JP2012215337A - Ice making machine - Google Patents

Ice making machine Download PDF

Info

Publication number
JP2012215337A
JP2012215337A JP2011080539A JP2011080539A JP2012215337A JP 2012215337 A JP2012215337 A JP 2012215337A JP 2011080539 A JP2011080539 A JP 2011080539A JP 2011080539 A JP2011080539 A JP 2011080539A JP 2012215337 A JP2012215337 A JP 2012215337A
Authority
JP
Japan
Prior art keywords
refrigerant
ice making
ice
machine
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011080539A
Other languages
Japanese (ja)
Other versions
JP5809430B2 (en
Inventor
Kazuyoshi Seki
和芳 関
Shinichi Kaga
進一 加賀
Naoki Totani
直樹 戸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2011080539A priority Critical patent/JP5809430B2/en
Publication of JP2012215337A publication Critical patent/JP2012215337A/en
Application granted granted Critical
Publication of JP5809430B2 publication Critical patent/JP5809430B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress manufacturing costs by reducing the number of arrangements of a refrigerant detection means.SOLUTION: An ice storage chamber 11 and a machine chamber 12 communicates with each other spatially through a piping space 45 accommodating the third connection pipe 35C and the fourth connection pipe 35D of a freezing mechanism E. A refrigerant detection sensor S, which can detect the refrigerant leaking out of the freezing mechanism E, is arranged below a portion communicating with the piping space 45 in the machine chamber 12. Thus the refrigerant leaked out of the freezing mechanism E in the machine chamber 12 can be detected with the refrigerant detection sensor S, and the refrigerant leaked out of the freezing mechanism E in the ice storage chamber 11 flows into the machine chamber 12 through the piping space 45, which can be detected with the refrigerant detection sensor S to property detect the leak out of the refrigerant from the freezing mechanism E with one refrigerant detection sensor S.

Description

本発明は、可燃性ガスからなる冷媒を循環させ、製氷機構の製氷運転および除氷運転を可能とする冷凍機構と、前記冷凍機構の閉回路内から漏出した前記冷媒を検知可能な冷媒検知手段とを備えた製氷機に関するものである。   The present invention provides a refrigeration mechanism that circulates a refrigerant composed of a combustible gas and enables ice making operation and deicing operation of the ice making mechanism, and refrigerant detecting means that can detect the refrigerant leaking from the closed circuit of the refrigeration mechanism It is related with the ice maker provided with.

図8は、ブロック状の氷塊を連続的に生成する噴射式の製氷機M1を、一部破断して示す側面図である。この製氷機M1は、略箱形をなす筐体10の内部を上下に区画して、上方が貯氷室11として、下方が機械室12として構成されている。貯氷室11の内部上方には、氷塊を生成する製氷部20を備えた製氷機構Dが配設され、機械室12に配設された冷凍機構E1により該製氷機構Dの製氷部20を冷却することで該製氷部20における各製氷小室20Aにおいて氷塊Iを生成すると共に(図9参照)、該冷凍機構E1により該製氷部20を加熱することで生成された氷塊を貯氷室11内に落下させて貯留するようになっている。なお、図8に示す製氷機M1の製氷機構Dは、図9に示すように、下向きに開口した多数の製氷小室20Aが形成した前記製氷部20と、水皿21と、水皿21の下部に配設された製氷水タンク22と、これら水皿21および製氷水タンク22を一体的に傾動させる水皿開閉機構23等から構成されている。   FIG. 8 is a side view, partially broken away, showing an injection-type ice making machine M1 that continuously generates block-shaped ice blocks. The ice making machine M1 is configured such that the interior of a substantially box-shaped housing 10 is divided into upper and lower parts, the upper part being an ice storage room 11 and the lower part being a machine room 12. An ice making mechanism D having an ice making unit 20 that generates ice blocks is disposed above the ice storage chamber 11, and the ice making unit 20 of the ice making mechanism D is cooled by a refrigeration mechanism E 1 disposed in the machine chamber 12. Thus, ice blocks I are generated in each ice making chamber 20A in the ice making unit 20 (see FIG. 9), and the ice blocks generated by heating the ice making unit 20 by the freezing mechanism E1 are dropped into the ice storage chamber 11. Are stored. The ice making mechanism D of the ice making machine M1 shown in FIG. 8 includes, as shown in FIG. 9, the ice making unit 20 formed by a large number of ice making chambers 20A opened downward, a water dish 21, and a lower part of the water dish 21. And the water tray opening / closing mechanism 23 for tilting the water tray 21 and the ice making water tank 22 integrally.

前記冷凍機構E1は、図9に示すように、圧縮機60、強制空冷式の凝縮器61、膨張弁62および蒸発器63等を連結管65(第1連結管65A、第2連結管65B、第3連結管65C、第4連結管65D)を連結した閉回路内に冷媒を循環するようになっており、図8に示すように、圧縮機60、凝縮器61および膨張弁62は機械室12内に配設され、蒸発器63は貯氷室11内において製氷部20の上面に配設されている。そして冷凍機構E1は、圧縮機60で前記冷媒を高圧の気体とし、凝縮器61で該冷媒を冷却して高圧の液体とし、膨張弁62で該冷媒を断熱膨張した液体とし、蒸発器63で該冷媒を気化させて気化熱により該蒸発器63を冷却する。また冷凍機構E1は、前記圧縮機60と蒸発器63とを連結する第5連結管65Eを備え、圧縮機60からの高温・高圧で加熱状態の冷媒(ホットガス)を蒸発器63に供給して、該蒸発器63を加熱し得るようになっている。従って冷凍機構E1は、蒸発器63を冷却することで製氷機構Dの製氷運転を可能とすると共に、該蒸発器63を加熱することで製氷機構Dの除氷運転を可能とする。   As shown in FIG. 9, the refrigeration mechanism E1 includes a compressor 60, a forced air-cooled condenser 61, an expansion valve 62, an evaporator 63, and the like connected to a connecting pipe 65 (first connecting pipe 65A, second connecting pipe 65B, The refrigerant is circulated in a closed circuit connecting the third connecting pipe 65C and the fourth connecting pipe 65D). As shown in FIG. 8, the compressor 60, the condenser 61, and the expansion valve 62 are provided in the machine room. The evaporator 63 is disposed on the upper surface of the ice making unit 20 in the ice storage chamber 11. The refrigeration mechanism E1 uses the compressor 60 to convert the refrigerant into a high-pressure gas, the condenser 61 to cool the refrigerant to high-pressure liquid, the expansion valve 62 to adiabatically expand the liquid, and the evaporator 63 to The evaporator 63 is cooled by the heat of vaporization by evaporating the refrigerant. The refrigeration mechanism E1 includes a fifth connecting pipe 65E that connects the compressor 60 and the evaporator 63, and supplies the refrigerant (hot gas) heated from the compressor 60 at a high temperature and high pressure to the evaporator 63. Thus, the evaporator 63 can be heated. Therefore, the refrigeration mechanism E1 allows the ice making mechanism D to perform an ice making operation by cooling the evaporator 63 and heats the evaporator 63 to enable the ice making mechanism D to perform an ice removing operation.

そして前記冷凍機構E1では、冷媒として、プロパンやブタン等の可燃性ガスを採用している。このため前記製氷機M1では、前記冷媒を検知可能な冷媒検知センサS1が前記機械室12内および貯氷室11内に各々1つずつ配設され、冷凍機構E1から漏出した該冷媒を検知し得るようになっている。従って前記製氷機M1では、冷凍機構E1から漏出した前記冷媒を前記冷媒検知センサS1が検知した場合に、前記製氷機構Dにおける製氷運転を停止すると共に、前記凝縮器61に装備された冷却ファン64を連続作動させて機械室12内に冷媒が停留するのを阻止するよう制御され、電気機器や高温になる装置や部品が収容されている該機械室12内で冷媒の濃度が上昇することを防止するようになっている。なお、冷媒検知センサを備えた冷蔵庫は、特許文献1に開示されている。   The refrigeration mechanism E1 employs a combustible gas such as propane or butane as the refrigerant. Therefore, in the ice making machine M1, one refrigerant detection sensor S1 capable of detecting the refrigerant is provided in each of the machine chamber 12 and the ice storage chamber 11, and the refrigerant leaking from the refrigeration mechanism E1 can be detected. It is like that. Accordingly, in the ice making machine M1, when the refrigerant detection sensor S1 detects the refrigerant leaked from the refrigeration mechanism E1, the ice making operation in the ice making mechanism D is stopped and the cooling fan 64 provided in the condenser 61 is stopped. Is controlled so as to prevent the refrigerant from staying in the machine room 12, and the concentration of the refrigerant is increased in the machine room 12 in which electrical devices, high-temperature devices and parts are accommodated. It comes to prevent. In addition, the refrigerator provided with the refrigerant | coolant detection sensor is disclosed by patent document 1. FIG.

特開2001−336869号公報JP 2001-336869 A

前記従来の製氷機M1は、貯氷室11と機械室12とが完全に区画されているため、前述した如く、冷凍機構E1の圧縮機60、空冷式の凝縮器61、膨張弁62およびこれら近傍から機械室12内へ漏出した冷媒を検知する冷媒検知センサS1を該機械室12に配設すると共に、蒸発器63およびその近傍から貯氷室11内へ漏出した冷媒を検知する別の冷媒検知センサS1を該貯氷室11に配設する必要があった。このため、少なくとも2つの冷媒検知センサS1が必要であるから、該冷媒検知センサS1の部品代および組付工数が増えるため、製氷機M1の製造コストが嵩む原因となっている。   In the conventional ice making machine M1, since the ice storage chamber 11 and the machine chamber 12 are completely partitioned, as described above, the compressor 60 of the refrigeration mechanism E1, the air-cooled condenser 61, the expansion valve 62, and the vicinity thereof. A refrigerant detection sensor S1 that detects refrigerant leaked from the inside of the machine room 12 to the machine room 12 is provided in the machine room 12, and another refrigerant detection sensor that detects refrigerant leaked from the evaporator 63 and the vicinity thereof into the ice storage room 11 It was necessary to arrange S1 in the ice storage chamber 11. For this reason, since at least two refrigerant | coolant detection sensors S1 are required, since the component cost and assembly man-hour of this refrigerant | coolant detection sensor S1 increase, it is the cause that the manufacturing cost of the ice making machine M1 increases.

そこで本発明では、前述した従来の技術に内在している課題に鑑み、これを好適に解決するべく提案されたものであって、冷媒検知手段の配設数を少なくして製造コストが抑えられた製氷機を提供することを目的とする。   Therefore, in the present invention, in view of the problems inherent in the above-described conventional technology, it has been proposed to suitably solve this problem, and the manufacturing cost can be reduced by reducing the number of refrigerant detection means. The purpose is to provide an ice machine.

前記課題を解決し、所期の目的を達成するため、請求項1に記載の発明は、
空気より比重が大きい可燃性ガスの冷媒を循環させる冷凍機構を備え、この冷凍機構を構成する蒸発器が貯氷室内に配設された製氷機構に装着されると共に、前記冷凍機構を構成する圧縮機、凝縮器および膨張弁が前記貯氷室の下方に画成された機械室内に配設された製氷機において、
前記貯氷室と前記機械室とを空間的に連通する連通空間が設けられ、
前記機械室内において前記連通空間と連通する部位の下方に、前記冷凍機構から漏出した前記冷媒を検出可能な冷媒検出手段が配設されたことを要旨とする。
In order to solve the problem and achieve the intended purpose, the invention according to claim 1
A refrigeration mechanism that circulates a refrigerant of a combustible gas having a specific gravity greater than that of air, and an evaporator that constitutes the refrigeration mechanism is mounted on an ice making mechanism disposed in an ice storage chamber, and a compressor that constitutes the refrigeration mechanism An ice making machine provided with a condenser and an expansion valve in a machine room defined below the ice storage room,
A communication space that spatially communicates the ice storage chamber and the machine room is provided,
The gist of the invention is that refrigerant detection means capable of detecting the refrigerant leaked from the refrigeration mechanism is disposed below a portion communicating with the communication space in the machine room.

従って、請求項1の発明によれば、冷凍機構から貯氷室内へ漏出した冷媒は連通空間を介して機械室へ移動するから、冷凍機構から機械室内へ漏出した冷媒は勿論、該冷凍機構から貯氷室内へ漏出した冷媒も、機械室内に配設した1つの前記冷媒検知手段により確実に検知することができる。すなわち、貯氷室内に冷媒検知手段を配設する必要がないから、部品点数が削減されると共に組付工数が少なくなり、製氷機の製造コストを抑えることができる。   Therefore, according to the first aspect of the present invention, since the refrigerant leaked from the refrigeration mechanism into the ice storage chamber moves to the machine room through the communication space, not only the refrigerant leaked from the refrigeration mechanism into the machine chamber but also the ice storage from the refrigeration mechanism. The refrigerant leaking into the room can also be reliably detected by the one refrigerant detecting means provided in the machine room. That is, since it is not necessary to dispose the refrigerant detecting means in the ice storage chamber, the number of parts is reduced and the number of assembling steps is reduced, and the manufacturing cost of the ice making machine can be suppressed.

請求項2に記載の発明は、
前記連通空間には、前記冷凍機構における前記蒸発器と前記膨張弁とを連結する連結管および該蒸発器と前記圧縮機とを連結する連結管が、隙間が形成された状態で収容されることを要旨とする。
従って、請求項2に係る発明によれば、冷凍機構における蒸発器と膨張弁とを連結する連結管から漏出した冷媒や、蒸発器と圧縮機とを連結する連結管から漏出した冷媒は、連通空間内の隙間を移動して機械室内へ適切に移動するので、該冷媒は機械室内に配設した冷媒検知手段により適切に検知し得る。また、貯氷室内に漏出した冷媒も、連通空間の隙間を介して機械室へ適切に移動することができる。
The invention described in claim 2
In the communication space, a connecting pipe that connects the evaporator and the expansion valve in the refrigeration mechanism and a connecting pipe that connects the evaporator and the compressor are accommodated in a state where a gap is formed. Is the gist.
Therefore, according to the invention which concerns on Claim 2, the refrigerant | coolant which leaked from the connecting pipe which connects the evaporator and expansion valve in a refrigeration mechanism, and the refrigerant | coolant which leaked from the connecting pipe which connects an evaporator and a compressor are connected. Since the gap in the space is moved and appropriately moved into the machine room, the refrigerant can be appropriately detected by the refrigerant detection means disposed in the machine room. In addition, the refrigerant leaking into the ice storage chamber can be appropriately moved to the machine room through the gap in the communication space.

請求項3に記載の発明は、
前記連通空間は、前記貯氷室における前記蒸発器の配設位置に近接した壁部で該貯氷室と連通していることを要旨とする。
従って、請求項3に係る発明によれば、蒸発器から漏出した冷媒は、連通空間に流れ込んで機械室へ迅速に移動するようになり、貯氷室に停留し難くし得る。
The invention according to claim 3
The communication space is characterized in that the communication space communicates with the ice storage chamber at a wall portion close to the position where the evaporator is disposed in the ice storage chamber.
Therefore, according to the third aspect of the present invention, the refrigerant leaked from the evaporator flows into the communication space and quickly moves to the machine room, so that it can be difficult to stop in the ice storage room.

本発明に係る製氷機によれば、冷媒検知手段の配設数が少なくなり、製造コストが抑えられる。   According to the ice making machine of the present invention, the number of refrigerant detection means is reduced, and the manufacturing cost can be reduced.

実施例の製氷機における製氷機構および冷凍機構の概略構成図である。It is a schematic block diagram of the ice making mechanism and freezing mechanism in the ice making machine of an Example. 実施例の製氷機の構成を概略的に示す側断面図である。It is side sectional drawing which shows schematically the structure of the ice making machine of an Example. 実施例の製氷機の構成を一部破断して概略的に示す分解斜視図である。It is a disassembled perspective view which shows the structure of the ice making machine of an Example partially broken, and is shown schematically. 製氷室内に漏出した冷媒が、配管空間を介して機械室内へ移動可能な構成を示す部分断面図である。It is a fragmentary sectional view which shows the structure which the refrigerant | coolant leaked into the ice making chamber can move to a machine room via piping space. 実施例の製氷機における本願発明に関連する制御系のブロック図である。It is a block diagram of the control system relevant to this invention in the ice making machine of an Example. 実施例の製氷機において、通常の製氷運転および除氷運転を行なう通常モードでのタイミングチャートである。4 is a timing chart in a normal mode in which normal ice making operation and deicing operation are performed in the ice making machine of the embodiment. 実施例の製氷機において、冷媒検知センサの故障時に行なうセーフモードでのタイミングチャートである。In the ice making machine of an Example, it is a timing chart in the safe mode performed at the time of failure of a refrigerant | coolant detection sensor. 従来の製氷機の構成を概略的に示す側断面図である。It is a sectional side view which shows the structure of the conventional ice making machine roughly. 従来の製氷機における製氷機構および冷凍機構の概略構成図である。It is a schematic block diagram of the ice making mechanism and refrigeration mechanism in the conventional ice making machine.

次に、本発明に係る製氷機につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。実施例では、図8に示した従来の製氷機M1と全体の構成が基本的に同じ製氷機を例示する。従って、図8に示した製氷機M1の構成要素と同一の要素については同一の符号を使用すると共に、詳細説明は省略する。なお実施例では、開閉扉18が配設された側(図1の左側)が製氷機M1の前側、前側から見た左右方向を製氷機M1の左右方向とし、上下方向を製氷機M1の上下方向とする。   Next, a preferred embodiment of the ice making machine according to the present invention will be described below with reference to the accompanying drawings. In the embodiment, an ice making machine basically having the same overall configuration as the conventional ice making machine M1 shown in FIG. 8 is illustrated. Accordingly, the same components as those of the ice making machine M1 shown in FIG. 8 are denoted by the same reference numerals, and detailed description thereof is omitted. In the embodiment, the side (left side in FIG. 1) on which the door 18 is disposed is the front side of the ice making machine M1, the left-right direction viewed from the front side is the left-right direction of the ice making machine M1, and the vertical direction is the upper and lower sides of the ice making machine M1. The direction.

実施例の製氷機Mは、図2に示すように、略箱形をなす筐体10の内部が上下に区画されて、断熱構造をなす貯氷室11が上方に画成されると共に該貯氷室11の下方に機械室12が画成されている。貯氷室11には、内部上方に製氷機構Dおよび冷凍機構Eの蒸発器33が配設され、機械室12には、冷凍機構Eを構成する圧縮機30、凝縮器31および膨張弁32等や、その他の各種機器および部品が配設されている。また機械室12には、後述する冷媒検知手段としての冷媒検知センサSが配設されている。   As shown in FIG. 2, the ice making machine M according to the embodiment has an approximately box-shaped housing 10 that is partitioned into upper and lower parts, and an ice storage chamber 11 having a heat insulating structure is defined upward, and the ice storage chamber. A machine room 12 is defined below 11. The ice storage chamber 11 is provided with an evaporator 33 of an ice making mechanism D and a refrigeration mechanism E above the interior, and the machine chamber 12 includes a compressor 30, a condenser 31, an expansion valve 32, and the like that constitute the refrigeration mechanism E. Various other devices and parts are arranged. The machine chamber 12 is provided with a refrigerant detection sensor S as refrigerant detection means described later.

前記製氷機構Dは、図1〜図3に示すように、下向きに開口した多数の製氷小室20Aが形成された前記製氷部20と、該製氷部20の各製氷小室20Aを下方から開閉する水皿21と、水皿21の下部に配設された製氷水タンク22と、これら水皿21および製氷水タンク22を一体的に傾動させる水皿開閉機構23等から構成されている。そして製氷機構Dは、製氷部20の上部において左右方向に水平となるように筐体10に架設された取付部材13に懸架した状態で配設されている(図2、図3参照)。前記製氷部20は、各製氷小室20Aを下方に向けた水平状態で取付部材13に固定されている。前記水皿21は、該水皿21の左側端部に取付けた支持アーム24が、取付部材13のブラケット14に支軸15を介して枢支され、該水皿21の右側端部近傍は、該取付部材13に配設した水皿開閉機構23を構成するカムアーム25にコイルスプリング26を介して接続されている。従って水皿21は、前記カムアーム25を開閉モータ27で正逆回転することで、前記製氷部20を閉成した水平状態(図1に実線で表示)と、該製氷部20から右下方に傾斜した開放状態(図1に2点鎖線で表示)とに姿勢変位し得る。   As shown in FIGS. 1 to 3, the ice making mechanism D includes the ice making unit 20 in which a large number of ice making chambers 20 </ b> A opened downward, and water that opens and closes each ice making chamber 20 </ b> A of the ice making unit 20 from below. The tray 21 is composed of an ice making water tank 22 disposed below the water tray 21, a water tray opening / closing mechanism 23 that tilts the water tray 21 and the ice making water tank 22 together, and the like. The ice making mechanism D is arranged in a state of being suspended on an attachment member 13 installed on the housing 10 so as to be horizontal in the left-right direction at the upper part of the ice making unit 20 (see FIGS. 2 and 3). The ice making unit 20 is fixed to the mounting member 13 in a horizontal state with the ice making chambers 20A facing downward. A support arm 24 attached to the left end portion of the water tray 21 is pivotally supported on the bracket 14 of the attachment member 13 via a support shaft 15, and the vicinity of the right end portion of the water tray 21 is A coil arm 26 is connected to a cam arm 25 constituting a water tray opening / closing mechanism 23 disposed on the attachment member 13. Accordingly, the water tray 21 is tilted downward from the ice making unit 20 by horizontally rotating the cam arm 25 forward and backward by the opening / closing motor 27 so that the ice making unit 20 is closed (indicated by a solid line in FIG. 1). The posture can be changed to the opened state (indicated by a two-dot chain line in FIG. 1).

前記製氷水タンク22は、図1〜図3に示すように、上方に開口したバケット形状の部材であって、水皿21に対して適宜の固定部材で固定され、該水皿21の傾動変位に伴って傾動するよう構成されている。製氷水タンク22は、水皿21が閉成位置に臨む場合は所定量の製氷水を貯留することができ、水皿21が開放位置に臨む場合は貯留していた製氷水をドレンパン16へ放出するよう構成されている。また、製氷水タンク22の最深部分である左側前壁には、該製氷水タンク22内に貯留された製氷水を、前記水皿21に設けた噴射孔を介して製氷部20の各製氷小室20Aへ噴射供給する製氷水ポンプ28が配設されている。   As shown in FIGS. 1 to 3, the ice making water tank 22 is a bucket-shaped member that opens upward, and is fixed to the water tray 21 by an appropriate fixing member. It is comprised so that it may incline with. The ice making water tank 22 can store a predetermined amount of ice making water when the water tray 21 faces the closed position, and discharges the stored ice making water to the drain pan 16 when the water tray 21 faces the open position. It is configured to In addition, ice making water stored in the ice making water tank 22 is placed on the left front wall, which is the deepest part of the ice making water tank 22, in each ice making chamber 20 of the ice making unit 20 through an injection hole provided in the water tray 21. An ice making water pump 28 is provided for injecting and supplying to 20A.

前記冷凍機構Eは、図1〜図3に示すように、機械室12内に配設された圧縮機30と、冷却ファン34が装備された空冷式の凝縮器31と、膨張弁32と、前記貯氷室11において製氷機構Dの製氷部20の上面に蛇行状に配設された蒸発器33とを備え、これら圧縮機30、凝縮器31、膨張弁32および蒸発器33が連結管35により直列に連結されて、可燃性ガスからなる冷媒が循環する冷凍回路が構成されている。すなわち、圧縮機30の出口部と凝縮器31の入口部とが第1連結管35Aで連結され、凝縮器31の出口部と膨張弁32の入口部とが第2連結管35Bで連結され、膨張弁32の出口部と蒸発器33の入口部とが第3連結管35Cで連結され、蒸発器33の出口部と前記圧縮機30の入口部とが第4連結管35Dで連結されている。また、第1連結管35Aの中途に接続されると共に第3連結管35Cの中途に接続された第5連結管35Eが設けられ、該第5連結管35Eの中途に配設された前記ホットガス弁36を開いた状態に制御することで、圧縮機30で圧縮された加熱状態の冷媒(ホットガス)が該第5連結管35Eを介して蒸発器33へ直接供給し得るようになっている。   1-3, the refrigeration mechanism E includes a compressor 30 disposed in the machine room 12, an air-cooled condenser 31 equipped with a cooling fan 34, an expansion valve 32, The ice storage chamber 11 includes an evaporator 33 arranged in a meandering manner on the upper surface of the ice making unit 20 of the ice making mechanism D. The compressor 30, the condenser 31, the expansion valve 32, and the evaporator 33 are connected by a connecting pipe 35. A refrigeration circuit connected in series to circulate a refrigerant made of a combustible gas is configured. That is, the outlet part of the compressor 30 and the inlet part of the condenser 31 are connected by the first connecting pipe 35A, and the outlet part of the condenser 31 and the inlet part of the expansion valve 32 are connected by the second connecting pipe 35B. The outlet part of the expansion valve 32 and the inlet part of the evaporator 33 are connected by a third connecting pipe 35C, and the outlet part of the evaporator 33 and the inlet part of the compressor 30 are connected by a fourth connecting pipe 35D. . Further, a fifth connecting pipe 35E connected in the middle of the first connecting pipe 35A and in the middle of the third connecting pipe 35C is provided, and the hot gas disposed in the middle of the fifth connecting pipe 35E. By controlling the valve 36 to be open, the heated refrigerant (hot gas) compressed by the compressor 30 can be directly supplied to the evaporator 33 via the fifth connecting pipe 35E. .

前記冷媒は、冷蔵庫や製氷機に広く使用されつつあるHC(ハイドロカーボン)冷媒であって、例えばプロパン(R290)やイソブタン(R600a)等の可燃性ガスからなる。この冷媒は、空気より比重が大きく、万一、冷凍機構Eを構成する前記圧縮機30、凝縮器31、膨張弁32、蒸発器33や、連結管35(第1連結管35A〜第5連結管35E)、またはこれら各機器と連結管35との連結部分等から漏出した場合には、製氷機M内の下方へ移動する。なお、冷媒の各種物性等の説明は省略する。   The refrigerant is an HC (hydrocarbon) refrigerant that is widely used in refrigerators and ice makers, and is made of a combustible gas such as propane (R290) or isobutane (R600a). This refrigerant has a specific gravity greater than that of air, and by any chance, the compressor 30, the condenser 31, the expansion valve 32, the evaporator 33, and the connecting pipe 35 (first connecting pipe 35A to fifth connecting pipe) constituting the refrigeration mechanism E. When leaking out from the pipe 35E), or a connecting portion between each of these devices and the connecting pipe 35, it moves downward in the ice making machine M. Note that description of various physical properties of the refrigerant is omitted.

実施例の冷凍機構Eにおける前記膨張弁32は、図1に示すように、前記第4連結管35Dにおける蒸発器33の出口部に配設されて、該蒸発器33の出口部における冷媒温度を検知して圧力を発生する感温筒(感温手段)40と、該膨張弁32を閉状態に切り換える作動部41とを備えており、開状態から閉状態に切り換わる圧力(最大作動圧力(M.O.P.;Maximum Operating Pressure))が設定可能なガス封入タイプである。前記感温筒40は、温度上昇に伴って体積が膨張する封入体が封入されていると共に、作動部41には圧力弁としてのダイアフラム弁43が設けられ、前記感温筒40と作動部41とはキャピラリチューブ42により接続されている。そして、前記感温筒40内の封入体は、製氷機構Dの除氷運転に際して圧縮機30からの加熱状態の冷媒を蒸発器33へ供給すると、これに伴う該蒸発器33の出口部の温度上昇によって体積が膨張して圧力を発生するように設定されており、該封入体の膨張による圧力で前記ダイアフラム弁41を作動させるようになっている。すなわち前記膨張弁32は、圧縮機30からの加熱状態の冷媒を蒸発器33へ供給しない時には開状態に保持されて、凝縮器31から送出された冷媒を蒸発器33に向けて噴射可能となり、圧縮機30から加熱状態の冷媒が蒸発器33へ供給する時には、前記ダイアフラム弁41の作動により閉状態に切り換わって凝縮器31からの冷媒の送出を規制する。   As shown in FIG. 1, the expansion valve 32 in the refrigeration mechanism E of the embodiment is disposed at the outlet portion of the evaporator 33 in the fourth connection pipe 35 </ b> D, and the refrigerant temperature at the outlet portion of the evaporator 33 is set. A temperature sensing cylinder (temperature sensing means) 40 that detects and generates pressure and an operation unit 41 that switches the expansion valve 32 to a closed state are provided, and pressure (maximum operating pressure ( MOP: Maximum Operating Pressure)). The temperature sensing tube 40 is filled with an enclosure whose volume expands as the temperature rises, and the operating portion 41 is provided with a diaphragm valve 43 as a pressure valve, and the temperature sensing tube 40 and the operating portion 41 are provided. Are connected by a capillary tube 42. And the enclosure in the said temperature sensing cylinder 40 will supply the temperature of the exit part of this evaporator 33 accompanying this, when the refrigerant | coolant of the heating state from the compressor 30 is supplied to the evaporator 33 in the deicing operation of the ice making mechanism D. The volume is set so as to expand by raising and pressure is generated, and the diaphragm valve 41 is operated by the pressure generated by the expansion of the enclosure. That is, the expansion valve 32 is held in an open state when the heated refrigerant from the compressor 30 is not supplied to the evaporator 33, and the refrigerant sent from the condenser 31 can be injected toward the evaporator 33. When the heated refrigerant is supplied from the compressor 30 to the evaporator 33, the diaphragm valve 41 is switched to a closed state by the operation of the diaphragm valve 41 to restrict the refrigerant from the condenser 31.

前記機械室12内に配設された膨張弁32と前記貯氷室11内に配設された蒸発器33とを連結する第3連結管35Cと、該蒸発器33と機械室12内に配設された前記圧縮機30とを連結する第4連結管35Dは、図2に示すように、筐体10の背面に画成された配管空間(連通空間)45内に沿って配設されている。前記配管空間45は、図3に示すように、上下に長尺で筐体10側に開口した半樋状のカバー部材46を該筐体10の背面に取付けることで、筐体10の背面に垂直に画成されている。また配管空間45は、図4に示すように、筐体10の上部(貯氷室11の後壁上部)に形成された第1連通部47を介して貯氷室11内と空間的に連通していると共に、該筐体10の上下方向中央から下方に形成された第2挿通部48を介して機械室12内と空間的に連通している。そして、前記第1連通部47、配管空間45および第2挿通部48は、前記第3連結管35Cおよび第4連結管35Dに巻かれた断熱材37との間に、冷媒の流通が許容される隙間Gが画成される形状、サイズに形成されている。   A third connecting pipe 35C for connecting the expansion valve 32 provided in the machine chamber 12 and the evaporator 33 provided in the ice storage chamber 11, and the evaporator 33 and the machine chamber 12 are provided. As shown in FIG. 2, the fourth connecting pipe 35 </ b> D that connects the compressor 30 is disposed along a pipe space (communication space) 45 defined on the back surface of the housing 10. . As shown in FIG. 3, the pipe space 45 is attached to the rear surface of the housing 10 by attaching a semi-cylindrical cover member 46 that is vertically long and opened to the housing 10 side to the rear surface of the housing 10. It is defined vertically. Further, as shown in FIG. 4, the piping space 45 is in spatial communication with the inside of the ice storage chamber 11 via a first communication portion 47 formed in the upper portion of the casing 10 (upper rear wall of the ice storage chamber 11). In addition, the inside of the machine room 12 is spatially communicated via a second insertion portion 48 formed downward from the center in the vertical direction of the housing 10. The first communication portion 47, the piping space 45, and the second insertion portion 48 are allowed to circulate refrigerant between the third connecting pipe 35C and the heat insulating material 37 wound around the fourth connecting pipe 35D. The gap G is defined in a shape and size.

なお、貯氷室11にはファンが配設されていないので該貯氷室11内では冷気の対流が殆ど発生しないため、貯氷室11内に漏出した冷媒は該貯氷室11の下方に移動し易いにも拘わらず、第1連通部47を貯氷室11の後壁上部に設けたのは次のような理由からである。先ず理由1として、図1に示すように、貯氷室11内には製氷機構Dで生成された氷塊Iが満杯に貯留されると、該貯氷室11の底部に第1連通部47を設けた場合には、該氷塊Iで該第1連通部47が塞がれて冷媒を適切に排出できなくなるおそれがある。また理由2として、貯氷室11では常に融解水が発生するため、該貯氷室11の底部に第1連通部47を設けた場合には、該融解水が該第1連通部47内へ流入するおそれがある。更に理由3として、製氷機Mに配設される冷凍機構Eは、家庭用の冷蔵庫や空調機等に比べて冷媒の充填量が多いので密閉された貯氷室11内に蒸発器33等から冷媒が漏出した場合にはその漏出量も多く、また家庭用の冷蔵庫や空調機等に比べて貯氷室11の内部容積が小さいので、漏出した冷媒が該貯氷室11の内部全体に比較的短時間で充満するようになるから、漏出した冷媒は貯氷室11の後壁上部に設けた第1連通部47からも十分に排出され得る。特に、貯氷室11の後壁上部は蒸発器33に近接しているから、該後壁上部に設けた第1連通部47には該蒸発器33から漏出した冷媒が流入し易い利点もある。従って、第1連通部47を設ける位置は、前記理由1〜3を考慮すると、蒸発器33が配設された貯氷室11内の上部とすることが合理的である。   In addition, since the ice storage chamber 11 is not provided with a fan, almost no convection of cold air is generated in the ice storage chamber 11, so that the refrigerant leaking into the ice storage chamber 11 can easily move below the ice storage chamber 11. Nevertheless, the reason why the first communication portion 47 is provided on the upper rear wall of the ice storage chamber 11 is as follows. First, as reason 1, as shown in FIG. 1, when the ice block I generated by the ice making mechanism D is fully stored in the ice storage chamber 11, the first communication portion 47 is provided at the bottom of the ice storage chamber 11. In this case, the ice block I may block the first communication portion 47, and the refrigerant may not be discharged properly. Also, as reason 2, since the ice storage chamber 11 always generates melt water, when the first communication portion 47 is provided at the bottom of the ice storage chamber 11, the melt water flows into the first communication portion 47. There is a fear. Further, as a reason 3, the refrigeration mechanism E disposed in the ice making machine M has a larger amount of refrigerant as compared with a domestic refrigerator, air conditioner, etc., so the refrigerant from the evaporator 33 or the like is sealed in the sealed ice storage chamber 11. The amount of leakage is large, and the internal volume of the ice storage chamber 11 is smaller than that of a domestic refrigerator, air conditioner, etc., so that the leaked refrigerant is contained in the ice storage chamber 11 for a relatively short time. Therefore, the leaked refrigerant can be sufficiently discharged also from the first communication portion 47 provided on the upper rear wall of the ice storage chamber 11. In particular, since the upper part of the rear wall of the ice storage chamber 11 is close to the evaporator 33, there is an advantage that the refrigerant leaked from the evaporator 33 easily flows into the first communication part 47 provided on the upper part of the rear wall. Therefore, considering the reasons 1 to 3, it is reasonable that the first communication portion 47 is provided at an upper portion in the ice storage chamber 11 in which the evaporator 33 is disposed.

すなわち実施例の製氷機Mは、例えば前記第3連結管35Cまたは第4連結管35Dの途中に亀裂や孔が形成されて該亀裂や孔から冷媒が漏出した場合には、該冷媒が配管空間45内を下方へ移動して第2挿通部48を介して機械室12内へ移動し得るように構成されている。また実施例の製氷機Mは、蒸発器33の途中に亀裂や孔が形成されて該亀裂や孔から冷媒が貯氷室11内に漏出した場合や、蒸発器33と第3連結管35Cとの連結部または該蒸発器33と第4連結管35Dとの連結部から冷媒が貯氷室11内へ漏出した場合に、該冷媒は、前記第1連通部47、配管空間45および第2挿通部48を介して機械室12内へ移動し得るように構成されている。   That is, in the ice making machine M according to the embodiment, for example, when a crack or a hole is formed in the middle of the third connection pipe 35C or the fourth connection pipe 35D and the refrigerant leaks from the crack or hole, the refrigerant flows into the pipe space. It is configured to be able to move downward in 45 and move into the machine chamber 12 via the second insertion portion 48. Further, the ice making machine M of the embodiment has a case where a crack or hole is formed in the middle of the evaporator 33 and the refrigerant leaks into the ice storage chamber 11 from the crack or hole, or between the evaporator 33 and the third connecting pipe 35C. When the refrigerant leaks into the ice storage chamber 11 from the connection portion or the connection portion between the evaporator 33 and the fourth connection pipe 35D, the refrigerant is supplied to the first communication portion 47, the piping space 45, and the second insertion portion 48. It is comprised so that it can move in in the machine room 12 via.

実施例の製氷機Mは、図2および図3に示すように、機械室12内において、前記第2挿通部48の略真下に、前記冷媒を検知可能な1つの冷媒検知センサ(冷媒検知手段)Sが配設されている。この冷媒検知センサSは、例えば感ガス素子として酸化第二スズ(SnO)を主体とする材料に、ヒータコイルおよび電極リード線を埋設した酸化スズ半導体タイプであって、プロパンやイソブタンからなる冷媒を適切に検知することが可能である。そして冷媒検知センサSは、当該製氷機Mを制御する制御手段C(図5参照)に電気的に接続されて、冷媒の検出時には該制御手段Cへ検出信号を送出し得るようになっている。従って冷媒検知センサSは、圧縮機30、凝縮器31、膨張弁32、第1連結管35Aおよび第2連結管35Bから機械室12内へ直接漏出した冷媒を適切に検知し得ると共に、前述したように、凝縮器31、第3連結管35Cおよび第4連結管35Dから漏出して機械室12へ移動した冷媒も適切に検知し得るようになっている。 As shown in FIGS. 2 and 3, the ice making machine M according to the embodiment includes a single refrigerant detection sensor (refrigerant detection means) that can detect the refrigerant in the machine room 12 substantially directly below the second insertion portion 48. ) S is provided. This refrigerant detection sensor S is, for example, a tin oxide semiconductor type in which a heater coil and an electrode lead wire are embedded in a material mainly composed of stannic oxide (SnO 2 ) as a gas sensitive element, and is a refrigerant made of propane or isobutane. Can be detected appropriately. And the refrigerant | coolant detection sensor S is electrically connected to the control means C (refer FIG. 5) which controls the said ice making machine M, and can send a detection signal to this control means C at the time of the detection of a refrigerant | coolant. . Therefore, the refrigerant detection sensor S can appropriately detect the refrigerant leaked directly into the machine chamber 12 from the compressor 30, the condenser 31, the expansion valve 32, the first connection pipe 35A, and the second connection pipe 35B. As described above, the refrigerant that has leaked from the condenser 31, the third connection pipe 35C, and the fourth connection pipe 35D and has moved to the machine chamber 12 can be appropriately detected.

また前記冷媒検知センサSは、自己診断機能を備えていて常に自己の故障判定を行ない得るようになっており、例えば長期使用による劣化や破損等により故障が発生した場合には、前記制御手段Cに対して故障信号を送出するようになっている。従って、製氷機Mの制御手段Cは、製氷機構Dの製氷運転中または除氷運転中であっても、冷媒検知センサSの故障を即座に認識可能となっている。なお冷媒検知センサSは、故障が一時的で正常に復帰した場合に自動復帰すると共に、前記制御手段Cへの前記故障信号の送出を自動停止し得る。   The refrigerant detection sensor S has a self-diagnosis function so that it can always determine its own failure. For example, when a failure occurs due to deterioration or damage due to long-term use, the control means C A failure signal is sent to the device. Therefore, the control means C of the ice making machine M can immediately recognize the failure of the refrigerant detection sensor S even during the ice making operation or the deicing operation of the ice making mechanism D. Note that the refrigerant detection sensor S can automatically return when the failure is temporary and returns to normal, and can automatically stop sending the failure signal to the control means C.

実施例の製氷機Mは、最大作動圧力を設定する機能を備えた前記膨張弁32を採用することで、下の表1に示すように、起動中の運転モードとして、「通常モード」と、「セーフホールドモード」と、「セーフモード」とが設定されており、該製氷機Mの状態に応じて運転モードが自動的に切替えられる。   The ice making machine M of the embodiment employs the expansion valve 32 having a function of setting the maximum operating pressure, and as shown in Table 1 below, as an operating mode during startup, “normal mode”, “Safe hold mode” and “safe mode” are set, and the operation mode is automatically switched according to the state of the ice making machine M.

Figure 2012215337
Figure 2012215337

前記「通常モード」は、前記冷媒検知センサSが正常に作動していることを前提とした製氷機Mの正常時に実行される運転モードであり、通常の製氷運転および除氷運転が実行される。この通常モードでは、図6に示すように、製氷運転中においては凝縮器31の冷却ファン34がON制御されて作動し、除氷運転中においては該凝縮器31の冷却ファン34がOFF制御されて停止する。従って除氷運転においては、凝縮器31において冷媒が凝縮されないので、膨張弁32が開いた状態となっていても凝縮された冷媒が蒸発器33へ供給されない。   The “normal mode” is an operation mode that is executed when the ice making machine M is operating normally on the assumption that the refrigerant detection sensor S is operating normally, and normal ice making operation and deicing operation are executed. . In this normal mode, as shown in FIG. 6, the cooling fan 34 of the condenser 31 is controlled to be ON during the ice making operation, and the cooling fan 34 of the condenser 31 is OFF controlled during the deicing operation. Stop. Therefore, in the deicing operation, the refrigerant is not condensed in the condenser 31, so that the condensed refrigerant is not supplied to the evaporator 33 even when the expansion valve 32 is open.

前記「セーフホールドモード」は、前記冷凍機構Eから漏出した冷媒を前記冷媒検知センサSが検知して、該冷媒検知センサSからの検知信号が制御手段Cに送出された異常時に実行される運転モードである。このセーフホールドモードでは、製氷機構Dの製氷運転を停止すると共に、前記凝縮器31の冷却ファン34が連続ON制御されて連続作動するようになっている。従って、凝縮器31の冷却ファン34が連続作動することで機械室12の空気を攪拌して、該機械室12内へ流入した冷媒を、拡散させると共に筐体10に設けた通気孔17を介して機外へ放出させるので、機械室12内に該冷媒が充満して濃度が上昇することを防止する。   The “safe hold mode” is an operation that is executed when an abnormality occurs when the refrigerant detection sensor S detects the refrigerant leaked from the refrigeration mechanism E and the detection signal from the refrigerant detection sensor S is sent to the control means C. Mode. In the safe hold mode, the ice making operation of the ice making mechanism D is stopped, and the cooling fan 34 of the condenser 31 is continuously ON-controlled and continuously operated. Accordingly, the cooling fan 34 of the condenser 31 is continuously operated to stir the air in the machine room 12 to diffuse the refrigerant flowing into the machine room 12 and through the vent hole 17 provided in the housing 10. Therefore, the refrigerant is prevented from being filled in the machine room 12 and increasing its concentration.

前記「セーフモード」は、前記冷媒検知センサSが故障して、該冷媒検知センサSからの故障信号が制御手段Cに送出された異常時に実行される運転モードである。このセーフモードでは、図7に示すように、前記凝縮器31の冷却ファン34が連続ON制御されて連続作動すると共に、製氷機構Dの製氷運転および除氷運転を継続するようになっている。これにより、冷媒検知センサSの故障中において、万一、冷凍機構Eから冷媒が漏出して該冷媒が機械室12内へ流入したとしても、冷却ファン34が連続作動することで機械室12の空気を攪拌して、該機械室12内へ流入した冷媒を、拡散させると共に筐体10に設けた通気孔17を介して機外へ放出させるので、機械室12内に該冷媒が充満して濃度が上昇することを防止する。すなわち実施例の製氷機Mでは、冷媒検知センサSが故障したとしても冷凍機構Eは正常であるから、製氷機構Dの製氷運転および除氷運転を継続することで、氷塊の製氷効率の低下を極力抑え得るようになっている。   The “safe mode” is an operation mode that is executed when an abnormality occurs when the refrigerant detection sensor S fails and a failure signal from the refrigerant detection sensor S is sent to the control means C. In this safe mode, as shown in FIG. 7, the cooling fan 34 of the condenser 31 is continuously turned on and continuously operated, and the ice making operation and the deicing operation of the ice making mechanism D are continued. As a result, even if the refrigerant is leaking from the refrigeration mechanism E and the refrigerant flows into the machine chamber 12 during the failure of the refrigerant detection sensor S, the cooling fan 34 continuously operates to Air is agitated and the refrigerant flowing into the machine room 12 is diffused and discharged out of the machine through the vent hole 17 provided in the housing 10, so that the machine room 12 is filled with the refrigerant. Prevents the concentration from rising. That is, in the ice making machine M of the embodiment, since the refrigeration mechanism E is normal even if the refrigerant detection sensor S fails, the ice making efficiency of the ice blocks can be reduced by continuing the ice making operation and the deicing operation of the ice making mechanism D. It can be suppressed as much as possible.

実施例の製氷機Mでは、図5に示すように、前記冷媒の漏出発生を報知する漏出警告ランプ50と、前記冷媒検知センサSの故障発生を報知する故障報知ランプ(報知手段)51とを備えており、冷媒の漏出発生および冷媒検知センサSの故障発生時には制御手段Cにより迅速に報知し得る。なお、漏出警告ランプ50および故障報知ランプ51は、製氷機Mの筐体10の前面等に配設されている。   In the ice making machine M of the embodiment, as shown in FIG. 5, a leakage warning lamp 50 for notifying the occurrence of the refrigerant leakage and a failure notification lamp (notification means) 51 for notifying the occurrence of the failure of the refrigerant detection sensor S are provided. The controller C can promptly notify when the refrigerant leaks and the refrigerant detection sensor S fails. The leakage warning lamp 50 and the failure notification lamp 51 are disposed on the front surface of the housing 10 of the ice making machine M or the like.

前記制御手段Cは、図5に示すように、製氷機Mを総合的に制御するものであり、前記冷媒検知センサSから、検出信号や故障信号が入力されると共に、該製氷機Mの各部に配設された温度測定手段等の各種測定手段や検出手段等から、検出信号や検知信号等の各種信号が入力される。また制御手段Cは、各種入力信号および図示しないコントロールパネルから入力された各種設定等に基づき、冷凍機構Eの各機器、製氷機構Dの各機器、漏出警告ランプ50および故障報知ランプ51、給水部等を総合的に制御する。なお図5では、本願発明に関連のある構成部材、構成機器だけを図示している。   As shown in FIG. 5, the control means C comprehensively controls the ice making machine M. A detection signal and a failure signal are input from the refrigerant detection sensor S, and each part of the ice making machine M is controlled. Various signals such as a detection signal and a detection signal are input from various measurement means such as a temperature measurement means, a detection means, and the like arranged in FIG. Further, the control means C is based on various input signals and various settings input from a control panel (not shown), etc., each device of the refrigeration mechanism E, each device of the ice making mechanism D, the leakage warning lamp 50, the failure notification lamp 51, the water supply unit Etc. are comprehensively controlled. In FIG. 5, only the structural members and structural devices related to the present invention are shown.

(実施例の作用)
実施例の製氷機Mは、図6に示すように、主電源を投入して起動させると、先ず起動初期運転を実行することで製氷機構Dおよび冷凍機構Eの所定の初期作動が行なわれ、該起動初期運転が完了すると、通常モードが実行されて、製氷機構Dおよび冷凍機構Eが通常に作動して、製氷運転および除氷運転が繰り返し継続される。
(Operation of Example)
As shown in FIG. 6, when the ice making machine M according to the embodiment is started by turning on the main power, the ice making mechanism D and the refrigeration mechanism E are subjected to predetermined initial operations by first performing an initial starting operation. When the startup initial operation is completed, the normal mode is executed, the ice making mechanism D and the refrigeration mechanism E are normally operated, and the ice making operation and the deicing operation are continuously repeated.

そして、通常モードで運転中に、例えば冷凍機構Eにおいて、前記第3連結管35Cまたは第4連結管35Dから冷媒が漏出した場合には、該冷媒は、配管空間45および第2挿通部48を介して機械室12内へ移動した後に該機械室12の底部へ流下するから、前記冷媒検知センサSにより適切に検知される。また、蒸発器33や該蒸発器33と第3連結管35Cとの連結部または該蒸発器33と第4連結管35Dとの連結部から冷媒が漏出した場合には、該冷媒は、貯氷室11内に漏出した後に、前記第1連通部47、配管空間45および第2挿通部48を介して機械室12内へ移動して該機械室12の底部へ流下するから、前記冷媒検知センサSにより適切に検知される。また、圧縮機30、凝縮器31、膨張弁32、第1連結管35Aまたは第2連結管35Bから冷媒が漏出した場合には、該冷媒は、前記冷媒検知センサSにより適切に検知される。そして、冷媒検知センサSが漏出した冷媒を検知すると、該冷媒検知センサSから制御手段Cへ検知信号が送出されることで、該制御手段Cは運転モードを通常モードからセーフホールドモードへ変更する。これにより、製氷機構Dにおける製氷運転が停止されると共に、凝縮器31の冷却ファン34が連続作動して機械室12内の冷媒を拡散すると共に機外へ排出する。また制御手段Cは、漏出警告ランプ50を点灯させ、当該製氷機Mに冷媒の漏出が発生したことを報知する。   When the refrigerant leaks from the third connecting pipe 35C or the fourth connecting pipe 35D, for example, in the refrigeration mechanism E during operation in the normal mode, the refrigerant passes through the pipe space 45 and the second insertion portion 48. Then, the refrigerant flows into the machine room 12 and then flows down to the bottom of the machine room 12, so that the refrigerant detection sensor S appropriately detects it. Further, when the refrigerant leaks from the evaporator 33, the connection part between the evaporator 33 and the third connection pipe 35C, or the connection part between the evaporator 33 and the fourth connection pipe 35D, the refrigerant is stored in the ice storage chamber. 11, the refrigerant detection sensor S moves to the machine chamber 12 through the first communication portion 47, the piping space 45, and the second insertion portion 48 and flows down to the bottom of the machine chamber 12. Is properly detected. Further, when the refrigerant leaks from the compressor 30, the condenser 31, the expansion valve 32, the first connection pipe 35A or the second connection pipe 35B, the refrigerant is appropriately detected by the refrigerant detection sensor S. When the refrigerant detection sensor S detects the leaked refrigerant, a detection signal is sent from the refrigerant detection sensor S to the control means C, so that the control means C changes the operation mode from the normal mode to the safe hold mode. . As a result, the ice making operation in the ice making mechanism D is stopped, and the cooling fan 34 of the condenser 31 is continuously operated to diffuse the refrigerant in the machine room 12 and discharge it outside the apparatus. Further, the control means C turns on the leakage warning lamp 50 to notify the ice making machine M that the refrigerant has leaked.

従って実施例の製氷機Mは、冷凍機構Eから機械室12内へ漏出した冷媒は勿論、該冷凍機構Eから貯氷室11内へ漏出した冷媒も、機械室12内に配設した1つの前記冷媒検知センサSにより確実に検知することができる。特に、貯氷室11の壁部における蒸発器33の近傍部分に第1連通部47が設けられており、該蒸発器33から漏出した冷媒は、貯氷室11内に停留する前に配管空間45内へ流れ込み易く、冷媒検知センサSにより確実に検知される。すなわち、貯氷室11内に冷媒検知センサSを配設する必要がないから、部品点数が削減されると共に組付工数が少なくなるのて、製造コストを抑えることができる。また、冷凍機構Eから冷媒が漏出しても、機械室12内において拡散させると共に機外へ放出するから、該冷媒が機械室12内に充満して危険な濃度まで上昇しないので該冷媒の爆発を適切に防止することができ、当該製氷機Mを安全な状態に保持することができる。また、漏出警告ランプ50が点灯することで、製氷機Mの管理者は、当該製氷機Mに冷媒の漏出が発生したことを早期に確認することができ、冷凍機構Eの修理または交換を迅速に行なうことを可能とする。   Therefore, in the ice making machine M according to the embodiment, not only the refrigerant leaked from the refrigeration mechanism E into the machine chamber 12 but also the refrigerant leaked from the refrigeration mechanism E into the ice storage chamber 11 is disposed in the machine chamber 12. The refrigerant detection sensor S can reliably detect it. In particular, a first communicating portion 47 is provided in the vicinity of the evaporator 33 in the wall portion of the ice storage chamber 11, and the refrigerant leaked from the evaporator 33 is stored in the piping space 45 before stopping in the ice storage chamber 11. The refrigerant detection sensor S is surely detected. That is, since it is not necessary to arrange the refrigerant detection sensor S in the ice storage chamber 11, the number of parts is reduced and the number of assembling steps is reduced, so that the manufacturing cost can be suppressed. Further, even if the refrigerant leaks from the refrigeration mechanism E, the refrigerant is diffused in the machine room 12 and discharged to the outside of the machine. Therefore, the refrigerant fills the machine room 12 and does not increase to a dangerous concentration. Can be appropriately prevented, and the ice making machine M can be kept in a safe state. In addition, since the leakage warning lamp 50 is turned on, the manager of the ice making machine M can quickly confirm that the refrigerant has leaked to the ice making machine M, and can quickly repair or replace the refrigeration mechanism E. Can be performed.

一方、通常モードで運転中に、前記冷媒検知センサSが故障した場合には、該冷媒検知センサSから制御手段Cへ故障信号が送出されることで、該制御手段Cは運転モードを通常モードからセーフモードへ変更する。これにより、製氷機構Dにおける製氷運転および除氷運転は継続されると共に、凝縮器31の冷却ファン34が連続作動して機械室12内の空気を攪拌する。なお、凝縮器31の冷却ファン34が連続作動しても、除氷運転中において圧縮機30から加熱状態の冷媒が凝縮器31に供給されると膨張弁32が閉状態となるから、凝縮された冷媒が蒸発器33へ供給されることが防止され、除氷運転が適切に行なわれて製氷機構Dにおける製氷部20の各製氷小室20Aで生成された氷塊Iを適切に放出落下させ得る。   On the other hand, when the refrigerant detection sensor S fails during operation in the normal mode, a failure signal is sent from the refrigerant detection sensor S to the control means C, so that the control means C changes the operation mode to the normal mode. Change from safe mode to safe mode. Thereby, the ice making operation and the deicing operation in the ice making mechanism D are continued, and the cooling fan 34 of the condenser 31 is continuously operated to stir the air in the machine room 12. Even if the cooling fan 34 of the condenser 31 is continuously operated, the refrigerant is condensed because the expansion valve 32 is closed when the heated refrigerant is supplied from the compressor 30 to the condenser 31 during the deicing operation. Thus, the ice block I is prevented from being supplied to the evaporator 33, and the ice lump I generated in each ice making chamber 20A of the ice making unit 20 in the ice making mechanism D can be appropriately discharged and dropped by appropriately performing the deicing operation.

従って実施例の製氷機Mは、冷媒検知センサSが故障しても、凝縮器31の冷却ファン34を連続作動させながら製氷機構Dにおける製氷運転および除氷運転を継続して行なうことができるから、氷塊の製氷効率の低下を抑え得ると共に、業務用機器に要求される高い安全性および信頼性を得ることができる。そして、冷媒検知センサSの故障中は、製氷機構Dの製氷運転および除氷運転時に常に冷却ファン34が連続作動しているから、製氷運転および除氷運転中に冷凍機構Eから冷媒が漏出したとしても、機械室12内において該冷媒を適切に拡散させると共に機外へ放出することができるから、当該製氷機Mを安全な状態に保持することができる。また、故障報知ランプ51が点灯することで、製氷機Mの管理者は、当該製氷機Mに冷媒検知センサSの故障が発生したことを早期に確認することができ、該冷媒検知センサSの修理または交換を迅速に行なうことが可能となる。   Therefore, the ice making machine M of the embodiment can continue the ice making operation and the deicing operation in the ice making mechanism D while continuously operating the cooling fan 34 of the condenser 31 even if the refrigerant detection sensor S fails. In addition, it is possible to suppress a decrease in ice making efficiency of ice blocks and to obtain high safety and reliability required for commercial equipment. During the failure of the refrigerant detection sensor S, the cooling fan 34 is continuously operating during the ice making operation and the deicing operation of the ice making mechanism D. Therefore, the refrigerant leaked from the refrigeration mechanism E during the ice making operation and the deicing operation. However, since the refrigerant can be appropriately diffused in the machine room 12 and discharged outside the machine, the ice making machine M can be kept in a safe state. Further, the failure notification lamp 51 is turned on, so that the manager of the ice making machine M can confirm at an early stage that a failure of the refrigerant detection sensor S has occurred in the ice making machine M. Repair or replacement can be performed quickly.

(変更例)
(1)実施例では、貯氷室11と機械室12とを連通する連通空間として、冷凍機構Eの第3連結管35Cおよび第4連結管35Dが配設される配管空間45を例示したが、連通空間はこれに限らず、貯氷室11の周囲に形成された電気配管や、開閉扉18と筐体10との間の隙間空間等であってもよい。
(2)冷媒検知手段は、実施例に例示した酸化スズ半導体タイプに限定されず、冷媒として使用される可燃性ガスを適切に検知し得るものであればよい。
(3)前記漏出警告ランプ50および故障報知ランプ51とは、点灯態様や表示色を異なるようにすれば、単一のランプで共用することも可能である。
(4)冷媒検知センサSの故障を報知する報知手段は、実施例のランプに限定されず、ブザーやアラーム、パソコンや携帯端末等に発信される電子メール等であってもよい。
(5)実施例では、流下式の製氷機を例示したが、本願発明が対象とする製氷機は、可燃性ガスからなる冷媒を使用した冷凍機構を有する全ての製氷機である。
(Example of change)
(1) In the embodiment, the piping space 45 in which the third connection pipe 35C and the fourth connection pipe 35D of the refrigeration mechanism E are disposed is illustrated as the communication space that communicates the ice storage chamber 11 and the machine room 12. The communication space is not limited to this, and may be an electric pipe formed around the ice storage chamber 11, a gap space between the opening / closing door 18 and the housing 10, or the like.
(2) The refrigerant detection means is not limited to the tin oxide semiconductor type exemplified in the embodiment, and may be any one that can appropriately detect the combustible gas used as the refrigerant.
(3) The leakage warning lamp 50 and the failure notification lamp 51 can be shared by a single lamp if the lighting mode and display color are different.
(4) The notification means for notifying the failure of the refrigerant detection sensor S is not limited to the lamp of the embodiment, and may be a buzzer, an alarm, an e-mail transmitted to a personal computer, a portable terminal, or the like.
(5) Although the flow down type ice maker was illustrated in the examples, the ice maker targeted by the present invention is all ice maker having a refrigeration mechanism using a refrigerant made of combustible gas.

11貯氷室,12機械室,30圧縮機,31凝縮器,32膨張弁,33蒸発器,
35C第3連結管(連結管),35D第4連結管(連結管),45配管空間(連通空間)
D製氷機構,E冷凍機構,G隙間,S冷媒検出手段
11 ice storage rooms, 12 machine rooms, 30 compressors, 31 condensers, 32 expansion valves, 33 evaporators,
35C 3rd connecting pipe (connecting pipe), 35D 4th connecting pipe (connecting pipe), 45 piping space (communication space)
D ice making mechanism, E refrigeration mechanism, G gap, S refrigerant detection means

Claims (3)

空気より比重が大きい可燃性ガスの冷媒を循環させる冷凍機構(E)を備え、この冷凍機構(E)を構成する蒸発器(33)が貯氷室(11)内に配設された製氷機構(D)に装着されると共に、前記冷凍機構(E)を構成する圧縮機(30)、凝縮器(31)および膨張弁(32)が前記貯氷室(11)の下方に画成された機械室(12)内に配設された製氷機において、
前記貯氷室(11)と前記機械室(12)とを空間的に連通する連通空間(45)が設けられ、
前記機械室(12)内において前記連通空間(45)と連通する部位の下方に、前記冷凍機構(E)から漏出した前記冷媒を検出可能な冷媒検出手段(S)が配設された
ことを特徴とする製氷機。
An ice making mechanism (E) equipped with a refrigeration mechanism (E) that circulates a combustible gas refrigerant having a specific gravity greater than that of air, and an evaporator (33) that constitutes the refrigeration mechanism (E) disposed in the ice storage chamber (11) ( D) and a machine room in which a compressor (30), a condenser (31) and an expansion valve (32) constituting the refrigeration mechanism (E) are defined below the ice storage room (11). (12) In the ice maker arranged in
A communication space (45) for spatially communicating the ice storage room (11) and the machine room (12) is provided,
Refrigerant detection means (S) capable of detecting the refrigerant leaked from the refrigeration mechanism (E) is disposed below the portion communicating with the communication space (45) in the machine room (12). A featured ice machine.
前記連通空間(45)には、前記冷凍機構(E)における前記蒸発器(33)と前記膨張弁(32)とを連結する連結管(35C)および該蒸発器(33)と前記圧縮機(30)とを連結する連結管(35D)が、隙間(G)が形成された状態で収容される請求項1記載の製氷機。   In the communication space (45), the connection pipe (35C) connecting the evaporator (33) and the expansion valve (32) in the refrigeration mechanism (E), the evaporator (33), and the compressor ( 30. The ice making machine according to claim 1, wherein the connecting pipe (35D) for connecting to (30) is accommodated in a state in which a gap (G) is formed. 前記連通空間(45)は、前記貯氷室(11)における前記蒸発器(33)の配設位置に近接した壁部で該貯氷室(11)と連通している請求項1または2記載の製氷機。   The ice making space according to claim 1 or 2, wherein the communication space (45) communicates with the ice storage chamber (11) at a wall portion of the ice storage chamber (11) close to a position where the evaporator (33) is disposed. Machine.
JP2011080539A 2011-03-31 2011-03-31 Ice machine Expired - Fee Related JP5809430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080539A JP5809430B2 (en) 2011-03-31 2011-03-31 Ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080539A JP5809430B2 (en) 2011-03-31 2011-03-31 Ice machine

Publications (2)

Publication Number Publication Date
JP2012215337A true JP2012215337A (en) 2012-11-08
JP5809430B2 JP5809430B2 (en) 2015-11-10

Family

ID=47268244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080539A Expired - Fee Related JP5809430B2 (en) 2011-03-31 2011-03-31 Ice machine

Country Status (1)

Country Link
JP (1) JP5809430B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125763A1 (en) * 2014-02-21 2015-08-27 ダイキン工業株式会社 Air conditioning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4321234Y1 (en) * 1966-07-20 1968-09-06
JPS5625665A (en) * 1979-08-06 1981-03-12 Sanyo Electric Co Detector for abnormality of ice machine
JP2001165468A (en) * 1999-12-10 2001-06-22 Matsushita Electric Ind Co Ltd Cooling or cooling-heating apparatus
JP2009093468A (en) * 2007-10-10 2009-04-30 Panasonic Corp Vending machine
JP2009216326A (en) * 2008-03-11 2009-09-24 Hoshizaki Electric Co Ltd Icemaker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4321234Y1 (en) * 1966-07-20 1968-09-06
JPS5625665A (en) * 1979-08-06 1981-03-12 Sanyo Electric Co Detector for abnormality of ice machine
JP2001165468A (en) * 1999-12-10 2001-06-22 Matsushita Electric Ind Co Ltd Cooling or cooling-heating apparatus
JP2009093468A (en) * 2007-10-10 2009-04-30 Panasonic Corp Vending machine
JP2009216326A (en) * 2008-03-11 2009-09-24 Hoshizaki Electric Co Ltd Icemaker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125763A1 (en) * 2014-02-21 2015-08-27 ダイキン工業株式会社 Air conditioning device
JP2015158282A (en) * 2014-02-21 2015-09-03 ダイキン工業株式会社 Air conditioning device
CN106030222A (en) * 2014-02-21 2016-10-12 大金工业株式会社 Air conditioning device
US10234164B2 (en) 2014-02-21 2019-03-19 Daikin Industries, Ltd. Air conditioning apparatus

Also Published As

Publication number Publication date
JP5809430B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
WO2012144524A1 (en) Method for operating ice-making machine
KR20040073565A (en) Refrigerator having alarm device for alarming leakage of refrigerant
TWI375002B (en)
JP5766006B2 (en) How to operate an ice machine
JP5744265B1 (en) refrigerator
KR100639716B1 (en) Refrigerator
RU2409794C1 (en) Refrigerator
JP5726009B2 (en) Ice machine
JP2013076487A (en) Ice making machine
JP4270789B2 (en) refrigerator
JP5809430B2 (en) Ice machine
JP5619664B2 (en) Ice machine
CN109906348B (en) Refrigerator and control method thereof
CN112236634B (en) Refrigerator and control method thereof
JP4759406B2 (en) Cooling storage
JP5722111B2 (en) How to operate an ice machine
JP2012229864A (en) Operation method of ice making machine
JP2005207666A (en) Refrigerator
JP2018009729A (en) Cooling storage cabinet
JP3907176B2 (en) refrigerator
JP2010181085A (en) Cooling storage
JP2006317073A (en) Cooling storage
JP2020008230A (en) Cooling storage
JP2007040666A (en) Control device of refrigerator
US20100218523A1 (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150911

R150 Certificate of patent or registration of utility model

Ref document number: 5809430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees