塩溶出水供給工程と、
を含んでいることを特徴とする固形有機物分解型液肥供給方法である。
According to a sixth aspect of the present invention, in a water tank, iron fulvic acid is eluted into water to adjust the iron fulvic acid elution water, and the iron effluent eluted with fulvic acid is moved to the sea area where the seaweed field is formed to enter the seawater. Supplying fulvic acid iron elution water supply process;
In the aquarium, polluted water that is a mixture of biomass and water such as fishery processing residue and food processing residue is supplied, and oxygen-containing bubbles supplied from the oxygen-containing gas supply nozzle at the bottom of the aquarium rise in the water. The aerobic region and the anaerobic region that has deviated from the aerobic region are alternately passed in the middle of the flow, and the aerobic region and the anaerobic region have a plurality of openings on the surface and a gap that leads from each opening to the inside. In the middle of the flow, the solid organic matter in the sludge water was decomposed to dissolve the nutrient salts mainly composed of nitrogen and phosphorus in the water while the contaminated water was in contact with the bulk purification material. After adjusting the nutrient solution fertilizer and making this nitrogen and phosphorus nutrient elution water correspond to the life history of the seaweed in the algae ground, it moves to the sea area during the growth period by photosynthesis after the generation of seaweed spores. Nitrogen and phosphorus nutrient elution water supplied to And a step,
It is the solid organic matter decomposition | disassembly type liquid fertilizer supply method characterized by including.

本発明によれば、海底に生育する海藻の生活史に対応させて前記溶出成分含有水供給装置により選択して前記溶出用水槽の溶出成分含有水を海中に供給するので、海藻の生育時期に適合した効率の良い栄養塩供給を行うことができ、窒素とリンを主成分とする栄養塩を溶出させた溶出成分含有水を海藻の生育タイミングに適合させて供給することができ、効率の向上を図ることができ、フルボ酸鉄の供給による繁殖、生育の促進との相乗効果が期待できる。
特に、海藻の生活史の一部であり光合成が行われる成長期に、第1溶出用水槽と第2溶出用水槽との両溶出水槽から溶出成分含有水を海中に供給し、成長期以外の時期は第2溶出用水槽から溶出成分含有水の供給を停止すると、効率向上が従来に比べて顕著である。
また、従来方式の設置は玉石や岩盤部に限定されているが、本技術は、海底や海岸に大規模な工事を行うことが不要となるので、自然環境への変化を最小限に留めておくことができ、かつ、海岸、沿岸地帯でなく内陸部に設置して液肥を製造し、沿岸部まで運搬し、液肥を散布しても良く、どこでもシステムを設置できる。
そして、海藻の繁殖、成長が促進されると、磯焼けした海域であっても効率良く回復することができ、藻場に海藻が繁茂すると、盛んに行われる光合成により二酸化炭素の固定が促進され、自然環境の回復に寄与する。
さらにまた、窒素とリンを主成分とする栄養塩を調整する場合に、水産加工残渣や食品加工残渣などのバイオマスと水との混合物である汚濁水を水槽に供給し、当該水槽の底部の酸素含有気体供給ノズルから供給された酸素含有気泡が水中を上昇する好気性領域と該好気性領域から外れた嫌気性領域とを流れの途中で交互に通過させ、好気性領域と嫌気性領域には、表面に複数の開口を有して各開口から内部に通じる隙間が形成された塊状浄化材を複数充填し、流れの途中で汚濁水を塊状浄化材に接触させながら汚泥水中の固形有機物を分解して窒素とリンを主成分とする栄養塩を水に溶かした栄養塩液肥を調整するので、バイオマスを使用しても、固形有機物(SS)や生化学的酸素供給量(BOD)が著しく増大するなどの海域の環境悪化を防止できる。
According to the present invention, the elution component-containing water is selected by the elution component-containing water supply device in accordance with the life history of seaweed growing on the seabed and supplied to the sea. Efficient and efficient nutrient supply can be performed, and water containing elution components that elutes nutrients mainly composed of nitrogen and phosphorus can be supplied in conformity to the growth timing of seaweed, improving efficiency. A synergistic effect with the promotion of reproduction and growth by supplying iron fulvic acid can be expected.
In particular, during the growth period, which is a part of the seaweed life history and where photosynthesis is performed, water containing elution components is supplied into the sea from both the first elution tank and the second elution tank. When the supply of elution component-containing water is stopped from the second elution water tank at the time, the improvement in efficiency is significant compared to the conventional case.
In addition, the installation of the conventional method is limited to cobblestones and rocks, but this technology eliminates the need for large-scale construction on the seabed or coast, minimizing changes to the natural environment. It can be installed in the inland area, not on the coast or coastal area, and liquid fertilizer can be manufactured, transported to the coastal area, liquid fertilizer can be sprayed, and the system can be installed anywhere.
And when the propagation and growth of seaweed is promoted, it can be efficiently recovered even in the sea where it has been burnt, and when seaweed grows in the seaweed bed, fixation of carbon dioxide is promoted by active photosynthesis. Contributes to the recovery of the natural environment.
Furthermore, when adjusting nutrient salts mainly composed of nitrogen and phosphorus, contaminated water, which is a mixture of biomass and water, such as fishery processing residues and food processing residues, is supplied to the aquarium, and oxygen at the bottom of the aquarium The aerobic region where the oxygen-containing bubbles supplied from the contained gas supply nozzle rise in water and the anaerobic region deviating from the aerobic region are alternately passed in the middle of the flow, and the aerobic region and the anaerobic region Filled with multiple bulk purification materials with multiple openings on the surface and gaps leading from each opening to the inside, and decomposes solid organic matter in sludge water while bringing contaminated water into contact with the bulk purification material in the middle of the flow As a nutrient solution fertilizer is prepared by dissolving nutrient salts mainly composed of nitrogen and phosphorus in water, solid organic matter (SS) and biochemical oxygen supply (BOD) increase significantly even if biomass is used. Environmental degradation of the sea area such as Can be prevented.

藻場となる海岸汀線近傍から陸上までの領域を示す藻場周辺の断面図である。It is sectional drawing of the surroundings of a seaweed field which shows the area | region from the coastline vicinity used as a seaweed field to the land. 固形有機物分解型液肥供給装置の第2溶出用水槽の概略構成を示す説明図であり、(a)は一部欠截断面図、(b)は平面図、(c)は第2溶出用水槽内における好気性領域と嫌気性領域と固形有機物(SS)および生化学的酸素供給量(BOD)の減少を示す説明図、(d)は第2溶出用水槽内に充填する塊状浄化材の斜視図である。It is explanatory drawing which shows schematic structure of the 2nd elution tank of a solid organic matter decomposition | disassembly type liquid fertilizer supply apparatus, (a) is a partial cutaway sectional view, (b) is a top view, (c) is the 2nd elution tank. Explanatory drawing which shows the reduction | decrease in an aerobic area | region, an anaerobic area | region, solid organic matter (SS), and biochemical oxygen supply amount (BOD) in the inside, (d) is a perspective view of the bulk purification material with which it fills in the 2nd elution water tank. FIG. コンブの生活史の説明図である。It is explanatory drawing of the life history of a kombu. 製鋼スラグ、クリンカアッシュ等の成分分析表である。It is component analysis tables, such as steelmaking slag and clinker ash. ダム堆積土の腐植酸鉄含有量を示すグラフである。It is a graph which shows humic acid iron content of dam sedimentary soil.

以下、本発明を実施するための形態を図面に基づいて説明する。
図1は藻場となる海域から海岸までの領域、及び海岸に設置した固形有機物分解型液肥供給装置の一実施形態の構成を示す概略説明図であり、図2は第2溶出用水槽の概略構成を示す説明図である。
この固形有機物分解型液肥供給装置1は、藻場2となる浅瀬の海の近くの海岸(海岸汀線よりも陸側)に、フルボ酸鉄を水に溶出可能な第1溶出用水槽3と、窒素やリン等の栄養塩を水に溶出可能な状態で調整する第2溶出用水槽4と、前記第1溶出用水槽3と第2溶出用水槽4に水を供給する水タンク5と、第1溶出用水槽3と第2溶出用水槽4とのいずれか一方または両方の溶出用水槽内の溶出成分含有水を選択して海に供給可能な溶出成分含有水供給装置と、を設置して構成され、海底に生育するコンブ等の海藻の生活史に対応させて前記溶出成分含有水供給装置により選択して前記水槽内の溶出成分含有水を液肥として直接海中にタイミング良く供給するものである。
本実施形態のように、第1溶出用水槽3と第2溶出用水槽4とを縦方向に重ねて設置すると、装置全体の設置面積が小さくて済み、スペース効率が良好である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a schematic explanatory view showing a configuration of an embodiment of a solid organic matter decomposition type liquid fertilizer supply device installed in a region from a sea area to a coast serving as a seaweed bed, and FIG. 2 is a schematic diagram of a second elution tank. It is explanatory drawing which shows a structure.
This solid organic matter decomposition-type liquid fertilizer supply device 1 includes a first elution tank 3 capable of eluting iron fulvic acid into water on the coast near the shallow sea that becomes the seaweed bed 2 (land side from the coastline), A second elution tank 4 that adjusts nutrients such as nitrogen and phosphorus in a state in which it can be eluted in water, a water tank 5 that supplies water to the first elution tank 3 and the second elution tank 4, An elution component-containing water supply device capable of selecting and supplying the elution component-containing water in either one or both of the first elution water tank 3 and the second elution water tank 4 to the sea; According to the life history of seaweeds such as kombu grown on the sea floor, it is selected by the elution component-containing water supply device, and the elution component-containing water in the aquarium is directly supplied into the sea as liquid fertilizer in a timely manner. .
When the first elution water tank 3 and the second elution water tank 4 are installed in the vertical direction as in the present embodiment, the installation area of the entire apparatus is small, and the space efficiency is good.

第1溶出用水槽3は、主としてフルボ酸鉄を水に溶出させる水槽であり、底面を僅かに海側に下り傾斜させた状態で設置され、内部にフルボ酸鉄溶出ユニット6を複数入れてあり、このフルボ酸鉄溶出ユニット6を供給された水に浸漬させるとフルボ酸鉄を溶出させることができる。   The first elution water tank 3 is a water tank that mainly elutes fulvic acid iron into water, and is installed with the bottom surface slightly inclined downward toward the sea side, and a plurality of fulvic acid iron elution units 6 are placed therein. When this iron fulvic acid elution unit 6 is immersed in the supplied water, iron fulvic acid can be eluted.

第1溶出用水槽3に入れるフルボ酸鉄溶出ユニット6は、イオン溶出性収容体(図示せず)内に、ダム湖底に堆積した腐植物等の堆積物を採取して固形化した固形有機態と、鉄含有物質とを収納したものである。   The iron fulvic acid elution unit 6 placed in the first elution tank 3 is a solid organic state obtained by collecting sediments such as humic substances deposited on the bottom of a dam lake and solidifying them in an ion elution container (not shown). And an iron-containing substance.

まず、イオン溶出性収容体について説明する。
このイオン溶出性収容体は、内部に収納した腐植物が溶けて二価鉄イオンやフルボ酸鉄が溶出可能な袋体、箱体、かご体などである。具体的には、ポリ塩化ビニール、ポリエチレン等の無機化学材料繊維、ココナッツヤシや麻などの植物繊維を使用して形成した袋体、多孔質材料を使用して形成した箱体、金属線材などを籠状体に成形したかごがある。例えば、環境適応性と耐久性とを兼ね備えたココナッツヤシ繊維(ヤシノミ繊維)を厚さ10〜15ミリのマット状に重ねてから袋にした中袋と、この中袋の外側を覆うヤシネットとの二重構造の袋体であり、中袋の中に前記した固形有機態と鉄含有物質を所定量投入し、開口部を縫合するなどして封止する。
First, the ion-eluting container will be described.
This ion-eluting container is a bag, a box, a cage, or the like in which the humus housed therein dissolves and divalent iron ions and iron fulvic acid can be eluted. Specifically, inorganic chemical material fibers such as polyvinyl chloride and polyethylene, bags formed using plant fibers such as coconut palm and hemp, boxes formed using porous materials, metal wires, etc. There is a basket molded into a bowl. For example, an inner bag formed by stacking coconut palm fibers (palm flea fibers) having both environmental adaptability and durability on a mat shape having a thickness of 10 to 15 mm, and a palm net covering the outside of the inner bag It is a double-structured bag body, and a predetermined amount of the above-mentioned solid organic state and iron-containing substance is put into the inner bag, and the opening is stitched and sealed.

次に、固形有機態について説明する。
この固形有機態は、例えば、ダム湖底に堆積した腐植物等の堆積物を採取して固形化したものでよい。
ダム湖の底には、河川から流れ込んだ土砂や落ち葉などの有機物が堆積している。そして、土砂などの鉱物は、ダム湖に流れ込んで流速が緩やかになると比重が大きいので比較的早く沈殿し、また、粒径の大きなものの方が早く沈む。したがって、これらはダム湖の河川流れ込み領域などダム堤体から遠い地点に堆積しがちである。一方、落ち葉や小枝などは比重が小さいのでダム湖に流れ込んだ後も沈み難いためにダム湖中を漂ってからダム堤体近くに沈殿する。このため、使用する腐植物は、ダム堤体近くの湖底から採取することが望ましい。そして、ダム湖の底、特にダム堤体近くの湖底では山野で育った落ち葉や小枝などの有機物が水中で空気に触れない状態で堆積して腐植するので、腐植物を始めとする堆積物中では嫌気性発酵が行われることとなり、フルボ酸やフミン酸などの腐植酸が蓄積されている。なお、この蓄積された堆積物(沈殿物)は、有機酸鉄をも含んでいるので固形化すれば固形化有機態となり、これはフルボ酸鉄に相当するものであって、フルボ酸鉄溶出ユニット6の素材として好適である。しかも、ダム湖の堆積物を採取して、新たな用途の素材として使用するので、工業廃棄物とは異なり自然の無害な資源として使用できる第1のメリットがある一方で、ダム湖貯水量の増大と水質浄化ができるという第2のメリットがある。
Next, the solid organic state will be described.
This solid organic state may be obtained by, for example, collecting and solidifying sediments such as humus deposited on the bottom of a dam lake.
Organic matter such as earth and sand and fallen leaves flowing from the river is deposited at the bottom of the dam lake. Minerals such as earth and sand flow into the dam lake and when the flow velocity becomes slow, the specific gravity is large, so the sediment is relatively quick, and the one with a larger particle size sinks earlier. Therefore, they tend to accumulate at points far from the dam body such as the river inflow area of the dam lake. On the other hand, fallen leaves and twigs have a low specific gravity, so they are difficult to sink after flowing into the dam lake, so they drift in the dam lake and settle near the dam body. For this reason, it is desirable to collect the humus used from the bottom of the lake near the dam body. And organic matter such as fallen leaves and twigs grown in the mountains deposits and humus in the water without touching the air in the bottom of the dam lake, especially near the dam embankment. Then, anaerobic fermentation is performed, and humic acids such as fulvic acid and humic acid are accumulated. The accumulated deposit (precipitate) also contains organic acid iron, so if it is solidified, it becomes solidified organic state, which corresponds to iron fulvic acid, and it is eluted with iron fulvic acid. It is suitable as a material for the unit 6. Moreover, because the sediment from the dam lake is collected and used as a material for new applications, it has the first advantage that it can be used as a natural harmless resource, unlike industrial waste. There is a second merit that it can increase and purify water.

腐植物と細かい土砂を含んだ堆積物(泥土)を採取するには、クレーン船から湖底に吊り降ろした泥水用サンドポンプを使用し、この泥水用サンドポンプにより腐植土混じりの泥土を台船に汲み上げ、陸上の脱水処理施設に搬送する。そして、脱水処理施設の沈殿槽で沈殿させ、次に、沈殿物を脱水装置で脱水して脱水ケーキを固化処理装置にベルトコンベアで搬送し、この固化処理装置で粒状の固形有機態に固化する。そして、この様にして固形化した固形有機態は、包装装置に搬送して包装する。   To collect sediment (mud) containing humus and fine earth and sand, use a mud sand pump suspended from a crane ship to the bottom of the lake. Pumped up and transported to land dehydration facility. Then, it is precipitated in a settling tank of a dehydration treatment facility, and then the precipitate is dehydrated by a dehydration device, and the dehydrated cake is conveyed to a solidification treatment device by a belt conveyor, and solidified into a granular solid organic state by this solidification treatment device. . And the solid organic state solidified in this way is conveyed to a packaging device and packaged.

廃木材チップを条件的嫌気性発酵により生成した腐植物質中に含まれるフルボ酸とフミン酸は1%のオーダーであるが、ダム湖底に沈積した堆積物中に含まれるフルボ酸とフミン酸は数十%オーダーである。さらに、これらのフルボ酸とフミン酸に結合している鉄の形態分析から、カルボキシル基などの酸素を含む官能基とキレート結合している二価鉄であることも確認されている。   The amount of fulvic acid and humic acid contained in the sediment deposited on the bottom of the dam lake is in the order of 1%. 10% order. Further, from the morphological analysis of iron bound to these fulvic acid and humic acid, it has been confirmed that the iron is chelated with a functional group containing oxygen such as a carboxyl group.

また、本発明に使用するフルボ酸鉄溶出ユニット6は、ダム湖の底から採取して脱水処理を施した固形有機態だけであってもキレート結合している二価鉄を含んでいるのでこれのみでも十分に機能するが、鉄含有物質として、火力発電所からでるクリンカや石炭ガス化スラグ、あるいは製鋼スラグ等の二価鉄含有物質を添加してもよい。   Further, the iron fulvic acid elution unit 6 used in the present invention contains divalent iron that is chelate-bonded even if it is only a solid organic state that is collected from the bottom of a dam lake and subjected to dehydration treatment. However, the iron-containing material may be added with a divalent iron-containing material such as clinker, coal gasification slag, or steelmaking slag from a thermal power plant.

この様なフルボ酸鉄溶出ユニット6を第1溶出用水槽3内に設置して海水に浸漬すると、固形有機態に含まれたフルボ酸鉄がイオン溶出性収容体の内部から水に溶出するとともに、鉄含有物質の二価の鉄イオンがキレート剤(錯体)として固形有機態のフルボ酸と結合してフルボ酸鉄となり、この新たに結合したフルボ酸鉄がイオン溶出性収容体の内部から海水に溶出する。フルボ酸鉄溶出ユニット6内では、クリンカ等の鉄含有物質とキレート結合してフルボ酸鉄となる。そして、本実施形態では、フルボ酸鉄溶出ユニット6内のアルカリ調整済み鉄含有物質が、二価鉄イオンの溶出を遅らせる抑制剤として機能する。前記したクリンカや石炭ガス化スラグ等の二価の鉄イオンがキレート剤(錯体)として固形有機態のフルボ酸と結合してフルボ酸鉄となる速度は、単に鉄含有物質と腐植物とを混ぜただけの従来の水域環境保全材料よりも遥かに緩やかなものである。したがって、このフルボ酸鉄の結合は従来のものと比較して長期間に亘って継続することとなると考えていたが、アルカリ調整された製鋼スラグはPHが9.5であり、アルカリ度が強く弱酸性のダム堆積物を中和してしまい、ダム堆積物の高濃度の腐植酸鉄溶出を極度に抑えてしまう可能性が高い。例えば、図5に示すように、仁田ダムの腐植物質含有量28ppmが製鋼スラグを混合することで3ppmに減少してしまうことを確認した。従って、ダム堆積土を利用する場合にはアルカリ度の低い電力副産物のクリンカアッシュやIGCC石炭ガス化スラグを混合した方が有効であることが判明した。そして、本実施形態に示すフルボ酸鉄溶出ユニット6のイオン溶出性収容体はココナツ繊維(ヤシノミ繊維)製なので、退化速度が遅く、10年以上の長期間に亘って内容物を保持し、二価鉄イオンやフルボ酸鉄を溶出し続ける。また発酵物質のダム堆積物に含有するバクテリアに対しても、ヤシノミ繊維は塩分が多く対抗性が植物繊維の中で強靭である。   When such a fulvic acid iron elution unit 6 is installed in the first elution water tank 3 and immersed in seawater, the fulvic acid iron contained in the solid organic state is eluted into the water from the inside of the ion-eluting container. Then, the divalent iron ion of the iron-containing substance is combined with solid organic fulvic acid as a chelating agent (complex) to form fulvic acid iron, and this newly bound fulvic acid iron enters seawater from the inside of the ion-eluting container. To elute. In the iron fulvic acid elution unit 6, iron fulvic acid is formed by chelate bonding with iron-containing substances such as clinker. In this embodiment, the alkali-adjusted iron-containing substance in the iron fulvic acid elution unit 6 functions as an inhibitor that delays the elution of divalent iron ions. The rate at which divalent iron ions such as clinker and coal gasification slag described above combine with solid organic fulvic acid as a chelating agent (complex) to form fulvic acid iron is simply mixing iron-containing substances and humic substances. It is much more gradual than just conventional water environment conservation materials. Therefore, it was thought that this binding of iron fulvic acid would continue for a long period of time compared with the conventional one, but the steelmaking slag adjusted with alkali has a pH of 9.5 and has a strong alkalinity. There is a high possibility of neutralizing weakly acidic dam deposits and extremely suppressing the elution of high concentrations of iron humate in dam deposits. For example, as shown in FIG. 5, it was confirmed that the humic substance content of Nita dam 28 ppm was reduced to 3 ppm by mixing steelmaking slag. Therefore, when using dam sedimentary soil, it became clear that it was more effective to mix clinker ash and IGCC coal gasification slag, which are low-alkaline power by-products. And since the ion elution container of the fulvic acid iron elution unit 6 shown in this embodiment is made of coconut fibers (palm flea fibers), the degeneration rate is slow, and the contents are retained for a long period of 10 years or more. Continue to elute valent iron ions and iron fulvic acid. Also, against the bacteria contained in the dam deposits of fermented material, palm flea fibers are rich in salt and have strong resistance among plant fibers.

前記した実施形態において、電力副産物であるクリンカ(PH8.1 密度2.019グラム/立方センチ)、IGCC石炭ガス化スラグ(PH8.1 密度2.928グラム/立方センチ)を使用すると、これらは製鋼スラグ(PH9.5 密度3.402グラム/立方センチ)よりもPHが中性に近いため、高濃度の腐植酸鉄を含有するダム堆積物の二価鉄イオンの溶出を抑制する遅延材(リターダー)としての役割を期待して使用する場合に好適であるとともに、マンガン(MnO)は、図4に示すように、製鋼スラグが多く、白濁の原因となり、また、リンイオン(P)は電力副産物が多く、藻場の栄養塩になる。ケイ素イオン(SiO)は電力副産物が圧倒的に多く、浮遊性プランクトンに有用であり、カキ養殖にも適する。カルシウムイオン(CaO)は製鋼スラグが圧倒的に多く、アルカリ度を高める。これらの点で製鋼スラグより電力スラグの方がより有効であることを確認した。 In the above-described embodiment, when the clinker (PH8.1 density: 2.019 g / cubic centimeter) and IGCC coal gasification slag (PH8.1 density: 2.928 g / cubic centimeter), which are power by-products, are used, they are made of steel. A retarder (retarder) that suppresses the elution of divalent iron ions in dam deposits containing high concentrations of iron humate because PH is closer to neutral than slag (PH 9.5 density 3.402 g / cm3) ) Is suitable for use in anticipation of its role as manganese, and manganese (MnO) has a large amount of steelmaking slag as shown in FIG. 4, causing white turbidity, and phosphorus ions (P 2 O 5 ) There are many electricity by-products, and it becomes nutrient salt in the seaweed bed. Silicon ions (SiO 2 ) have an overwhelmingly large power by-product, are useful for planktonic plankton, and are also suitable for oyster farming. Calcium ions (CaO) have an overwhelming amount of steelmaking slag and increase alkalinity. From these points, it was confirmed that power slag is more effective than steelmaking slag.

次に、第2溶出用水槽4について説明する。この第2溶出用水槽4は、前述した第1溶出用水槽3よりも容量が大きくて陸の奥側に位置する水槽の陸側端部から海側端部に向けて底部が下り傾斜した長尺な水槽であり、図1および図2に示すものは第1溶出用水槽3の下に配置したものであり、水槽の陸側端部に、バイオマスの下処理設備である粉砕機7とミキサー8に接続する流入口9を上部に設け、海側の端部の下部に流出口10を設け、前記した陸側の流入口9から海側の流出口10に向かって内部の水が流れ、処理する汚濁水が入れられる上流側から栄養塩液肥を取り出す下流側の流出口10の間が浄化域11として設定され、この浄化域11を流れる途中で有機物を分解できるように構成されている。このため、この第2溶出用水槽の浄化域11の底部には、内部の流れ方向(陸側から海側)に直交する方向に送気管12を配置するとともに該送気管12に複数個の酸素含有気体供給ノズル13を所定の間隔をあけて設け、この送気管12を前記流れ方向に沿って複数本所定の間隔をあけて平行に並べて設け、これにより酸素含有気体供給ノズル(以下、ノズル)13から供給された酸素含有気泡が水中を上昇する好気性領域(散気領域あるいは好気領域ともいう)11aと該好気性領域11aから外れた嫌気性領域(嫌気領域ともいう)11bとが前記上流側から流出口へ向かう流れの途中に交互に出現するように構成されている。そして、この第2溶出用水槽4の内部には、塊状浄化材20を複数充填し、これら塊状浄化材20によりバイオマスが水に溶けた汚濁水を浄化する。   Next, the second elution water tank 4 will be described. The second elution aquarium 4 has a larger capacity than the first elution aquarium 3 described above, and the bottom portion is inclined downward from the land-side end of the aquarium located on the far side of the land toward the sea-side end. 1 and FIG. 2 are arranged below the first elution water tank 3, and a pulverizer 7 and a mixer, which are biomass pretreatment facilities, at the land-side end of the water tank. 8 is provided in the upper part, the outlet 10 is provided in the lower part of the sea end, and the water flows from the land-side inlet 9 toward the sea-side outlet 10. A region between the downstream outlet 10 where the nutrient solution fertilizer is extracted from the upstream side where the contaminated water to be treated is placed is set as the purification region 11, and the organic matter can be decomposed while flowing through the purification region 11. Therefore, at the bottom of the purification zone 11 of the second elution tank, an air supply pipe 12 is disposed in a direction orthogonal to the internal flow direction (from the land side to the sea side), and a plurality of oxygen is provided in the air supply pipe 12. The contained gas supply nozzles 13 are provided at predetermined intervals, and a plurality of the air supply pipes 12 are provided in parallel along the flow direction at predetermined intervals, whereby an oxygen-containing gas supply nozzle (hereinafter, nozzle) is provided. An aerobic region (also referred to as an aeration region or an aerobic region) 11a in which oxygen-containing bubbles supplied from 13 rise in water and an anaerobic region (also referred to as an anaerobic region) 11b that deviates from the aerobic region 11a are described above. It is comprised so that it may appear alternately in the middle of the flow which goes to an outflow port from an upstream. The second elution water tank 4 is filled with a plurality of mass purification materials 20, and the polluted water in which the biomass is dissolved in water is purified by these mass purification materials 20.

塊状浄化材20は、表面に複数の凹凸を有するもので、例えば、相当径約数センチメートルの骨材21を集合し、各骨材21の接点をセメントやエポキシ系接着剤等のバインダーで接合して相当径約7〜15センチメートルのほぼ球形状に形成したものである。なお、相当径は、塊り状体の体積とほぼ等しい体積を有する球形体の直径をいう。
この様な塊状浄化材20は、骨材21をほぼ球形状に集合して接合したので、実際の表面積は無数の凹凸が存在して大きくなり、この表面積の増大で生物膜形成面積が増大する。また、凹凸は乱流を形成し易く、後述するように、散気(曝気)される酸素ガス(例えば、空気)と汚濁水との接触が増加し好気処理が迅速にできる。また、この塊状浄化材20は、骨材21をセンチメートルオーダーのものを選択した場合に骨材同士の間の隙間が約1〜3cmとなり、この隙間が凹部となったり当該塊状浄化材20の表面に開口する開口部22となり、隙間の奥の部分が連絡路(図示せず)となって他の隙間(連絡路)と連通する。なお、隙間の開口部22が大きすぎると連絡路内部を貫通する流れが発生し易く嫌気性微生物の育成環境として好ましくないので、骨材21の大きさを適宜選択することにより約1〜5cmの開口部22が形成されるようにすることが望ましい。
The mass purification material 20 has a plurality of irregularities on the surface. For example, aggregates 21 having an equivalent diameter of about several centimeters are gathered, and the contacts of the aggregates 21 are joined with a binder such as cement or epoxy adhesive. Thus, it has a substantially spherical shape with an equivalent diameter of about 7 to 15 centimeters. The equivalent diameter refers to the diameter of a spherical body having a volume substantially equal to the volume of the lump-shaped body.
In such a mass purification material 20, the aggregate 21 is assembled in a substantially spherical shape and joined, so that the actual surface area becomes large due to innumerable irregularities, and the biofilm formation area increases due to the increase in the surface area. . Further, the unevenness easily forms turbulent flow, and as will be described later, contact between oxygen gas (for example, air) to be diffused (aerated) and polluted water increases, and aerobic treatment can be performed quickly. In addition, when this aggregate purification material 20 is selected as an aggregate 21 of a centimeter order, the gap between the aggregates is about 1 to 3 cm, and this gap becomes a recess or the mass purification material 20 It becomes the opening part 22 opened to the surface, and the back part of the gap becomes a communication path (not shown) and communicates with another gap (communication path). If the opening 22 of the gap is too large, a flow penetrating the inside of the communication path is likely to occur, which is not preferable as an anaerobic microorganism growth environment. Therefore, by appropriately selecting the size of the aggregate 21, the size of the aggregate 21 is about 1 to 5 cm. It is desirable to form the opening 22.

次に、前記した構成からなる塊状浄化材20を第2溶出用水槽4の浄化域11に充填した状態での浄化作用について説明する。
塊状浄化材20は、表面での好気処理用の生物膜の形成体として機能し、また、表面の開口の方向に固形有機物(SS)を移動させ汚濁水からその開口部22に流離捕捉するための流速差(速度勾配)を形成するための抵抗体として機能し、さらに、開口部22で捕捉したSSをその内部の隙間に滞留させ嫌気処理するための嫌気処理域として機能することから、汚濁水中に浮遊する無機質及び有機質の微細固形物、溶解汚濁物等に有効に作用して汚濁水を浄化することができる。即ち、塊状浄化材20は、その表面には生物膜が形成される一方、水槽の底部から酸素含有ガス(以下、単に酸素ガスという)が汚濁水流れに直交する方向に散気されて上昇するため、浄化域11を流れる汚濁水と酸素ガスとは十分に接触混合すると同時に汚濁水流には乱流域が形成される。したがって、浄化域11における底部から酸素ガスが散気される好気性領域11aに充填配置された塊状浄化材20の周辺では、境膜等境界層の生成が抑制され、迅速に且つ効率良く好気処理が進行し、汚濁水中に溶解している溶解性汚濁物(BOD)が容易に好気処理され除去低減される。そして、処理された溶解性汚濁物(BOD)は、その大部分を占める有機物であれば炭酸ガスと水に分解され、それ以外の成分であるリンや窒素は水中に残存する。
Next, the purification action in a state where the purification material 20 having the above-described configuration is filled in the purification region 11 of the second elution water tank 4 will be described.
The mass purification material 20 functions as a biofilm formation body for aerobic treatment on the surface, and also moves solid organic matter (SS) in the direction of the opening on the surface to flow and capture from the contaminated water to the opening 22. Since it functions as a resistor for forming a flow velocity difference (speed gradient) for the purpose, and further, it functions as an anaerobic treatment region for anaerobic treatment by retaining the SS captured in the opening 22 in the gap inside thereof. It is possible to purify the polluted water by effectively acting on inorganic and organic fine solids, dissolved pollutants, etc. floating in the polluted water. That is, the mass purification material 20 is formed with a biofilm on the surface thereof, while an oxygen-containing gas (hereinafter simply referred to as oxygen gas) is diffused from the bottom of the water tank in a direction perpendicular to the polluted water flow and rises. Therefore, the turbulent flow area is formed in the polluted water flow at the same time as the polluted water flowing through the purification zone 11 and the oxygen gas are sufficiently contact-mixed. Therefore, in the vicinity of the mass purification material 20 filled and disposed in the aerobic region 11a where oxygen gas is diffused from the bottom in the purification region 11, the generation of a boundary layer such as a boundary film is suppressed, and aerobic is performed quickly and efficiently. As the treatment proceeds, the soluble contaminant (BOD) dissolved in the polluted water is easily aerobically treated and reduced. The treated soluble contaminant (BOD) is decomposed into carbon dioxide gas and water if it is an organic substance occupying most of it, and other components such as phosphorus and nitrogen remain in the water.

また、塊状浄化材20は、汚濁水流通域の抵抗体であり、その側近の流速を低下させ、浄化材周辺に汚濁水流中に流速差(速度勾配)を生じさせると同時に層流域が形成される。上記したように酸素ガスが散気される好気性領域11a(散気区域)では乱流域となり易いのに対して、好気性領域11aから外れた嫌気性領域(嫌気性領域あるいは無散気区域)11bでは層流域が形成される。このため、嫌気性領域11bにおいては、汚濁水中に浮遊する微細固形物(SS)(多くは有機物)は、生じた流速差により回転エネルギーを付与されて移動し、流速の遅い塊状浄化材20周辺の層流域に到達する。また、上記した好気性領域11aにおいて、SSは、その一部が塊状浄化材20の表面の生物膜に吸着して好気的に処理されるが、大部分は乱流域のランダムな流れにより隣接する嫌気性領域11bの方向に送出され、最終的に嫌気性領域11bにおいて塊状浄化材20周辺の層流域に流離到達する。
さらに、塊状浄化材20周辺の層流域に流離到達したSSは、その表面の開口部22に捕捉され、開口部22から内部の連絡路内に集積される。
The bulk purification material 20 is a resistor in the polluted water circulation area, and the laminar flow area is formed at the same time as reducing the flow velocity in the vicinity of the mass purifying material 20 and creating a flow velocity difference (velocity gradient) in the polluted water flow around the purifying material. The As described above, the aerobic region 11a (aeration region) where oxygen gas is diffused tends to be a turbulent region, whereas the anaerobic region (anaerobic region or non-aeration region) outside the aerobic region 11a. In 11b, a laminar basin is formed. For this reason, in the anaerobic region 11b, the fine solid matter (SS) (mostly organic matter) floating in the polluted water moves by being given rotational energy due to the generated flow rate difference, and around the massive purification material 20 having a low flow rate. To reach the laminar basin. Further, in the aerobic region 11a described above, a part of SS is aerobically treated by adsorbing on the biofilm on the surface of the bulk purification material 20, but most of the SS is adjacent by the random flow in the turbulent region. Is sent in the direction of the anaerobic region 11b, and finally reaches the laminar flow region around the mass purification material 20 in the anaerobic region 11b.
Furthermore, the SS that has flowed and separated to the laminar flow area around the mass purification material 20 is captured by the opening 22 on the surface and accumulated in the internal communication path from the opening 22.

塊状浄化材20の連絡路内部は流れが殆どない停滞域であるため、SSはそのまま連絡路内に滞留して嫌気処理されて液状可溶化する。この液状可溶化された後は、その自重により連絡路内を下方に流れて開口部22から流通汚濁水中に流出して溶解し、前記したと同様に好気性領域11aにおける塊状浄化材20の表面で好気処理されて炭酸ガスと水に浄化除去される。そして、これらの処理が繰り返し行われることにより、図2(c)に示すように、溶解BODと浮遊SSが暫時減少し、最終的には、いずれも殆ど分解されてなくなる。   Since the inside of the communication path of the bulk purification material 20 is a stagnant area where there is almost no flow, the SS stays in the communication path as it is and is anaerobically treated to be liquid-solubilized. After this liquid solubilization, the surface of the mass purification material 20 in the aerobic region 11a in the aerobic region 11a, as described above, flows downward in the communication path by its own weight, flows out from the opening 22 into the circulating polluted water and dissolves. It is aerobically treated with carbon dioxide and water. By repeatedly performing these processes, as shown in FIG. 2C, the dissolved BOD and the floating SS are reduced for a while, and finally, both are hardly decomposed.

この様に、第2溶出用水槽4中における浄化処理は、汚濁水中の溶解BODと浮遊SSとを同一浄化域11において、それぞれ異なる浄化に好適な処理域を提供して処理するために効率良く浄化が行われる。すなわち、溶解性BODに対しては、塊状浄化材20の表面で酸素ガスを供給して好気処理が迅速に行われるようにし、一方、SSに対しては塊状浄化材20の開口部22で捕捉してその内部の連絡路内に滞留させて嫌気処理する。このSSの嫌気処理は、浄化域11を流通する汚濁水の浄化処理滞留時間とほぼ無関係に行うことができるため、浄化域11での汚濁水の滞留時間は短縮される。そして、好気処理した好気性バクテリアは嫌気性領域11bで、嫌気処理した嫌気性バクテリアは好気性領域11aでの環境変化により死滅し、環境変化により死滅しないバクテリアは塊状浄化材20の連絡路内に長時間滞留して液状化し、第2溶出用水槽4における処理が終了した段階では種々のバクテリアが死滅し、最終的には死骸も分解されて炭酸ガスと水に戻る。したがって、第2溶出用水槽4で処理された後の水には汚濁水中に含まれていたリンや窒素の成分が残存し、窒素とリンを主成分とする栄養塩を水に溶かした栄養塩液肥となるのである。   In this way, the purification treatment in the second elution water tank 4 is efficient in order to provide the treatment areas suitable for different purification in the same purification area 11 with the dissolved BOD and the floating SS in the contaminated water. Purification is performed. That is, for the soluble BOD, oxygen gas is supplied on the surface of the mass purification material 20 so that the aerobic treatment is performed quickly, while for SS, the opening 22 of the mass purification material 20 is used. Capturing and staying in the internal communication path to anaerobic treatment. Since the SS anaerobic treatment can be performed almost independently of the purification treatment residence time of the polluted water flowing through the purification zone 11, the residence time of the polluted water in the purification zone 11 is shortened. The aerobic bacteria subjected to the aerobic treatment are anaerobic region 11b, the anaerobic bacteria subjected to the anaerobic treatment are killed by the environmental change in the aerobic region 11a, and the bacteria that are not killed by the environmental change are in the communication path of the bulk purification material 20. When the treatment in the second elution water tank 4 is completed, various bacteria are killed, and eventually the dead bodies are also decomposed and returned to carbon dioxide and water. Therefore, the phosphorus and nitrogen components contained in the polluted water remain in the water after being treated in the second elution tank 4, and the nutrient salt in which the nutrient salt mainly composed of nitrogen and phosphorus is dissolved in water. It becomes liquid fertilizer.

前記した第2溶出用水槽4には水産加工残渣や食品加工残渣などのバイオマスと水との混合物である汚濁水を供給するが、このために本実施形態では第2溶出用水槽4の陸側端部上に粉砕機7とミキサー8を設けてある。そして、例えば、魚カスなどのバイオマスを粉砕機により細かく粉砕し、この粉砕物をミキサー8に移して水を混合して撹拌して水に溶かして汚濁水にした後、この汚濁水を第2溶出用水槽4の陸側端部の流入口9から注入する。なお、粉砕したバイオマスをミキサー8で撹拌する段階で水を混ぜて所定のバイオマス濃度に調整してもよいが、ミキサー8である程度の水を加えて濃い汚濁水とし、この濃い汚濁水を第2溶出用水槽4に注入した後にさらに水を加えて所定濃度に希釈してもよい。   The second elution tank 4 is supplied with contaminated water, which is a mixture of biomass and water, such as fishery processing residues and food processing residues. For this reason, in this embodiment, the land side of the second elution tank 4 is used. A crusher 7 and a mixer 8 are provided on the end. Then, for example, biomass such as fish waste is finely pulverized by a pulverizer, the pulverized product is transferred to a mixer 8 and mixed with water, stirred and dissolved in water to make contaminated water, and then the contaminated water is secondly mixed. It injects from the inflow port 9 at the land side end of the elution water tank 4. The pulverized biomass may be mixed with water at the stage of stirring with the mixer 8 to adjust the biomass concentration to a predetermined level. However, a certain amount of water is added with the mixer 8 to obtain thick polluted water. After pouring into the elution water tank 4, water may be further added to dilute to a predetermined concentration.

なお、バイオマスは、水産加工残渣や食品加工残渣に限定されるものではなく、窒素とリンと有機物とを含むものであれば使用でき、例えば、漁村環境にて排出される生活残渣や汚泥発酵物質でもよい。この汚泥発酵物質は、一般的には汚泥発酵肥料として使用されているもので、その主要な成分として、窒素全量5.15%、リン全量6.26%、加里全量0.39%を含んでいるが、海水中で期待するN:Pは7:1である。
前記した様にすると、漁村に発生する生ごみ・加工残渣を混合して処理でき、これにより漁村環境を改善し、水域環境の保全に寄与できる。
Biomass is not limited to fishery processing residues or food processing residues, but can be used as long as it contains nitrogen, phosphorus and organic matter. For example, living residues and sludge fermentation substances discharged in fishing village environments But you can. This sludge fermented substance is generally used as a fertilizer for sludge fermentation, and as its main components, it contains 5.15% total nitrogen, 6.26% total phosphorus, and 0.39% total potassium. However, the expected N: P in seawater is 7: 1.
As described above, garbage and processed residues generated in a fishing village can be mixed and processed, thereby improving the fishing village environment and contributing to the conservation of the water environment.

次に、前記した第1溶出水槽3、第2溶出用水槽4に水を供給する水供給系について説明する。本発明において使用する水は淡水であることが望ましく、本実施形態では、第1溶出水槽3の上に水タンク5を設置し、この水タンク5内に、例えば、近くの河川から汲み上げた水や地下から汲み上げた地下水、生活排水などを貯留しておく。そして、この水タンク5に接続した給水管30を介して前記したミキサー8、第1溶出水槽3、第2溶出用水槽4などに必要に応じて給水できるように構成されている。なお、給水管30の途中には弁(図示せず)を設け、この弁の開閉により給水先を適宜選択するとともに給水量を調整することができる。   Next, a water supply system for supplying water to the first elution water tank 3 and the second elution water tank 4 will be described. The water used in the present invention is preferably fresh water, and in this embodiment, a water tank 5 is installed on the first elution water tank 3, and the water pumped up from a nearby river, for example, in this water tank 5. Store groundwater and domestic wastewater pumped up from the ground. The mixer 8, the first elution water tank 3, the second elution water tank 4, and the like can be supplied with water as necessary through a water supply pipe 30 connected to the water tank 5. In addition, a valve (not shown) is provided in the middle of the water supply pipe 30, and a water supply destination can be appropriately selected and the amount of water supplied can be adjusted by opening and closing the valve.

次に、第1溶出用水槽3と第2溶出用水槽4とのいずれか一方または両方の溶出用水槽内の溶出成分含有水を選択して海に供給可能な溶出成分含有水供給装置について説明する。第1溶出用水槽3の最高水位の少し下に第1溶出水出口31を開設し、第2溶出用水槽4の海側端部の流出口10に連通する第2溶出水出口32を開設し、これら溶出水出口31、32に溶出成分含有水流出系として接続した管を途中の滅菌装置33で合流させ、滅菌装置33の出口に調整タンク34の入口側を接続し、調整タンク34の出口に溶出成分含有水供給管35の入口を接続し、この溶出成分含有水供給管35を海中に延ばし、その出口36と海岸線との間から前記溶出成分含有水を分散させて藻場2となる海域に流出する。また、前記した第1溶出水出口31、第2溶出水出口32から合流する滅菌装置33までの間に第1、第2流出弁(図示せず)をそれぞれ設け、また、調整タンク34と水タンク5との間を接続する水供給管の途中に注水弁を設けてある。したがって、これらの第1、第2流出弁を操作することにより、第1溶出用水槽3と第2溶出用水槽4とのいずれか一方の溶出用水槽内の溶出成分含有水を調整タンク34に適宜選択し、また量を調整し、さらには水タンク5からの水を注入して適当な濃度に希釈した状態で供給したり、あるいは両方の溶出用水槽内の溶出成分含有水を海に供給したり、供給源を選択して海に供給できる。なお、両方の流出弁を同時に閉じると、第1溶出用水槽3、第2溶出用水槽4のいずれからの供給も停止することができる。そして、前記した流出弁は、手動で操作してもよいが、後述する制御装置により電気的に操作できる電磁弁などの電動式弁を用いることが望ましい。なお、前記した溶出成分含有水供給管35は、先端の出口36のみならず、その手前の部分に複数の孔を開設し、これらの孔から広い範囲に給水できるように構成することが望ましい。   Next, an elution component-containing water supply device capable of selecting the elution component-containing water in one or both of the first elution water tank 3 and the second elution water tank 4 and supplying it to the sea will be described. To do. A first elution water outlet 31 is opened slightly below the maximum water level of the first elution water tank 3, and a second elution water outlet 32 communicating with the outlet 10 at the sea end of the second elution water tank 4 is opened. Then, the pipes connected to the elution water outlets 31 and 32 as an elution component-containing water outflow system are joined by a sterilization apparatus 33 on the way, the inlet side of the adjustment tank 34 is connected to the outlet of the sterilization apparatus 33, and the outlet of the adjustment tank 34 The elution component-containing water supply pipe 35 is connected to the inlet, and the elution component-containing water supply pipe 35 is extended into the sea. It flows into the sea area. Further, first and second outflow valves (not shown) are respectively provided between the first elution water outlet 31 and the second elution water outlet 32 and the sterilizing device 33 that joins, and the adjustment tank 34 and the water are provided. A water injection valve is provided in the middle of the water supply pipe connecting the tank 5. Therefore, by operating these first and second outflow valves, the elution component-containing water in one of the first elution water tank 3 and the second elution water tank 4 is supplied to the adjustment tank 34. Select appropriately, adjust the amount, and inject water from the water tank 5 and supply it diluted to an appropriate concentration, or supply the elution component-containing water in both elution tanks to the sea Or select a source to supply to the sea. If both the outflow valves are closed at the same time, the supply from either the first elution water tank 3 or the second elution water tank 4 can be stopped. And although the above-mentioned outflow valve may be operated manually, it is desirable to use an electric valve such as an electromagnetic valve that can be electrically operated by a control device described later. The elution component-containing water supply pipe 35 is preferably configured so that a plurality of holes are opened not only at the outlet 36 at the front end but also at a front side thereof and water can be supplied in a wide range from these holes.

また、第1、第2溶出用水槽3,4内の溶出成分含有水を選択して海に供給するためには、前記した第1、第2流出弁を設けることなく、前記した水タンク5から第1、第2溶出用水槽3,4に水を注入する第1、第2給水弁という2つの給水弁で制御してもよい。例えば、第1、第2給水弁の両方を開くと第1、第2溶出用水槽3,4に水を供給できるので、第1、第2溶出用水槽3,4の第1溶出水出口、第2溶出水出口から流出した溶出成分含有水を溶出成分含有水供給管35を介して海に供給することができ、第1給水弁を開いて第2給水弁を閉じると、第1溶出用水槽3にだけ水が供給されるので、この第1溶出用水槽3から流出する溶出成分含有水を溶出成分含有水供給管35を介して海に供給することができる(フルボ酸鉄溶出水供給工程)。そして、第2給水弁を開くと、第2溶出用水槽4に海水が供給されるので、この第2溶出用水槽4から流出する溶出成分含有水を溶出成分含有水供給管35を介して海に供給することができる(窒素及びリン栄養塩溶出水供給工程)。なお、第1、第2給水弁を設けるとともに、第1、第2流出弁を設けてもよい。
また、図2中に点線で示すように、第2溶出用水槽4の流出口10から水槽の流入口9側に水を戻す循環路50とポンプ51を設け、処理する水を循環させてもよい。この様にして水を循環させて複数回繰り返し流すと、第2溶出用水槽4の流れ方向の長さを短縮化することができ、コンパクト化を図ることができる。
Further, in order to select and supply the elution component-containing water in the first and second elution water tanks 3 and 4 to the sea, the above-described water tank 5 is provided without providing the first and second outflow valves. The first and second elution water tanks 3 and 4 may be controlled by two water supply valves called first and second water supply valves. For example, when both the first and second water supply valves are opened, water can be supplied to the first and second elution water tanks 3 and 4, so that the first elution water outlet of the first and second elution water tanks 3 and 4, The elution component-containing water flowing out from the second elution water outlet can be supplied to the sea through the elution component-containing water supply pipe 35. When the first water supply valve is opened and the second water supply valve is closed, the first elution water is supplied. Since water is supplied only to the water tank 3, the elution component-containing water flowing out from the first elution water tank 3 can be supplied to the sea via the elution component-containing water supply pipe 35 (iron fulvic acid elution water supply). Process). When the second water supply valve is opened, seawater is supplied to the second elution water tank 4, so that the elution component-containing water flowing out from the second elution water tank 4 passes through the elution component-containing water supply pipe 35 to the sea. (Nitrogen and phosphorus nutrient elution water supply step). In addition, while providing a 1st, 2nd water supply valve, you may provide a 1st, 2nd outflow valve.
Further, as shown by a dotted line in FIG. 2, a circulation path 50 and a pump 51 for returning water from the outlet 10 of the second elution water tank 4 to the inlet 9 of the water tank are provided to circulate water to be treated. Good. When water is circulated in this manner and repeatedly flowed a plurality of times, the length of the second elution water tank 4 in the flow direction can be shortened, and the size reduction can be achieved.

前記した様に、フルボ酸鉄溶出ユニット6から溶出した二価の鉄イオンがフルボ酸鉄となり、このフルボ酸鉄が海域2に補充されて、この海域2ではコンブ40などの海藻の生育に好適な環境に改善される。具体的には、コンブ40等の海藻の養分となり、当該海藻の生育を促進することができ、特に、繁殖を大きく促進し、これにより磯焼けの回復を短縮化でき、また、コンブ40の生活史に対応させて、前記した溶出成分含有水供給装置により海水に補給する溶出成分含有水を選択して供給することで効率を向上させ、ひいては溶出ユニットの長期使用を可能とする。   As described above, the divalent iron ions eluted from the fulvic acid iron elution unit 6 become fulvic acid iron, and this fulvic acid iron is replenished to the sea area 2, which is suitable for the growth of seaweeds such as the kombu 40. The environment is improved. Specifically, it becomes a nutrient for seaweed such as the kombu 40, and can promote the growth of the seaweed. In particular, it can greatly promote the reproduction, thereby shortening the recovery of firewood burning. Corresponding to the history, the elution component-containing water to be replenished to seawater is selected and supplied by the above-described elution component-containing water supply device, so that the efficiency is improved, and the elution unit can be used for a long time.

以下、コンブ40を例に挙げて海藻の生活史を説明すると共に、溶出成分含有水との関係を説明する。
図3はコンブ40の生活史を示す概略図である。
コンブ40は、
A)藻体表面の細胞が発達して胞子嚢になり、胞子嚢が夏から秋にかけて成熟し、
B)一般に海水温度が10℃以下になる秋〜初冬にかけて減数分裂が起こり、1本当り1億から十数億の遊走子(胞子)が子嚢班から放出され、海中を泳ぎながら岩盤などに着生する。
C)着生した後、繊毛を落として発芽し生長を始め、雌性配偶体と雄性配偶体に発達し真冬から春先にかけて新しい葉体(幼体)となる。
D)雌性配偶体は成熟すると卵子を形成し、雄性配偶体は成熟すると精子(精虫)を形成し、精子は遊走子と同様に泳ぐことができる。
E)精子が卵子へたどり着くと受精が行われ、受精卵は直ちに細胞分裂して芽胞体が発生し、4〜5月頃まで次第に大きく胞子体に成長してゆく(晩冬から早春)。芽胞体が発生した後の成長期においては光合成が活発に行われる。
F)この胞子体は晩春から初夏頃までさらに成長して1年目のコンブ40となる。
G)コンブ40は夏から秋にかけて成熟し、子嚢班を有する胞子体に成長して1年目を終了し、秋を迎えて(A)に戻る。
そして、この配偶体が成熟する秋から冬の時期(特に冬)においては、キレート化された二価鉄成分の濃度の増加に伴い、雌雄配偶体の成熟度が高まる。具体的には、0.01mg/L以上の場合に雌雄配偶体への発達が促進されることが確認できている。
また、配偶体の成熟期に限らず、遊走子の放出から配偶体発達〜受精〜胞子体着生に至る冬季にはクリンカや石炭ガス化スラグと人工腐植物質を組み合わせてを施した場合に大きな施肥効果が見られ、キレート化させた二価鉄の効果が大きいことが確認できている。
さらに、胞子体が成長する夏季には、クリンカやスラグのみの場合よりも、クリンカや石炭ガス化スラグと人工腐植物質とを組み合わせた施肥の効果が大きいことが確認されている。
Hereinafter, the life history of seaweed will be described by taking the comb 40 as an example, and the relationship with the eluted component-containing water will be described.
FIG. 3 is a schematic diagram showing the life history of the kombu 40.
Comb 40 is
A) Cells on the surface of the alga develop to become sporangia, and the spores mature from summer to autumn,
B) In general, meiosis occurs from autumn to early winter when the seawater temperature falls below 10 ° C, and 100 million to more than 100 million zoospores (spores) are released from the ascending sac, and are swimming on the bedrock while swimming in the sea. To settle.
C) After growing, the cilia are dropped and germinate to begin to grow, develop into female gametophytes and male gametophytes, and become new leaf bodies (juvenile bodies) from midwinter to early spring.
D) The female gametophyte forms an ovum when mature, and the male gametophyte forms a sperm (spermatozoon) when mature, and the sperm can swim like a zoospore.
E) When the sperm reaches the ovum, fertilization takes place, and the fertilized egg immediately divides and generates spores, and gradually grows into spores until late April to May (from late winter to early spring). Photosynthesis is actively performed in the growth period after the generation of spores.
F) The spores grow further from late spring to early summer and become the first year of the Kombu 40.
G) The kombu 40 matures from summer to autumn, grows into a spore having an ascending spot, finishes the first year, and returns to (A) after the fall.
And in the period from autumn to winter (especially winter) when this gametophyte matures, the maturity of the male and female gametophy increases as the concentration of the chelated divalent iron component increases. Specifically, it has been confirmed that the development to male and female gametophytes is promoted at 0.01 mg / L or more.
In addition, not only in the maturation stage of the gametophyte, but also in the winter from zoospore release to gametophyte development to fertilization to sporophyte formation, it is significant when clinker, coal gasification slag and artificial humic substances are combined A fertilizing effect was observed, and it was confirmed that the effect of chelated divalent iron was great.
Furthermore, it has been confirmed that in the summer when spores grow, fertilization with a combination of clinker, coal gasification slag, and artificial humic substances is more effective than clinker and slag alone.

そして、受精した芽胞体が発生し細胞分裂が盛んになって胞子体に成長する晩冬から早春の時期、例えば、2月〜5月頃までの間に、光合成が活発に行われるので、この成長期に窒素とリンを主要な成分とする栄養塩を補給すると、成長が一層促進されて効率良く成長することが確認されている。   And, since the fertilized spores are generated and the cell division becomes active and grows into spores, photosynthesis is actively performed during the late winter to early spring period, for example, from February to May. It has been confirmed that when nutrient salts containing nitrogen and phosphorus as main components are supplemented, growth is further promoted and growth is efficiently performed.

したがって、前記した固形有機物分解型液肥供給装置1の運転については、例えば、コンブ40の生活史に対応させて栄養塩を供給する場合には、第1溶出用水槽3内で溶出させたフルボ酸鉄含有水を年間を通して海中に供給し、第2溶出用水槽4内で溶出させた窒素とリン等の栄養塩含有水は、光合成による成長が活発な2〜5月の間だけ供給すれば足りる。
この様にして、窒素とリン等の栄養塩含有水の補給期間をコンブ40の成長時期に限定すると、窒素とリン等の栄養塩ユニット7の溶出速度が速くて使用可能期間(ライフサイクル)が短いという特性があっても、施肥時期を特定して過不足のない施肥を施すことで、施肥量と成長促進とのバランスをとった効果を高めることができ、無駄を省いた栄養塩の供給を可能とすることができる。
Therefore, as for the operation of the solid organic matter decomposition type liquid fertilizer supply apparatus 1 described above, for example, when supplying nutrient salts corresponding to the life history of the kombu 40, the fulvic acid eluted in the first elution tank 3 is used. Supplying iron-containing water into the sea throughout the year, and nutrient-containing water such as nitrogen and phosphorus eluted in the second elution tank 4 only needs to be supplied for two to five months when growth by photosynthesis is active. .
In this way, if the supply period of water containing nutrient salts such as nitrogen and phosphorus is limited to the growth period of the kombu 40, the elution rate of the nutrient unit 7 such as nitrogen and phosphorus is fast and the usable period (life cycle) is increased. Even if it has a short characteristic, it is possible to increase the effect of balancing fertilization amount and growth promotion by specifying the fertilization time and applying fertilization without excess or deficiency, and supply of nutrient salts without waste Can be made possible.

これに対して、フルボ酸鉄溶出ユニット6については、窒素やリン等の栄養塩に比較して溶出速度が遅くて使用可能期間(ライフサイクル)が長いことと、コンブ40の生活史の全期間においてフルボ酸鉄の施肥効果が期待でき、また、比較的安価であることから、年間継続供給が望ましい。   In contrast, the iron fulvic acid elution unit 6 has a slower elution rate and a longer usable period (life cycle) than nutrient salts such as nitrogen and phosphorus, and the entire life history of the kombu 40. The fertilizing effect of iron fulvic acid can be expected in Japan, and since it is relatively inexpensive, it is desirable to supply continuously throughout the year.

窒素及びリン栄養塩溶出水を2〜5月という限られた期間だけ補給する場合、第2溶出用水槽4の第2給水弁や第2流出弁などの弁を作用員が手動により操作してもよいが、制御装置のタイマーに時期的条件として予め設置し、タイマーがこの時期的条件を満たした時に前記した第2溶出用水槽4の弁を自動的に開閉操作するように構成してもよい。
なお、制御装置は、CPU、ROM、RAM等からなる公知のマイクロコンピューター構成であり、時計回路を備えたタイマーを有し、操作部を操作することにより、所望する時期に弁を開いたり閉じたりする時期的条件を設定することができる。
When replenishing nitrogen and phosphorus elution water for a limited period of 2 to 5 months, the operator manually operates the second water supply valve and the second outflow valve of the second elution water tank 4. Alternatively, it may be configured in advance so as to be set as a timing condition in the timer of the control device so that the valve of the second elution tank 4 is automatically opened and closed when the timer satisfies this timing condition. Good.
The control device has a known microcomputer configuration including a CPU, ROM, RAM, etc., and has a timer with a clock circuit, and operates the operation unit to open and close the valve at a desired time. It is possible to set the timing conditions.

また、前記した時期的条件を設定することと併せて温度条件を予め設定しておき、この温度条件が充足され、且つ時期的制限が充足された場合に、第2溶出用水槽4の弁を開けて窒素とリン等の栄養塩溶出水を補給するように構成してもよい。例えば、海水の温度を検知する温度センサー(図示せず)を設けておき、該温度センサーからの信号により制御装置が海水温度を監視しておき、予め設定した温度になって、且つ時期的条件が充足した時点で第2溶出用水槽4の前記弁を開閉操作するように構成してもよい。   In addition, the temperature condition is set in advance in conjunction with the setting of the above-described timing condition, and when the temperature condition is satisfied and the timing limitation is satisfied, the valve of the second elution water tank 4 is turned on. It may be configured to be opened and replenished with nutrient salt elution water such as nitrogen and phosphorus. For example, a temperature sensor (not shown) for detecting the temperature of the seawater is provided, and the control device monitors the seawater temperature based on a signal from the temperature sensor. You may comprise so that the said valve of the 2nd elution water tank 4 may be opened and closed at the time of satisfy | filling.

なお、第1、第2溶出用水槽3,4に供給する水は、前記した淡水が望ましいがこれに限定されるものではなく、二価鉄や窒素やリン等の栄養塩が溶出可能であって、海水中に流し込んでも環境汚染のおそれがない水であればよい。例えば、海岸近くの河川の水でもよいし、池や湖の水でも良いし、また、効率は低下するが海水でもよい。また、第1溶出用水槽3と第2溶出用水槽4は、前記した実施形態では別個にしたが、1つの大きな水槽の内部を仕切り壁により仕切ることで2つの水槽として機能させてもよい。また、前記した実施形態では、第1、第2溶出用水槽3,4内で調整した液肥を溶出成分含有水供給管35によって直接海中に流出させたが、本発明は直接海中に流出するものに限らない。例えば、固形有機物分解型液肥供給装置1を海岸、沿岸地帯でなく内陸部に設置して液肥を製造し、この液肥を運搬手段を介して、例えばタンクに入れて沿岸部まで運搬してから海に散布してもよい。   The water supplied to the first and second elution water tanks 3 and 4 is preferably the above-described fresh water, but is not limited to this, and nutrient salts such as divalent iron, nitrogen, and phosphorus can be eluted. Any water that can be poured into seawater without causing environmental pollution may be used. For example, it may be water from a river near the coast, water from a pond or lake, or seawater although efficiency is reduced. Moreover, although the 1st elution water tank 3 and the 2nd elution water tank 4 were made separate in the above-mentioned embodiment, you may make it function as two water tanks by partitioning the inside of one big water tank with a partition wall. Further, in the above-described embodiment, the liquid fertilizer adjusted in the first and second elution tanks 3 and 4 is directly discharged into the sea through the elution component-containing water supply pipe 35, but the present invention directly flows into the sea. Not limited to. For example, the solid organic matter decomposition type liquid fertilizer supply device 1 is installed not in the coast and coastal areas but in the inland area to produce liquid fertilizers. May be sprayed on.

また、前記した実施形態においては、コンブ40の生活史に対応して施肥を施す例を挙げたが、本発明の対象となる海藻はコンブ40に限定されるものではない。例えば、同様の生活史を繰り返す海藻として、アラメ、カジメ(コンブ40目)、アカモク(ホンダワラ目)、イトグサ(テングサ目)、海苔などがあり、これらの海藻を対象としてもよい。   Moreover, although the example which fertilizes according to the life history of the kombu 40 was given in above-described embodiment, the seaweed used as the object of this invention is not limited to the kombu 40. For example, seaweeds that repeat similar life histories include arame, kajime (comb 40), akamoku (Honda), licorice (proboscis), and laver, and these seaweeds may be targeted.

アラメ、カジメ等は、秋に成熟し、放出された遊走子が着底すると雌雄の配偶体に生長する。雄性配偶体からの精子が雌性配偶体の卵と受精し、受精卵が着底して胞子体(幼体)となり、春に大きく生長する。したがって、アラメ、カジメ等を対象とする場合には、フルボ酸鉄溶出水は一年を通して供給し、窒素及びリン栄養塩溶出水は、成長期である2〜6月を目安に供給する。   Alame, Kajime, etc. mature in autumn and grow into male and female gametophytes when the released zoospore settles. The sperm from the male gametophyte fertilizes with the egg of the female gametophyte, and the fertilized egg settles into a sporophyte (juvenile) that grows greatly in the spring. Therefore, when targeting arame, scallops, etc., iron fulvic acid elution water is supplied throughout the year, and nitrogen and phosphorus nutrient elution water is supplied during the growth period of 2-6 months.

アカモクは、成熟した胞子体から放出された遊走子が雌雄の配偶体となり生殖器床上の卵と受精が起こる。受精卵が岩盤等に着底すると発芽し、幼体に生長し幼い胞子体になる。12月頃から水温が低下し始めると伸張し、春から初夏にかけて大きく生長し、成熟して遊走子が放出され、これを毎年繰り返す。したがって、アカモクを対象とする場合には、フルボ酸鉄溶出水は一年を通して供給し、窒素及びリン栄養塩溶出水は、成長期である1〜4月を目安に供給する。   In red moss, zoospores released from mature spores become male and female gametes and fertilize eggs on the genital floor. When a fertilized egg settles on the bedrock, it germinates, grows into a young body, and becomes a young spore. When the water temperature begins to fall from around December, it grows, grows greatly from spring to early summer, matures and releases zoospores, which repeats every year. Therefore, in the case of targeting red foxtail, the fulvic acid iron elution water is supplied throughout the year, and the nitrogen and phosphorus nutrient elution water is supplied during the growth period of 1 to 4 months.

イトグサは、海域や水深によって成長度合や寿命が異なるが、多くの地域では5〜10月にかけて約半年が主要受精期で、成長期は12月〜5月である。したがって、イトグサなどのテングサ類を対象とする場合には、フルボ酸鉄溶出水は一年を通して供給し、窒素及びリン栄養塩溶出水は、成長期である12〜5月を目安に供給する。   Even though it has a different degree of growth and longevity depending on the sea area and water depth, in many regions, about half a year is from May to October, and the growth period is from December to May. Therefore, in the case of target species such as primrose, the fulvic acid iron elution water is supplied throughout the year, and the nitrogen and phosphorus nutrient elution water is supplied in the growth period of 12 to May.

1 固形有機物分解型液肥供給装置、2 藻場、3 第1溶出用水槽、4 第2溶出用水槽、5 水タンク、6 フルボ酸鉄溶出ユニット、7 粉砕機、8 ミキサー、9 流入口、10 流出口、11 浄化域、11a 好気性領域 、11b 嫌気性領域11b、12 送気管、13 酸素含有気体供給ノズル、20 塊状浄化材、21 骨材、22 開口部、30 給水管、31 第1溶出水出口、32 第2溶出水出口、33 滅菌装置、34 調整タンク、35 溶出成分含有水供給管、36 溶出成分含有水供給管の出口、40 コンブ、50 循環路、51 循環用のポンプ DESCRIPTION OF SYMBOLS 1 Solid organic matter decomposition | disassembly type liquid fertilizer supply apparatus, 2 Algae basin, 3rd elution water tank, 4 2nd elution water tank, 5 Water tank, 6 Fulvic acid iron elution unit, 7 Crusher, 8 Mixer, 9 Inlet, 10 Outlet, 11 Purification area, 11a Aerobic area, 11b Anaerobic area 11b, 12 Air supply pipe, 13 Oxygen-containing gas supply nozzle, 20 Bulk purification material, 21 Aggregate, 22 Opening, 30 Water supply pipe, 31 First elution Water outlet, 32 Second elution water outlet, 33 Sterilizer, 34 Adjustment tank, 35 Elution component-containing water supply pipe, 36 Elution component-containing water supply pipe outlet, 40 Kombu, 50 Circulation path, 51 Circulation pump

Claims (6)

フルボ酸鉄を水に溶出可能な第1溶出用水槽と、
水産加工残渣や食品加工残渣などのバイオマスと水との混合物である汚濁水を供給し、内部に入れた塊状浄化材により前記汚濁水の固形有機物を分解して窒素とリンを主成分とする栄養塩を水に溶かした栄養塩液肥を調整する第2溶出用水槽と、
第1溶出用水槽と第2溶出用水槽とのいずれか一方または両方の溶出用水槽内の溶出成分含有水を選択して供給可能な溶出成分含有水供給装置と、
を設置し、
海底に生育する海藻の生活史に対応させて前記溶出成分含有水供給装置により選択して前記溶出用水槽の溶出成分含有水を液肥として供給する固形有機物分解型液肥供給装置であって、
前記第2溶出用水槽は、処理する汚濁水が入れられる上流側から栄養塩液肥を取り出す下流側の流出口の間に浄化域を設定し、該浄化域の底部に酸素含有気体供給ノズルを所定の間隔を開けて複数備えることにより、酸素含有気体供給ノズルから供給された酸素含有気泡が水中を上昇する好気性領域と該好気性領域から外れた嫌気性領域とが前記上流側から流出口へ向かう流れの途中に交互に出現するように配置し、前記浄化域には表面に複数の開口を有して各開口から内部に通じる隙間が形成された塊状浄化材を複数充填し、前記浄化域を通過する途中で汚濁水を塊状浄化材に接触させながら好気性領域と嫌気性領域とを交互に通過させて汚泥水中の固形有機物を分解することを特徴とする固形有機物分解型液肥供給装置。
A first elution tank capable of eluting fulvic acid iron into water;
Nutrients mainly composed of nitrogen and phosphorus by supplying polluted water, which is a mixture of biomass and water, such as fishery processing residues and food processing residues, and decomposing the solid organic matter of the polluted water with a bulk purification material placed inside A second elution tank for adjusting a nutrient solution fertilizer prepared by dissolving salt in water;
An elution component-containing water supply device capable of selecting and supplying elution component-containing water in either one or both of the first elution water tank and the second elution water tank;
Install
In accordance with the life history of seaweed growing on the seabed, it is a solid organic matter decomposition type liquid fertilizer supply device that selects the elution component-containing water supply device and supplies the elution component-containing water of the elution water tank as liquid fertilizer,
The second elution water tank has a purification zone set between downstream outlets for removing nutrient solution fertilizer from the upstream side where the contaminated water to be treated is placed, and an oxygen-containing gas supply nozzle is provided at the bottom of the purification zone. The aerobic region where the oxygen-containing bubbles supplied from the oxygen-containing gas supply nozzle rise in the water and the anaerobic region outside the aerobic region are provided from the upstream side to the outlet. It arranges so that it may appear alternately in the middle of the flow to which it goes, and the purification zone is filled with a plurality of massive purification materials having a plurality of openings on the surface and forming gaps leading from the openings to the inside, and the purification zone A solid organic matter decomposing type liquid fertilizer supply device that decomposes solid organic matter in sludge water by alternately passing an aerobic region and an anaerobic region while contacting the contaminated water with the bulk purification material in the middle of passing through.
海藻の生活史の一部であって芽胞体発生後の光合成による成長期には、前記第1溶出用水槽と第2溶出用水槽との両溶出用水槽から溶出成分含有水を海中に供給し、成長期以外の時期は第2溶出用水槽から溶出成分含有水の供給を停止することを特徴とする請求項1に記載の固形有機物分解型液肥供給装置。   During the growth period of photosynthesis after the generation of spores, which is part of the life history of seaweed, water containing elution components is supplied into the sea from both the first elution tank and the second elution tank. The solid organic matter decomposition type liquid fertilizer supply device according to claim 1, wherein the supply of the elution component-containing water is stopped from the second elution tank during periods other than the growth period. 前記塊状浄化材は、複数の砕石をバインダーにより結合して表面に複数の凹凸を形成して構成され、砕石同士の隙間が表面に開口し、且つ内部で互いに連通する複数の連絡路となっていることを特徴とする浄化材を使用する請求項1または2に記載の固形有機物分解型液肥供給装置。   The mass purification material is formed by combining a plurality of crushed stones with a binder to form a plurality of irregularities on the surface, and a gap between crushed stones opens on the surface, and a plurality of communication paths communicating with each other inside. The solid organic matter decomposition type liquid fertilizer supply device according to claim 1 or 2, wherein a purification material is used. 前記した第1溶出用水槽および第2溶出用水槽内の水が淡水であることを特徴とする請求項1から3のいずれかに記載の固形有機物分解型液肥供給装置。   4. The solid organic matter decomposition type liquid fertilizer supply device according to claim 1, wherein water in the first elution water tank and the second elution water tank is fresh water. 5. 第2溶出水槽の下流側から上流側に水を循環させる循環路を備えたことを特徴とする請求項1から4のいずれかに記載の固形有機物分解型液肥供給装置。   The solid organic matter decomposition type liquid fertilizer supply device according to any one of claims 1 to 4, further comprising a circulation path for circulating water from the downstream side to the upstream side of the second elution water tank. 水槽内で、フルボ酸鉄を水に溶出してフルボ酸鉄溶出水を調整し、このフルボ酸鉄溶出水を藻場となる海域に移動して海水中に供給するフルボ酸鉄溶出水供給工程と、
水槽内で、水産加工残渣や食品加工残渣などのバイオマスと水との混合物である汚濁水を供給し、当該水槽の底部の酸素含有気体供給ノズルから供給された酸素含有気泡が水中を上昇する好気性領域と該好気性領域から外れた嫌気性領域とを流れの途中で交互に通過させ、好気性領域と嫌気性領域には、表面に複数の開口を有して各開口から内部に通じる隙間が形成された塊状浄化材を複数充填し、流れの途中で汚濁水を塊状浄化材に接触させながら汚泥水中の固形有機物を分解して窒素とリンを主成分とする栄養塩を水に溶かした栄養塩液肥を調整し、この窒素及びリン栄養塩溶出水を藻場の海藻の生活史に対応させて、海藻の芽胞体が発生した後の光合成による成長期に前記海域に移動して海水中に供給する窒素及びリン栄養塩溶出水供給工程と、
を含んでいることを特徴とする固形有機物分解型液肥供給方法。
In the aquarium, iron fulvic acid elution water is prepared by eluting the fulvic acid iron elution water and adjusting the fulvic acid iron elution water to the sea area where the fulvic acid iron elution water is supplied and supplying it into seawater. When,
In the aquarium, polluted water that is a mixture of biomass and water such as fishery processing residue and food processing residue is supplied, and oxygen-containing bubbles supplied from the oxygen-containing gas supply nozzle at the bottom of the aquarium rise in the water. The aerobic region and the anaerobic region that has deviated from the aerobic region are alternately passed in the middle of the flow, and the aerobic region and the anaerobic region have a plurality of openings on the surface and a gap that leads from each opening to the inside. In the middle of the flow, the solid organic matter in the sludge water was decomposed to dissolve the nutrient salts mainly composed of nitrogen and phosphorus in the water while the contaminated water was in contact with the bulk purification material. After adjusting the nutrient solution fertilizer and making this nitrogen and phosphorus nutrient elution water correspond to the life history of the seaweed in the algae ground, it moves to the sea area during the growth period by photosynthesis after the generation of seaweed spores. Nitrogen and phosphorus nutrient elution water supplied to And a step,
The solid organic matter decomposition | disassembly type liquid fertilizer supply method characterized by including.
JP2011088089A 2011-04-12 2011-04-12 Solid organic matter decomposition type liquid fertilizer supply device and solid organic matter decomposition type liquid fertilizer supply method Expired - Fee Related JP5305047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011088089A JP5305047B2 (en) 2011-04-12 2011-04-12 Solid organic matter decomposition type liquid fertilizer supply device and solid organic matter decomposition type liquid fertilizer supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011088089A JP5305047B2 (en) 2011-04-12 2011-04-12 Solid organic matter decomposition type liquid fertilizer supply device and solid organic matter decomposition type liquid fertilizer supply method

Publications (2)

Publication Number Publication Date
JP2012217410A true JP2012217410A (en) 2012-11-12
JP5305047B2 JP5305047B2 (en) 2013-10-02

Family

ID=47269632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011088089A Expired - Fee Related JP5305047B2 (en) 2011-04-12 2011-04-12 Solid organic matter decomposition type liquid fertilizer supply device and solid organic matter decomposition type liquid fertilizer supply method

Country Status (1)

Country Link
JP (1) JP5305047B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107061A (en) * 2013-12-03 2015-06-11 新日鐵住金株式会社 Method for growing sea weed
JP2016077206A (en) * 2014-10-16 2016-05-16 太平洋セメント株式会社 Materials for supplying nutrition to algae, and system for supplying nutrition to algae
JP2022091075A (en) * 2020-12-08 2022-06-20 洋志 小▲浜▼ Liquid quantitative delivery apparatus
CN115336546A (en) * 2022-08-22 2022-11-15 交通运输部天津水运工程科学研究所 Shallow sea mixed shellfish and algae cultivation method based on aquaculture ecological restoration system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003116399A (en) * 2001-10-12 2003-04-22 Akio Yuda Seaweeds-vegetating block
JP2003116403A (en) * 2001-10-12 2003-04-22 Mitsubishi Heavy Ind Ltd Method for controlling ocean ecosystem
JP2005052112A (en) * 2003-08-06 2005-03-03 Penta Ocean Constr Co Ltd Construction for forming seaweed bed and seaweed bed forming method
JP2006345738A (en) * 2005-06-14 2006-12-28 Nippon Steel Corp Fertilizer material and fertilizing method
JP2009254243A (en) * 2008-04-14 2009-11-05 Eco Green:Kk Environmental preservation material for water area, method for producing the material, and method for composting the material
JP2010104362A (en) * 2008-10-02 2010-05-13 Komiya Kensetsu:Kk Hardened material for creating seaweed bed
JP2010110255A (en) * 2008-11-06 2010-05-20 Eco Green:Kk Structure of artificial seaweed bed, and construction method for creating artificial seaweed bed

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003116399A (en) * 2001-10-12 2003-04-22 Akio Yuda Seaweeds-vegetating block
JP2003116403A (en) * 2001-10-12 2003-04-22 Mitsubishi Heavy Ind Ltd Method for controlling ocean ecosystem
JP2005052112A (en) * 2003-08-06 2005-03-03 Penta Ocean Constr Co Ltd Construction for forming seaweed bed and seaweed bed forming method
JP2006345738A (en) * 2005-06-14 2006-12-28 Nippon Steel Corp Fertilizer material and fertilizing method
JP2009254243A (en) * 2008-04-14 2009-11-05 Eco Green:Kk Environmental preservation material for water area, method for producing the material, and method for composting the material
JP2010104362A (en) * 2008-10-02 2010-05-13 Komiya Kensetsu:Kk Hardened material for creating seaweed bed
JP2010110255A (en) * 2008-11-06 2010-05-20 Eco Green:Kk Structure of artificial seaweed bed, and construction method for creating artificial seaweed bed

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107061A (en) * 2013-12-03 2015-06-11 新日鐵住金株式会社 Method for growing sea weed
JP2016077206A (en) * 2014-10-16 2016-05-16 太平洋セメント株式会社 Materials for supplying nutrition to algae, and system for supplying nutrition to algae
JP2022091075A (en) * 2020-12-08 2022-06-20 洋志 小▲浜▼ Liquid quantitative delivery apparatus
CN115336546A (en) * 2022-08-22 2022-11-15 交通运输部天津水运工程科学研究所 Shallow sea mixed shellfish and algae cultivation method based on aquaculture ecological restoration system

Also Published As

Publication number Publication date
JP5305047B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
CN103359886B (en) Comprehensive technology for ecological restoration of low-pollution river water
CN102358660B (en) Constructed wetland based system and method for recycling factory-like seawater culture discharged water
CN104895031B (en) A kind of polluted-water muddy water synchronizes to repair ship and using method
JP4489043B2 (en) Water area environmental conservation material and water area environmental conservation method
CN104003574B (en) Labyrinth-type ecological purification pool suitable for drainage ditch in farmland
CN102040282A (en) Alga control method for freshwater environment based on cultivation of barracudas and mullets
JP2010110255A (en) Structure of artificial seaweed bed, and construction method for creating artificial seaweed bed
JP5305047B2 (en) Solid organic matter decomposition type liquid fertilizer supply device and solid organic matter decomposition type liquid fertilizer supply method
JP2005034140A (en) Environmental preservation material for water area and method for preservation
CN109607799A (en) A kind of irrigation canals and ditches pool ecological purification system of aquaculture tail water
CN102295394B (en) Culture method of microbial film in biological-filtering pool for lobworm
JP6469410B2 (en) Materials for supplying nutrients to algae and systems for supplying nutrients to algae
CN110663623A (en) Comprehensive utilization method of coal mine high-salt mine water for desert paddy field and mariculture water supply
JP5208979B2 (en) Seaweed nutrient supply apparatus and seaweed nutrient supply method
CN202144464U (en) Constructed wetland suitable for treating rural domestic sewage
CN217230483U (en) Pond tail water processing system
CN104086038B (en) Flower of Aztec Marigold extracts the integrated conduct method of the squeezing sewage of xenthophylls
CN110067239A (en) A kind of farmland tail water ecological recycle system
CN202559292U (en) Cover component for controlling release of bottom mud nutritive salt
CN109287538A (en) A kind of crab cultivation water pollution control system and its application
CN202594862U (en) Ecological floating bed device for treating livestock and poultry breeding biogas slurry
CN207435252U (en) The natural catalytic oxidation pool
CN110451654A (en) " three objects " auto purification stereo ecological system
CN112320960A (en) Natural sewage treatment system based on food chain principle
CN213357079U (en) Water environment purification system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees