JP2012217351A - Method of producing compound using microbial catalyst - Google Patents

Method of producing compound using microbial catalyst Download PDF

Info

Publication number
JP2012217351A
JP2012217351A JP2011083559A JP2011083559A JP2012217351A JP 2012217351 A JP2012217351 A JP 2012217351A JP 2011083559 A JP2011083559 A JP 2011083559A JP 2011083559 A JP2011083559 A JP 2011083559A JP 2012217351 A JP2012217351 A JP 2012217351A
Authority
JP
Japan
Prior art keywords
microbial catalyst
compound
microbial
reaction
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011083559A
Other languages
Japanese (ja)
Other versions
JP5849428B2 (en
Inventor
Masato Oda
全人 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2011083559A priority Critical patent/JP5849428B2/en
Publication of JP2012217351A publication Critical patent/JP2012217351A/en
Application granted granted Critical
Publication of JP5849428B2 publication Critical patent/JP5849428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an economical and high quality compound in producing a compound from reactant using microbial catalyst.SOLUTION: In supplying microbial catalyst suspension from a microbial catalyst bin to a reaction tank through a supply pipeline, the linear speed in the pipeline of the microbial catalyst suspension is set to 0.02-0.13 m/s slower than the ordinary set speed.

Description

本発明は、微生物触媒を用いた、反応基質から化合物を製造する方法に関する。好ましくは、微生物触媒を用いた、アミド化合物の製造方法に関する。   The present invention relates to a method for producing a compound from a reaction substrate using a microbial catalyst. Preferably, the present invention relates to a method for producing an amide compound using a microbial catalyst.

微生物触媒を用いた、反応基質から化合物を製造する方法としては、微生物の増殖を伴う発酵生産法と、微生物菌体を酵素源とした酵素法が知られている。微生物触媒を用いて製造される化合物は様々なものが知られており、代表的な化合物としてアクリルアミドなどのアミド化合物が挙げられる。
アクリルアミドを原料としたアクリルアミド系ポリマーは、凝集剤、抄紙用増粘剤等の用途に利用される。いずれの用途においても、高分子量、高溶解性、および色調が無色に近いアクリルアミド系ポリマーが所望されている。
As a method for producing a compound from a reaction substrate using a microbial catalyst, a fermentation production method involving the growth of microorganisms and an enzyme method using microbial cells as an enzyme source are known. Various compounds are known that are produced using a microbial catalyst. Typical examples include amide compounds such as acrylamide.
Acrylamide polymers made from acrylamide are used for applications such as flocculants and paper thickeners. In any application, an acrylamide polymer having a high molecular weight, a high solubility, and a color tone close to colorless is desired.

一方、アクリルアミドの製造方法に関しては、微生物触媒を用いた酵素法を採用することが好適であることが知られている(例えば、特許文献1、2参照)。
酵素法でアクリルアミドを製造する場合においても、アクリルアミド系ポリマーのさらなる品質向上のために、様々な取り組みがなされている。例えば、触媒使用量を制限する方法(特許文献3参照)、製造したアクリルアミド水溶液中から、触媒由来の不純物を除去する方法(特許文献4参照)、微生物触媒およびアミド化合物を含む液の移送に容積型ポンプを用いる方法(特許文献5参照)、が知られている。
しかしながら、微生物触媒を用いた酵素法によって得られたアクリルアミドを原料としたアクリルアミド系ポリマーは、いまだ分子量、溶解性が不充分であり、色調は無色とは言えない。
On the other hand, it is known that an enzyme method using a microbial catalyst is preferably employed for a method for producing acrylamide (see, for example, Patent Documents 1 and 2).
Even when acrylamide is produced by an enzymatic method, various efforts have been made to further improve the quality of acrylamide polymers. For example, a method for limiting the amount of catalyst used (see Patent Document 3), a method for removing impurities derived from the catalyst from the aqueous acrylamide solution produced (see Patent Document 4), and a volume for transferring a liquid containing a microbial catalyst and an amide compound. A method using a mold pump (see Patent Document 5) is known.
However, an acrylamide polymer made from acrylamide obtained by an enzymatic method using a microbial catalyst is still insufficient in molecular weight and solubility, and cannot be said to be colorless.

現在まで、酵素法でアクリルアミドを製造する際、微生物触媒を反応槽に供給する条件について検討された報告例はこれまでほとんどない。なお、液体を移送する際の配管内線速度については、一般的に以下のような値が採用されている(非特許文献1参照)。   To date, there have been few reports on the conditions for supplying a microbial catalyst to a reaction tank when producing acrylamide by an enzymatic method. In addition, the following values are generally adopted for the linear velocity in the pipe when transferring the liquid (see Non-Patent Document 1).

Figure 2012217351
Figure 2012217351

特開平10−316714号公報JP-A-10-316714 特開平09−118704号公報JP 09-118704 A 特開2001−299376号公報JP 2001-299376 A 特開2001−78749号公報JP 2001-78749 A 特開2006−187257号公報JP 2006-187257 A

「化学プラント建設便覧」 ISBN 4−621−02786−7"Chemical Plant Construction Handbook" ISBN 4-621-02786-7

本発明の目的は、高品質な化合物を得ることができる化合物の製造方法を提供することにある。また、不純物の少ないアミド化合物を得ることができるアミド化合物の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the compound which can obtain a high quality compound. Another object of the present invention is to provide a method for producing an amide compound that can obtain an amide compound with few impurities.

本発明者らは、上記課題を解決するために鋭意検討を行い、従来着目されなかった反応槽への微生物触媒懸濁液の供給工程に着目した。そして、該供給工程における微生物触媒の摩耗を抑制することで、高品質な化合物が得られるという知見を得た。本発明者らは、該知見に基づいて、微生物触媒懸濁液を反応槽まで供給するに際して、配管内線速度を、通常設定される線速度よりも遅い0.02〜0.13m/sとすることで、高品質な化合物を製造できることを突き止め、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors have intensively studied and focused on a process for supplying a microbial catalyst suspension to a reaction tank that has not been focused on heretofore. And the knowledge that a high quality compound is obtained by suppressing abrasion of the microbial catalyst in this supply process was acquired. Based on this knowledge, the present inventors set the linear velocity in the pipe to 0.02 to 0.13 m / s, which is slower than the normally set linear velocity, when supplying the microbial catalyst suspension to the reaction vessel. As a result, it was determined that a high-quality compound could be produced, and the present invention was completed.

すなわち本発明は、微生物触媒を用いて、反応基質から化合物を製造する方法であって、前記微生物触媒を溶媒に懸濁した微生物触媒懸濁液を、供給用配管を介して前記微生物触媒懸濁液を反応槽内に供給する供給工程を有し、前記供給工程において、供給用配管における前記微生物触媒懸濁液の配管内線速度を0.02〜0.13m/sとすることを特徴とする化合物の製造方法である。   That is, the present invention is a method for producing a compound from a reaction substrate using a microbial catalyst, wherein the microbial catalyst suspension obtained by suspending the microbial catalyst in a solvent is passed through a supply pipe. A supply step of supplying the liquid into the reaction tank, wherein in the supply step, the in-pipe linear velocity of the microbial catalyst suspension in the supply pipe is 0.02 to 0.13 m / s. It is a manufacturing method of a compound.

本発明の化合物の製造方法によれば、高品質な化合物を得ることができる。加えて、微生物触媒の沈降による損失を低減することができる。   According to the method for producing a compound of the present invention, a high-quality compound can be obtained. In addition, loss due to sedimentation of the microbial catalyst can be reduced.

参考実施例1で用いた、微生物触媒の供給系を模した装置の概略図。The schematic of the apparatus which imitated the supply system of the microbial catalyst used in Reference Example 1. FIG.

<化合物の製造方法>
本発明の化合物の製造方法は、微生物触媒懸濁液を供給用配管を介して生体触媒懸濁液を反応槽内に供給する供給工程を有する。
本発明の製造方法は、微生物触媒を用いるあらゆる化合物の製造、例えば、アルコール類やアミド類などの汎用化学品、抗生物質・生理活性物質などの医薬品、その原料や中間体などの製造に適用が可能である。特にニトリル化合物からアミド化合物を製造する際に用いることが好ましい。アミド化合物の場合、具体的には、微生物触媒の存在下、水中でニトリル化合物を水和する反応によりアミド化合物水溶液を得る。
<Method for producing compound>
The method for producing the compound of the present invention includes a supplying step of supplying the biocatalyst suspension into the reaction tank through the supply pipe.
The production method of the present invention can be applied to the production of all compounds using microbial catalysts, for example, the production of general-purpose chemicals such as alcohols and amides, pharmaceuticals such as antibiotics and bioactive substances, raw materials and intermediates thereof, and the like. Is possible. In particular, it is preferably used when producing an amide compound from a nitrile compound. In the case of an amide compound, specifically, an aqueous amide compound solution is obtained by a reaction of hydrating a nitrile compound in water in the presence of a microbial catalyst.

ニトリル化合物からアミド化合物を製造する場合、微生物触媒によるニトリル化合物の水和反応は、常温、常法により行うことができる。ニトリル化合物がアクリロニトリルの場合、アクリロニトリルの水和反応は、例えば、以下のように行われる。   When an amide compound is produced from a nitrile compound, the hydration reaction of the nitrile compound with a microbial catalyst can be carried out at ordinary temperature and in a conventional manner. When the nitrile compound is acrylonitrile, the hydration reaction of acrylonitrile is performed, for example, as follows.

本発明のアクリロニトリルの水和反応には、(i) 反応原料(微生物触媒、アクリロニトリル、原料水を含む)を反応槽に一度に全量仕込んでから反応させる方法(回分反応)、(ii) 反応原料の一部を反応槽に仕込んだ後、連続的又は間歇的に残りの反応原料を供給して反応させる方法(半回分反応)、及び(iii) 反応原料の連続的又は間歇的な供給と、反応混合物(反応原料及び生成したアクリルアミドを含む)の連続的又は間歇的な取り出しを行いながら、反応槽内の反応混合物を全量抜き出すことなく連続的に製造する方法(連続反応)のいずれの反応を適用することもできる。工業的にアクリルアミドを大量にかつ効率的に製造しやすい点で、連続反応が好ましい。また、反応槽は1つのみを使用してもよいし、複数個を併用してもよい。複数の反応槽を用いて連続的に反応を行う際には、微生物触媒、アクリロニトリルの供給は、反応の効率等を悪化させすぎない範囲内であれば、最も上流に位置する反応槽のみには限定されず、それよりも下流の反応槽に導入してもよい。本発明の製造方法における反応温度(反応混合物温度)は、限定はされないが、10〜40℃であることが好ましく、20〜35℃であることがより好ましい。反応温度が10℃以上であれば、微生物触媒の反応活性を充分に高められるだけでなく、冷却水温度を上げることができるため、冷凍機に替えて冷水塔を利用することができ、冷却水の冷却エネルギーを低減することができる。また、反応温度が40℃以下であれば、微生物触媒の失活を抑制しやすい。
また、本発明の製造方法における反応時間は、限定はされないが、例えば、1〜50時間であることが好ましく、より好ましくは3〜20時間である。
For the hydration reaction of acrylonitrile according to the present invention, (i) a method in which a reaction raw material (including microbial catalyst, acrylonitrile, and raw water) is charged in a reaction tank all at once and then reacted (batch reaction), (ii) a reaction raw material A method in which a part of the reaction mixture is charged into the reaction vessel and then the remaining reaction raw materials are supplied and reacted continuously (semi-batch reaction), and (iii) continuous or intermittent supply of the reaction raw materials; While continuously or intermittently taking out the reaction mixture (including the reaction raw material and the generated acrylamide), any reaction of the method (continuous reaction) in which the reaction mixture in the reaction vessel is continuously produced without removing the entire amount of the reaction mixture. It can also be applied. The continuous reaction is preferred because it is easy to industrially produce acrylamide in large quantities and efficiently. Moreover, only one reaction vessel may be used, or a plurality of reaction vessels may be used in combination. When the reaction is continuously performed using a plurality of reaction vessels, the supply of the microbial catalyst and acrylonitrile is within the range that does not deteriorate the reaction efficiency, etc. It is not limited, You may introduce | transduce into the downstream reaction tank. Although the reaction temperature (reaction mixture temperature) in the manufacturing method of this invention is not limited, It is preferable that it is 10-40 degreeC, and it is more preferable that it is 20-35 degreeC. If the reaction temperature is 10 ° C. or higher, not only can the reaction activity of the microbial catalyst be sufficiently increased, but also the cooling water temperature can be raised, so that a chilled water tower can be used instead of the refrigerator, The cooling energy can be reduced. Moreover, if reaction temperature is 40 degrees C or less, it will be easy to suppress deactivation of a microbial catalyst.
Moreover, although the reaction time in the manufacturing method of this invention is not limited, For example, it is preferable that it is 1 to 50 hours, More preferably, it is 3 to 20 hours.

<微生物触媒>
本発明における「微生物触媒」とは、反応基質から化合物を生産する能力のある酵素活性を有する微生物、または微生物の処理物である。本発明が、ニトリル化合物からアミド化合物を製造する場合、微生物触媒はニトリルヒドラターゼを有する微生物である。「ニトリルヒドラターゼ」とは、ニトリル化合物をこれに対応するアミド化合物に変換する酵素である。ニトリルヒドラターゼとしては、例えば、バチルス(Bacillus)属、ジオバチルス(Geobacillus)属、バクテリジューム(Bacteridium)属、マイクロコッカス(Micrococcus)属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリウム(Corynebacterium)属、ノカルディア(Nocardia)属、シュードモナス(Pseudomonas)属、ロドコッカス(Rhodococcus)属、ミクロバクテリウム(Microbacterium)属、ロドコッカス(Rhodococcus)属、フザリウム(Fusarium)属、アグロバクテリウム(Agrobacterium)属等に属する微生物由来のものが知られている。
<Microbial catalyst>
The “microbial catalyst” in the present invention is a microorganism having an enzyme activity capable of producing a compound from a reaction substrate, or a processed product of the microorganism. When the present invention produces an amide compound from a nitrile compound, the microbial catalyst is a microorganism having nitrile hydratase. “Nitrile hydratase” is an enzyme that converts a nitrile compound into a corresponding amide compound. Examples of the nitrile hydratase include, for example, the genus Bacillus, the genus Geobacillus, the genus Bacteridium, the genus Micrococcus, the genus Brevibacterium, the genus Corynebacterium, and the like. Nocardia genus, Pseudomonas genus, Rhodococcus genus, Microbacterium genus, Rhodococcus genus, Fusarium genus, Agrobacter genus Agrobacterium The origin is known.

また、前記微生物由来のニトリルヒドラターゼ遺伝子を取得し、常法により、該遺伝子をそのまま、または人為的に改良して任意の宿主に該遺伝子を導入した形質転換体を用いることもできる(Molecular Cloning 2nd Edition.Cold Spring Habor Laboratory Press.1989参照)。このような形質転換体としては、例えば、アクロモバクター(Achromobacter)属細菌のニトリルヒドラターゼで形質転換した大腸菌MT10770(FERM P−14756)(特開平8−266277号公報)、シュードノカルディア(Pseudonocardia)属細菌のニトリルヒドラターゼで形質転換した大腸菌MT10822(FERM BP−5785)(特開平9−275978号公報)、ジオバチルス(Geobacillus)属細菌細菌のニトリルヒドラターゼで形質転換したロドコッカス・ロドクロウス(Rhodococcus rhodochrous)M33(VKMAc−1515DあるいはKCCM−10635)(国際公開第2006/062189号公報)、ロドコッカス・ロドクロウス(Rhodococcus rhodochrous)種のニトリルヒドラターゼ(特開平4−211379号公報)、で形質転換した微生物等が挙げられる。   Further, a nitrile hydratase gene derived from the microorganism can be obtained, and a transformant in which the gene is introduced into an arbitrary host by modifying the gene as it is or artificially by a conventional method can be used (Molecular Cloning). 2nd Edition.Cold Spring Harbor Laboratory Press. 1989). Examples of such transformants include Escherichia coli MT10770 (FERM P-14756) (JP-A-8-266277), Pseudocardia (Pseudocardia) transformed with a nitrile hydratase of the genus Achromobacter. ) Escherichia coli MT10822 (FERM BP-5785) transformed with a nitrile hydratase of a genus bacterium (Japanese Patent Laid-Open No. 9-275978), Rhodococcus rhodochrous transformed with a nitrile hydratase of a bacterium belonging to the genus Geobacillus ) M33 (VKMac-1515D or KCCM-10635) (International Publication No. 2006/062189), Rhodococcus rhodochro Scan (Rhodococcus rhodochrous) species of the nitrile hydratase (JP-A 4-211379 discloses), in include microorganisms transformed.

微生物触媒の形態としては、前記微生物等を定法に従い培養した培養液、培養液から分離し必要に応じて洗浄された休止菌体の形態が挙げられる。
化合物の品質を考慮すると、本発明においては、培養液から分離し洗浄した休止菌体を用いることが好ましい。微生物触媒の調製は、本発明が、ニトリル化合物からアミド化合物を製造する場合、例えば、以下のように行われる。
Examples of the form of the microbial catalyst include a culture solution obtained by culturing the microorganism or the like according to a conventional method, and a form of a resting microbial cell separated from the culture solution and washed as necessary.
Considering the quality of the compound, in the present invention, it is preferable to use resting cells separated from the culture solution and washed. Preparation of a microbial catalyst is performed as follows, for example, when this invention manufactures an amide compound from a nitrile compound.

炭素源(グルコース等の糖類)、窒素源(例えば、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム等の無機窒素源;酵母エキス、ペプトン、肉エキス等の有機窒素)および必要に応じて無機塩類、金属塩、ビタミン等を添加した培地中で、20〜40℃、pH5〜9でニトリルヒドラターゼ産生微生物を培養する。培養は、適宜、振盪培養または回転培養としてもよい。培養終了後、菌体を有機酸水溶液で洗浄し、微生物触媒を調製する。   Carbon sources (sugars such as glucose), nitrogen sources (eg, inorganic nitrogen sources such as ammonium sulfate, ammonium chloride, ammonium nitrate; organic nitrogen such as yeast extract, peptone, meat extract) and inorganic salts, metal salts, vitamins as necessary A nitrile hydratase-producing microorganism is cultured at 20 to 40 ° C. and a pH of 5 to 9 in a medium to which etc. are added. The culture may be shake culture or rotation culture as appropriate. After completion of the culture, the cells are washed with an organic acid aqueous solution to prepare a microbial catalyst.

<反応基質>
本発明で用いられる反応基質とは、微生物触媒によって化合物が製造され得るものであればよい。反応基質はカウンターイオンとの塩であってもよい。製造される化合物がアミド化合物である場合、反応基質はニトリル化合物である。
本発明における「ニトリル化合物」とは、ニトリルヒドラターゼの作用によりアミド化合物に変換されるものである。ニトリル化合物としては、例えば、アセトニトリル、プロピオニトリル、サクシノニトリル、アジポニトリル等の脂肪族飽和ニトリル;アクリロニトリル、メタアクリロニトリル等の脂肪族不飽和ニトリル;ベンゾニトリル、フタロジニトリル等の芳香族ニトリル;3−シアノピリジン、2−シアノピリジン等の複素環式ニトリルが挙げられる。
<Reaction substrate>
The reaction substrate used in the present invention may be any substrate that can produce a compound with a microbial catalyst. The reaction substrate may be a salt with a counter ion. When the compound to be produced is an amide compound, the reaction substrate is a nitrile compound.
The “nitrile compound” in the present invention is converted into an amide compound by the action of nitrile hydratase. Examples of the nitrile compound include aliphatic saturated nitriles such as acetonitrile, propionitrile, succinonitrile, and adiponitrile; aliphatic unsaturated nitriles such as acrylonitrile and methacrylonitrile; aromatic nitriles such as benzonitrile and phthalodinitrile; Examples include heterocyclic nitriles such as -cyanopyridine and 2-cyanopyridine.

<微生物触媒懸濁液>
微生物触媒懸濁液とは、上記微生物触媒を溶媒に懸濁させた懸濁液である。微生物触媒を懸濁させる溶媒は特段の限定はされないが、有機酸水溶液に懸濁することが好ましい。この有機酸水溶液としては、酵素活性を阻害しない有機酸水溶液であれば特に限定されない。例えば、アクリル酸、ギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、カルボン酸等が挙げられ、製造する化合物に適した有機酸を適宜選択することができる。例えば、アミド化合物を製造する場合には、特開2002−281994に記載の方法を用いることができる。
<Microbial catalyst suspension>
The microbial catalyst suspension is a suspension in which the microbial catalyst is suspended in a solvent. The solvent for suspending the microbial catalyst is not particularly limited, but is preferably suspended in an aqueous organic acid solution. The organic acid aqueous solution is not particularly limited as long as it is an organic acid aqueous solution that does not inhibit enzyme activity. Examples include acrylic acid, formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, carboxylic acid, and the like, and an organic acid suitable for the compound to be produced can be appropriately selected. For example, when manufacturing an amide compound, the method of Unexamined-Japanese-Patent No. 2002-281994 can be used.

培養液から分離し洗浄した休止菌体を化合物製造に用いる場合、懸濁させる休止菌体の乾燥菌体濃度は、乾燥菌体として4質量%以上、好ましくは5質量%以上である。但し、菌体濃度が20質量%を超えると、菌体懸濁液の流動性が低下するために液体としての取り扱いが困難になる。従って、菌体懸濁液の濃度は、乾燥菌体として4〜20質量%、好ましくは、5〜15質量%、より好ましくは、5〜10質量%、更に好ましくは、8質量%である。   When the resting cells separated and washed from the culture solution are used for compound production, the dry cell concentration of the suspended cells to be suspended is 4% by mass or more, preferably 5% by mass or more as dry cells. However, when the bacterial cell concentration exceeds 20% by mass, the fluidity of the bacterial cell suspension is lowered, so that handling as a liquid becomes difficult. Therefore, the density | concentration of a microbial cell suspension is 4-20 mass% as a dry microbial cell, Preferably, it is 5-15 mass%, More preferably, it is 5-10 mass%, More preferably, it is 8 mass%.

ここでの休止菌体の乾燥菌体濃度は、菌体懸濁液に含まれる菌体の乾燥質量の比率により表され、具体的には、菌体懸濁液を120℃の乾燥機で3時間乾燥させた時の乾燥前後の質量比(百分率:菌液乾燥残渣濃度[%])と、菌体懸濁液を微生物菌体層と実質的に菌体を含まない液層に分離した際の該液層を同様に乾燥させた時の乾燥前後の質量比(百分率:上清塩濃度[%])を以下の式に代入することにより求められる:   The dry cell density | concentration of a resting cell here is represented by the ratio of the dry mass of the microbial cell contained in microbial cell suspension, and, specifically, microbial cell suspension is 3 degree | times with a 120 degreeC dryer. Mass ratio before and after drying when dried for a period (percentage: concentration of dried residue of fungus solution [%]) and when the cell suspension is separated into a microbial cell layer and a liquid layer substantially free of cells When the liquid layer was similarly dried, the mass ratio before and after drying (percentage: supernatant salt concentration [%]) was determined by substituting into the following formula:

Figure 2012217351
Figure 2012217351

微生物触媒懸濁液は、反応槽への懸濁液の供給に支障が可能な粘度であればよく、特段の限定はされないが、通常、25℃での粘度が10,000cp以下であり、好ましくは1,000cp以下であり、より好ましくは100cp以下である。粘度が極端に高い場合には、供給用配管を介しての反応槽への微生物触媒の供給が困難になったり、高品質の化合物が得られない場合がある。   The microbial catalyst suspension is not particularly limited as long as it has a viscosity capable of hindering the supply of the suspension to the reaction vessel, and usually has a viscosity at 25 ° C. of 10,000 cp or less. Is 1,000 cp or less, more preferably 100 cp or less. When the viscosity is extremely high, it may be difficult to supply the microbial catalyst to the reaction tank via the supply pipe, or a high-quality compound may not be obtained.

<反応槽への微生物触媒懸濁液の供給工程>
反応槽への微生物触媒懸濁液の供給工程は、供給用配管を介して行う。供給用配管は、微生物触媒懸濁液の供給量に応じた適当な管径を有する管を用いることができる。また、化合物の製造において、実質的に影響を及ぼさない材料で形成することができる。このような材料としては、製造する化合物がアミド化合物の場合には、ステンレス、銅、ポリエチレン、ポリプロピレン、及びフッ素系樹脂などが挙げられる。
本発明の製造方法では、供給工程において、供給過程における微生物触媒の磨耗を抑制するために、配管内線速度を0.13m/s以下で行う。すなわち、微生物触媒の摩耗を抑制することで、高品質の化合物を製造することができる。また、供給過程における微生物触媒の配管内での沈降を抑制するために、配管内線速度を 0.02m/s以上で行う。すなわち、反応槽に供給されない微生物触媒を抑制することで、経済的に化合物を製造することができる。
したがって、反応槽への微生物触媒懸濁液の供給工程では、供給用配管における微生物触媒懸濁液の配管内線速度は、0.02〜0.13m/sであり、好ましくは0.05〜0.10m/s、より好ましくは0.05〜0.09m/sである。なお、配管内線速度は次式で表される。
<Process for supplying microbial catalyst suspension to reaction vessel>
The process of supplying the microbial catalyst suspension to the reaction tank is performed via a supply pipe. As the supply pipe, a pipe having an appropriate pipe diameter corresponding to the supply amount of the microbial catalyst suspension can be used. Further, it can be formed of a material that does not substantially affect the production of the compound. Examples of such materials include stainless steel, copper, polyethylene, polypropylene, and fluororesin when the compound to be produced is an amide compound.
In the production method of the present invention, in the supply step, the in-pipe linear velocity is 0.13 m / s or less in order to suppress wear of the microbial catalyst in the supply process. That is, a high quality compound can be produced by suppressing the abrasion of the microbial catalyst. Moreover, in order to suppress sedimentation in the piping of the microbial catalyst in the supply process, the linear velocity in the piping is 0.02 m / s or more. That is, the compound can be produced economically by suppressing the microbial catalyst that is not supplied to the reaction vessel.
Therefore, in the supply process of the microbial catalyst suspension to the reaction tank, the in-pipe linear velocity of the microbial catalyst suspension in the supply pipe is 0.02 to 0.13 m / s, preferably 0.05 to 0. .10 m / s, more preferably 0.05 to 0.09 m / s. In addition, the linear velocity in the pipe is expressed by the following equation.

Figure 2012217351
Figure 2012217351

Figure 2012217351
Figure 2012217351

ここでの「配管内線速度」とは、微生物触媒懸濁液を保存する微生物触媒貯槽と、反応槽とをつなぐ供給用配管において、その全長の内80%以上の長さを占める、同一の配管内径をもつ配管内での線速度を指し、触媒貯槽、反応槽、微生物触媒を供給するために使用する移送ポンプ等と配管とを接続するフランジや異径ユニオンなどの接続部分を除く。   “Pipe internal line speed” as used herein refers to the same pipe occupying 80% or more of the total length in the supply pipe connecting the microbial catalyst storage tank for storing the microbial catalyst suspension and the reaction tank. This refers to the linear velocity in a pipe having an inner diameter, and excludes connection parts such as catalyst storage tanks, reaction tanks, transfer pumps used to supply microbial catalysts, and pipes, and flanges and different-diameter unions.

本発明の供給工程において、微生物触媒懸濁液は触媒貯槽に貯留され、供給用配管を介して触媒貯槽から反応槽内に供給される。微生物触媒懸濁液が、触媒貯槽から反応槽に供給されるまでの微生物触媒懸濁液の移送時間は、供給工程での微生物触媒の供給配管内での沈降や腐敗を抑制するために、短時間であることが好ましく、2時間以内とすることがより好ましい。なお、化合物製造における反応様式が、連続反応である場合においては、触媒貯槽と反応槽とをつなぐ供給配管内での微生物触媒の滞留時間を2時間以内とすることが好ましい。   In the supply step of the present invention, the microbial catalyst suspension is stored in the catalyst storage tank and supplied from the catalyst storage tank into the reaction tank via the supply pipe. The transfer time of the microbial catalyst suspension until the microbial catalyst suspension is supplied from the catalyst storage tank to the reaction tank is short in order to suppress sedimentation and decay in the supply pipe of the microbial catalyst in the supply process. Preferably, the time is within 2 hours. When the reaction mode in the compound production is a continuous reaction, the residence time of the microbial catalyst in the supply pipe connecting the catalyst storage tank and the reaction tank is preferably within 2 hours.

本発明の供給工程において、触媒貯槽から反応槽内に添加されるまでの微生物触媒懸濁液の温度は、室温で可能である。但し供給過程での微生物触媒の失活や腐敗を抑制するには低温であることがより好ましい。具体的には氷点〜35℃、好ましくは氷点〜30℃、より好ましくは氷点〜20℃、さらに好ましくは氷点〜10℃である。ここで、「氷点」とは、微生物触媒懸濁液の固体状態と液体状態の平衡温度を意味し、微生物触媒懸濁液の
組成や配管内の圧力によって変化する温度である。
本発明の供給工程において、触媒貯槽から反応槽内に添加されるまでの微生物触媒懸濁液の温度が上昇することを防ぐために、供給用配管に断熱材・保冷材などを用いることが好ましい。
In the supply step of the present invention, the temperature of the microbial catalyst suspension from the catalyst storage tank to the reaction tank can be room temperature. However, a low temperature is more preferable for suppressing the deactivation and decay of the microbial catalyst during the supply process. Specifically, it is a freezing point to 35 ° C, preferably a freezing point to 30 ° C, more preferably a freezing point to 20 ° C, and even more preferably a freezing point to 10 ° C. Here, the “freezing point” means the equilibrium temperature between the solid state and the liquid state of the microbial catalyst suspension, and is a temperature that varies depending on the composition of the microbial catalyst suspension and the pressure in the pipe.
In the supply process of the present invention, in order to prevent the temperature of the microbial catalyst suspension from being added to the reaction tank from the catalyst storage tank, it is preferable to use a heat insulating material, a cold insulating material, or the like for the supply pipe.

以上説明した本発明の化合物の製造方法にあっては、微生物触媒貯槽から反応槽まで供給するに際して、供給用配管における配管内線速度を 0.02〜0.13m/s とすることで、微生物触媒の磨耗を抑えることができ、結果、高品質の化合物を提供することができる。特に、アミド化合物を製造する場合には、上記配管内線速度とすることで、微生物触媒に由来する不純物の発生を抑制できる。また、微生物触媒の配管内での沈降が抑制され、微生物触媒を有効に利用でき、経済的な化合物の製造が可能になる。   In the method for producing the compound of the present invention described above, when supplying from the microbial catalyst storage tank to the reaction tank, the internal line speed of the supply pipe is set to 0.02 to 0.13 m / s. As a result, a high-quality compound can be provided. In particular, when producing an amide compound, the generation of impurities derived from the microbial catalyst can be suppressed by setting the linear velocity in the pipe. Further, sedimentation of the microbial catalyst in the pipe is suppressed, the microbial catalyst can be used effectively, and an economical compound can be produced.

以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されるものではない。
[実施例1]
(1)微生物触媒懸濁液の調製:
ニトリルヒドラターゼ活性を有するロドコッカス・ロドクロウス(Rhodococcus rhodochrous)J−1株(FERM BP−1478)を、グルコース2質量%、尿素1質量%、ペプトン0.5質量%、酵母エキス0.3質量%、塩化コバルト0.05質量%を含む培地(pH7.0)により好気的に培養した。
培養終了後、培養液をクロスフロー型中空糸膜モジュール(株式会社クラレ製MLE7101)に通して循環濾過し、濾液の量に対応する量の0.1質量%のアクリル酸ナトリウム水溶液(pH7.0)を連続的に培養液に供給して洗浄を行った。洗浄後、前記アクリル酸ナトリウム水溶液の供給を停止した状態でろ過を継続し、乾燥菌体濃度が5質量%となるまで濃縮したものを、微生物触媒懸濁液とした。この微生物触媒懸濁液の粘度を25℃で測定したところ10cpであった。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description.
[Example 1]
(1) Preparation of microbial catalyst suspension:
Rhodococcus rhodochrous J-1 strain (FERM BP-1478) having nitrile hydratase activity was prepared from 2% glucose, 1% urea, 0.5% peptone, 0.3% yeast extract, The cells were aerobically cultured in a medium (pH 7.0) containing 0.05% by mass of cobalt chloride.
After completion of the culture, the culture solution is circulated and filtered through a cross-flow type hollow fiber membrane module (MLE 7101 manufactured by Kuraray Co., Ltd.), and a 0.1% by mass aqueous sodium acrylate solution (pH 7.0) corresponding to the amount of the filtrate. ) Was continuously supplied to the culture solution for washing. After washing, the filtration was continued in a state where the supply of the sodium acrylate aqueous solution was stopped, and the concentrate was concentrated to a dry cell concentration of 5% by mass to obtain a microbial catalyst suspension. The viscosity of the microbial catalyst suspension measured at 25 ° C. was 10 cp.

(アクリルアミドの生成)
ジャケット冷却器付反応槽(槽内径:0.8m、高さ:1.4m)を4槽直列に連結した。
第1槽目に、50mMリン酸緩衝液(pH7.0)を50.6L/hr、アクリロニトリルを27.1L/hr、及び菌体懸濁液を690g/hrで連続的に添加し、第2槽目に、アクリロニトリルのみを11.6L/hrで連続的に添加した。菌体懸濁液の供給用配管長さは2mとし、配管内径は1.6mmとした(線速度0.1m/s相当)。
第1槽から第4槽までの各槽の反応液量を500Lに調整し、第1槽から第4槽までの反応液温度がそれぞれ22℃、23℃、24℃及び25℃となるようにジャケットの冷却水(10℃)を用いて温度制御した。2枚パドル翼(翼径:350mm、翼幅:100mm)を用いて、第1槽から第4槽までの全ての反応器における反応液流体あたりの攪拌動力を0.08kW/m3となるように調整した(フルード数:0.057)。ただし、反応液流体あたりの攪拌所要動力は、各反応器における攪拌所要動力を液量(500L=0.5m3)で除して算出した。
反応開始から4日後、第4槽から流出してくる反応液を、ガスクロマトグラフィー(カラム:Waters社製、PoraPak−PS、1m、180℃;キャリアガス:ヘリウム;検出器:FID)により測定した。
その結果、未反応のアクリロニトリルは検出されず、50.5%のアクリルアミドが検出された。この反応液の一部を採取し、孔径0.45μmのフィルターでろ過することで、菌体を除き、アクリルアミド水溶液を得た。得られたアクリルアミド水溶液は、無色透明であった。
(Production of acrylamide)
Four reaction tanks with a jacket cooler (inner diameter: 0.8 m, height: 1.4 m) were connected in series.
In the first tank, 50 mM phosphate buffer (pH 7.0) was continuously added at 50.6 L / hr, acrylonitrile was 27.1 L / hr, and the cell suspension was continuously added at 690 g / hr. Only acrylonitrile was continuously added to the tank at 11.6 L / hr. The length of the piping for supplying the bacterial cell suspension was 2 m, and the inner diameter of the piping was 1.6 mm (corresponding to a linear velocity of 0.1 m / s).
The amount of reaction solution in each tank from the first tank to the fourth tank is adjusted to 500 L so that the reaction solution temperatures from the first tank to the fourth tank are 22 ° C., 23 ° C., 24 ° C. and 25 ° C., respectively. The temperature was controlled using cooling water (10 ° C.) of the jacket. Using two paddle blades (blade diameter: 350 mm, blade width: 100 mm), the stirring power per reaction fluid in all reactors from the first tank to the fourth tank is 0.08 kW / m 3. (Froude number: 0.057). However, the power required for stirring per reaction liquid was calculated by dividing the power required for stirring in each reactor by the amount of liquid (500 L = 0.5 m 3 ).
Four days after the start of the reaction, the reaction solution flowing out from the fourth tank was measured by gas chromatography (column: Waters, PoraPak-PS, 1 m, 180 ° C .; carrier gas: helium; detector: FID). .
As a result, unreacted acrylonitrile was not detected, and 50.5% acrylamide was detected. A part of this reaction solution was collected and filtered through a filter having a pore size of 0.45 μm to remove the cells and obtain an acrylamide aqueous solution. The obtained acrylamide aqueous solution was colorless and transparent.

[比較例1]
ステンレス配管の配管内径を0.8mm(線速度0.38m/s相当)とした以外は、実施例1と同様にして、菌体を除いたアクリルアミド水溶液を得た。得られたアクリルアミド水溶液は、透明であったがやや黄色味を帯びていた。
[Comparative Example 1]
An aqueous acrylamide solution was obtained in the same manner as in Example 1 except that the inner diameter of the stainless steel pipe was 0.8 mm (corresponding to a linear velocity of 0.38 m / s). The obtained acrylamide aqueous solution was transparent but slightly yellowish.

送液過程での微生物触媒の破砕などにより、比較例1では製造されたアクリルアミド水溶液は着色しており、好ましくない。   The acrylamide aqueous solution produced in Comparative Example 1 is colored due to crushing of the microbial catalyst during the liquid feeding process, which is not preferable.

[参考実施例1]
次に、微生物触媒懸濁液を送液した際の、微生物触媒濃度について実験を行った。
(1)微生物触媒の調製:
乾燥菌体濃度が12質量%となるまで濃縮した以外は、実施例1と同様にして、微生物触媒懸濁液を得た。この微生物触媒懸濁液の粘度を25℃で測定したところ250cpであった。
[Reference Example 1]
Next, an experiment was conducted on the microbial catalyst concentration when the microbial catalyst suspension was fed.
(1) Preparation of microbial catalyst:
A microbial catalyst suspension was obtained in the same manner as in Example 1 except that it was concentrated until the dry cell concentration was 12% by mass. The viscosity of this microbial catalyst suspension measured at 25 ° C. was 250 cp.

(2)微生物触媒懸濁液の送液:
参考実施例1で用いた微生物触媒懸濁液の供給系を模した装置を図1に示す。長さが1mのステンレス配管(内径8mm)3本を、90°エルボ(ウシオZユニオン FLZ−8−00 PP)で接続した。前記(1)で調製した微生物触媒懸濁液を2年7ヶ月冷蔵保存した後、微生物触媒貯槽に加え、チューブポンプ(ポンプ:Cole-Parmer 7553-70、ヘッド:Cole-Parmer 77201-62)により、ステンレス配管内に送液した。このとき、ステンレス配管内の微生物触媒懸濁液の線速度が0.09m/sとなるように送液した。
(2) Liquid transfer of microbial catalyst suspension:
An apparatus simulating the supply system of the microbial catalyst suspension used in Reference Example 1 is shown in FIG. Three stainless steel pipes (inner diameter: 8 mm) having a length of 1 m were connected by a 90 ° elbow (USHIO Z Union FLZ-8-00 PP). The microbial catalyst suspension prepared in (1) above is refrigerated and stored for 2 years and 7 months, and then added to the microbial catalyst storage tank by a tube pump (pump: Cole-Parmer 7553-70, head: Cole-Parmer 77201-62). The solution was fed into the stainless steel pipe. At this time, the solution was fed so that the linear velocity of the microbial catalyst suspension in the stainless steel pipe was 0.09 m / s.

(3)微生物触媒懸濁液の濃度測定:
ステンレス配管より吐出された微生物触媒懸濁液を回収し、希釈した後に、波長630nmにおける濁度を測定することで、微生物触媒懸濁液中における微生物触媒の濃度を測定した。
(3) Measurement of concentration of microbial catalyst suspension:
The microbial catalyst suspension discharged from the stainless steel pipe was collected and diluted, and then the turbidity at a wavelength of 630 nm was measured to measure the concentration of the microbial catalyst in the microbial catalyst suspension.

(4)微生物触媒懸濁液から流出する不純物濃度測定:
前記(3)で希釈した微生物触媒懸濁液を遠心分離(4℃、12700×G、5min)し、微生物触媒を沈降させ、上清を得た。上清を分光光度計(日立計器製、GeneSpecIII)を用いて、波長260nmにおける吸光度を測定することで、微生物触媒懸濁液から流出する不純物濃度を測定した。
(4) Measurement of impurity concentration flowing out from microbial catalyst suspension:
The microbial catalyst suspension diluted in (3) was centrifuged (4 ° C., 12700 × G, 5 min) to settle the microbial catalyst, and a supernatant was obtained. The concentration of impurities flowing out from the microbial catalyst suspension was measured by measuring the absorbance of the supernatant using a spectrophotometer (manufactured by Hitachi Keiki, GeneSpec III) at a wavelength of 260 nm.

[参考比較例1]
ステンレス配管内の線速度が0.41m/sとなるように送液した以外は、参考実施例1と同様にして、送液後の微生物触媒懸濁液中における微生物触媒濃度と、微生物触媒懸濁液から流出する不純物濃度を測定した。
[Reference Comparative Example 1]
Except that the liquid was fed so that the linear velocity in the stainless steel pipe was 0.41 m / s, in the same manner as in Reference Example 1, the microbial catalyst concentration in the microbial catalyst suspension after feeding and the microbial catalyst suspension The impurity concentration flowing out from the suspension was measured.

[参考比較例2]
ステンレス配管内の線速度が0.003m/sとなるように送液した以外は、参考実施例1と同様にして、送液後の微生物触媒懸濁液中における微生物触媒濃度と、微生物触媒懸濁液から流出する不純物濃度を測定した。
[Reference Comparative Example 2]
Except that the solution was fed so that the linear velocity in the stainless steel pipe was 0.003 m / s, in the same manner as in Reference Example 1, the microbial catalyst concentration in the microbial catalyst suspension after feeding and the microbial catalyst suspension The impurity concentration flowing out from the suspension was measured.

参考実施例1、並びに参考比較例1及び2の測定結果を表2に示す。なお、微生物触媒濃度および不純物濃度は、参考実施例1での測定結果を1とした相対値で示す。

Figure 2012217351
Table 2 shows the measurement results of Reference Example 1 and Reference Comparative Examples 1 and 2. The microbial catalyst concentration and the impurity concentration are shown as relative values with the measurement result in Reference Example 1 as 1.
Figure 2012217351

送液過程で微生物触媒が破砕されたためか、線速度を0.41m/sとした参考比較例1では、参考実施例1よりも不純物濃度が高かった。この線速度で微生物触媒懸濁液を供給した場合、製品となるアミド化合物濃度中に、微生物触媒由来の不純物濃度が増加し、好ましくない。
一方、線速度を0.003m/sとした参考比較例2では、送液過程で微生物触媒が沈降したためか、送液後の微生物触媒懸濁液濃度が、参考実施例1よりも低かった。この線速度で微生物触媒懸濁液を供給した場合、微生物触媒を送液過程で損失することとなり、非経済的なアミド化合物製造法となる。
In Comparative Reference Example 1 in which the linear velocity was 0.41 m / s, the impurity concentration was higher than that in Reference Example 1 because the microbial catalyst was crushed during the liquid feeding process. When the microbial catalyst suspension is supplied at this linear velocity, the concentration of impurities derived from the microbial catalyst increases in the concentration of the amide compound as a product, which is not preferable.
On the other hand, in Reference Comparative Example 2 in which the linear velocity was 0.003 m / s, the concentration of the microbial catalyst suspension after feeding was lower than that in Reference Example 1 because the microbial catalyst settled during the feeding process. When the microbial catalyst suspension is supplied at this linear velocity, the microbial catalyst is lost in the liquid feeding process, which is an uneconomic amide compound production method.

[参考実施例2]
3ヶ月冷蔵保存した微生物触媒懸濁液を用いた以外は、参考実施例1と同様にして、送液後の微生物触媒懸濁液中の微生物触媒濃度を測定した。また、送液後の微生物触媒懸濁液について、アクリルアミド生成反応速を測定し、ニトリルヒドラターゼ活性を算出した。測定は、適宜希釈した微生物触媒懸濁液を調製し、ここに基質のアクリロニトリル水溶液を添加して開始し、10℃10分の振盪ののち、微生物触媒を濾過分離して反応を停止し、ガスクロマトグラフィ(GC-14B、島津製作所)で分析した。分析条件は、Porapack PS(ウォーターズ社)を充填した1mガラスカラムを用い、カラム温度210℃、検出器は230℃のFIDを使用した。
[Reference Example 2]
The microbial catalyst concentration in the microbial catalyst suspension after feeding was measured in the same manner as in Reference Example 1, except that the microbial catalyst suspension stored refrigerated for 3 months was used. Moreover, about the microbial catalyst suspension after liquid feeding, the acrylamide production | generation reaction speed was measured and the nitrile hydratase activity was computed. The measurement is started by preparing an appropriately diluted microbial catalyst suspension, adding the substrate acrylonitrile aqueous solution thereto, shaking at 10 ° C. for 10 minutes, filtering and separating the microbial catalyst, and stopping the reaction. Analysis was performed by chromatography (GC-14B, Shimadzu Corporation). As analysis conditions, a 1 m glass column packed with Porapak PS (Waters) was used, and a FID having a column temperature of 210 ° C. and a detector of 230 ° C. was used.

[参考実施例3]
ステンレス配管内の線速度が0.05m/sとなるように送液した以外は、参考実施例2と同様にして、送液後の微生物触媒懸濁液中の微生物触媒懸濁液濃度とニトリルヒドラターゼ活性を測定した。
[Reference Example 3]
The microbial catalyst suspension concentration and nitrile in the microbial catalyst suspension after feeding were the same as in Reference Example 2, except that the feeding was performed so that the linear velocity in the stainless steel pipe was 0.05 m / s. Hydratase activity was measured.

[参考比較例3]
ステンレス配管内の線速度が0.17m/sとなるように送液した以外は、参考実施例2と同様にして、送液後の微生物触媒懸濁液中の微生物触媒懸濁液濃度とニトリルヒドラターゼ活性を測定した。
[Reference Comparative Example 3]
The concentration of microbial catalyst suspension and nitrile in the microbial catalyst suspension after feeding was the same as in Reference Example 2, except that feeding was performed so that the linear velocity in the stainless steel pipe was 0.17 m / s. Hydratase activity was measured.

[参考比較例4]
ステンレス配管内の線速度が0.01m/sとなるように送液した以外は、参考実施例2と同様にして、送液後の微生物触媒懸濁液中の微生物触媒懸濁液濃度とニトリルヒドラターゼ活性を測定した。
[Reference Comparative Example 4]
The microbial catalyst suspension concentration and nitrile in the microbial catalyst suspension after feeding were the same as in Reference Example 2, except that the feeding was performed so that the linear velocity in the stainless steel pipe was 0.01 m / s. Hydratase activity was measured.

測定結果を表3に示す。なお、微生物触媒懸濁液濃度および不純物濃度は、参考実施例2での測定結果を1とした相対値で示す。

Figure 2012217351
Table 3 shows the measurement results. The microbial catalyst suspension concentration and the impurity concentration are shown as relative values with the measurement result in Reference Example 2 as 1.
Figure 2012217351

送液過程での微生物触媒の破砕や沈降により、参考比較例3、参考比較例4では送液後の微生物触媒濃度とニトリルヒドラターゼ活性が低く、微生物触媒を送液過程で損失することとなり、非経済的なアミド化合物製造法となる。   In Reference Comparative Example 3 and Reference Comparative Example 4, the microbial catalyst concentration and nitrile hydratase activity after feeding are low due to crushing and sedimentation of the microbial catalyst in the liquid feeding process, and the microbial catalyst is lost in the liquid feeding process. This is an uneconomic amide compound production method.

本発明の化合物の製造方法により、経済的で高品質な化合物を得ることができる。特にアミド化合物を製造した場合には、経済的で不純物の少ないアミド化合物を得ることができる。   By the method for producing the compound of the present invention, an economical and high-quality compound can be obtained. In particular, when an amide compound is produced, an amide compound that is economical and has few impurities can be obtained.

1 菌液リザーバー
2 チューブポンプ
3 菌液回収
1 Bacterial fluid reservoir 2 Tube pump 3 Bacterial fluid recovery

Claims (4)

微生物触媒を用いて、反応基質から化合物を製造する方法であって、
前記微生物触媒を溶媒に懸濁した微生物触媒懸濁液を、供給用配管を介して反応槽内に供給する供給工程を有し、
前記供給工程において、供給用配管における前記微生物触媒懸濁液の配管内線速度を0.02〜0.13m/sとする
ことを特徴とする化合物の製造方法。
A method for producing a compound from a reaction substrate using a microbial catalyst,
A supply step of supplying a microbial catalyst suspension obtained by suspending the microbial catalyst in a solvent into a reaction tank through a supply pipe;
In the supplying step, a method for producing a compound, characterized in that an in-pipe linear velocity of the microbial catalyst suspension in the supply pipe is 0.02 to 0.13 m / s.
前記微生物触媒懸濁液中、微生物触媒が乾燥重量として4〜20質量%の濃度で存在する
ことを特徴とする請求項1に記載の製造方法。
The method according to claim 1, wherein the microbial catalyst is present in the microbial catalyst suspension at a concentration of 4 to 20% by mass as a dry weight.
前記微生物触媒を反応槽に連続的に供給する
ことを特徴とする請求項1または2に記載の製造方法。
The method according to claim 1 or 2, wherein the microbial catalyst is continuously supplied to a reaction vessel.
前記反応基質がニトリル化合物であり、化合物がアミド化合物である
ことを特徴とする請求項1から3のいずれか1項に記載の製造方法。
The production method according to any one of claims 1 to 3, wherein the reaction substrate is a nitrile compound, and the compound is an amide compound.
JP2011083559A 2011-04-05 2011-04-05 Method for producing compound using microbial catalyst Active JP5849428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011083559A JP5849428B2 (en) 2011-04-05 2011-04-05 Method for producing compound using microbial catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011083559A JP5849428B2 (en) 2011-04-05 2011-04-05 Method for producing compound using microbial catalyst

Publications (2)

Publication Number Publication Date
JP2012217351A true JP2012217351A (en) 2012-11-12
JP5849428B2 JP5849428B2 (en) 2016-01-27

Family

ID=47269580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011083559A Active JP5849428B2 (en) 2011-04-05 2011-04-05 Method for producing compound using microbial catalyst

Country Status (1)

Country Link
JP (1) JP5849428B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224994A (en) * 1985-03-27 1986-10-06 Nitto Electric Ind Co Ltd Continuous alcohol fermentation device
JPH01160490A (en) * 1987-12-17 1989-06-23 Idemitsu Kosan Co Ltd Continuous production of oxide
JP2001340091A (en) * 2000-03-29 2001-12-11 Mitsui Chemicals Inc Method of production for amide compound
JP2002315595A (en) * 2001-04-04 2002-10-29 Consortium Elektrochem Ind Gmbh Method for manufacturing non-protein l-amino acid
WO2003000914A1 (en) * 2001-06-22 2003-01-03 Mitsubishi Rayon Co., Ltd. Method of manufacturing compound with biocatalyst by using controlled reaction temperature
JP2008247979A (en) * 2007-03-29 2008-10-16 Mitsui Chemicals Inc Method for producing high-quality (meth)acrylamide polymer
WO2009113654A1 (en) * 2008-03-14 2009-09-17 ダイヤニトリックス株式会社 Process for production of amide compounds
WO2010038832A1 (en) * 2008-10-03 2010-04-08 ダイヤニトリックス株式会社 Method for producing acrylamide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224994A (en) * 1985-03-27 1986-10-06 Nitto Electric Ind Co Ltd Continuous alcohol fermentation device
JPH01160490A (en) * 1987-12-17 1989-06-23 Idemitsu Kosan Co Ltd Continuous production of oxide
JP2001340091A (en) * 2000-03-29 2001-12-11 Mitsui Chemicals Inc Method of production for amide compound
JP2002315595A (en) * 2001-04-04 2002-10-29 Consortium Elektrochem Ind Gmbh Method for manufacturing non-protein l-amino acid
WO2003000914A1 (en) * 2001-06-22 2003-01-03 Mitsubishi Rayon Co., Ltd. Method of manufacturing compound with biocatalyst by using controlled reaction temperature
JP2008247979A (en) * 2007-03-29 2008-10-16 Mitsui Chemicals Inc Method for producing high-quality (meth)acrylamide polymer
WO2009113654A1 (en) * 2008-03-14 2009-09-17 ダイヤニトリックス株式会社 Process for production of amide compounds
WO2010038832A1 (en) * 2008-10-03 2010-04-08 ダイヤニトリックス株式会社 Method for producing acrylamide

Also Published As

Publication number Publication date
JP5849428B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
JP6881563B2 (en) Acrylamide production method
JP2015057968A (en) Production method of amide compound and production device of amide compound
JP2014176344A (en) Production method of amide compound characterized by monitoring reaction passage and production apparatus of amide compound
KR101975068B1 (en) Method for producing acrylamide
JP6098509B2 (en) Method for producing acrylamide aqueous solution
JP5849428B2 (en) Method for producing compound using microbial catalyst
KR101774674B1 (en) Method for producing acrylamide
JP2015080443A (en) Production method of amide compound and production apparatus of amide compound
JP6098510B2 (en) Method for producing acrylamide aqueous solution
JP2014113092A (en) Method for producing amide compound using pump and apparatus for producing amide compound
JPWO2011145687A1 (en) Method for stabilizing amide compound having unsaturated bond
JP2014079199A (en) Production method of amide compound by raw material mixing supply and production apparatus of amide compound
JP2015073490A (en) Production method of amide compound and production device of amide compound

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R151 Written notification of patent or utility model registration

Ref document number: 5849428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250