JP2012214592A - Method for producing silicate fluorophor, and fluorophor formed by using the same - Google Patents

Method for producing silicate fluorophor, and fluorophor formed by using the same Download PDF

Info

Publication number
JP2012214592A
JP2012214592A JP2011080173A JP2011080173A JP2012214592A JP 2012214592 A JP2012214592 A JP 2012214592A JP 2011080173 A JP2011080173 A JP 2011080173A JP 2011080173 A JP2011080173 A JP 2011080173A JP 2012214592 A JP2012214592 A JP 2012214592A
Authority
JP
Japan
Prior art keywords
heat treatment
phosphor
sio
fluorophor
reducing atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011080173A
Other languages
Japanese (ja)
Inventor
Naomi Suzuki
奈織美 鈴木
Yuji Takatsuka
裕二 高塚
Masato Kakihana
眞人 垣花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Metal Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2011080173A priority Critical patent/JP2012214592A/en
Publication of JP2012214592A publication Critical patent/JP2012214592A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing strontium silicate-based fluorophor for a white LED in which the phase purity is ≥90 wt.%.SOLUTION: The method for producing the fluorophor to be expressed by the composition formula 1: (SrMEu)SiO(where, 0.001≤x≤0.1, and 0≤y≤0.2, and M represents a bivalent metal.) includes at least three steps, i.e. a step 1 in which a fluorophor raw material is subjected to the wet mixing, an aggregated mixture obtained by drying and removing its solvent is cracked, and a calcination product is produced by the heat treatment in the first stage at temperatures of 1,150-1,250°C under an air atmosphere, and successively, by the heat treatment in the second stage at temperatures of 1,450-1,550°C under an air atmosphere; a step 2 of a classifying step in which the calcinated product is subjected to dry grinding, and only the particles of the particle size of 32-100 μm are taken out; and a step 3 of a heat treatment step in which the powder consisting of taken-out particles is subjected to heat treatment at temperatures of 1,450-1,550°C for 1-10 hours in an inert gas flow containing Hby 2-12 vol.% in a weakly reducing atmosphere.

Description

本発明は、紫外から可視域の光励起により高輝度の橙色発光を示す、Eu2+を賦活したストロンチウムシリケート系蛍光体の製造方法に関するものである。 The present invention relates to a method for producing Eu2 + -activated strontium silicate phosphors that exhibit high-luminance orange light emission by photoexcitation in the ultraviolet to visible range.

白色LEDは、一般的に、青色LEDと黄色蛍光体から構成される。これまで小型機器のLCDバックライト光源として活発に開発がなされてきたが、次世代の応用として照明用途が挙げられている。既存の白色LED用蛍光体としては、青色励起により黄色の蛍光を示すYAG:Ce3+や、緑から黄色の蛍光を示す(Ba,Sr,Ca)SiO:Eu2+、SrSiO:Eu2+(組成式で表すと、(Sr1−xEuSiO)などが知られており、より高輝度な蛍光体が望まれている。 The white LED is generally composed of a blue LED and a yellow phosphor. Up to now, it has been actively developed as an LCD backlight light source for small devices, but as a next-generation application, lighting applications are cited. Existing phosphors for white LEDs include YAG: Ce 3+ that exhibits yellow fluorescence by blue excitation, (Ba, Sr, Ca) 2 SiO 4 : Eu 2+ , Sr 3 SiO 5 that exhibits green to yellow fluorescence: Eu 2+ (in terms of composition formula, (Sr 1-x Eu x ) 3 SiO 5 ) is known, and a phosphor with higher luminance is desired.

賦活材として価数の不安定なCe3+、Eu2+、Tb3+を使用した蛍光体の製造には、Hを数%含んだ不活性ガスによる弱還元性雰囲気下で熱処理するのが一般的である。しかし、ストロンチウムシリケート系蛍光体を製造する際は、大気や酸化性雰囲気下での熱処理ではEu3+が還元されずEu2+とならないため、Sr2+サイトへの置換が起こらず、また、不活性雰囲気下における熱処理でもEu2+のSr2+サイトへの置換が十分ではなく、高輝度な蛍光体が得られないことが知られている。 In order to produce a phosphor using Ce 3+ , Eu 2+ , or Tb 3+ with unstable valence as an activator, heat treatment is generally performed in a weakly reducing atmosphere with an inert gas containing several percent of H 2. It is. However, when manufacturing a strontium silicate phosphor, Eu 3+ is not reduced and does not become Eu 2+ by heat treatment in the air or in an oxidizing atmosphere, so that substitution to Sr 2+ sites does not occur, and an inert atmosphere It is known that Eu 2+ is not sufficiently replaced with Sr 2+ sites even in the heat treatment below, and a high-luminance phosphor cannot be obtained.

例えば特許文献1においては、原料を混合した後、1100〜1400℃、3〜5時間、5%Hを添加したNの還元性雰囲気下で熱処理することが記載されている。また、特許文献2においても、原料混合物を還元性雰囲気下で熱処理することが記載されている。特許文献3においては、原料を湿式反応させた前駆体とし、それを還元性雰囲気下で熱処理することが記載されている。 For example, Patent Document 1 describes that after mixing raw materials, heat treatment is performed in a reducing atmosphere of N 2 to which 5% H 2 is added at 1100 to 1400 ° C. for 3 to 5 hours. Patent Document 2 also describes that the raw material mixture is heat-treated in a reducing atmosphere. In Patent Document 3, it is described that a raw material is used as a precursor obtained by wet reaction, and is heat-treated in a reducing atmosphere.

しかし、上記特許文献に記載されたように還元性雰囲気下、1段階で熱処理を行うと、還元性雰囲気下熱処理時に、原料の分解、SrOとSiOの固相反応、Eu2+のSr2+サイトへの置換が同時に行われることになり、反応が不均一になるため、不純物相が生成しやすいという問題が生じていた。 However, as described in the above-mentioned patent document, when heat treatment is performed in one step in a reducing atmosphere, during the heat treatment in the reducing atmosphere, decomposition of raw materials, solid phase reaction of SrO and SiO 2 , Eu 2+ Sr 2+ site Since the reaction is made nonuniform and the reaction becomes non-uniform, there is a problem that an impurity phase is easily generated.

一方、得られた蛍光体は熱処理による粒子の粗大化や焼結が起こるため、所定の粒径の蛍光体を得るためには粉砕処理をすることが一般的に行われる。
しかし、蛍光体を粉砕処理すると、結晶中の欠陥が増加し、輝度が低下することが知られている(非特許文献1参照)。
On the other hand, since the obtained phosphor is coarsened or sintered by heat treatment, pulverization is generally performed to obtain a phosphor having a predetermined particle size.
However, it is known that when the phosphor is pulverized, defects in the crystal increase and luminance decreases (see Non-Patent Document 1).

この蛍光体の粗大粒子化や反応不均一性を改善する方法として、熱処理回数を2回以上行う方法が提案されている(特許文献4参照)。
例えば、湿式合成により水和物前駆体を合成した後、大気中噴霧熱処理し、その後還元性雰囲気下で熱処理を行う方法が示されている。しかし、この方法では還元性雰囲気下の熱処理において固相反応が起こることで蛍光体結晶が形成されると思われ、粒子は少なからず大きくなると推測される。
As a method of improving the coarse particle size and reaction nonuniformity of the phosphor, a method of performing the heat treatment twice or more has been proposed (see Patent Document 4).
For example, a method is shown in which a hydrate precursor is synthesized by wet synthesis, followed by spray heat treatment in the air, and then heat treatment in a reducing atmosphere. However, in this method, it is considered that a phosphor crystal is formed by a solid-phase reaction occurring in a heat treatment in a reducing atmosphere, and it is assumed that the size of the particles is not small.

また、反応をより均一に行うために、湿式合成したゲルを大気中熱処理により有機物を除去した後、還元性雰囲気下で焼結させる方法が示されている(特許文献5参照)。
この方法でも、大気中熱処理温度は数100℃(例えば500℃)程度であるため、蛍光体結晶の形成は還元性雰囲気下熱処理時に起こると推測される。
Moreover, in order to perform reaction more uniformly, after removing the organic substance by the heat processing in air | atmosphere, the method of sintering under reducing atmosphere is shown (refer patent document 5).
Also in this method, since the heat treatment temperature in the atmosphere is about several hundreds of degrees Celsius (for example, 500 ° C.), it is estimated that the formation of the phosphor crystal occurs during the heat treatment in a reducing atmosphere.

特開2006−36943号公報JP 2006-36943 A 特表2006−514152号公報JP-T-2006-514152 特開2007−131843号公報JP 2007-131843 A 特開 2003−206480号公報JP 2003-206480 A 特許4185162号公報Japanese Patent No. 4185162

最新LED部材の開発 技術情報協会(2007)p.178Development of the latest LED materials Technical Information Association (2007) p. 178

本発明は、白色LED用蛍光体の製造方法において、熱処理条件を最適化し、高輝度なストロンチウムシリケート系蛍光体の製造方法を提供することを目的とする。また、ストロンチウムシリケート系蛍光体の相純度が、X線回折のリートベルト解析による定量値で90wt%以上である蛍光体の提供を目的とする。   An object of the present invention is to provide a method for producing a high-intensity strontium silicate phosphor by optimizing heat treatment conditions in a method for producing a phosphor for white LED. Another object of the present invention is to provide a phosphor having a strontium silicate phosphor having a phase purity of 90 wt% or more as determined by Rietveld analysis of X-ray diffraction.

このような課題を解決するため、本発明者らは、鋭意研究を重ねたところ、原料混合物を予め大気中で所定の2段階の温度で熱処理することにより、SrSiOの相純度を高くすることができることを見出した。さらに得られた仮焼物を粉砕し、所定の粒径に分級後、弱還元性雰囲気下で熱処理することにより得られる蛍光体は、焼結していないので解砕の必要が無く結晶の欠陥が発生しない事、熱処理前に仮焼物が分級されているため所定の粒径を持つ蛍光体である事を見出した。
従って上記工程を経ることにより得られるストロンチウムシリケート系蛍光体は、SrSiOの相純度が高く、結晶の欠陥が少なく、かつ所定の粒径を有するため、従来よりも輝度が高くなることを見出し、本発明をするに至った。
In order to solve such a problem, the present inventors have conducted extensive research, and as a result, by heat-treating the raw material mixture in the atmosphere at a predetermined two-stage temperature in advance, the phase purity of Sr 3 SiO 5 is increased. Found that you can. Furthermore, the obtained calcined product is pulverized, classified to a predetermined particle size, and then the phosphor obtained by heat treatment in a weakly reducing atmosphere is not sintered, so there is no need for crushing and there are no crystal defects. It has been found that it does not occur and is a phosphor having a predetermined particle size because the calcined material is classified before heat treatment.
Therefore, the strontium silicate phosphor obtained through the above steps has high phase purity of Sr 3 SiO 5 , few crystal defects, and a predetermined particle size, and therefore has higher brightness than before. It came to the headline and this invention.

本発明の第一の発明は、組成式1「(Sr1-x-yEuSiO(式中、0.001≦x≦0.1、0≦y≦0.2、Mは2価の金属)」で示される蛍光体の製造方法において、少なくとも下記の3工程を経て製造することを特徴とするものである。
工程1:蛍光体原料を組成式1で示される組成になるように秤量し、溶媒を用いて湿式混合を行った後、溶媒を乾燥除去し、得られた凝集混合物を解砕し、大気中、1150〜1250℃で熱処理し、続けて大気中、1450〜1550℃で熱処理して仮焼物を得る工程。
工程2:工程1で得られた仮焼物を、乾式粉砕、分級して、粒径32〜100μmの粒子を取り出す工程。
工程3:取り出した粒子からなる粉末を、弱還元性雰囲気として、2〜12vol%のHガスを添加した不活性ガスフロー中で、1450〜1550℃の温度で、1〜10時間の熱処理する工程。
The first invention of the present invention is a composition formula 1 “(Sr 1- xy My Eu x ) 3 SiO 5 (where 0.001 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.2, In the method for producing a phosphor represented by “M is a divalent metal)”, the phosphor is produced through at least the following three steps.
Step 1: The phosphor raw material is weighed so as to have the composition represented by the composition formula 1, and after performing wet mixing using a solvent, the solvent is dried and removed, and the resulting agglomerated mixture is crushed and then in the atmosphere. , Heat treatment at 1150 to 1250 ° C., followed by heat treatment at 1450 to 1550 ° C. in the air to obtain a calcined product.
Step 2: A step of taking out the particles having a particle size of 32 to 100 μm by dry pulverization and classification of the calcined product obtained in Step 1.
Step 3: a powder consisting of taking out particles, as the weak reducing atmosphere, an inert gas flow in the addition of 2~12Vol% of H 2 gas, at a temperature of 1450-1550 ° C., a heat treatment of 10 hours Process.

本発明の第二の発明は、第一の発明における組成式1「(Sr1-x-yEuSiO」中のMで示される金属が、アルカリ土類金属から選らばれる1種類以上の金属であることを特徴とする蛍光体の製造方法である。 In the second invention of the present invention, the metal represented by M in the composition formula 1 “(Sr 1- xy My Eu x ) 3 SiO 5 ” in the first invention is selected from alkaline earth metals. It is a method for producing a phosphor, which is made of one or more kinds of metals.

本発明の第三の発明は、第一または第二の発明による蛍光体の相純度が、リートベルト解析法によるX線回析の定量値で90wt%以上であることを特徴とする蛍光体である。   A third invention of the present invention is a phosphor characterized in that the phase purity of the phosphor according to the first or second invention is 90 wt% or more as a quantitative value of X-ray diffraction by Rietveld analysis. is there.

本発明により、粒径が32〜100μmであり、「(Sr1-x-yEuSiO」の組成式1で表される相純度が90wt%以上と高く、高輝度な白色LED用蛍光体を製造して、得ることができ、工業上顕著な効果を奏するものである。 According to the present invention, the particle size is 32 to 100 μm, the phase purity represented by the composition formula 1 of “(Sr 1- xy My Eu x ) 3 SiO 5 ” is as high as 90 wt% or more, and high brightness. The phosphor for white LED can be manufactured and obtained, and has an industrially remarkable effect.

本発明の実施例1で作製した蛍光体試料の励起スペクトルおよび発光スペクトルを示す図である。It is a figure which shows the excitation spectrum and emission spectrum of the fluorescent substance sample produced in Example 1 of this invention.

以下、本発明の実施形態における蛍光体製造工程を説明する。
[工程1]
工程1においては、各元素の原料には、炭酸塩、硝酸塩、シュウ酸塩、水酸化物等の化合物を用いることができる。
Srについては、安価で有害性の比較的低い炭酸塩が望ましく、またEu、Siの原料としては安価で有害性の低い酸化物を用いることが望ましい。ここで、賦活剤であるEuの添加量xは、0.001≦x≦0.1の範囲にあることが好ましい。
Hereinafter, the phosphor manufacturing process in the embodiment of the present invention will be described.
[Step 1]
In step 1, compounds such as carbonates, nitrates, oxalates and hydroxides can be used as raw materials for each element.
As for Sr, a carbonate which is inexpensive and relatively low in toxicity is desirable, and it is desirable to use an oxide which is inexpensive and less harmful as a raw material for Eu and Si. Here, the addition amount x of Eu as an activator is preferably in the range of 0.001 ≦ x ≦ 0.1.

Euが添加されないと蛍光体は発光せず、また添加量が多くなると濃度消光により発光強度が低下する。蛍光体の発光色を変えるために、Srの一部を別の元素で置き換えてもかまわない。
置き換える元素は2価の金属であればよく、アルカリ土類金属であれば好ましく、Ba、Ca、Mgであることがより好ましい。また、置き換える元素も1種類だけでなく、2種類以上を組み合わせてもかまわない。
その元素量は、yが0.2以下であることが望ましい。これを超えて添加すると発光強度が低下するため、好ましくない。
If Eu is not added, the phosphor does not emit light, and if the addition amount increases, the emission intensity decreases due to concentration quenching. In order to change the emission color of the phosphor, a part of Sr may be replaced with another element.
The element to be replaced may be a divalent metal, preferably an alkaline earth metal, and more preferably Ba, Ca, or Mg. Moreover, not only one type of element to be replaced but two or more types may be combined.
As for the element amount, it is desirable that y is 0.2 or less. If the amount exceeds this, the emission intensity decreases, which is not preferable.

これらの原料を、組成式1で示される組成になるように化学量論比で秤量し、溶媒を用いて湿式混合を行う。
溶媒に用いるものとしては、各原料が溶解しないことと、比較的低温での加熱による蒸発除去が容易であることが求められ、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類や、アセトン、メチルエチルケトンなどのケトン類、ジエチルエーテルやテトラヒドロフランなどのエーテル類、酢酸エチル、酢酸ブチルなどのエステル類などが使用できるが、これらに限定されるものではなく、また2種類以上を混合して用いてもかまわない。
その中でも、有害性の低い溶媒としてエタノールを用いることが好ましい。
These raw materials are weighed in a stoichiometric ratio so as to have the composition represented by the composition formula 1, and wet mixed using a solvent.
As a solvent, it is required that each raw material does not dissolve and that it is easy to remove by evaporation at a relatively low temperature. Alcohols such as methanol, ethanol, propanol, butanol, acetone, methyl ethyl ketone, etc. Ketones, ethers such as diethyl ether and tetrahydrofuran, and esters such as ethyl acetate and butyl acetate can be used. However, the present invention is not limited to these, and a mixture of two or more types may be used. .
Among these, it is preferable to use ethanol as a low harmful solvent.

混合物からの溶媒除去には、オーブンなどを用い、80〜200℃で乾燥を行う。得られた乾燥物は凝集しているため、乳鉢を用いて解砕する。
解砕した乾燥物をアルミナ製容器に入れ、電気炉内に設置し、大気中、1150〜1250℃で熱処理し、続けて大気中、1450〜1550℃の温度で熱処理することにより、仮焼物が得られる。なお、1150〜1250℃で熱処理後、一度降温し、その後1450〜1550℃で再度熱処理しても良く、また、仮焼物の焼結や結晶化を促進するため、フラックス(例えば、Mg、Ca、Sr、Ba、Znのフッ化物、塩化物、臭化物、ヨウ化物などのハロゲン化物)を添加しても良い。
ここで、得られた仮焼物には、原料としてSrCOを用いる場合の他に、有機官能基を含む化合物を用いた場合には、熱処理中に有機官能基が熱分解して発生するCOが原料のストロンチウム化合物と反応して生成したSrCOから得られるものも含まれる。
For removing the solvent from the mixture, drying is performed at 80 to 200 ° C. using an oven or the like. Since the obtained dried product is agglomerated, it is crushed using a mortar.
The pulverized dry matter is put in an alumina container, placed in an electric furnace, heat-treated at 1150 to 1250 ° C. in the air, and subsequently heat-treated at a temperature of 1450 to 1550 ° C. in the air. can get. Note that after heat treatment at 1150 to 1250 ° C., the temperature may be lowered once, and then heat treatment may be performed again at 1450 to 1550 ° C. In addition, in order to promote sintering and crystallization of the calcined product, flux (for example, Mg, Ca, Sr, Ba, Zn fluorides, chlorides, bromides, iodides and other halides) may be added.
Here, in the obtained calcined product, in addition to the case of using SrCO 3 as a raw material, when a compound containing an organic functional group is used, CO 2 generated by thermal decomposition of the organic functional group during the heat treatment. Are obtained from SrCO 3 produced by reacting with a raw material strontium compound.

この大気中熱処理の1段階目ではSrCOの分解が目的であり、2段階目ではSrSiO結晶相の形成が目的である。
したがって、1段階目の温度が1150℃より低いとSrCOの分解が促進されず、その後、1450〜1550℃で熱処理してもSrCOが残っているため、SrSiOの異相であるSrSiO相などが生成するため好ましくない。また、1250℃より高いとSrCOが分解されないうちにSrSiOの結晶化が始まるため、SrSiOの異相であるSrSiO相などが生成するために、やはり好ましくない。
The first stage of the heat treatment in the air is aimed at decomposing SrCO 3 and the second stage is aimed at forming a Sr 3 SiO 5 crystal phase.
Therefore, when the temperature at the first stage is lower than 1150 ° C., decomposition of SrCO 3 is not promoted, and SrCO 3 remains even after heat treatment at 1450 to 1550 ° C. Therefore, SrSiO 3 which is a different phase of Sr 3 SiO 5 This is not preferable because three phases are generated. Further, the crystallization of Sr 3 SiO 5 starts while the SrCO 3 higher than 1250 ° C. is not degraded, to such SrSiO 3-phase a secondary phase Sr 3 SiO 5 is produced, also not preferable.

一方、2段階目熱処理の温度が、1450℃より低いと、SrSiOへの固相反応が促進されないためSrSiO結晶相の純度が低くなり、SrSiOやSrSiO、また未反応SrOによるSr(OH)などが異相として残留するため好ましくない。熱処理温度が1550℃より高くなると、SrSiO結晶が溶融してしまうため、容器等に付着し収率が下がってしまうため好ましくない。 On the other hand, the temperature of the second stage heat treatment is lower than 1450 ° C., Sr 3 purity of Sr 3 SiO 5 crystal phase for solid-phase reaction to SiO 5 is not accelerated is lowered, Sr 2 SiO 4 or SrSiO 3, also Since Sr (OH) 2 due to unreacted SrO remains as a different phase, it is not preferable. When the heat treatment temperature is higher than 1550 ° C., the Sr 3 SiO 5 crystal is melted, which is not preferable because it adheres to a container or the like and the yield decreases.

この2段階で行う大気中熱処理により得られるSrSiO結晶相の純度は、リートベルト解析法によるX線回折により定量される。
このリートベルト解析法では、近似構造モデルに基づいて計算した回折パターンを実測回折パターンに当てはめ、結晶構造パラメーターと格子定数を精密化し、複数の結晶相の質量比を半定量的に求めることができる。
The purity of the Sr 3 SiO 5 crystal phase obtained by the atmospheric heat treatment performed in these two steps is quantified by X-ray diffraction by Rietveld analysis.
In this Rietveld analysis method, the diffraction pattern calculated based on the approximate structure model is applied to the measured diffraction pattern, the crystal structure parameters and the lattice constant are refined, and the mass ratio of multiple crystal phases can be obtained semi-quantitatively. .

大気中熱処理後の仮焼物のSrSiO結晶相の純度は、90wt%以上であることが望ましく、95wt%以上であるとさらに望ましく、さらに98wt%以上であるとより一層好ましい。
なお、仮焼物を弱還元性雰囲気で熱処理することにより、Sr2+サイトにEu2+が固溶するため、仮焼物の相純度は、蛍光体の相純度と同様となる。また、Srの一部を別の元素で置き換えても、SrSiO結晶相を崩さない範囲であれば問題はない。
The purity of the Sr 3 SiO 5 crystal phase of the calcined product after heat treatment in the air is desirably 90 wt% or more, more desirably 95 wt% or more, and even more desirably 98 wt% or more.
Note that, by heat treating the calcined product in a weak reducing atmosphere, Eu 2+ is dissolved in the Sr 2+ site, so that the phase purity of the calcined product is the same as the phase purity of the phosphor. Even if a part of Sr is replaced with another element, there is no problem as long as the Sr 3 SiO 5 crystal phase is not destroyed.

[工程2]
次に、工程2では、工程1で作製した仮焼物を乾式粉砕する。
乾式粉砕においては、結晶粒子内での破断やダメージが加わりすぎることを避けるため、乳鉢粉砕のような粒子へのダメージの少ない方法で行うことが望ましい。
[Step 2]
Next, in step 2, the calcined material produced in step 1 is dry-pulverized.
In the dry pulverization, it is desirable to carry out by a method with little damage to the particles such as mortar pulverization in order to avoid excessive breakage and damage in the crystal particles.

次に、粉砕粉を振動ふるいで粒径32〜100μmに分級する。この分級方法としては、粒子にダメージを加えない方法であれば、その他気流式分級などで行っても良い。分級により得られる粒子の粒径は32〜100μmであることが好ましい。
粒径が32μm未満では、粉砕によるダメージが大きいことや、粒子に対して表面欠陥の割合が増えることにより輝度が低くなるため好ましくない。逆に、粒径が100μmより大きくなると、輝度に大きな違いはないが、LEDに塗布する際に樹脂に分散させるとすぐに沈降してしまうため好ましくない。
Next, the pulverized powder is classified to a particle size of 32 to 100 μm using a vibration sieve. As this classification method, as long as the method does not damage the particles, other airflow classification may be used. The particle size of the particles obtained by classification is preferably 32 to 100 μm.
A particle size of less than 32 μm is not preferable because damage due to pulverization is large and the ratio of surface defects to the particles increases, resulting in low luminance. On the contrary, when the particle diameter is larger than 100 μm, there is no great difference in luminance, but it is not preferable because it is immediately settled when dispersed in a resin when applied to an LED.

[工程3]
工程3においては、工程2で分級して取り出した仮焼物の粉末粒子を、Mo製容器に入れて電気炉内に設置する。一般的なアルミナ製やPt製容器を用いると仮焼物の粉末試料との界面で反応し、高輝度な蛍光体が得られない。そこで、耐熱性が高く、弱還元性雰囲気に耐え、粉末試料との反応が起こらない容器に適した材質として、W、Moなどが挙げられるが、比較的加工性が良く安価なMo製容器を使用すると良い。
[Step 3]
In step 3, the powder particles of the calcined product classified and taken out in step 2 are placed in a Mo container and placed in an electric furnace. When a general alumina or Pt container is used, it reacts at the interface with the powder sample of the calcined product, and a high-luminance phosphor cannot be obtained. Therefore, examples of suitable materials for containers that have high heat resistance, can withstand weakly reducing atmospheres, and do not react with powder samples include W and Mo. It is good to use.

用いる弱還元性雰囲気としては、2〜12vol%のHガスを弱還元性雰囲気に用いて、不活性ガスに添加し、その弱還元性雰囲気を含む不活性ガスをフローさせ、1450〜1550℃の温度で熱処理を行う。
そのHガス濃度は、高すぎても低すぎても高輝度な蛍光体は得られない。水素濃度が高すぎると、SrSiO結晶自体が還元されて着色してしまうため輝度が低くなってしまい、逆に、水素濃度が低すぎると、Eu3+の還元が不十分となり、Sr2+サイトへの置換が十分に起こらないため、高輝度な蛍光体は得られない。
As the weak reducing atmosphere to be used, 2 to 12 vol% of H 2 gas is used as the weak reducing atmosphere, added to the inert gas, and the inert gas containing the weak reducing atmosphere is allowed to flow, and 1450 to 1550 ° C. The heat treatment is performed at the temperature.
If the H 2 gas concentration is too high or too low, a high-luminance phosphor cannot be obtained. If the hydrogen concentration is too high, the Sr 3 SiO 5 crystal itself is reduced and colored, resulting in low luminance. Conversely, if the hydrogen concentration is too low, Eu 3+ is not sufficiently reduced, and Sr 2+ Since the substitution to the site does not occur sufficiently, a phosphor with high brightness cannot be obtained.

熱処理温度については、1450℃より低いと賦活剤であるEu3+の還元が不十分となり、Sr2+サイトへの置換が十分に起こらないため、高輝度な蛍光体は得られない。また、熱処理温度が1550℃より高いと試料が溶融して蛍光体粉末にならない。 When the heat treatment temperature is lower than 1450 ° C., Eu 3+ as an activator is not sufficiently reduced, and substitution to Sr 2+ sites does not occur sufficiently, so that a high-luminance phosphor cannot be obtained. On the other hand, if the heat treatment temperature is higher than 1550 ° C., the sample melts and does not become phosphor powder.

さらに、熱処理時間は、1〜10時間行われる。1時間より短いとEu2+のSr2+サイトへの置換が十分に起こらず、高輝度な蛍光体が得られない。逆に熱処理時間が10時間より長いと、焼結が進行して試料が容器に固着して回収率が悪くなる。また粒子同士が結合し、工程2で粉砕、分級を行った効果が消失する。したがって、熱処理時間は3時間程度が望ましい。さらに長時間熱処理を行いたい場合は、一旦炉冷し、再度熱処理を行うと良い。なお、工程1で固相反応は十分に終わっているため、熱処理を繰り返しても粒子の粗大化は起こらない。 Furthermore, the heat treatment time is performed for 1 to 10 hours. When the time is shorter than 1 hour, Eu 2+ is not sufficiently replaced with the Sr 2+ site, and a high-luminance phosphor cannot be obtained. On the other hand, if the heat treatment time is longer than 10 hours, sintering proceeds and the sample adheres to the container, resulting in poor recovery. Further, the particles are bonded to each other, and the effect of pulverization and classification in step 2 is lost. Therefore, the heat treatment time is preferably about 3 hours. If it is desired to perform heat treatment for a longer time, it is preferable to cool the furnace once and then perform the heat treatment again. Note that since the solid-phase reaction is sufficiently completed in Step 1, the particles do not become coarse even if the heat treatment is repeated.

以上の3つの工程により、SrSiO結晶相の純度が高く、最終熱処理以降に粉砕を行わないため、粉砕によるダメージを加えられていない、32〜100μmの粒径を持つ高輝度の蛍光体を製造することができる。 By the above three steps, the Sr 3 SiO 5 crystal phase has a high purity and is not pulverized after the final heat treatment, so that it is not damaged by pulverization and has a particle size of 32 to 100 μm. Can be manufactured.

次に、上記実施形態の一例である実施例を用いて、本願発明の蛍光体製造方法について、より詳細に説明する。   Next, the phosphor manufacturing method of the present invention will be described in more detail using an example which is an example of the above embodiment.

SrCOを116.7g、Euを2.1g、SiOを16.1g(組成式1において、「(Sr0.985Eu0.015SiO)」となるように秤量し、エタノールを用いて2時間湿式混合を行い、オーブンで120℃2時間乾燥後、乳鉢で解砕した。
得られた乾燥粉を、アルミナるつぼに入れて電気炉内に設置し、大気中で、1段階目の熱処理を1200℃で3時間、続けて2段階目の熱処理を1500℃で3時間行い、仮焼物を作製した。
作製した仮焼物をアルミナ乳鉢で粉砕し、目開き32μm、100μmのふるいで分級し、32〜100μmの範囲に入った粉末を、Mo製容器に入れて電気炉内に設置し、1500℃で3時間、水素ガス(H)を4vol%含むArガスを流しながら弱還元性雰囲気下で熱処理し、蛍光体試料を形成した。
116.7 g of SrCO 3 , 2.1 g of Eu 2 O 3 and 16.1 g of SiO 2 (weighed so that “(Sr 0.985 Eu 0.015 ) 3 SiO 5 )” in composition formula 1) The mixture was wet mixed with ethanol for 2 hours, dried in an oven at 120 ° C. for 2 hours, and then crushed in a mortar.
The obtained dry powder is put in an alumina crucible and placed in an electric furnace, and in the air, the first stage heat treatment is performed at 1200 ° C. for 3 hours, followed by the second stage heat treatment at 1500 ° C. for 3 hours. A calcined product was produced.
The prepared calcined product is pulverized in an alumina mortar, classified with a sieve having an opening of 32 μm and 100 μm, and the powder in the range of 32 to 100 μm is placed in a Mo container and placed in an electric furnace, and is placed at 1500 ° C. 3 A phosphor sample was formed by heat-treating in a weakly reducing atmosphere while flowing Ar gas containing 4 vol% of hydrogen gas (H 2 ) for a time.

その仮焼物の相純度は、X線回折装置(スペクトリス社製、X‘Pert−PRO/MPD)を用いて、仮焼物の回折パターンを測定し、リートベルト解析によりSrSiOの相純度を求めた。
その結果を表1に示す。
As for the phase purity of the calcined product, the diffraction pattern of the calcined product is measured using an X-ray diffractometer (Spectres, X'Pert-PRO / MPD), and the phase purity of Sr 3 SiO 5 is determined by Rietveld analysis. Asked.
The results are shown in Table 1.

得られた蛍光体試料については、蛍光分光光度計(日本分光製、FP−6500)を用い、励起波長455nmにおける発光スペクトルを測定し、そのピーク面積をYAG:Ce(Phosphor Technology Ltd.製、型番 QMK58)を基準としてPL相対強度として求めた。
その結果を表1に示す。なお、PL相対強度が、YAG:Ceの1.5倍以上であれば高輝度と判定した。
About the obtained fluorescent substance sample, the emission spectrum in excitation wavelength 455nm was measured using the fluorescence spectrophotometer (the JASCO make, FP-6500), and the peak area was made into YAG: Ce (Phosphor Technology Ltd., model number. QMK58) was determined as the PL relative intensity.
The results are shown in Table 1. In addition, if PL relative intensity | strength was 1.5 times or more of YAG: Ce, it determined with high brightness | luminance.

また、図1に得られた蛍光体試料の励起スペクトル、発光スペクトルを合わせて示す。励起スペクトルは、励起波長455nmの値で規格化している。また、発光スペクトルは最大ピーク波長の値で規格化している。
図1より、紫外から青色領域まで幅広い励起吸収が認められ、発光波長584nmの橙色発光を示す、白色LEDに応用可能な蛍光体が製造できていることがわかる。
FIG. 1 also shows the excitation spectrum and emission spectrum of the phosphor sample obtained. The excitation spectrum is normalized with a value at an excitation wavelength of 455 nm. The emission spectrum is normalized by the value of the maximum peak wavelength.
From FIG. 1, it can be seen that a wide range of excitation and absorption from the ultraviolet region to the blue region is observed, and a phosphor applicable to a white LED that exhibits orange light emission with an emission wavelength of 584 nm can be manufactured.

なお、参考例として、実施例1で作製した試料の分級条件を100μmより大きい場合(参考例1)、32μm未満の場合(参考例2)の各特性を表1に合わせて示した。   In addition, as a reference example, each characteristic when the classification condition of the sample produced in Example 1 is larger than 100 μm (Reference Example 1) and less than 32 μm (Reference Example 2) is shown in Table 1.

Sr原料としてSrCOの代わりにシュウ酸ストロンチウム(SrC)を138.8g用いた以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。 A phosphor sample was prepared in the same manner as in Example 1 except that 138.8 g of strontium oxalate (SrC 2 O 4 ) was used as the Sr raw material instead of SrCO 3 . Table 1 shows the evaluation results of the obtained phosphor sample.

1段階目の焼成温度を1150℃にした以外は実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。   A phosphor sample was prepared in the same manner as in Example 1 except that the first stage baking temperature was 1150 ° C. Table 1 shows the evaluation results of the obtained phosphor sample.

1段階目の焼成温度を1250℃にした以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。   A phosphor sample was produced in the same manner as in Example 1 except that the first stage baking temperature was 1250 ° C. Table 1 shows the evaluation results of the obtained phosphor sample.

2段階目の焼成温度を1450℃にした以外は実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。   A phosphor sample was prepared in the same manner as in Example 1 except that the second stage baking temperature was 1450 ° C. Table 1 shows the evaluation results of the obtained phosphor sample.

2段階目の焼成温度を1550℃にした以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。   A phosphor sample was prepared in the same manner as in Example 1 except that the second stage baking temperature was 1550 ° C. Table 1 shows the evaluation results of the obtained phosphor sample.

弱還元性雰囲気熱処理の温度を1450℃にした以外は実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。   A phosphor sample was prepared in the same manner as in Example 1 except that the temperature of the weak reducing atmosphere heat treatment was changed to 1450 ° C. Table 1 shows the evaluation results of the obtained phosphor sample.

弱還元性雰囲気熱処理の温度を1550℃にした以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。   A phosphor sample was prepared in the same manner as in Example 1 except that the temperature of the weak reducing atmosphere heat treatment was changed to 1550 ° C. Table 1 shows the evaluation results of the obtained phosphor sample.

弱還元性雰囲気熱処理中のArガス中の水素濃度を2vol%にした以外は実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。   A phosphor sample was prepared in the same manner as in Example 1 except that the hydrogen concentration in the Ar gas during the heat treatment in the weak reducing atmosphere was changed to 2 vol%. Table 1 shows the evaluation results of the obtained phosphor sample.

弱還元性雰囲気熱処理中のArガス中の水素濃度を12vol%にした以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。   A phosphor sample was prepared in the same manner as in Example 1 except that the hydrogen concentration in the Ar gas during the heat treatment in the weak reducing atmosphere was changed to 12 vol%. Table 1 shows the evaluation results of the obtained phosphor sample.

弱還元性雰囲気熱処理の時間を1時間にした以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。   A phosphor sample was prepared in the same manner as in Example 1 except that the heat treatment time for the weak reducing atmosphere was changed to 1 hour. Table 1 shows the evaluation results of the obtained phosphor sample.

弱還元性雰囲気熱処理の時間を10時間にした以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。   A phosphor sample was prepared in the same manner as in Example 1 except that the heat treatment time for the weak reducing atmosphere was 10 hours. Table 1 shows the evaluation results of the obtained phosphor sample.

SrCOを97.3g、BaCOを19.4g、Euを1.3g、SiOを15.3g(組成式1において、「(Sr0.86Ba0.13Eu0.01SiO)」となるように秤量した。それ以降は実施例1と同様の工程を経て、蛍光体試料を作製した。Baを添加することにより、励起波長455nmにおける発光波長602nmの濃い橙色発光を示す蛍光体が得られた。得られた蛍光体試料の評価結果を表1に示す。 97.3 g of SrCO 3 , 19.4 g of BaCO 3 , 1.3 g of Eu 2 O 3 , and 15.3 g of SiO 2 (in the composition formula 1, “(Sr 0.86 Ba 0.13 Eu 0.01 )” 3 SiO 5 ) ”. Thereafter, the same process as in Example 1 was performed to prepare a phosphor sample. By adding Ba, a phosphor exhibiting deep orange emission with an emission wavelength of 602 nm at an excitation wavelength of 455 nm was obtained. Table 1 shows the evaluation results of the obtained phosphor sample.

(比較例1)
実施例1と同じ配合、条件で大気中、2段階の熱処理を行い、仮焼物を得た。得られた仮焼物を分級せずにそのまま実施例1と同じ条件の弱還元性雰囲気で熱処理し、得られた粉末を乳鉢で粉砕処理を行い、蛍光体試料を作製した。その蛍光体試料の評価結果を表1に示す。
(Comparative Example 1)
A two-stage heat treatment was performed in the atmosphere under the same formulation and conditions as in Example 1 to obtain a calcined product. The obtained calcined product was directly heat-treated in a weakly reducing atmosphere under the same conditions as in Example 1 without classification, and the obtained powder was pulverized in a mortar to produce a phosphor sample. The evaluation results of the phosphor sample are shown in Table 1.

(比較例2)
1段階目の熱処理温度を1100℃にした以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。
(Comparative Example 2)
A phosphor sample was prepared in the same manner as in Example 1 except that the heat treatment temperature in the first step was set to 1100 ° C. Table 1 shows the evaluation results of the obtained phosphor sample.

(比較例3)
1段階目の熱処理温度を1300℃にした以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。
(Comparative Example 3)
A phosphor sample was prepared in the same manner as in Example 1 except that the heat treatment temperature in the first step was set to 1300 ° C. Table 1 shows the evaluation results of the obtained phosphor sample.

(比較例4)
2段階目の熱処理温度を1400℃にした以外は実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。
(Comparative Example 4)
A phosphor sample was prepared in the same manner as in Example 1 except that the heat treatment temperature in the second step was 1400 ° C. Table 1 shows the evaluation results of the obtained phosphor sample.

(比較例5)
2段階目の熱処理温度を1600℃にした以外は、実施例1と同様に蛍光体試料を作製した。比較例5では、大気中で1600℃熱処理後、試料が溶融して固着し、蛍光体試料は得られなかった。
(Comparative Example 5)
A phosphor sample was prepared in the same manner as in Example 1 except that the heat treatment temperature in the second stage was 1600 ° C. In Comparative Example 5, the sample melted and fixed after heat treatment at 1600 ° C. in the atmosphere, and a phosphor sample was not obtained.

(比較例6)
弱還元性雰囲気熱処理の温度を1400℃にした以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。
(Comparative Example 6)
A phosphor sample was prepared in the same manner as in Example 1 except that the temperature of the heat treatment in the weak reducing atmosphere was 1400 ° C. Table 1 shows the evaluation results of the obtained phosphor sample.

(比較例7)
弱還元性雰囲気熱処理の温度を1580℃にした以外は、実施例1と同様に蛍光体試料を作製した。比較例7では、弱還元雰囲気で1580℃熱処理後、試料が溶融してしまい、蛍光体試料は得られなかった。
(Comparative Example 7)
A phosphor sample was produced in the same manner as in Example 1 except that the temperature of the weakly reducing atmosphere heat treatment was changed to 1580 ° C. In Comparative Example 7, the sample melted after heat treatment at 1580 ° C. in a weak reducing atmosphere, and a phosphor sample could not be obtained.

(比較例8)
弱還元性雰囲気熱処理中のArガス中の水素濃度を1vol%にした以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。
(Comparative Example 8)
A phosphor sample was prepared in the same manner as in Example 1 except that the hydrogen concentration in the Ar gas during the heat treatment in the weak reducing atmosphere was 1 vol%. Table 1 shows the evaluation results of the obtained phosphor sample.

(比較例9)
弱還元性雰囲気熱処理中のArガス中の水素濃度を16vol%にした以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。
(Comparative Example 9)
A phosphor sample was prepared in the same manner as in Example 1 except that the hydrogen concentration in the Ar gas during the heat treatment in the weak reducing atmosphere was 16 vol%. Table 1 shows the evaluation results of the obtained phosphor sample.

(比較例10)
弱還元性雰囲気熱処理の熱処理時間を0.5時間にした以外は、実施例1と同様に蛍光体試料を作製した。得られた蛍光体試料の評価結果を表1に示す。
(Comparative Example 10)
A phosphor sample was prepared in the same manner as in Example 1 except that the heat treatment time of the weakly reducing atmosphere heat treatment was changed to 0.5 hour. Table 1 shows the evaluation results of the obtained phosphor sample.

(比較例11)
弱還元性雰囲気熱処理の熱処理時間を12時間にした以外は、実施例1と同様に蛍光体試料の作製を行ったが、12時間の弱還元性雰囲気熱処理後、試料が容器に固着してしまい、比較例11に係る蛍光体試料が得られなかった。
(Comparative Example 11)
A phosphor sample was prepared in the same manner as in Example 1 except that the heat treatment time of the weak reducing atmosphere heat treatment was 12 hours. However, after 12 hours of the weak reducing atmosphere heat treatment, the sample adhered to the container. The phosphor sample according to Comparative Example 11 was not obtained.

(比較例12)
実施例1と同じ配合、条件で湿式混合と乾燥を行い、乾燥粉を得た。得られた乾燥粉を1500℃で3時間、Hを4vol%含むArガスを流しながら弱還元性雰囲気で熱処理し、蛍光体試料を得た。得られた蛍光体試料の評価結果を表1に示す。
(Comparative Example 12)
Wet mixing and drying were performed under the same formulation and conditions as in Example 1 to obtain a dry powder. The obtained dry powder was heat-treated at 1500 ° C. for 3 hours in a weakly reducing atmosphere while flowing Ar gas containing 4 vol% of H 2 to obtain a phosphor sample. Table 1 shows the evaluation results of the obtained phosphor sample.

(比較例13)
実施例1と同じ配合、条件で湿式混合と乾燥を行い、乾燥粉を得た。得られた乾燥粉を大気中、1500℃で熱処理し、乾燥粉を得た。得られた乾燥粉を1500℃で3時間、Hを4vol%含むArガスを流しながら弱還元性雰囲気で熱処理し、蛍光体試料を得た。得られた蛍光体試料の評価結果を表1に示す。
(Comparative Example 13)
Wet mixing and drying were performed under the same formulation and conditions as in Example 1 to obtain a dry powder. The obtained dry powder was heat-treated at 1500 ° C. in the air to obtain a dry powder. The obtained dry powder was heat-treated at 1500 ° C. for 3 hours in a weakly reducing atmosphere while flowing Ar gas containing 4 vol% of H 2 to obtain a phosphor sample. Table 1 shows the evaluation results of the obtained phosphor sample.

Figure 2012214592
Figure 2012214592

Claims (3)

組成式1「(Sr1-x-yEuSiO(式中、0.001≦x≦0.1、0≦y≦0.2、Mは2価の金属)」で示す蛍光体の製造方法において、
少なくとも下記3工程を経て製造することを特徴とする。
工程1:組成式1で示される組成になるように秤量した蛍光体原料を、溶媒を用いて湿式混合した後、前記溶媒を乾燥除去し、得られた凝集混合物を解砕し、大気中、1150〜1250℃の温度による1段目の熱処理を施し、続けて大気中、1450〜1550℃の温度による2段目の熱処理を施して仮焼物を得る工程。
工程2:工程1で得られた前記仮焼物を乾式粉砕した後、分級し、粒径32〜100μmまでの粒子のみを取り出す工程。
工程3:工程2で取り出された前記粒子からなる粉末を、弱還元性雰囲気としてのHガスを2〜12vol%含む不活性ガスフロー中で、温度1450〜1550℃、1〜10時間の熱処理する工程。
In composition formula 1 “(Sr 1- xy My Eu x ) 3 SiO 5 (where 0.001 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.2, M is a divalent metal)” In the method for producing the phosphor shown,
It is manufactured through at least the following three steps.
Step 1: The phosphor raw material weighed so as to have the composition represented by composition formula 1 is wet-mixed using a solvent, and then the solvent is dried and removed, and the resulting agglomerated mixture is crushed, A step of performing a first heat treatment at a temperature of 1150 to 1250 ° C., and subsequently performing a second heat treatment at a temperature of 1450 to 1550 ° C. in the air to obtain a calcined product.
Step 2: A step of dry pulverizing the calcined product obtained in Step 1 and then classifying it to take out only particles having a particle size of 32 to 100 μm.
Process 3: Heat treatment at a temperature of 1450 to 1550 ° C. for 1 to 10 hours in an inert gas flow containing 2 to 12 vol% of H 2 gas as a weakly reducing atmosphere for the powder composed of the particles taken out in the process 2 Process.
前記組成式1「(Sr1-x-yEuSiO」中のMで示す金属が、アルカリ土類金属から選ばれる1種類以上の金属であることを特徴とする請求項1に記載の蛍光体の製造方法。 The metal represented by M in the composition formula 1 “(Sr 1- xy My Eu x ) 3 SiO 5 ” is one or more metals selected from alkaline earth metals. A method for producing the phosphor according to 1. 蛍光体の相純度が、リートベルト解析法によるX線回折の定量値で90wt%以上であることを特徴とする請求項1または2に記載の製造方法を用いて形成された蛍光体。   The phosphor formed using the production method according to claim 1 or 2, wherein the phase purity of the phosphor is 90 wt% or more as a quantitative value of X-ray diffraction by Rietveld analysis.
JP2011080173A 2011-03-31 2011-03-31 Method for producing silicate fluorophor, and fluorophor formed by using the same Withdrawn JP2012214592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080173A JP2012214592A (en) 2011-03-31 2011-03-31 Method for producing silicate fluorophor, and fluorophor formed by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080173A JP2012214592A (en) 2011-03-31 2011-03-31 Method for producing silicate fluorophor, and fluorophor formed by using the same

Publications (1)

Publication Number Publication Date
JP2012214592A true JP2012214592A (en) 2012-11-08

Family

ID=47267729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080173A Withdrawn JP2012214592A (en) 2011-03-31 2011-03-31 Method for producing silicate fluorophor, and fluorophor formed by using the same

Country Status (1)

Country Link
JP (1) JP2012214592A (en)

Similar Documents

Publication Publication Date Title
JP5323131B2 (en) Fluorescent particles, light-emitting diodes, illumination device using them, and backlight device for liquid crystal panel
EP2415847A1 (en) Aluminum oxide phosphor and method for producing same
Lee et al. Luminescent properties of Eu 3+-activated Gd 2 ZnTiO 6 double perovskite red-emitting phosphors for white light-emitting diodes and field emission displays
JP5578739B2 (en) Alkaline earth metal silicate phosphor and method for producing the same
JPWO2017002467A1 (en) Method for producing inorganic compound
Pradal et al. Spectroscopic study and enhanced thermostability of combustion-derived BaMgAl10O17: Eu2+ blue phosphors for solid-state lighting
JP6465417B2 (en) Luminescent phosphor and method for producing the same
Öztürk et al. Mn 4+-, Tb 3+, 4+-, and Er 3+-activated red phosphors in the MgAl 2 Si 2 O 8 system
KR101414948B1 (en) PROCESS FOR PRODUCTION OF Eu-ACTIVATED ALKALINE EARTH METAL SILICATE PHOSPHOR
JP5071714B2 (en) Phosphor, method for producing the same, and light emitting device using the same
JP5187817B2 (en) Phosphors and light emitting devices
WO2014006755A1 (en) Silicate phosphor and process for manufacturing same
JP4849498B2 (en) Silicate phosphor and method for producing silicate phosphor
JP5484397B2 (en) Silicate phosphor and method for producing the same
JP2012214592A (en) Method for producing silicate fluorophor, and fluorophor formed by using the same
KR101330862B1 (en) Particle Size Control of YAG Type Phosphor by the Liquid-State-Reaction Method Using Urea, and Manufacturing Method thereof
JP4343267B1 (en) Green phosphor
JP2014189592A (en) Phosphor and phosphor-containing composition, light-emitting device, image display device and lighting device
JP5444271B2 (en) Method for producing alkaline earth metal silicate phosphor
JP2012144689A5 (en)
JP2010047742A (en) SPINEL TYPE ZnGaAl-BASED OXIDE PHOSPHOR AND METHOD FOR PRODUCING THE SAME
JP6036678B2 (en) Method for producing silicate phosphor particles and silicate phosphor particles
JP5512708B2 (en) Rare earth-added alkaline earth metal silicate phosphor and method for producing the same
JP2013129765A (en) Method for production of alkaline earth metal silicate phosphor, and the alkaline earth metal silicate phosphor
JPWO2017030030A1 (en) Phosphor, method for manufacturing the same, and light emitting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603