JP2012215429A - Granulation method of nuclear fuel powder - Google Patents

Granulation method of nuclear fuel powder Download PDF

Info

Publication number
JP2012215429A
JP2012215429A JP2011079737A JP2011079737A JP2012215429A JP 2012215429 A JP2012215429 A JP 2012215429A JP 2011079737 A JP2011079737 A JP 2011079737A JP 2011079737 A JP2011079737 A JP 2011079737A JP 2012215429 A JP2012215429 A JP 2012215429A
Authority
JP
Japan
Prior art keywords
binder
powder
nuclear fuel
rotary blade
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011079737A
Other languages
Japanese (ja)
Other versions
JP5729671B2 (en
Inventor
Motohiro Sakaihara
基浩 境原
Hideki Munekata
英樹 宗片
Takuma Yamamoto
琢磨 山本
Katsunori Ishii
克典 石井
Tomoomi Segawa
智臣 瀬川
Masahiro Suzuki
政浩 鈴木
Yoshiyuki Kato
良幸 加藤
Tsutomu Kurita
勉 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Japan Atomic Energy Agency
Original Assignee
Mitsubishi Materials Corp
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Japan Atomic Energy Agency filed Critical Mitsubishi Materials Corp
Priority to JP2011079737A priority Critical patent/JP5729671B2/en
Publication of JP2012215429A publication Critical patent/JP2012215429A/en
Application granted granted Critical
Publication of JP5729671B2 publication Critical patent/JP5729671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a granulation method for efficiently manufacturing fine granulated bodies of a uniform grain size when granulating nuclear fuel powder using a rotary blade type granulating machine.SOLUTION: In a method of granulating nuclear fuel powder by using a rotary blade type granulating machine, the granulation method includes a step of adding and mixing a binder under low-speed rotation of a rotary blade and a step of stopping the rotary blade, measuring an addition amount of the binder and accurately managing the addition amount of the binder, and preferably includes a step of performing agitation at the low-speed rotation without adding the binder before and after the steps. By performing granulation under high-speed rotation thereafter, segregation of the binder is prevented and uniform and fine nuclear fuel granulated bodies are manufactured with excellent reproducibility and at a high yield.

Description

本発明は核燃料粉末の造粒法に関する。より詳しくは、本発明は原子力発電などの燃料に用いられる核燃料ペレット用の粒子を製造するウラン酸化物粉末またはウランとプルトニウムの混合酸化物粉末であるMOX燃料粉末の造粒法に関する。 The present invention relates to a method for granulating nuclear fuel powder. More specifically, the present invention relates to a granulation method for MOX fuel powder which is a uranium oxide powder or a mixed oxide powder of uranium and plutonium for producing particles for nuclear fuel pellets used for fuels such as nuclear power generation.

原子力発電などの燃料には、二酸化ウラン燃料やウランとプルトニウムの混合酸化物であるMOX燃料が用いられる。これらの核燃料は二酸化ウラン粉末などの原料粉末をペレットに成形して還元雰囲気下で焼結し、この焼結ペレットを燃料棒に封入し、多数の燃料棒を束ねた燃料集合体として使用される。 As fuel for nuclear power generation, uranium dioxide fuel or MOX fuel which is a mixed oxide of uranium and plutonium is used. These nuclear fuels are used as a fuel assembly in which raw powders such as uranium dioxide powder are formed into pellets and sintered in a reducing atmosphere, and the sintered pellets are sealed in fuel rods and bundled with many fuel rods. .

一般的に、工業的に効率よく核燃料の焼結ペレットを製造するためには、ペレットの金型に入れやすいようにペレット用の粒子を製造する。例えば、酸化ウラン粉末などの原料粉末に水などのバインダを添加して粒径数百μmの粒子に造粒している。 In general, in order to produce sintered pellets of nuclear fuel efficiently industrially, particles for pellets are produced so that they can be easily placed in a pellet mold. For example, a binder such as water is added to a raw material powder such as uranium oxide powder and granulated into particles having a particle size of several hundreds of μm.

例えば、特開2010−190718号公報(特許文献1)には、プルトニウムとウランの混合硝酸溶液をマイクロ波加熱して脱硝粉末にし、この脱硝粉末を焙焼還元した後にバインダを加えて造粒し、この造粒体をペレットに成形することが記載されている。特開2010−190720号公報(特許文献2)には、プルトニウムとウランの混合硝酸溶液をマイクロ波加熱して脱硝粉末にした後にバインダを加えて造粒し、この造粒体を焙焼還元してペレット用粒子にすることが記載されている。 For example, in JP2010-190718A (Patent Document 1), a mixed nitric acid solution of plutonium and uranium is microwave-heated to obtain a denitration powder, the denitration powder is roasted and reduced, and then a binder is added and granulated. In addition, it is described that this granulated body is formed into pellets. In JP 2010-190720 (Patent Document 2), a mixed nitric acid solution of plutonium and uranium is microwave-heated to form a denitration powder, and then a binder is added to granulate, and the granulated body is roasted and reduced. To make particles for pellets.

特開2010−190718号公報JP 2010-190718 A 特開2010−190720号公報JP 2010-190720 A

上記特許文献1および特許文献2には、脱硝粉末にバインダを加え(例えば水を噴霧し)、回転羽根によって造粒することが記載されており、水の添加量は18wt%が好ましく、水は粉末全体に均一に噴霧されればよく、造粒前でも造粒中でも良いとしている。 Patent Document 1 and Patent Document 2 describe that a binder is added to denitration powder (for example, water is sprayed), and granulation is performed by rotating blades. The amount of water added is preferably 18 wt%, It is sufficient that the powder is sprayed uniformly over the entire powder, and it may be before or during granulation.

しかし、回転羽根型造粒機を用いた従来の造粒方法は、造粒前に回転羽根を停止した状態でバインダを添加する場合、内容物が混合されないためにバインダの偏析が生じやすく、造粒状態が不均一になりやすいと云う課題がある。 However, in the conventional granulation method using a rotary blade granulator, when the binder is added in a state where the rotary blade is stopped before granulation, the contents are not mixed and the binder is easily segregated. There is a problem that the grain state tends to be non-uniform.

また、造粒中に回転羽根を高速回転した状態でバインダを添加する場合、一時的にバインダ量が多くなった部分では造粒体の肥大化がより進行するため、造粒体の粒子径が目標よりも過大となる、あるいは不均一になりやすい。また、バインダ、あるいはバインダと共に粉が造粒機内壁へ弾かれて付着するため、粉末への正味のバインダ添加量が不正確になりやすいと云う課題がある。 In addition, when the binder is added while the rotary blades are rotated at a high speed during granulation, since the enlargement of the granulated body further proceeds in a portion where the amount of the binder temporarily increases, the particle diameter of the granulated body is increased. It tends to be over-targeted or non-uniform. In addition, since the binder or powder together with the binder is bounced and adhered to the inner wall of the granulator, there is a problem that the net amount of binder added to the powder tends to be inaccurate.

本発明は、ウラン酸化物等の粉末を回転羽根型造粒機を用いて造粒する場合、上記問題を解消した造粒方法を提供する。 The present invention provides a granulation method that solves the above problems when granulating powders of uranium oxide or the like using a rotary blade granulator.

本発明によれば、以下の構成からなる造粒法が提供される。
〔1〕回転羽根型造粒機を用いて核燃料粉末を造粒する方法において、回転羽根の低速回転下でバインダを添加して混合する工程と、回転羽根を停止してバインダの添加量を測定する工程と、バインダ添加後に回転羽根を高速回転して造粒する工程を有することを特徴とする造粒法。
〔2〕回転羽根を低速回転して核燃料粉末を均一化した後に、低速回転下でバインダを少量ずつ添加して攪拌混合し、次いで回転羽根を停止してバインダの添加量を測定し、該測定後に回転羽根を低速回転して核燃料粉末を攪拌均一化し、さらに回転羽根を高速回転して核燃料粉末を造粒する上記[1]に記載する造粒法。
〔3〕回転羽根を停止してバインダの添加量を測定する工程において、核燃料粉末にバインダを添加してバインダ添加量を調整する上記[1]または上記[2]に記載する造粒法。
〔4〕回転羽根の低速回転を回転数20〜50rpmで行い、高速回転を300〜600rpmで行う上記[1]〜上記[3]の何れかに記載する造粒法。
〔5〕粒径500μm以下の核燃料造粒体を製造する上記[1]〜上記[4]の何れかに記載する造粒法。
〔6〕核燃料粉末が、ウラン酸化物粉末、またはウランとプルトニウムの混合酸化物粉末であるMOX燃料粉末である上記[1]〜上記[5]の何れかに記載する造粒法。
According to this invention, the granulation method which consists of the following structures is provided.
[1] In a method of granulating nuclear fuel powder using a rotary blade granulator, a step of adding and mixing a binder under the low speed rotation of the rotary blade, and measuring the amount of binder added by stopping the rotary blade And a granulating method characterized by comprising a step of granulating by rotating a rotating blade at a high speed after adding a binder.
[2] After rotating the rotating blades at low speed to make the nuclear fuel powder uniform, add a small amount of binder under low speed rotation, stir and mix, and then stop the rotating blades to measure the amount of binder added. The granulation method as described in [1] above, in which the rotating blades are rotated at a low speed to agitate and homogenize the nuclear fuel powder, and the rotating blades are rotated at a high speed to granulate the nuclear fuel powder.
[3] The granulation method according to [1] or [2] above, wherein the binder addition amount is adjusted by adding the binder to the nuclear fuel powder in the step of measuring the addition amount of the binder by stopping the rotating blades.
[4] The granulation method according to any one of the above [1] to [3], wherein the rotating blade is rotated at a low speed of 20 to 50 rpm and the high speed rotation is performed at 300 to 600 rpm.
[5] The granulation method according to any one of [1] to [4] above, wherein a nuclear fuel granule having a particle size of 500 μm or less is produced.
[6] The granulation method according to any one of [1] to [5] above, wherein the nuclear fuel powder is a uranium oxide powder or a MOX fuel powder that is a mixed oxide powder of uranium and plutonium.

本発明の造粒法は、回転羽根の低速回転下でバインダを添加して混合する工程において、回転羽根の低速回転によって核燃料粉末が均一化される。また低速回転下でバインダを少量ずつ添加するので、核燃料粉末にバインダが均一に添加される。例えば、低速回転の回転数は造粒が進行しない速度、例えば20〜50rpmであり、バインダを少量ずつ滴下したときに、粉末に均一に添加される。 In the granulation method of the present invention, the nuclear fuel powder is made uniform by the low-speed rotation of the rotary blades in the step of adding and mixing the binder under the low-speed rotation of the rotary blades. Further, since the binder is added little by little under low speed rotation, the binder is uniformly added to the nuclear fuel powder. For example, the rotation speed of the low-speed rotation is a speed at which granulation does not proceed, for example, 20 to 50 rpm, and is uniformly added to the powder when the binder is dropped little by little.

本発明の造粒法は、回転羽根を停止してバインダの添加量を測定するので、添加量を正確に管理することができる。バインダの添加量が不正確であると造粒状態が不均一になり、微細な造粒体を効率よく製造することができないが、本発明の造粒方法はバインダの添加量を精度良く制御することができるので、例えば、粒径500μm以下の微細な核燃料造粒体を効率よく製造することができる。 In the granulation method of the present invention, the amount of the binder added is measured by stopping the rotating blades, so that the amount added can be managed accurately. If the added amount of the binder is inaccurate, the granulated state becomes non-uniform and it is impossible to efficiently produce a fine granulated body, but the granulating method of the present invention controls the added amount of the binder with high accuracy. Therefore, for example, a fine nuclear fuel granule having a particle size of 500 μm or less can be efficiently produced.

本発明の造粒法は、正確な分量のバインダを均一に添加した後に回転羽根を高速回転して造粒する方法であり、高速回転時にはバインダを添加しないので、バインダが不均一な状態での造粒を避けられ、均一な造粒体が得られる。 The granulation method of the present invention is a method in which an accurate amount of binder is uniformly added and then granulated by rotating the rotating blades at a high speed, and since no binder is added during high speed rotation, the binder is in a non-uniform state. Granulation can be avoided and a uniform granulated body can be obtained.

本発明の造粒法は、低速回転下でバインダを少量ずつ添加するので、バインダがケーシング上部や回転羽根の軸へ飛ばされて付着する現象を抑制できる。バインダの付着部分には運転に伴って粉末層が成長し、自重を支持できない程に大きくなると、ケーシングから剥離して落下する。例えば、受け皿をセットしていない状況で粉体層が落下した場合、放射性物質の飛散を招くが、本発明を用いれば、粉体層の成長を抑制できる。 In the granulation method of the present invention, since the binder is added little by little under low speed rotation, it is possible to suppress a phenomenon in which the binder is blown to the upper part of the casing or the shaft of the rotary blade and adheres. A powder layer grows with the operation on the adhered part of the binder, and when it becomes so large that it cannot support its own weight, it peels off from the casing and falls. For example, when the powder layer falls in a state where no saucer is set, the radioactive material is scattered, but if the present invention is used, the growth of the powder layer can be suppressed.

本発明の造粒法は、低速回転下でバインダを少量ずつ添加するので、バインダがケーシング上部や回転羽根の軸へ飛ばされて付着する現象を抑制できる。バインダの付着部分には運転に伴って粉末層が成長するため、トレーサビリティーの悪化やホールドアップ量の増加という問題が生じるが、本発明を用いれば、粉体層の成長を抑制できる。 In the granulation method of the present invention, since the binder is added little by little under low speed rotation, it is possible to suppress a phenomenon in which the binder is blown to the upper part of the casing or the shaft of the rotary blade and adheres. Since the powder layer grows with the operation on the part where the binder is attached, there arises a problem that the traceability is deteriorated and the hold-up amount is increased. However, if the present invention is used, the growth of the powder layer can be suppressed.

本発明の造粒法は、低速回転下でバインダを少量ずつ添加するので、バインダがケーシング上部や回転羽根の軸へ飛ばされて付着する現象を抑制できる。臨界安全を確保するためには、核燃料物質の形状や重量を管理する必要があり、バインダの付着部分に成長した粉体層が無視できない程大きくなると、臨界安全性を維持できなくなるが、本発明を用いれば、粉体層の成長を抑制できる。 In the granulation method of the present invention, since the binder is added little by little under low speed rotation, it is possible to suppress a phenomenon in which the binder is blown to the upper part of the casing or the shaft of the rotary blade and adheres. In order to ensure the criticality safety, it is necessary to control the shape and weight of the nuclear fuel material, and if the powder layer grown on the adhered part of the binder becomes too large to ignore, the criticality safety cannot be maintained. Can be used to suppress the growth of the powder layer.

本発明の造粒法の概略を示す工程図Process chart showing outline of granulation method of the present invention 回転羽根造粒装置の概略断面図Schematic cross section of rotary blade granulator 本発明の実施例の造粒工程を示す工程図Process drawing which shows the granulation process of the Example of this invention

以下、本発明を実施形態に基づいて具体的に説明する。
本発明は、回転羽根型造粒機を用いて核燃料粉末を造粒する方法において、回転羽根の低速回転下でバインダを添加して混合する工程と、回転羽根を停止してバインダの添加量を測定する工程と、バインダ添加後に回転羽根を高速回転して造粒する工程を有することを特徴とする造粒法である。
Hereinafter, the present invention will be specifically described based on embodiments.
The present invention relates to a method of granulating nuclear fuel powder using a rotary blade type granulator, a step of adding and mixing a binder under a low speed rotation of the rotary blade, and the amount of binder added by stopping the rotary blade. It is a granulation method characterized by having a step of measuring and a step of granulating by rotating a rotating blade at high speed after adding a binder.

本発明の造粒法の概略を図1に示す。なお、以下の説明はウラン酸化物粉末に関するが、本発明の造粒法はウラン酸化物粉末に限られない。本発明における核燃料粉末にはウラン酸化物粉末のほかに、ウランとプルトニウムの混合酸化物粉末であるMOX燃料粉末も含まれる。 An outline of the granulation method of the present invention is shown in FIG. Although the following description relates to uranium oxide powder, the granulation method of the present invention is not limited to uranium oxide powder. In addition to uranium oxide powder, the nuclear fuel powder in the present invention includes MOX fuel powder which is a mixed oxide powder of uranium and plutonium.

本発明の造粒方法は、回転羽根を低速回転してウラン酸化物粉末を攪拌し均一化する。低速回転の回転数は20〜50rpmが好ましい。次いで、この低速回転下でバインダを少量ずつ添加して攪拌混合する。この低速回転下では、バインダを少量ずつ滴下したときに造粒が開始されず、回転羽根によって飛散もしないため、均一に添加される。バインダは例えば水が用いられる。 In the granulation method of the present invention, the rotating blade is rotated at a low speed to agitate and homogenize the uranium oxide powder. The rotation speed of the low-speed rotation is preferably 20 to 50 rpm. Next, under this low speed rotation, a binder is added little by little and stirred and mixed. Under this low-speed rotation, granulation is not started when the binder is dripped little by little, and since it is not scattered by the rotating blades, it is added uniformly. For example, water is used as the binder.

回転羽根を高速回転してバインダを滴下すると、バインダ、あるいはバインダと共に粉末が飛ばされて装置内壁に付着する割合が高くなり、粉末に対する添加量を正確に制御することが困難である。また、高速回転下では外周部分の回転羽根の速度は非常に大きいが、中央部の速度はゼロに近い。このため容器内の攪拌力は場所によって異なり、不均一になる。造粒においてはバインダと粉末の均一な混合が重要であり、バインダが偏析するとその部分が肥大した造粒体になり、均一な造粒体が得られない。 When the rotating blade is rotated at a high speed and the binder is dropped, the binder or the powder is blown together with the binder and the ratio of adhering to the inner wall of the apparatus increases, and it is difficult to accurately control the amount of addition to the powder. Also, under high speed rotation, the speed of the rotating blades in the outer peripheral portion is very high, but the speed in the center is close to zero. For this reason, the stirring force in a container changes with places and becomes non-uniform | heterogenous. In granulation, uniform mixing of the binder and the powder is important, and when the binder is segregated, the part becomes a granulated body enlarged and a uniform granulated body cannot be obtained.

このため、回転羽根型造粒機を用いて造粒する場合には、予めバインダ量を正確に制御し、かつ、原料粉末とバインダの均一性を保つことが必要になる。ただし、ウラン酸化物などの核燃料分野では、放射性の粉末の飛散を少なくするため、一定量の粉末を容器内に封入して取り扱うのが好ましい。よって、バインダ添加後に、取り分けておいた原料粉を少量ずつ加える調整方法は採用しにくいため、始めからバインダ量が過剰とならないような運転を要する。 For this reason, when granulating using a rotary blade granulator, it is necessary to accurately control the amount of the binder in advance and maintain the uniformity of the raw material powder and the binder. However, in the field of nuclear fuels such as uranium oxide, it is preferable to handle a certain amount of powder enclosed in a container in order to reduce the scattering of radioactive powder. Therefore, since it is difficult to employ an adjustment method in which the raw material powder that has been arranged is added little by little after the binder is added, an operation is required so that the binder amount does not become excessive from the beginning.

本発明の造粒方法では、バインダの添加工程と粉末の造粒工程において回転羽根の回転数を変え、造粒前にバインダを添加するための低速回転ステージを設けることによって、高速回転下でバインダを添加したときの不都合を解消した。 In the granulation method of the present invention, the binder is rotated under high speed rotation by changing the rotational speed of the rotating blades in the binder addition step and the powder granulation step, and by providing a low-speed rotation stage for adding the binder before granulation. The inconvenience when adding was eliminated.

本発明の造粒方法は、低速回転下でバインダを添加した後に、回転羽根を停止してバインダの添加量を測定する。このとき、必要に応じ、バインダを添加して添加量を調整する。バインダの添加量は、例えば、粉末の入った造粒皿の重量を電子天秤で測定して求められるが、回転羽根を回転したままでは正確な測定が難しいので、回転羽根の回転を止めて秤量する。このように、本発明の造粒方法は、バインダの添加量を厳密に管理できるように、造粒前に回転羽根を停止してバインダ量を確定するステージが設けられている。 In the granulation method of the present invention, after adding a binder under low-speed rotation, the rotating blade is stopped and the amount of binder added is measured. At this time, if necessary, a binder is added to adjust the addition amount. The amount of binder added can be obtained, for example, by measuring the weight of the granulation dish containing powder with an electronic balance, but it is difficult to accurately measure with the rotating blades rotated. To do. Thus, the granulation method of the present invention is provided with a stage for stopping the rotating blades and determining the binder amount before granulation so that the added amount of the binder can be strictly controlled.

上記測定後に回転羽根を低速回転してバインダの偏析を防止し均一化する。次いで、回転羽根の回転を高速に切り替えてウラン酸化物粉末を造粒する。高速回転の回転数は例えば300〜600rpmが好ましい。 After the above measurement, the rotating blades are rotated at a low speed to prevent the binder from segregating and make it uniform. Next, the rotation of the rotary blade is switched to a high speed to granulate the uranium oxide powder. The number of high-speed rotations is preferably 300 to 600 rpm, for example.

以上のように、本発明の造粒方法は、回転羽根の低速回転下でバインダを少量ずつ添加する工程と、バインダ添加後にその添加量を管理する工程とを有し、好ましくは、その前後にバインダを添加せずに低速回転で攪拌する工程とを有し、その後に高速回転下で造粒することによって、バインダの偏析を防止し、均一かつ微細な造粒体、例えば、粒径500μm以下のウラン酸化物造粒体を再現性良く高い収率で製造することができる。 As described above, the granulation method of the present invention has a step of adding a binder little by little under low-speed rotation of a rotary blade, and a step of managing the amount of addition after the addition of the binder, preferably before and after that. A step of stirring at low speed without adding a binder, and then granulating under high speed rotation to prevent segregation of the binder, uniform and fine granulated material, for example, particle size of 500 μm or less Uranium oxide granules can be produced with high reproducibility and high yield.

本発明の実施例を以下に示す。この実施例の工程図を図3に示す。また、実施例において使用した回転羽根型造粒装置の概略を図2に示す。
本発明の造粒方法では、原料粉末(ウラン酸化物粉末)10を皿状容器11に入れ、回転羽根12を低速で回転させて混合する。次いで、低速で回転羽根12を回したまま、バインダ(水など)13をノズル14から少量ずつ徐々に添加(滴下)しながら混合し、バインダ添加後も挙動が安定するまで混合を継続する。その後、所定量のバインダが供給されるまでバインダの添加と混合を繰り返し、最終的に回転羽根を高速回転させて造粒する。
Examples of the present invention are shown below. A process diagram of this embodiment is shown in FIG. Moreover, the outline of the rotary blade type granulator used in the Example is shown in FIG.
In the granulation method of the present invention, raw material powder (uranium oxide powder) 10 is put in a dish-like container 11 and mixed by rotating the rotary blade 12 at a low speed. Next, while rotating the rotating blade 12 at a low speed, the binder (water etc.) 13 is mixed while gradually adding (dropping) from the nozzle 14 little by little, and the mixing is continued until the behavior is stabilized after the binder is added. Thereafter, the addition and mixing of the binder are repeated until a predetermined amount of the binder is supplied, and finally the rotating blade is rotated at a high speed for granulation.

〔実施例1〕
酸化ウラン(UO2)の粉末250gを皿状容器11に装荷し、回転羽根12を低速(30rpm)で回転させながら水を供給する。このとき、水の全量を供給せずに10.9wt%を供給したところで供給を停止し、回転羽根12の回転を継続して水分を酸化ウラン粉末全体に馴染ませた(低速回転時間120秒)。続いて、回転を停止し、水分量が11.7wt%になるまで水を供給した。このとき、回転羽根12が回転している状態では皿上の重量を電子天秤で正確に測定することが難しいので、造粒装置から皿状容器11を取り外して秤量した。水量確定後、再び回転羽根12を低速(30rpm)で120秒回転して粉体全体を均一化した。その後、回転羽根12を高速(500rpm)で120秒回転して粉体を造粒した。この造粒によって、造粒体を97.7%の高い回収率で得た。また、その全量が目標とする粒径500μm以下であった。
[Example 1]
250 g of uranium oxide (UO 2 ) powder is loaded into the dish-shaped container 11 and water is supplied while rotating the rotary blade 12 at a low speed (30 rpm). At this time, when 10.9 wt% was supplied without supplying the entire amount of water, the supply was stopped, and the rotation of the rotary blade 12 was continued so that the moisture was acclimated to the entire uranium oxide powder (low-speed rotation time 120 seconds). . Subsequently, the rotation was stopped and water was supplied until the water content reached 11.7 wt%. At this time, since it is difficult to accurately measure the weight on the dish with the electronic balance in a state where the rotary blade 12 is rotating, the dish-like container 11 was removed from the granulator and weighed. After the amount of water was determined, the rotary blade 12 was again rotated at a low speed (30 rpm) for 120 seconds to make the entire powder uniform. Thereafter, the rotary blade 12 was rotated at a high speed (500 rpm) for 120 seconds to granulate the powder. By this granulation, a granulated body was obtained with a high recovery rate of 97.7%. Further, the total amount was a target particle size of 500 μm or less.

〔実施例2〕
酸化ウラン粉末250gを皿状容器11に入れ、回転羽根12を低速(30rpm)で回転させながら水12.2wt%を供給したところで水の供給を停止し、回転羽根12の回転を継続して水分を酸化ウラン粉末全体に馴染ませた(低速回転時間120秒)。次いで回転羽根12の回転を停止し、水分量が12.6wt%になるまで水を供給し、造粒装置から皿状容器11を取り外して水分量を秤量した。水量確定後、再び回転羽根12を低速(30rpm)で120秒回転して粉体全体を均一化した。その後、回転羽根12を高速(500rpm)で60秒回転して粉体を造粒した。造粒体の回収率は98.0%であり、その全量が目標とする粒径500μm以下であった。
[Example 2]
When 250 g of uranium oxide powder is put into the dish-like container 11 and 12.2 wt% of water is supplied while rotating the rotary blade 12 at a low speed (30 rpm), the supply of water is stopped and the rotation of the rotary blade 12 is continued to keep moisture. Was acclimated to the whole uranium oxide powder (low-speed rotation time 120 seconds). Next, the rotation of the rotary blade 12 was stopped, water was supplied until the water content reached 12.6 wt%, the dish-like container 11 was removed from the granulator, and the water content was weighed. After the amount of water was determined, the rotary blade 12 was again rotated at a low speed (30 rpm) for 120 seconds to make the entire powder uniform. Thereafter, the rotary blade 12 was rotated at a high speed (500 rpm) for 60 seconds to granulate the powder. The recovery rate of the granulated product was 98.0%, and the total amount was a target particle size of 500 μm or less.

〔比較例1〕
酸化ウラン粉末250gを皿状容器11に入れ、回転羽根12を低速(30rpm)で回転させながら水13wt%を供給し、回転羽根12の回転を継続して水分を酸化ウラン粉末全体に馴染ませた(低速回転時間120秒)。引き続き、回転羽根12を低速(30rpm)で120秒回転して粉体全体を均一化した。その後、回転羽根12を高速(500rpm)で120秒回転して粉体を造粒した。造粒体は何れも不良品であった。
[Comparative Example 1]
250 g of uranium oxide powder was put into the dish-like container 11, 13 wt% of water was supplied while rotating the rotating blade 12 at a low speed (30 rpm), and the rotation of the rotating blade 12 was continued to allow moisture to become familiar with the entire uranium oxide powder. (Low speed rotation time 120 seconds). Subsequently, the rotary blade 12 was rotated at a low speed (30 rpm) for 120 seconds to make the entire powder uniform. Thereafter, the rotary blade 12 was rotated at a high speed (500 rpm) for 120 seconds to granulate the powder. All of the granules were defective.

〔比較例2〕
酸化ウラン粉末250gを皿状容器11に入れ、回転羽根12を高速(500rpm)で回転させながら水15.6wt%を供給し、回転羽根12の高速回転を90秒継続して粉体を造粒した。造粒体の回収率は38.9%であり、そのうち500μm以下の割合は21.1%であった。
[Comparative Example 2]
250 g of uranium oxide powder is put into the dish-like container 11, 15.6 wt% of water is supplied while rotating the rotating blade 12 at high speed (500 rpm), and the rotating blade 12 is rotated at high speed for 90 seconds to granulate the powder. did. The recovery rate of the granulated body was 38.9%, and the ratio of 500 μm or less was 21.1%.

〔比較例3〕
酸化ウラン粉末250gを皿状容器11に入れ、回転羽根12を高速(500rpm)で回転させながら水14.8wt%を供給し、回転羽根12の高速回転を90秒継続して粉体を造粒した。造粒体の回収率は86.4%であり、そのうち500μm以下の割合は30.7%であった。
[Comparative Example 3]
250 g of uranium oxide powder is put in the dish-shaped container 11, 14.8 wt% of water is supplied while rotating the rotating blade 12 at a high speed (500 rpm), and the rotating blade 12 is rotated at a high speed for 90 seconds to granulate the powder. did. The recovery rate of the granulated body was 86.4%, of which the ratio of 500 μm or less was 30.7%.

〔比較例4〕
酸化ウラン粉末250gを皿状容器11に入れ、回転羽根12を高速(500rpm)で回転させながら水14.8wt%を供給し、回転羽根12の高速回転を210秒継続して粉体を造粒した。造粒体の回収率は74.9%であり、そのうち500μm以下の割合は46.7%であった。
[Comparative Example 4]
250 g of uranium oxide powder is put into the dish-like container 11, 14.8 wt% of water is supplied while rotating the rotating blade 12 at a high speed (500 rpm), and the rotating blade 12 is rotated at a high speed for 210 seconds to granulate the powder. did. The recovery rate of the granulated body was 74.9%, and the ratio of 500 μm or less was 46.7%.

10−ウラン酸化物粉末、11−皿状容器、12−回転羽根、13−バインダ、14−ノズル。 10-uranium oxide powder, 11-dish container, 12-rotary blade, 13-binder, 14-nozzle.

Claims (6)

回転羽根型造粒機を用いて核燃料粉末を造粒する方法において、回転羽根の低速回転下でバインダを添加して混合する工程と、回転羽根を停止してバインダの添加量を測定する工程と、バインダ添加後に回転羽根を高速回転して造粒する工程を有することを特徴とする造粒法。
In a method of granulating nuclear fuel powder using a rotary blade granulator, a step of adding and mixing a binder under a low speed rotation of the rotary blade, and a step of measuring the amount of binder added by stopping the rotary blade A granulation method comprising a step of granulating by rotating a rotary blade at a high speed after adding a binder.
回転羽根を低速回転して核燃料粉末を均一化した後に、低速回転下でバインダを少量ずつ添加して攪拌混合し、次いで回転羽根を停止してバインダの添加量を測定し、該測定後に回転羽根を低速回転して核燃料粉末を攪拌均一化し、さらに回転羽根を高速回転して核燃料粉末を造粒する請求項1に記載する造粒法。
After rotating the rotating blades at a low speed to homogenize the nuclear fuel powder, a binder is added little by little under low-speed rotation, followed by stirring and mixing. Then, the rotating blades are stopped and the amount of binder added is measured. The granulation method according to claim 1, wherein the nuclear fuel powder is agitated and homogenized by rotating at a low speed, and the nuclear fuel powder is granulated by rotating the rotating blade at a high speed.
回転羽根を停止してバインダの添加量を測定する工程において、核燃料粉末にバインダを添加してバインダ添加量を調整する請求項1または請求項2に記載する造粒法。
The granulation method according to claim 1 or 2, wherein the binder addition amount is adjusted by adding the binder to the nuclear fuel powder in the step of measuring the addition amount of the binder by stopping the rotating blades.
回転羽根の低速回転を回転数20〜50rpmで行い、高速回転を300〜600rpmで行う請求項1〜請求項3の何れかに記載する造粒法。
The granulation method according to any one of claims 1 to 3, wherein the rotating blades are rotated at a low speed of 20 to 50 rpm and a high speed of rotation at 300 to 600 rpm.
粒径500μm以下の核燃料造粒体を製造する請求項1〜請求項4の何れかに記載する造粒法。
The granulation method according to any one of claims 1 to 4, wherein a nuclear fuel granule having a particle size of 500 µm or less is produced.
核燃料粉末が、ウラン酸化物粉末、またはウランとプルトニウムの混合酸化物粉末であるMOX燃料粉末である請求項1〜請求項5の何れかに記載する造粒法。 The granulation method according to any one of claims 1 to 5, wherein the nuclear fuel powder is a uranium oxide powder or a MOX fuel powder which is a mixed oxide powder of uranium and plutonium.
JP2011079737A 2011-03-31 2011-03-31 Nuclear fuel powder granulation method Active JP5729671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011079737A JP5729671B2 (en) 2011-03-31 2011-03-31 Nuclear fuel powder granulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011079737A JP5729671B2 (en) 2011-03-31 2011-03-31 Nuclear fuel powder granulation method

Publications (2)

Publication Number Publication Date
JP2012215429A true JP2012215429A (en) 2012-11-08
JP5729671B2 JP5729671B2 (en) 2015-06-03

Family

ID=47268323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011079737A Active JP5729671B2 (en) 2011-03-31 2011-03-31 Nuclear fuel powder granulation method

Country Status (1)

Country Link
JP (1) JP5729671B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178031A (en) * 1985-01-31 1986-08-09 Yokohama Kagaku Kikai Kk Vacuum drying granulation apparatus
JPH11183686A (en) * 1997-12-24 1999-07-09 Mitsubishi Materials Corp Manufacture of nuclear fuel particle and nuclear fuel pellet
JP2010190719A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for manufacturing nuclear fuel pellet for fast breeder reactors
JP2010190717A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for manufacturing nuclear fuel pellet for fast breeder reactors in fast breeder reactor cycle
JP2010190718A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for manufacturing nuclear fuel pellet for fast breeder reactor by tumbling granulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178031A (en) * 1985-01-31 1986-08-09 Yokohama Kagaku Kikai Kk Vacuum drying granulation apparatus
JPH11183686A (en) * 1997-12-24 1999-07-09 Mitsubishi Materials Corp Manufacture of nuclear fuel particle and nuclear fuel pellet
JP2010190719A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for manufacturing nuclear fuel pellet for fast breeder reactors
JP2010190717A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for manufacturing nuclear fuel pellet for fast breeder reactors in fast breeder reactor cycle
JP2010190718A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for manufacturing nuclear fuel pellet for fast breeder reactor by tumbling granulation

Also Published As

Publication number Publication date
JP5729671B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP6199688B2 (en) Molasses solidified fertilizer and method for producing the same
US10981126B2 (en) Device for mixing powders by cryogenic fluid
KR101643272B1 (en) Method and apparatus for manufacturing raw granulating material for sintering and method of producing sintered ore for blast furnace
JP5729671B2 (en) Nuclear fuel powder granulation method
US20070153966A1 (en) Method for producing ceramic nuclear fuel tablets, device and container for carrying out said method
JPS5895617A (en) Method of increasing grain size of uranium oxide
JPH11183686A (en) Manufacture of nuclear fuel particle and nuclear fuel pellet
JP3013297B2 (en) Method for producing lithium titanate fine sintered particles
CN110394114A (en) The automatic proportioning transportation system and production method of lithium battery tertiary cathode material
CN104437156B (en) The mixed technique of a kind of material screen
JP4863314B2 (en) Method for producing nuclear fuel pellets for fast breeder reactors by rolling granulation
JPH11262650A (en) Automatic granulating apparatus for powder
CN107585763B (en) A kind of graphene particles and preparation method thereof
JP2010190720A (en) Method for nuclear fuel pellet for fast breeder reactors by kneading pelletization
JP6156305B2 (en) Manufacturing equipment for sintering raw material and manufacturing method thereof
JP2019090780A (en) Method of preparing resin embedded with analysis sample
RU2467413C1 (en) Method of preparing charge mixture for making cermet rods of nuclear reactor fuel elements
JPS59197895A (en) Method of controlling enrichment of nuclear fuel material
JPH10186075A (en) Manufacture of nuclear fuel pellet
CN208161529U (en) A kind of improved chemical industry mixing plant
JP2006143521A (en) Uranyl nitrate-containing raw liquid preparation device
JP2000290733A (en) Method for granulating raw material improving productivity of sintering machine
RU2465043C1 (en) Cyclic loose material mixer
JP2006143520A (en) Uranyl nitrate solution preparation device and uranyl nitrate solution preparation method
JP2000319402A (en) Method for dissolving binder resin and its apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150328

R150 Certificate of patent or registration of utility model

Ref document number: 5729671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250