JP2012215410A - Corrosion resistance testing method for copper-based member - Google Patents

Corrosion resistance testing method for copper-based member Download PDF

Info

Publication number
JP2012215410A
JP2012215410A JP2011079467A JP2011079467A JP2012215410A JP 2012215410 A JP2012215410 A JP 2012215410A JP 2011079467 A JP2011079467 A JP 2011079467A JP 2011079467 A JP2011079467 A JP 2011079467A JP 2012215410 A JP2012215410 A JP 2012215410A
Authority
JP
Japan
Prior art keywords
copper
corrosion
corrosion resistance
based member
corrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011079467A
Other languages
Japanese (ja)
Inventor
Takashi Iyasu
隆志 居安
Hajime Iseri
一 井芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011079467A priority Critical patent/JP2012215410A/en
Publication of JP2012215410A publication Critical patent/JP2012215410A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion resistance testing method for a copper-based member with which the corrosion resistance of a copper-based member can be tested promptly.SOLUTION: The corrosion resistance of anti-corrosion coating is tested by bringing a copper-based member into contact with a corrosive liquid containing a corrosive component and an anti-corrosion agent for copper, and generating corrosion in the anti-corrosion coating of the copper-based member. Preferably, an azole-based anti-corrosion agent is at least one of tolyltriazole, benzotriazol, and mercapto benzothiazole, corrosion anion is chloride ion and/or sulfate ion, and an oxidant is hydrogen peroxide.

Description

本発明は、銅系部材の耐食性試験方法に係り、詳しくは、冷却水系などの水系に接する銅管等の銅系部材の表面又は該表面に形成された防食皮膜に対し、薬剤を用いて孔食を発生させて防食性を試験する方法に関する。   The present invention relates to a method for testing corrosion resistance of a copper-based member, and more specifically, the surface of a copper-based member such as a copper tube in contact with a water system such as a cooling water system or a corrosion-resistant film formed on the surface using a chemical agent. The present invention relates to a method of generating food and testing anticorrosion properties.

銅は熱伝導性に優れる特性を有し、空調機器や熱交換器などの伝熱管などに広く使用されているが、このような用途に用いられる銅系部材にあっては、腐食による孔食が問題となっている。特に、最近の機器は高効率化が進んでおり、熱交換器に用いられる銅管の肉厚が非常に薄くなっていることから、孔食の発生は銅管の貫通漏洩につながる危険性が高い。このため、銅系部材に孔食を発生させないことが、機器の安定稼動に不可欠である。   Copper has excellent thermal conductivity and is widely used in heat transfer tubes such as air conditioners and heat exchangers. However, copper-based materials used in such applications have pitting corrosion due to corrosion. Is a problem. In particular, the efficiency of recent equipment is increasing, and the thickness of copper pipes used in heat exchangers is extremely thin, so the occurrence of pitting corrosion can lead to through leakage of copper pipes. high. For this reason, it is indispensable for stable operation of the equipment not to cause pitting corrosion in the copper-based member.

従来、冷却水系などの水系に接触する銅管等の銅系部材の孔食を抑制するために、トリルトリアゾール、ベンゾトリアゾール、メルカプトベンゾチアゾールといったアゾール系の銅用防食剤を水系に添加する水処理が行われている。アゾール系銅用防食剤は、水系に接する銅系部材に対して優れた腐食抑制効果を発揮することから、広く適用されている(例えば特許文献1,2)。特許文献2の実施例には、形成された防食皮膜をNaOBr溶液と接触させる腐食試験を行うことが記載されている。特許文献3の実施例には濃度100ppmの硫化ナトリウム水溶液又は濃度500ppmのアンモニア水溶液を用いて防食性能を判定することが記載されている。   Conventionally, water treatment in which an azole copper anticorrosive agent such as tolyltriazole, benzotriazole, or mercaptobenzothiazole is added to the water system in order to suppress pitting corrosion of a copper-based member such as a copper pipe that contacts the water system such as a cooling water system. Has been done. Azole-based copper anticorrosives have been widely applied because they exhibit excellent corrosion-inhibiting effects on copper-based members in contact with aqueous systems (for example, Patent Documents 1 and 2). The example of Patent Document 2 describes performing a corrosion test in which the formed anticorrosion film is brought into contact with a NaOBr solution. In an example of Patent Document 3, it is described that the anticorrosion performance is determined using a sodium sulfide aqueous solution having a concentration of 100 ppm or an ammonia aqueous solution having a concentration of 500 ppm.

しかしながら、上記従来の腐食試験では、防食皮膜が全面腐食となり、孔食(局部腐食)にはならない。   However, in the above conventional corrosion test, the anticorrosion film is totally corroded and not pitting corrosion (local corrosion).

銅表面の不均一状態は耐食性低下に影響するものと考えられ、腐食の対策として、起点となる傷や汚れ、付着物などの異物がない、なるべく清浄なものを用いることが推奨されている。腐食リスク低減には表面の不均一状態をなくすることや初期に耐食的な皮膜を形成することが重要であると考えられる。   The uneven state of the copper surface is considered to affect the corrosion resistance reduction, and as a countermeasure against corrosion, it is recommended to use as clean a material as possible that is free from foreign matters such as scratches, dirt and deposits. In order to reduce the corrosion risk, it is considered important to eliminate the uneven surface state and to form a corrosion-resistant film in the initial stage.

しかしながら、銅チューブの表面状態と耐食性の関係は十分明らかとなっておらず、銅チューブに対する耐食的な皮膜の形成方法やその効果については必ずしも明確になっているとは言えない。   However, the relationship between the surface state of the copper tube and the corrosion resistance has not been sufficiently clarified, and it cannot be said that the method of forming a corrosion-resistant film on the copper tube and the effect thereof are necessarily clear.

特開平5−222555号公報JP-A-5-222555 特開平6−212459号公報Japanese Patent Laid-Open No. 6-212459 特開平10−265979号公報Japanese Patent Laid-Open No. 10-265979

本発明は、銅系部材の耐孔食性を迅速に試験することができる銅系部材の耐食性試験方法を提供することを目的とする。また、本発明は、その一態様において、銅系部材の種々の表面状態(傷、濡れ乾き等)について耐食性を評価することができる銅系部材の耐食性試験方法を提供することを目的とする。   An object of this invention is to provide the corrosion resistance test method of the copper-type member which can test rapidly the pitting corrosion resistance of a copper-type member. Moreover, this invention aims at providing the corrosion-resistance test method of the copper-type member which can evaluate corrosion resistance about the various surface states (a damage | wound, wet-dry, etc.) of the copper-type member in the one aspect | mode.

請求項1の銅系部材の耐食性試験方法は、銅系部材を腐食液と接触させて耐食性を試験する方法において、該腐食液が腐食性成分と銅用防食剤とを含有しており、腐食性成分は腐食性アニオンと酸化剤であることを特徴とするものである。   The method for testing corrosion resistance of a copper-based member according to claim 1 is a method for testing corrosion resistance by bringing a copper-based member into contact with a corrosive liquid, wherein the corrosive liquid contains a corrosive component and a copper anticorrosive, The sexual component is a corrosive anion and an oxidizing agent.

請求項2の銅系部材の耐食性試験方法は、請求項1において、防食剤はアゾール系防食剤であることを特徴とするものである。   The corrosion resistance test method for a copper-based member according to claim 2 is characterized in that, in claim 1, the anticorrosive is an azole anticorrosive.

請求項3の銅系部材の耐食性試験方法は、請求項2において、アゾール系防食剤がトリルトリアゾール、ベンゾトリアゾール、及びメルカプトベンゾチアゾールの少なくとも1種であることを特徴とするものである。   The corrosion resistance test method for a copper-based member according to claim 3 is characterized in that, in claim 2, the azole anticorrosive is at least one of tolyltriazole, benzotriazole, and mercaptobenzothiazole.

請求項4の銅系部材の耐食性試験方法は、請求項1ないし3のいずれか1項において、腐食性アニオンが塩化物イオン及び/又は硫酸イオンであり、酸化剤が過酸化水素であることを特徴とするものである。   The method for testing corrosion resistance of a copper-based member according to claim 4 is the method according to any one of claims 1 to 3, wherein the corrosive anion is chloride ion and / or sulfate ion, and the oxidizing agent is hydrogen peroxide. It is a feature.

請求項5の銅系部材の耐食性試験方法は、請求項1ないし4のいずれか1項において、前記銅系部材の表面に防食皮膜が形成されており、該防食皮膜の耐食性を試験することを特徴とするものである。   The corrosion resistance test method for a copper-based member according to claim 5 is the method according to any one of claims 1 to 4, wherein a corrosion-resistant film is formed on the surface of the copper-based member, and the corrosion resistance of the corrosion-resistant film is tested. It is a feature.

本発明の銅系部材の耐食性試験方法によると、腐食液が腐食成分(腐食性アニオン及び酸化剤)の他に銅用防食剤を含んでおり、この銅用防食剤の作用により腐食が孔食となるので、銅系部材の耐孔食性を評価することができる。   According to the corrosion resistance test method for copper-based members of the present invention, the corrosive liquid contains an anticorrosive agent for copper in addition to the corrosive components (corrosive anion and oxidizer). Therefore, the pitting corrosion resistance of the copper-based member can be evaluated.

このように孔食が生じる理由については、次のように考えられる。即ち、アゾール系防食剤などの銅用防食剤は主にアノード反応を抑制する防食剤であり、局部腐食となりやすい性質がある。この銅用防食剤が少量存在する一方で、酸化剤、腐食性アニオンが存在する強腐食環境において、耐食的に弱い部分がある場合、弱い部分が腐食の起点となり、緑青のマウンドを伴った孔食となる。   The reason why such pitting corrosion occurs is considered as follows. That is, anticorrosives for copper such as azole anticorrosives are anticorrosives that mainly suppress the anodic reaction, and are prone to local corrosion. While there is a small amount of this anticorrosive agent for copper, and there is a corrosion resistant weak part in a strong corrosion environment where an oxidizing agent and a corrosive anion exist, the weak part becomes the starting point of corrosion and a hole with a patina mound. It becomes food.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明では、銅又は銅合金よりなる銅系部材を腐食液と接触させて腐食を生じさせるに際し、この腐食液として、腐食性成分と防食剤とを含む液を用いる。この腐食液は、腐食性成分として腐食性アニオンと酸化剤との双方を含む。銅系部材は、防食皮膜を有していてもよく、防食皮膜を有していなくてもよい。防食皮膜を有しない銅系部材は、その表面が傷、濡れ乾き等の不均一状態となっているものであってもよい。   In the present invention, when a copper-based member made of copper or a copper alloy is brought into contact with a corrosive liquid to cause corrosion, a liquid containing a corrosive component and an anticorrosive agent is used as the corrosive liquid. This corrosive liquid contains both corrosive anions and oxidizing agents as corrosive components. The copper-based member may have an anticorrosion film or may not have an anticorrosion film. The copper-based member that does not have the anticorrosive film may have a non-uniform state such as scratches, wet and dry surfaces.

腐食性アニオンとしては、塩化物イオン、硫酸イオン、硝酸イオンなどの鉱酸のイオンが好適であり、特に塩化物イオン及び硫酸イオンの少なくとも一方特に双方が好適である。腐食液中における腐食性アニオンの濃度は50〜5万mg/L(0.05〜50g/L)特に100〜500mg/L程度が好適である。   As the corrosive anion, ions of mineral acids such as chloride ions, sulfate ions and nitrate ions are preferable, and at least one of chloride ions and sulfate ions is particularly preferable. The concentration of the corrosive anion in the corrosive solution is preferably about 50 to 50,000 mg / L (0.05 to 50 g / L), particularly about 100 to 500 mg / L.

酸化剤としては、過酸化水素、次亜塩素酸、次亜塩素酸ナトリウムなどが好適であり、特に過酸化水素が好適である。腐食液中の過酸化水素の濃度は、1〜50mg/L特に5〜20mg/L程度が好適である。   As the oxidizing agent, hydrogen peroxide, hypochlorous acid, sodium hypochlorite and the like are preferable, and hydrogen peroxide is particularly preferable. The concentration of hydrogen peroxide in the corrosive solution is preferably about 1 to 50 mg / L, particularly about 5 to 20 mg / L.

防食剤としては銅用のアゾール系防食剤が好適であり、具体的にはトリルトリアゾール、ベンゾトリアゾール、メルカプトベンゾチアゾールなどの1種又は2種以上が好適である。腐食液中におけるアゾール系防食剤の濃度は、0.1〜200mg/L特に1〜20mg/L程度が好適である。   As the anticorrosive, an azole anticorrosive for copper is suitable, and specifically, one or more of tolyltriazole, benzotriazole, mercaptobenzothiazole and the like are suitable. The concentration of the azole anticorrosive in the corrosive solution is preferably about 0.1 to 200 mg / L, particularly about 1 to 20 mg / L.

防食剤としては、塩化カルシウム、塩化マグネシウム、炭酸水素ナトリウム、炭酸ナトリウムなどの無機塩や、ケイ酸ナトリウムなどのシリカ防食皮膜形成剤を併用してもよい。腐食液中に上記無機塩を含有させる場合、その濃度は5〜300mg/L特に30〜150mg/L程度が好適である。シリカ防食皮膜形成剤を含有させる場合、その濃度はシリカ(SiO)として5〜150mg/L程度特に10〜100mg/L程度が好適である。 As the anticorrosive agent, an inorganic salt such as calcium chloride, magnesium chloride, sodium hydrogen carbonate or sodium carbonate, or a silica anticorrosive film forming agent such as sodium silicate may be used in combination. When the inorganic salt is contained in the corrosive liquid, the concentration is preferably about 5 to 300 mg / L, particularly about 30 to 150 mg / L. When the silica anticorrosive film forming agent is contained, the concentration is preferably about 5 to 150 mg / L, particularly about 10 to 100 mg / L as silica (SiO 2 ).

銅系部材と腐食液とを接触させるには、銅系部材を腐食液に浸漬するのが簡便で好適であるが、パイプ状の銅系部材である場合には、パイプ内に腐食液を通液してもよい。接触時の温度は常温でよいが、加温条件としてもよい。接触時間は1〜48Hr特に3〜24Hr程度で足りるが、これよりも長くても構わない。   In order to bring the copper-based member into contact with the corrosive liquid, it is convenient and preferable to immerse the copper-based member in the corrosive liquid. It may be liquid. Although the temperature at the time of a contact may be normal temperature, it is good also as heating conditions. The contact time may be about 1 to 48 hours, particularly about 3 to 24 hours, but may be longer.

なお、本発明は実機水系の現場においても、また実験室などのラボにおいても場所を選ぶことなく、材料自体の耐食性の評価および防食剤の効果の確認を行うことができる。   In the present invention, the corrosion resistance of the material itself can be evaluated and the effect of the anticorrosive agent can be confirmed without selecting a place in the actual water system or in a laboratory such as a laboratory.

以下に、実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

[実施例1,2]
リン脱酸銅(C1220)製のチューブを長さ2cmに切り出し、さらに半割したものを試験片として用いた。この試験片を表1に示す防食皮膜形成剤含有水1Lに浸漬し、各種の防食皮膜形成剤により防食皮膜を形成した。水温は30℃とし、スターラー撹拌条件下で24時間処理を行った。
[Examples 1 and 2]
A tube made of phosphorous-deoxidized copper (C1220) was cut into a length of 2 cm, and further divided by half, was used as a test piece. This test piece was immersed in 1 L of an anticorrosive film forming agent-containing water shown in Table 1, and an anticorrosive film was formed with various anticorrosive film forming agents. The water temperature was 30 ° C., and the treatment was performed for 24 hours under stirring with a stirrer.

Figure 2012215410
Figure 2012215410

上記のように、防食皮膜を形成した試験片を、酸化剤として過酸化水素を添加した表2に示す水質の腐食試験液(30℃、スターラー撹拌)に浸漬し、24時間後の試験片表面の孔食発生状況を観察したところ、腐食形態はいずれも緑青のマウンドを伴った孔食であった。   As described above, the test piece on which the anticorrosion film was formed was immersed in a water quality corrosion test solution (30 ° C., stirrer stirring) shown in Table 2 to which hydrogen peroxide was added as an oxidizing agent, and the surface of the test piece after 24 hours. When the occurrence of pitting corrosion was observed, all the corrosion forms were pitting corrosion with patina.

Figure 2012215410
Figure 2012215410

[比較例1,2]
上記実施例1,2において、腐食試験液を表2のうち腐食性成分のみを含み、ベンゾトリアゾールを含まない液を用いたこと以外は同様にして試験を行った。その結果、腐食形態はいずれも全面腐食であった。
[Comparative Examples 1 and 2]
In Examples 1 and 2 above, the test was performed in the same manner except that the corrosion test solution was a solution containing only a corrosive component in Table 2 and not containing benzotriazole. As a result, all corrosion forms were general corrosion.

[比較例3,4]
実施例1,2において、腐食試験液として過酸化水素10mg/L及びベンゾトリアゾール10mg/Lのみを含む液としたこと以外は同様にして試験を行ったところ、はっきりとした孔食は認められず、腐食は軽微であった。
[Comparative Examples 3 and 4]
In Examples 1 and 2, when the same test was performed except that the corrosion test solution was a solution containing only 10 mg / L of hydrogen peroxide and 10 mg / L of benzotriazole, no clear pitting corrosion was observed. Corrosion was minor.

[実施例3,4,5]
リン脱酸銅(C1220)製のチューブを長さ2cmに切り出し、さらに半割したものを試験片として用いた。
実施例3では、試験開始前に試験片の供試部にカッターナイフにより傷をつけ、新生面を露出させたスクラッチ試験片を供試試験片とした。
実施例4では、試験片の供試部に水道水を滴下し、自然乾燥させた濡れ乾き試験片を供試試験片とした。
実施例5では、試験片の供試部に市販の鉛筆(硬さ5B)により黒鉛を付着させた炭素付着試験片を供試試験片とした。
その他は実施例1と同様にして腐食試験を行い、24時間後の試験片表面の孔食発生状況を観察したところ、腐食形態はいずれも緑青のマウンドを伴った孔食であった。
[Examples 3, 4, and 5]
A tube made of phosphorous-deoxidized copper (C1220) was cut into a length of 2 cm, and further divided by half, was used as a test piece.
In Example 3, a scratch test piece in which the test part of the test piece was scratched with a cutter knife and the new surface was exposed before the test was started was used as the test test piece.
In Example 4, tap water was dropped onto the test part of the test piece, and the wet and dry test piece which was naturally dried was used as the test test piece.
In Example 5, a carbon adhesion test piece in which graphite was adhered to a test part of the test piece with a commercially available pencil (hardness 5B) was used as the test test piece.
Otherwise, the corrosion test was performed in the same manner as in Example 1, and the occurrence of pitting corrosion on the surface of the test piece after 24 hours was observed. As a result, all of the corrosion forms were pitting corrosion with a greenish blue mound.

その結果、実施例3では、傷の部分に選択的に緑青が発生し、傷の部分の耐食性が周辺に比べて低下していることが確認できた。さらに、腐食の起点についてSEMによる観察を行った結果、緑青は傷のエッジ部分を起点として発生していることが確認された。銅表面とスクラッチにより露出した新生面の境界であるエッジ部分が活性であり、腐食の起点となったものと推定される。   As a result, in Example 3, it was confirmed that patina was selectively generated in the scratched portion, and the corrosion resistance of the scratched portion was reduced as compared with the periphery. Furthermore, as a result of observation by SEM about the starting point of corrosion, it was confirmed that patina was generated starting from the edge of the scratch. It is presumed that the edge portion, which is the boundary between the copper surface and the new surface exposed by the scratch, is active and becomes the starting point of corrosion.

実施例4では、濡れ乾きにより生じた銅表面の変色部と非変色部の境界部分に選択的に緑青が生じ、濡れ乾き部の耐食性が周辺に比べて低下していることが確認できた。腐食の起点についてSEMによる観察を行った結果、変色部と非変色部の境界近傍の変色部側に発生していた。濡れ乾きにより塩化物イオン等は水滴の中央よりも周囲に濃縮されることを確認しており、濡れ乾き過程で塩化物イオンなどの腐食性アニオンの濃縮により酸化皮膜の破壊が生じた箇所が起点となり、酸化皮膜が形成されている周囲との電位差が局部腐食進展の駆動力となって、緑青が成長したものと推定される。   In Example 4, it was confirmed that patina was selectively generated at the boundary between the discolored portion and the non-discolored portion of the copper surface caused by wetting and drying, and the corrosion resistance of the wetting and drying portion was lower than that of the surrounding area. As a result of observing the starting point of corrosion by SEM, it was generated on the side of the color changing portion near the boundary between the color changing portion and the non-color changing portion. It has been confirmed that chloride ions and the like are concentrated around the center of the water droplets by wetting and drying, and the point where the oxide film breaks due to the concentration of corrosive anions such as chloride ions during the wetting and drying process is the starting point. Therefore, it is presumed that the potential difference from the surrounding area where the oxide film is formed becomes the driving force for the progress of local corrosion, and the patina has grown.

実施例5では、炭素が付着した箇所に選択的に緑青が発生し、炭素が付着した箇所の耐食性が周辺に比べて低下していることが確認できた。腐食の起点についてSEMによる観察を行った結果、炭素は銅表面に均一に帯状となって付着しているわけではなく斑に付着していること、腐食は炭素付着部近傍を起点として発生していることを確認した。腐食発生は炭素が付着した箇所が有効なカソードとして働いたことによるものと推定される。   In Example 5, it was confirmed that patina was selectively generated at the location where the carbon was adhered, and the corrosion resistance of the location where the carbon was adhered was lower than the surroundings. As a result of SEM observation of the starting point of corrosion, carbon is not attached to the copper surface in a uniform band shape, but is attached to spots, and corrosion occurs starting from the vicinity of the carbon adhering part. I confirmed. The occurrence of corrosion is presumed to be due to the location where carbon adhered as an effective cathode.

[比較例5〜7]
上記実施例3〜5において、腐食試験液を、表2のうち腐食性成分のみを含み、ベンゾトリアゾールを含まない液を用いたこと以外は同様にして試験を行った。その結果、腐食形態はいずれも全面腐食であった。
[Comparative Examples 5 to 7]
In Examples 3 to 5, the corrosion test solutions were tested in the same manner except that a solution containing only corrosive components and not containing benzotriazole in Table 2 was used. As a result, all corrosion forms were general corrosion.

[比較例8〜10]
実施例3〜5において、腐食試験液として過酸化水素10mg/L及びベンゾトリアゾール10mg/Lのみを含む液としたこと以外は同様にして試験を行ったところ、はっきりとした孔食は認められず、腐食は軽微であった。
[Comparative Examples 8 to 10]
In Examples 3 to 5, when the same test was conducted except that the corrosion test solution was a solution containing only 10 mg / L of hydrogen peroxide and 10 mg / L of benzotriazole, no clear pitting corrosion was observed. Corrosion was minor.

以上の実施例及び比較例より、本発明によると、銅系部材の孔食発生促進試験が可能であることが認められた。   From the above examples and comparative examples, it was confirmed that according to the present invention, a pitting corrosion promotion test of a copper-based member is possible.

Claims (5)

銅系部材を腐食液と接触させて耐食性を試験する方法において、
該腐食液が腐食性成分と銅用防食剤とを含有しており、腐食性成分は腐食性アニオンと酸化剤であることを特徴とする銅系部材の耐食性試験方法。
In a method for testing corrosion resistance by contacting a copper-based member with a corrosive liquid,
A method for testing a corrosion resistance of a copper-based member, wherein the corrosive liquid contains a corrosive component and an anticorrosive agent for copper, and the corrosive component is a corrosive anion and an oxidizing agent.
請求項1において、防食剤はアゾール系防食剤であることを特徴とする銅系部材の耐食性試験方法。   The method for testing corrosion resistance of a copper-based member according to claim 1, wherein the anticorrosive is an azole-based anticorrosive. 請求項2において、アゾール系防食剤がトリルトリアゾール、ベンゾトリアゾール、及びメルカプトベンゾチアゾールの少なくとも1種であることを特徴とする銅系部材の耐食性試験方法。   3. The method for testing corrosion resistance of a copper-based member according to claim 2, wherein the azole anticorrosive is at least one of tolyltriazole, benzotriazole, and mercaptobenzothiazole. 請求項1ないし3のいずれか1項において、腐食性アニオンが塩化物イオン及び/又は硫酸イオンであり、酸化剤が過酸化水素であることを特徴とする銅系部材の耐食性試験方法。   The corrosion resistance test method for a copper-based member according to any one of claims 1 to 3, wherein the corrosive anion is chloride ion and / or sulfate ion and the oxidizing agent is hydrogen peroxide. 請求項1ないし4のいずれか1項において、前記銅系部材の表面に防食皮膜が形成されており、該防食皮膜の耐食性を試験することを特徴とする銅系部材の耐食性試験方法。   5. The method for testing corrosion resistance of a copper-based member according to claim 1, wherein a corrosion-resistant film is formed on a surface of the copper-based member, and the corrosion resistance of the corrosion-resistant film is tested.
JP2011079467A 2011-03-31 2011-03-31 Corrosion resistance testing method for copper-based member Pending JP2012215410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011079467A JP2012215410A (en) 2011-03-31 2011-03-31 Corrosion resistance testing method for copper-based member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011079467A JP2012215410A (en) 2011-03-31 2011-03-31 Corrosion resistance testing method for copper-based member

Publications (1)

Publication Number Publication Date
JP2012215410A true JP2012215410A (en) 2012-11-08

Family

ID=47268308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011079467A Pending JP2012215410A (en) 2011-03-31 2011-03-31 Corrosion resistance testing method for copper-based member

Country Status (1)

Country Link
JP (1) JP2012215410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237479A (en) * 2013-06-14 2014-12-24 中国振华集团云科电子有限公司 Antioxidant method for checking base metal copper powder
CN113396329A (en) * 2019-01-29 2021-09-14 大金工业株式会社 Refrigerant pipe inspection method and refrigerant pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212459A (en) * 1992-10-08 1994-08-02 Nalco Chem Co Method for suppressing corrosion and living organism in cooling water system containing copper and copper alloy
JPH09111482A (en) * 1995-10-19 1997-04-28 Kurita Water Ind Ltd Corrosion preventing method of metal in water system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212459A (en) * 1992-10-08 1994-08-02 Nalco Chem Co Method for suppressing corrosion and living organism in cooling water system containing copper and copper alloy
JPH09111482A (en) * 1995-10-19 1997-04-28 Kurita Water Ind Ltd Corrosion preventing method of metal in water system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014047953; 居安隆志、井芹一: '銅チューブの耐食性評価方法の検討' 日本材料学会 腐食防食部門委員会資料 第264回例会 Vol.47,No.5, 20080909, Page.1-6 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237479A (en) * 2013-06-14 2014-12-24 中国振华集团云科电子有限公司 Antioxidant method for checking base metal copper powder
CN113396329A (en) * 2019-01-29 2021-09-14 大金工业株式会社 Refrigerant pipe inspection method and refrigerant pipe
CN113396329B (en) * 2019-01-29 2024-02-27 大金工业株式会社 Method for inspecting refrigerant piping and refrigerant piping

Similar Documents

Publication Publication Date Title
TWI685588B (en) Inhibitors of metal corrosion
JP5807697B1 (en) Corrosion control method in closed cooling water system, corrosion inhibitor for closed cooling water system, and corrosion suppression system
CN111441061A (en) In-situ metal rust removing and preventing agent as well as preparation method and application method thereof
JP2012215410A (en) Corrosion resistance testing method for copper-based member
US20200040464A1 (en) Aqueous solution and method for improving corrosion resistance of a cr(iii) conversion coating and modified cr(iii) conversion coating
CN104498950B (en) A kind of high selectivity titanium layer etching bath composition
JP5789916B2 (en) Pitting corrosion inhibitor and pitting corrosion suppression method
CN102221791B (en) Photoresist stripper composition
Igual Muñoz et al. Effect of aqueous lithium bromide solutions on the corrosion resistance and galvanic behavior of copper-nickel alloys
KR101715618B1 (en) Metal surface treating agent for descaling
JP5072059B2 (en) Cleaning method for inner surface of copper tube or copper alloy tube
JP5529557B2 (en) Rust prevention treatment method for heat exchanger
JP5842293B2 (en) Anti-paining agent and anti-paining method
JP2012241215A (en) Liquid for forming fine structure film on metal surface
ES2708173T3 (en) Formulation of metal loss inhibitor and processes
JP2002371270A (en) Antifreeze
JP5799543B2 (en) Method for suppressing pitting corrosion of copper-based members
JP6566010B2 (en) Metal anticorrosive for cooling water and processing method of cooling water system
JP6369095B2 (en) Method for inhibiting corrosion of copper-based member and corrosion inhibitor
JP4866275B2 (en) Detergent for metal products and aqueous solution for metal products
JP6635173B1 (en) Corrosion protection method for metal members of cooling water system
JP4448353B2 (en) Anticorrosion control method for equipment using carbon steel
JP2004132636A (en) Corrosion inhibition method of iron-based metal
JP5849417B2 (en) Method for stopping pitting corrosion of copper-based member and pitting corrosion stopping agent
JP4921001B2 (en) How to remove patina

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150901

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150908

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20151106