JP2012215406A - Sample preparation method - Google Patents
Sample preparation method Download PDFInfo
- Publication number
- JP2012215406A JP2012215406A JP2011079335A JP2011079335A JP2012215406A JP 2012215406 A JP2012215406 A JP 2012215406A JP 2011079335 A JP2011079335 A JP 2011079335A JP 2011079335 A JP2011079335 A JP 2011079335A JP 2012215406 A JP2012215406 A JP 2012215406A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- analysis
- sample preparation
- pulverized
- organic substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
本発明は、有機物を含む試料について、分析装置の容器に容易に固定化することができる試料調製方法に関する。本発明の試料調製方法は、例えば、液晶パネルのような有機フイルムが付着した試料を蛍光X線分析用ブリケットに作成する場合などに有用である。 The present invention relates to a sample preparation method capable of easily immobilizing a sample containing an organic substance in a container of an analyzer. The sample preparation method of the present invention is useful, for example, when a sample to which an organic film such as a liquid crystal panel is attached is prepared on a briquette for fluorescent X-ray analysis.
蛍光X線分析用ブリケットは、一般的にアルミ製または塩ビ製のリングやカップなどの分析容器に粉末試料を詰め、5〜50tの圧力を加え固定化して作成している。しかし、粉末の粒度や混在している物質によって試料の固定化が困難なときは、例えば、ポリエステル等の高分子化合物をバインダとして試料に混ぜ込んで試料を分析容器に固定化することが知られている(非特許文献1)。また、有機物、例えばプラスチックなどの試料については凍結粉砕機を利用して試料を粉砕して蛍光X線分析用ブリケットを作成することもある(非特許文献2)。 A fluorescent X-ray analysis briquette is generally prepared by packing a powder sample in an analysis container such as an aluminum or vinyl chloride ring or cup and immobilizing it by applying a pressure of 5 to 50 t. However, when it is difficult to fix the sample due to the particle size of the powder or the mixed substances, for example, it is known to mix a polymer compound such as polyester into the sample as a binder to fix the sample in the analysis container. (Non-Patent Document 1). In addition, for samples of organic matter such as plastic, a sample may be pulverized using a freeze pulverizer to produce a briquette for fluorescent X-ray analysis (Non-patent Document 2).
近年、液晶パネルに代表されるように、ガラスに有機物フィルムが付着した材料が多量に使用されている。しかし、ガラスに有機物フィルム等が付着したような材料は、これを通常の粉砕機に入れても、ガラスは粉砕されるものの、フィルムは柔らかいため部分的に破れても細かくは粉砕されない。例えば、液晶ガラスパネルを振動ミルで粉砕すると、ガラス部分は粉砕されるが有機物は扮されない。このような状態の粉砕物を分析容器に詰め込んでも、分析に適する良好なブリケットを調製することができない。 In recent years, as represented by a liquid crystal panel, a large amount of a material having an organic film attached to glass has been used. However, a material in which an organic film or the like is attached to glass is pulverized even if it is put in an ordinary pulverizer, but the film is soft and is not pulverized finely even if it is partially broken. For example, when a liquid crystal glass panel is pulverized with a vibration mill, the glass portion is pulverized but the organic matter is not crushed. Even if the pulverized material in such a state is packed in an analysis container, a good briquette suitable for analysis cannot be prepared.
高分子化合物をバインダとして用いる場合には、高分子化合物の種類や添加量によっては分析精度が低下する場合がある。また、試料に含まれる有機物を燃焼して除去することができるが、この場合には、試料に含まれるヒ素やセレン、鉛などの低沸点金属が揮発することが懸念される。 When a polymer compound is used as a binder, the analysis accuracy may be reduced depending on the type and amount of the polymer compound. In addition, organic substances contained in the sample can be burned and removed, but in this case, there is a concern that low boiling point metals such as arsenic, selenium, and lead contained in the sample volatilize.
本発明は、有機物が付着した材料の試料調製方法について、従来の上記問題を解決したものである。具体的には、本発明は、液晶ガラスパネルのような有機フイルムが付着した試料を蛍光X線分析用ブリケット等に調製する場合などにおいて、容易に分析用ブリケットを調製することができる試料調製方法を提供する。 The present invention solves the above-mentioned conventional problems with respect to a method for preparing a sample of a material to which an organic substance is adhered. Specifically, the present invention provides a sample preparation method that can easily prepare a briquette for analysis when a sample to which an organic film such as a liquid crystal glass panel is attached is prepared as a briquette for fluorescent X-ray analysis. I will provide a.
本発明は以下の構成を有する試料調製方法に関する。
〔1〕有機物を含む試料を、−50℃以下で凍結粉砕し、粉砕物の粒度D95(累積95体積%径)を500μm以下にすることを特徴とする試料調製方法。
〔2〕200〜500℃の重量減が5%以上である有機物含有試料について適用する上記[1]に記載する試料調製方法。
The present invention relates to a sample preparation method having the following configuration.
[1] A sample preparation method, wherein a sample containing an organic substance is freeze-pulverized at −50 ° C. or less, and the particle size D95 (cumulative 95 volume% diameter) of the pulverized product is reduced to 500 μm or less.
[2] The sample preparation method according to [1], which is applied to an organic substance-containing sample whose weight loss at 200 to 500 ° C. is 5% or more.
本発明の試料調製方法は、有機物が付着した試料でも分析容器に固定して分析に適する良好なブリケット等を調製することができる。また、本発明の試料調製方法は試料に含まれる有機物を燃焼して除去する方法ではないので、ヒ素やセレン、鉛などの低沸点金属が揮発することがなく、精度の高い分析が可能である。 The sample preparation method of the present invention can prepare a good briquette or the like suitable for analysis by fixing it to an analysis container even with a sample to which an organic substance is attached. In addition, since the sample preparation method of the present invention is not a method for removing organic substances contained in a sample by burning, low-boiling point metals such as arsenic, selenium, and lead do not volatilize, and highly accurate analysis is possible. .
本発明の試料調製方法は、蛍光X線分析法、固体発光分析法、グロー放電発光分析法、グロー放電質量分析法などの固体直接分析の試料調製に適用することができ、これらの分析方法において良好な分析用試料を容易に調製することができる。なお、これらの分析方法は湿式分析法の比較して分析時間が大幅に短い利点を有しており、本発明の試料調製方法によればをこの利点を維持することができる。 The sample preparation method of the present invention can be applied to sample preparation for solid direct analysis such as fluorescent X-ray analysis, solid state emission analysis, glow discharge emission analysis, glow discharge mass spectrometry, etc. A good analytical sample can be easily prepared. These analysis methods have the advantage that the analysis time is significantly shorter than that of the wet analysis method, and this advantage can be maintained according to the sample preparation method of the present invention.
以下、本発明を実施形態に基づいて具体的に説明する。
本発明は、有機物を含む試料を、−50℃以下で凍結粉砕し、粉砕物の粒度D95(累積95体積%径)を500μm以下にすることを特徴とする試料調製方法である。
Hereinafter, the present invention will be specifically described based on embodiments.
The present invention is a sample preparation method characterized in that a sample containing an organic substance is freeze-pulverized at −50 ° C. or less, and the particle size D95 (cumulative 95 volume% diameter) of the pulverized product is 500 μm or less.
本発明の試料調製方法において、有機物を含む試料は、例えば、液晶ガラスパネルや有機物フィルムを挟み込んだ合せガラスなどである。液晶ガラスパネルはディスプレイの裏側に有機物によって形成された偏光フィルタや液晶分子層やITO透明層などが積層されている。廃棄された液晶ガラスパネルを製錬所などで溶融処理する場合、ガラス部分や金属部分の種類を判定するために、これらを粉砕して蛍光X線分析などが行われる。本発明の試料調製方法は、有機物を含む試料としてこれらの液晶ガラスパネルなどに適用することができる。 In the sample preparation method of the present invention, the sample containing an organic substance is, for example, a liquid crystal glass panel or a laminated glass sandwiching an organic film. In the liquid crystal glass panel, a polarizing filter, a liquid crystal molecular layer, an ITO transparent layer, and the like formed of an organic material are laminated on the back side of the display. When the discarded liquid crystal glass panel is melt-treated at a smelter or the like, these are crushed and subjected to fluorescent X-ray analysis or the like in order to determine the type of the glass part or metal part. The sample preparation method of the present invention can be applied to these liquid crystal glass panels as a sample containing an organic substance.
本発明の試料調製方法が適用される試料は、例えば、200〜500℃の重量減が5%以上の有機物含有量であるものが効果が大きい。一般に、重量減が5%以上の有機物を含む試料は蛍光X線分析を行ったときに分析精度が低下する。 For example, a sample to which the sample preparation method of the present invention is applied is effective when the weight loss at 200 to 500 ° C. is an organic content of 5% or more. In general, when a sample containing an organic substance having a weight loss of 5% or more is subjected to fluorescent X-ray analysis, the analysis accuracy decreases.
本発明の試料調製方法は、有機物を含む試料を−50℃以下で凍結粉砕しする。凍結粉砕する温度は−50℃以下が適当であり、−70℃以下が好ましい。粉砕室に凍結用冷媒を導入して粉砕すればよい。粉砕温度が−50℃よりも高いと有機物が十分に粉砕されない懸念がある。冷媒として、液体窒素を用いれば約−196℃で凍結粉砕することができ、ドライアイスを用いれば約−79℃で凍結粉砕することができる。液体窒素を用いて約−196℃で凍結粉砕すると有機物および無機物が何れも凍結し、目的の粒径範囲(D95:500μm以下)に容易に粉砕することができる。 In the sample preparation method of the present invention, a sample containing an organic substance is freeze-ground at −50 ° C. or lower. The temperature for freeze pulverization is suitably −50 ° C. or lower, and preferably −70 ° C. or lower. A freezing refrigerant may be introduced into the pulverization chamber and pulverized. When the pulverization temperature is higher than −50 ° C., there is a concern that the organic matter is not sufficiently pulverized. If liquid nitrogen is used as the refrigerant, it can be freeze-ground at about -196 ° C, and if dry ice is used, it can be freeze-ground at about -79 ° C. When freeze-pulverized at about -196 ° C using liquid nitrogen, both organic and inorganic substances are frozen and can be easily pulverized to a target particle size range (D95: 500 µm or less).
本発明の試料調製方法において、粉砕物の粒度D95(累積95体積%径)が500μm以下、好ましくは400μm以下、より好ましくは350μm以下になるように凍結粉砕する。粉砕物の粒度D95が500μmより大きいと、例えば、蛍光X線分析用のブリケットを調製したときに、有機物の粗大粒子が含まれるようになり、分析精度が低下する懸念がある。また、粉砕物の粒度が大きいと、分析容器に詰め込んだときに十分に固定化せずに粉末の一部が容器表面からこぼれる場合があり、あるいは表面に亀裂を生じる場合がある。 In the sample preparation method of the present invention, freeze pulverization is performed so that the particle size D95 (cumulative 95% by volume) of the pulverized product is 500 μm or less, preferably 400 μm or less, more preferably 350 μm or less. If the particle size D95 of the pulverized product is larger than 500 μm, for example, when a briquette for fluorescent X-ray analysis is prepared, coarse particles of organic matter are included, and there is a concern that the analysis accuracy may be lowered. In addition, when the particle size of the pulverized product is large, a part of the powder may spill from the surface of the container without being sufficiently fixed when packed in the analysis container, or the surface may be cracked.
以下、本発明の実施例および比較例を示す。なお、凍結粉砕装置として市販機(機種名:SPEX製6770型)を使用した。蛍光X線分析用のプレス試料として口径20mmφのアルミ製リングまたは塩ビ製リングを用いた。 Examples of the present invention and comparative examples are shown below. A commercially available machine (model name: SPEX 6770 type) was used as the freeze pulverizer. An aluminum ring or a PVC ring having a diameter of 20 mmφ was used as a press sample for fluorescent X-ray analysis.
〔実施例1〕
粗破砕したフラットパネルディスプレイのガラス粗粉砕物を約4g採取して、凍結粉採用容器に入れた。凍結粉砕用の冷媒として液体窒素を使用し、−196℃で凍結粉砕した。破砕時間は装置の発熱を防ぐため3分を2回とした。凍結粉砕して得た粉末をレーザー散乱法にて粒度分布を測定したところ、D95は約350μmであった。さらに、この粉末をTG−DTAにて重量減を測定したところ約20%であった。この粉末をプレス前リング内に試料が満たされるように詰め、蛍光X線分析用のプレス試料を作成したところ、口径20mmφのアルミ製リング、または塩ビ製リングの何れにおいてもプレス成型は容易であった。
[Example 1]
About 4 g of coarsely crushed flat panel display glass crushed material was collected and placed in a frozen powder container. Liquid nitrogen was used as a refrigerant for freeze grinding, and freeze grinding was performed at -196 ° C. The crushing time was 3 minutes twice to prevent the apparatus from generating heat. When the particle size distribution of the powder obtained by freeze pulverization was measured by a laser scattering method, D95 was about 350 μm. Furthermore, when the weight loss of this powder was measured by TG-DTA, it was about 20%. This powder was packed so that the sample was filled in the ring before pressing, and a press sample for fluorescent X-ray analysis was prepared. It was.
〔実施例2〕
粉砕時間を調整した以外は実施例1と同様に凍結粉砕して表1に示す粒度分布の粉砕を得た。これらの粉末を分析容器(上記アルミ製リング)に入れてプレス成形した。表1に示すように、D95が650μmの試料No.1はブリケット表面に亀裂がある。一方、D95が500μmの試料No.1、350μmの試料No.3は何れもブリケット表面平滑であり、良好な分析試料を得ることができる。
[Example 2]
Except for adjusting the pulverization time, freeze pulverization was carried out in the same manner as in Example 1 to obtain pulverization having the particle size distribution shown in Table 1. These powders were put into an analysis container (the above aluminum ring) and press-molded. As shown in Table 1, sample No. 1 with D95 of 650 μm has cracks on the briquette surface. On the other hand, sample No. 1 with D95 of 500 μm and sample No. 3 with 350 μm both have a smooth briquette surface, and a good analytical sample can be obtained.
〔実施例3〕
実施例1とは異なるフラットパネルディスプレイのガラス粗粉砕物を用い、凍結粉砕用の冷媒としてドライアイスを使用し、−79℃で凍結した以外は実施例1と同様にして凍結粉砕を行った。凍結粉砕して得た粉末をレーザー散乱法にて粒度分布を測定したところ、D95は約400μmであった。さらに、この粉末をTG−DTAにて重量減を測定したところ約25%であった。この粉末をプレス前リング内に試料が満たされるように詰め、蛍光X線分析用のプレス試料を作成したところ、口径20mmφのアルミ製リング、または塩ビ製リングの何れにおいてもプレス成型は容易であった。
Example 3
Free pulverization was carried out in the same manner as in Example 1 except that a coarse crushed glass of a flat panel display different from Example 1 was used, dry ice was used as a refrigerant for freeze pulverization, and it was frozen at -79 ° C. When the particle size distribution of the powder obtained by freeze pulverization was measured by a laser scattering method, D95 was about 400 μm. Furthermore, when the weight loss of this powder was measured by TG-DTA, it was about 25%. When this powder was packed in the ring before press so that the sample was filled and a press sample for fluorescent X-ray analysis was prepared, press molding was easy with either an aluminum ring with a diameter of 20 mmφ or a PVC ring. It was.
〔比較例1〕
実施例1と同様のフラットパネルディスプレイのガラス粗粉砕物を振動ミルにて粉砕したところ、有機物フィルを粉砕できず、分析用ブリケットを作成することができなかった。
[Comparative Example 1]
When the coarse pulverized glass of the flat panel display similar to that in Example 1 was pulverized with a vibration mill, the organic matter film could not be pulverized and an analytical briquette could not be prepared.
〔比較例2〕
エチレングリコール(液温−20℃)を粉砕室に導入して粉砕を行ったところ、有機物フィルを十分に粉砕することができなかった。
[Comparative Example 2]
When ethylene glycol (liquid temperature −20 ° C.) was introduced into the pulverization chamber and pulverized, the organic matter fill could not be sufficiently pulverized.
Claims (2)
A sample preparation method characterized by freeze-pulverizing a sample containing an organic substance at −50 ° C. or less and setting the particle size D95 (cumulative 95 volume% diameter) of the pulverized product to 500 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011079335A JP5743074B2 (en) | 2011-03-31 | 2011-03-31 | Sample preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011079335A JP5743074B2 (en) | 2011-03-31 | 2011-03-31 | Sample preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012215406A true JP2012215406A (en) | 2012-11-08 |
JP5743074B2 JP5743074B2 (en) | 2015-07-01 |
Family
ID=47268304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011079335A Active JP5743074B2 (en) | 2011-03-31 | 2011-03-31 | Sample preparation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5743074B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106367593A (en) * | 2016-08-25 | 2017-02-01 | 安徽华铂再生资源科技有限公司 | Process of producing lead-tin alloy from high-tin regenerated lead |
CN106435194A (en) * | 2016-09-30 | 2017-02-22 | 刘振 | Efficient desulfurization technology for waste lead-acid cell lead plaster |
CN110514501A (en) * | 2019-09-27 | 2019-11-29 | 贵阳铝镁设计研究院有限公司 | Electrolyte and the full-automatic sample preparation detection device of primary aluminum |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108707761B (en) | 2018-05-25 | 2019-10-29 | 江苏新春兴再生资源有限责任公司 | A kind of selectivity for regenerating the refining of lead bullion protects tin agent and application method except antimony arsenic |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001235718A (en) * | 2000-02-23 | 2001-08-31 | Mitsuo Kamiwano | Method for recycling treatment of liquid crystal panel and system for recycling treatment |
JP2002308996A (en) * | 2001-04-12 | 2002-10-23 | Shiyouritsu Plast Kogyo Kk | Method for producing fine polymer powder and fine polymer powder |
JP2004354318A (en) * | 2003-05-30 | 2004-12-16 | Sumitomo Chem Co Ltd | Method of predicting generating temperature of solder blister |
JP2005146124A (en) * | 2003-11-14 | 2005-06-09 | Toray Ind Inc | Highly-filled resin composition, and molded article obtained therefrom |
JP2008093509A (en) * | 2006-10-06 | 2008-04-24 | Mitsubishi Materials Corp | Treatment method of display panel waste |
JP2008303271A (en) * | 2007-06-06 | 2008-12-18 | Toray Ind Inc | Method for producing polyester and film using the same |
JP2009179739A (en) * | 2008-01-31 | 2009-08-13 | Toray Ind Inc | Polyester resin composition and film composed of the same |
JP2011021928A (en) * | 2009-07-14 | 2011-02-03 | Fuji Electric Holdings Co Ltd | Method for selecting halogen-based flame retardant-containing resin for mold forming |
-
2011
- 2011-03-31 JP JP2011079335A patent/JP5743074B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001235718A (en) * | 2000-02-23 | 2001-08-31 | Mitsuo Kamiwano | Method for recycling treatment of liquid crystal panel and system for recycling treatment |
JP2002308996A (en) * | 2001-04-12 | 2002-10-23 | Shiyouritsu Plast Kogyo Kk | Method for producing fine polymer powder and fine polymer powder |
JP2004354318A (en) * | 2003-05-30 | 2004-12-16 | Sumitomo Chem Co Ltd | Method of predicting generating temperature of solder blister |
JP2005146124A (en) * | 2003-11-14 | 2005-06-09 | Toray Ind Inc | Highly-filled resin composition, and molded article obtained therefrom |
JP2008093509A (en) * | 2006-10-06 | 2008-04-24 | Mitsubishi Materials Corp | Treatment method of display panel waste |
JP2008303271A (en) * | 2007-06-06 | 2008-12-18 | Toray Ind Inc | Method for producing polyester and film using the same |
JP2009179739A (en) * | 2008-01-31 | 2009-08-13 | Toray Ind Inc | Polyester resin composition and film composed of the same |
JP2011021928A (en) * | 2009-07-14 | 2011-02-03 | Fuji Electric Holdings Co Ltd | Method for selecting halogen-based flame retardant-containing resin for mold forming |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106367593A (en) * | 2016-08-25 | 2017-02-01 | 安徽华铂再生资源科技有限公司 | Process of producing lead-tin alloy from high-tin regenerated lead |
CN106367593B (en) * | 2016-08-25 | 2018-05-01 | 安徽华铂再生资源科技有限公司 | A kind of technique using high tin Production of Secondary Lead terne metal |
CN106435194A (en) * | 2016-09-30 | 2017-02-22 | 刘振 | Efficient desulfurization technology for waste lead-acid cell lead plaster |
CN110514501A (en) * | 2019-09-27 | 2019-11-29 | 贵阳铝镁设计研究院有限公司 | Electrolyte and the full-automatic sample preparation detection device of primary aluminum |
Also Published As
Publication number | Publication date |
---|---|
JP5743074B2 (en) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5743074B2 (en) | Sample preparation method | |
Sohn et al. | Combinatorial search for new red phosphors of high efficiency at VUV excitation based on the YRO4 (R= As, Nb, P, V) system | |
Ault et al. | Size-dependent changes in sea spray aerosol composition and properties with different seawater conditions | |
Bartels et al. | Viscosity of flux-rich pegmatitic melts | |
Ortega et al. | Historic lime-mortar 14C dating of Santa María la Real (Zarautz, northern Spain): Extraction of suitable grain size for reliable 14C dating | |
Pontolillo et al. | Coal petrographic laboratory procedures and safety manual II | |
Potdevin et al. | Luminescent nanocomposites made of finely dispersed Y3Ga5O12: Tb powder in a polymer matrix: promising candidates for optical devices | |
Hai et al. | The effect of grain surface on the long afterglow properties of Sr2MgSi2O7: Eu2+, Dy3+ | |
Zhao et al. | Chromium and vanadium bearing nanominerals and ultra-fine particles in a super-high-organic-sulfur coal from Ganhe coalmine, Yanshan Coalfield, Yunnan, China | |
Marguí et al. | Sample preparation for X-ray fluorescence analysis | |
FR2892113B1 (en) | RARE SUBMICRONIC ROUND BORATE, PROCESS FOR PREPARING THE SAME AND USE THEREOF AS LUMINOPHORE | |
JPWO2014050900A1 (en) | Method for producing conductive mayenite compound with high electron density | |
Xu et al. | New synthetic route and characterization of magnesium borate nanorods | |
Glindemann et al. | Phosphine from rocks: mechanically driven phosphate reduction? | |
Colucci et al. | 3-D reconstruction of ash vesicularity: insights into the origin of ash-rich explosive eruptions | |
JPWO2014050899A1 (en) | Method for producing conductive mayenite compound with high electron density | |
Ortega et al. | Improved sample preparation methodology on lime mortar for reliable 14C dating | |
CN102697665A (en) | Antioxidant | |
US20200140341A1 (en) | Production of nanoparticulate compressed tablets (pellets) from synthetic or natural materials using a specially developed grinding and compressing method | |
Tret’Yak et al. | Formation of high-density scintillation ceramic from LuAG: Ce+ Lu2O3 powders obtained by co-precipitation method | |
Liu et al. | Effect of ZrO2 content on the properties of diamond grinding wheel vitrified bond | |
Baraldi et al. | Eu incorporation into sol–gel silica for photonic applications: spectroscopic and TEM evidences of α-quartz and Eu pyrosilicate nanocrystal growth | |
Charon et al. | Impact delivery of organic matter on the acapulcoite–lodranite parent-body deduced from C, N isotopes and nanostructures of carbon phases in Acapulco and Lodran | |
CN104593654B (en) | A kind of tungsten base neutron transparent material of neutron diffraction high-pressure chamber and preparation method thereof | |
Bastide et al. | Etude comparative des tetrahydro-et-deuteroaluminates de lithium LiAlH4, LiAlD4. III-Caracterisation de la variete γ haute pression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141001 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150408 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5743074 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |