JP2012214218A - Rotary actuator with high maintainability and method for working the same - Google Patents

Rotary actuator with high maintainability and method for working the same Download PDF

Info

Publication number
JP2012214218A
JP2012214218A JP2012072834A JP2012072834A JP2012214218A JP 2012214218 A JP2012214218 A JP 2012214218A JP 2012072834 A JP2012072834 A JP 2012072834A JP 2012072834 A JP2012072834 A JP 2012072834A JP 2012214218 A JP2012214218 A JP 2012214218A
Authority
JP
Japan
Prior art keywords
actuator
drive means
gear
output shaft
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012072834A
Other languages
Japanese (ja)
Inventor
Terence Ross Golding
テレンス・ロッス・ゴルディング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Aviation Systems Ltd
Original Assignee
GE Aviation Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Aviation Systems Ltd filed Critical GE Aviation Systems Ltd
Publication of JP2012214218A publication Critical patent/JP2012214218A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • F16H3/725Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines with means to change ratio in the mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/065Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with a plurality of driving or driven shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/26Transmitting means without power amplification or where power amplification is irrelevant
    • B64C13/28Transmitting means without power amplification or where power amplification is irrelevant mechanical
    • B64C13/341Transmitting means without power amplification or where power amplification is irrelevant mechanical having duplication or stand-by provisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/505Transmitting means with power amplification using electrical energy having duplication or stand-by provisions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H29/00Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action
    • F16H29/12Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between rotary driving and driven members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/122Avoiding failures by using redundant parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2005Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)
  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary actuator suitable for an aircraft which maximizes reliability, and reduces a dimension, weight, and complexity.SOLUTION: The actuator for an aircraft 1 includes: first and second drive means 2 and 3 connected with each other by a gear assembly 4; and an actuator output shaft 10. The actuator output shaft 10 can be driven by the first drive means 2 independently of the second drive means 3, the actuator output shaft 10 can be driven by the second drive means 3 independently of the first drive means 2, and the actuator output shaft 10 can be driven by the combination of the first drive means 2 and the second drive means 3. The gear assembly 4 includes a pair of planetary gears.

Description

本発明は、ロータリアクチュエータ及びその作動の方法に関し、特に、航空機に使用するのに適したロータリアクチュエータ及びその作動の方法に関する。   The present invention relates to a rotary actuator and a method for operating the rotary actuator, and more particularly to a rotary actuator suitable for use in an aircraft and a method for operating the rotary actuator.

セーフティクリティカルなシステム又は機器においてセーフティクリティカルな機構を始動させるには、高いレベルの信頼性を達成することが必要である。例えば、着陸装置、及び/又はフラップ及び補助翼などを作動させるために、その信頼性から、航空機では油圧アクチュエータを使用することが一般に知られている。油圧システムの故障は、通常、圧液の漏出によって引き起こされ、油圧システムは、固着することなく自由に動く状態で故障状態になる。油圧式着陸装置の場合、これによりシステム故障が起きても、着陸するために着陸装置を降ろすことが可能になる。   In order to start a safety critical mechanism in a safety critical system or equipment, it is necessary to achieve a high level of reliability. For example, it is generally known to use hydraulic actuators in aircraft due to its reliability to operate landing gears and / or flaps and ailerons, and the like. A failure of the hydraulic system is usually caused by the leakage of the hydraulic fluid, and the hydraulic system goes into a failure state with free movement without sticking. In the case of a hydraulic landing gear, this allows the landing gear to be lowered to land even if a system failure occurs.

電気機械式アクチュエータは、軽量であり、航空機に簡単に組み込んで、航空機内の配電システムを使用して駆動することができるため、航空機での使用に有利である。しかし、電気モータは著しい焼付き故障モードを有し、そのため固着状態で故障状態となりやすく、バックアップシステムが効果を発揮しなくなる。   Electromechanical actuators are advantageous for use in aircraft because they are lightweight and can be easily integrated into an aircraft and driven using a power distribution system in the aircraft. However, electric motors have a significant seizure failure mode, which tends to cause a failure state when stuck, and the backup system becomes ineffective.

電動ロータリアクチュエータの既知の例では、システムの固着を引き起こす故障が起きた場合、アクチュエータを確実に自由にし、バックアップシステムが作動できるようにするために、切離し装置、例えばクラッチなどが必要となる。米国特許出願第2009/108,129号によって提供されている1つの例では、少なくとも2つの電気駆動手段と、アクチュエータと出力軸との間の負荷経路を切断するためにアクチュエータアセンブリの出力部材に設けられた連結/分離機構とを含む固着耐性電気機械式作動システムを開示している。連結/分離機構は、連結/分離の作動を行なうために切断アクチュエータを使用する。   In known examples of electric rotary actuators, in the event of a failure that causes the system to stick, a disconnect device, such as a clutch, is required to ensure that the actuator is free and the backup system can operate. In one example provided by US Patent Application No. 2009 / 108,129, an output member of an actuator assembly is provided to disconnect a load path between at least two electric drive means and the actuator and output shaft. An anchorage resistant electromechanical actuation system is disclosed. The coupling / separation mechanism uses a cutting actuator to perform the coupling / separation operation.

本発明は、ロータリアクチュエータの信頼性を最大限にし、その寸法、重量及び複雑さを低減するという課題に対処する。   The present invention addresses the challenge of maximizing the reliability of a rotary actuator and reducing its size, weight and complexity.

本発明は、第1の駆動手段と、第2の駆動手段と、アクチュエータ出力軸とを備え、これらが歯車アセンブリによって相互接続される、航空機のためのアクチュエータであって、アクチュエータ出力軸が、第2の駆動手段から独立して、第1の駆動手段によって駆動可能であり、アクチュエータ出力軸が、第1の駆動手段から独立して、第2の駆動手段によって駆動可能であり、アクチュエータ出力軸が、第1の駆動手段と第2の駆動手段の組合せによって駆動可能である、アクチュエータを提供する。   The present invention is an actuator for an aircraft comprising a first drive means, a second drive means, and an actuator output shaft, which are interconnected by a gear assembly, the actuator output shaft comprising: The actuator output shaft can be driven by the second drive means independently of the first drive means, and the actuator output shaft can be driven independently of the first drive means. An actuator is provided that can be driven by a combination of first drive means and second drive means.

更に、本発明は、第1の駆動手段と、第2の駆動手段と、アクチュエータ出力軸とを含み、これらが歯車アセンブリによって相互接続されるアクチュエータを作動させる方法を提供する。この方法は、第1の駆動手段を作動させ、アクチュエータ出力軸を駆動するステップと、第1の駆動手段に故障が起きた場合、第2の駆動手段を作動させ、アクチュエータ出力軸を駆動するステップと、第1の駆動手段と第2の駆動手段とを相互接続する歯車アセンブリに故障が起きた場合、第1の駆動手段と第2の駆動手段を組み合わせて作動させ、アクチュエータ出力軸を駆動するステップとを含む。   The present invention further provides a method of operating an actuator including first drive means, second drive means, and an actuator output shaft, which are interconnected by a gear assembly. In this method, the step of operating the first drive means to drive the actuator output shaft, and the step of operating the second drive means to drive the actuator output shaft when a failure occurs in the first drive means. When a failure occurs in the gear assembly that interconnects the first drive means and the second drive means, the first drive means and the second drive means are operated in combination to drive the actuator output shaft. Steps.

本発明によるアクチュエータは、駆動手段のいずれかが故障、又は歯車アセンブリに固着が起きた場合にも、継続して作動可能であることが有利である。更に、歯車アセンブリにクラッチを使用していないので、アクチュエータは、軽量及び小型となり、信頼性が高まる。   Advantageously, the actuator according to the invention can continue to operate even if any of the drive means fails or the gear assembly becomes stuck. In addition, since no clutch is used in the gear assembly, the actuator is lighter and smaller and more reliable.

以下、添付の概略図を参照して、単に例として本発明の実施形態を詳細に説明する。   Embodiments of the present invention will now be described in detail by way of example only with reference to the accompanying schematic drawings.

本発明を具体化するアクチュエータの断面図である。It is sectional drawing of the actuator which embodies this invention. 歯車アセンブリの断面図である。FIG. 3 is a cross-sectional view of a gear assembly. アクチュエータの第2の実施形態の断面図である。It is sectional drawing of 2nd Embodiment of an actuator. アクチュエータの第3の実施形態の断面図である。It is sectional drawing of 3rd Embodiment of an actuator.

図1は、第1の駆動手段2及び第2の駆動手段3を備えるアクチュエータの断面を示す。第1及び第2の駆動手段2、3は、遊星歯車システム(エピサイクリック歯車システムとしても公知である)を備える歯車アセンブリ4によって相互接続する。2つの駆動手段2、3の各々は、電気モータを備え、電気モータの出力軸は波動歯車装置に接続され、減速し、電気モータ出力のトルクを大きくする。アクチュエータは、ケーシング(図示せず)内に位置し、波動歯車装置グラウンディング5によってしっかりと保持される。   FIG. 1 shows a cross section of an actuator provided with a first driving means 2 and a second driving means 3. The first and second drive means 2, 3 are interconnected by a gear assembly 4 comprising a planetary gear system (also known as an epicyclic gear system). Each of the two driving means 2 and 3 includes an electric motor, and an output shaft of the electric motor is connected to the wave gear device, decelerates, and increases the torque of the electric motor output. The actuator is located in a casing (not shown) and is firmly held by the wave gear unit grounding 5.

遊星歯車アセンブリ4は、内歯外輪歯車6を含み、この内部に複数の外歯遊星歯車7が取付けられ、これらの歯は外輪歯車の歯に係合する。更に、この遊星歯車アセンブリ4は、遊星歯車7が軸支される複数のシャフトを有する遊星歯車キャリア8を含む。中央の外歯太陽歯車9は遊星歯車7と駆動接続して配置される。   The planetary gear assembly 4 includes an inner-tooth outer ring gear 6 in which a plurality of outer-tooth planetary gears 7 are attached, and these teeth engage with teeth of the outer ring gear. The planetary gear assembly 4 further includes a planetary gear carrier 8 having a plurality of shafts on which the planetary gears 7 are supported. The central external gear sun gear 9 is arranged in driving connection with the planetary gear 7.

別のタイプの歯車アセンブリも、特許請求の範囲から逸脱することなしに、本発明において使用することができる。   Other types of gear assemblies can also be used in the present invention without departing from the scope of the claims.

図1の実施形態では、第1のモータ2は歯車アセンブリ4の遊星歯車キャリア8に接続され、第2のモータ3は外輪歯車6に接続される。アクチュエータは太陽歯車9に接続される出力軸10を有する。必要であれば、出力軸10は第1のモータ2を貫通してもよい。   In the embodiment of FIG. 1, the first motor 2 is connected to the planetary gear carrier 8 of the gear assembly 4 and the second motor 3 is connected to the outer ring gear 6. The actuator has an output shaft 10 connected to the sun gear 9. If necessary, the output shaft 10 may penetrate the first motor 2.

図1に示される実施形態において、アクチュエータに影響を及ぼし得る種々な故障のケースを対象とする作動を次の表中で説明する。表の中の矢印は、各入力又はモータ2、3の回転方向、及び、結果として生じる、出力軸10の回転方向を示す。この表からわかるように、アクチュエータが作動しなくなるには、モータが両方とも故障することが必要となる。表に記載された他のいかなる故障のケースにおいてもアクチュエータは機能し続ける。   In the embodiment shown in FIG. 1, the operation for various failure cases that can affect the actuator is described in the following table. The arrows in the table indicate the direction of rotation of each input or motor 2, 3 and the resulting direction of rotation of the output shaft 10. As can be seen from this table, both motors must fail in order for the actuator to fail. The actuator continues to function in any other failure cases listed in the table.

図2は、太陽歯車9、遊星歯車7、及び、外輪歯車6の配置を図示する歯車アセンブリ4の断面を示す。 FIG. 2 shows a cross section of the gear assembly 4 illustrating the arrangement of the sun gear 9, the planetary gear 7 and the outer ring gear 6.

図3は、本発明の別の実施形態の断面を示し、第1のモータ2は太陽歯車9に接続され、第2のモータは外輪歯車6に接続される。出力軸10は、遊星歯車キャリア8に接続され、第2のモータを貫通する。   FIG. 3 shows a cross section of another embodiment of the present invention, where the first motor 2 is connected to the sun gear 9 and the second motor is connected to the outer ring gear 6. The output shaft 10 is connected to the planetary gear carrier 8 and passes through the second motor.

図4に示す、また別の実施形態では、第1のモータ2は遊星歯車キャリア8に接続され、第2のモータ3は、第1のモータを貫通するシャフトを介して太陽歯車9に接続される。出力軸10は外輪歯車6に接続される。   In yet another embodiment, shown in FIG. 4, the first motor 2 is connected to the planetary gear carrier 8 and the second motor 3 is connected to the sun gear 9 via a shaft passing through the first motor. The The output shaft 10 is connected to the outer ring gear 6.

これら実施形態の各々は、出力速度に対する入力速度の比率を変えることができ、この比率は、アクチュエータの動作モードに依存する。複数のモータを使用する実施形態を想定しており、場合によって、アクチュエータの出力軸によって駆動するエピサイクリック歯車を追加する必要がある。   Each of these embodiments can vary the ratio of input speed to output speed, which depends on the operating mode of the actuator. An embodiment using a plurality of motors is envisaged, and in some cases it is necessary to add an epicyclic gear driven by the output shaft of the actuator.

更に、第1及び第2の駆動手段のうちの1つは電気モータを備え、他方の駆動手段は油圧モータを備えるような実施形態(図示せず)もある。この実施形態では、電気系統の故障又は油圧システムの故障などの、一般的な原因による故障に対する付加的な防護策を提供する。   In some embodiments (not shown), one of the first and second drive means may comprise an electric motor and the other drive means may comprise a hydraulic motor. This embodiment provides additional protection against common cause failures, such as electrical system failures or hydraulic system failures.

すべての実施形態において、モータは表に示されるようにエピサイクリック歯車が確実に作動するために逆転駆動できないようになっている。波動歯車装置は、モータ出力に対して大きなギヤ減速比を提供することにより、逆転駆動を確実に防止する助けとなる。   In all embodiments, the motor cannot be driven in reverse since the epicyclic gear operates reliably as shown in the table. The wave gear device helps to reliably prevent reverse rotation by providing a large gear reduction ratio with respect to the motor output.

アクチュエータが正常に作動する場合、第1及び第2の駆動手段は交互に作動する。従って、当然のことながら、いかなる故障の事態も発生しないと想定すれば、例えば、アクチュエータが作動するために1回のフライトで第1のモータのみを使用し、次のフライトでアクチュエータが作動するために第2のモータだけを使用する。このようにして、正常であれば、最後のデューティサイクルの間、モータが両方とも機能していたことが実証されている。   When the actuator operates normally, the first and second driving means operate alternately. Therefore, of course, assuming that no failure will occur, for example, only the first motor is used in one flight to operate the actuator, and the actuator operates in the next flight. Only the second motor is used. Thus, if normal, it has been demonstrated that both motors were functioning during the last duty cycle.

歯車アセンブリ4の構成部品のギヤ比を選択し、アクチュエータを特定の用途に合わせて最適化することができる。この点に関する限定要因には、外輪歯車の直径に対して利用可能な空間、応力及び疲労を根拠とする歯車の歯の寸法、必要な出力負荷及び速度、得られるモータトルク及び速度などがある。   The gear ratio of the components of the gear assembly 4 can be selected and the actuator can be optimized for a particular application. Limiting factors in this regard include space available for outer ring gear diameter, gear tooth dimensions based on stress and fatigue, required output load and speed, and resulting motor torque and speed.

1、11、12 アクチュエータ
2 第1の駆動手段
3 第2の駆動手段
4 歯車アセンブリ
5 波動歯車装置グラウンディング
6 外輪歯車
7 遊星歯車
8 遊星歯車キャリア
9 外歯太陽歯車
10 出力軸
DESCRIPTION OF SYMBOLS 1, 11, 12 Actuator 2 1st drive means 3 2nd drive means 4 Gear assembly 5 Wave gear unit grounding 6 Outer ring gear 7 Planetary gear 8 Planetary gear carrier 9 External tooth sun gear 10 Output shaft

Claims (18)

第1の駆動手段と、第2の駆動手段と、アクチュエータ出力軸とを備え、これらが歯車アセンブリによって相互接続される、航空機のためのアクチュエータであって、
前記アクチュエータ出力軸が、前記第2の駆動手段から独立して、前記第1の駆動手段によって駆動可能であり、
前記アクチュエータ出力軸が、前記第1の駆動手段から独立して、前記第2の駆動手段によって駆動可能であり、
前記アクチュエータ出力軸が、前記第1の駆動手段と前記第2の駆動手段の組合せによって駆動可能である、
アクチュエータ。
An actuator for an aircraft comprising a first drive means, a second drive means, and an actuator output shaft, which are interconnected by a gear assembly,
The actuator output shaft can be driven by the first driving means independently of the second driving means;
The actuator output shaft can be driven by the second driving means independently of the first driving means;
The actuator output shaft can be driven by a combination of the first drive means and the second drive means;
Actuator.
前記第1及び前記第2の駆動手段が、各々の電気モータを備える、請求項1記載のアクチュエータ。 The actuator of claim 1, wherein the first and second drive means comprise respective electric motors. 前記第1及び前記第2の駆動手段が、各々の油圧モータを備える、請求項1記載のアクチュエータ。 The actuator according to claim 1, wherein the first and second driving means include respective hydraulic motors. 前記第1及び前記第2の駆動手段の少なくとも1つが電気モータを備え、前記第1及び前記第2の駆動手段の少なくとも1つが油圧モータを備える、請求項1記載のアクチュエータ。 The actuator of claim 1, wherein at least one of the first and second drive means comprises an electric motor, and at least one of the first and second drive means comprises a hydraulic motor. 前記第1の駆動手段が、波動歯車装置を介して前記歯車アセンブリに接続される、請求項1乃至4のいずれか1項記載のアクチュエータ。 The actuator according to any one of claims 1 to 4, wherein the first driving means is connected to the gear assembly via a wave gear device. 前記第2の駆動手段が、波動歯車装置を介して前記歯車アセンブリに接続される、請求項1乃至5のいずれか1項記載のアクチュエータ。 The actuator according to any one of claims 1 to 5, wherein the second driving means is connected to the gear assembly via a wave gear device. 前記歯車アセンブリがエピサイクリック歯車アセンブリを備え、前記エピサイクリック歯車アセンブリが1組の遊星歯車及び遊星歯車キャリアに駆動接続される外輪歯車を含み、前記1組の遊星歯車及び前記遊星歯車キャリアが太陽歯車に駆動接続される、請求項1乃至6のいずれか1項記載のアクチュエータ。 The gear assembly includes an epicyclic gear assembly, and the epicyclic gear assembly includes an outer ring gear that is drivingly connected to a set of planetary gears and a planetary gear carrier, and the set of planetary gears and the planetary gear carrier includes: The actuator according to any one of claims 1 to 6, wherein the actuator is drivingly connected to a sun gear. 前記第1の駆動手段が、前記遊星歯車キャリアと駆動接続して配置される、請求項7記載のアクチュエータ。 The actuator according to claim 7, wherein the first driving means is disposed in driving connection with the planetary gear carrier. 前記第2の駆動手段が、前記外輪歯車と駆動接続して配置される、請求項7又は8記載のアクチュエータ。 The actuator according to claim 7 or 8, wherein the second driving means is disposed in driving connection with the outer ring gear. 前記アクチュエータ出力軸が、前記太陽歯車と駆動接続して配置される、請求項7乃至9のいずれか1項記載のアクチュエータ。 The actuator according to any one of claims 7 to 9, wherein the actuator output shaft is disposed in driving connection with the sun gear. 前記第1の駆動手段が前記太陽歯車と駆動接続して配置され、前記第2の駆動手段が前記外輪歯車と駆動接続して配置され、前記アクチュエータ出力軸が前記遊星歯車キャリアと駆動接続して配置される、請求項7記載のアクチュエータ。 The first driving means is disposed in driving connection with the sun gear, the second driving means is disposed in driving connection with the outer ring gear, and the actuator output shaft is drivingly connected with the planetary gear carrier. The actuator according to claim 7, wherein the actuator is arranged. 前記第1の駆動手段が前記遊星歯車キャリアと駆動接続して配置され、前記第2の駆動手段が前記太陽歯車と駆動接続して配置され、前記アクチュエータ出力軸が前記外輪歯車と駆動接続して配置される、請求項7記載のアクチュエータ。 The first driving means is disposed in driving connection with the planetary gear carrier, the second driving means is disposed in driving connection with the sun gear, and the actuator output shaft is drivingly connected with the outer ring gear. The actuator according to claim 7, wherein the actuator is arranged. 請求項1乃至12のいずれか1項記載のアクチュエータを備える、着陸装置システム。 A landing gear system comprising the actuator according to any one of claims 1 to 12. 請求項1乃至12のいずれか1項記載のアクチュエータを備える航空機のフラップ又は補助翼のコントロールシステム。 An aircraft flap or auxiliary wing control system comprising the actuator according to any one of claims 1 to 12. 第1の駆動手段と、第2の駆動手段と、アクチュエータ出力軸とを含み、これらが歯車アセンブリによって相互接続されるアクチュエータを作動させる方法であって、
前記第1の駆動手段を作動させ、前記アクチュエータ出力軸を駆動するステップと、
前記第1の駆動手段に故障が起きた場合、前記第2の駆動手段を作動させ、前記アクチュエータ出力軸を駆動するステップと、
前記第1の駆動手段と前記第2の駆動手段とを相互接続する前記歯車アセンブリに故障が起きた場合、前記第1の駆動手段と前記第2の駆動手段を組み合わせて作動させ、前記アクチュエータ出力軸を駆動するステップと
を含む方法。
A method of actuating an actuator including first drive means, second drive means, and an actuator output shaft, which are interconnected by a gear assembly,
Activating the first drive means to drive the actuator output shaft;
When a failure occurs in the first drive means, operating the second drive means to drive the actuator output shaft;
When a failure occurs in the gear assembly interconnecting the first drive means and the second drive means, the first drive means and the second drive means are operated in combination, and the actuator output Driving the shaft.
前記アクチュエータの正常な作動中に、前記第1及び前記第2の駆動手段が交互に作動される、請求項15記載の方法。 16. A method according to claim 15, wherein during the normal operation of the actuator, the first and second drive means are operated alternately. 添付の図面に関連して、本明細書に実質的に記載のアクチュエータ。 An actuator substantially as herein described with reference to the accompanying drawings. 添付の図面に関連して、本明細書に実質的に記載の、アクチュエータを作動させる方法。 A method of actuating an actuator substantially as herein described with reference to the accompanying drawings.
JP2012072834A 2011-03-31 2012-03-28 Rotary actuator with high maintainability and method for working the same Pending JP2012214218A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1105478.0A GB2489503A (en) 2011-03-31 2011-03-31 Rotary actuator and method of operation with failsafe mechanism
GB1105478.0 2011-03-31

Publications (1)

Publication Number Publication Date
JP2012214218A true JP2012214218A (en) 2012-11-08

Family

ID=44071750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072834A Pending JP2012214218A (en) 2011-03-31 2012-03-28 Rotary actuator with high maintainability and method for working the same

Country Status (8)

Country Link
US (1) US20150105199A9 (en)
JP (1) JP2012214218A (en)
CN (1) CN102730186A (en)
CA (1) CA2772480A1 (en)
DE (1) DE102012102729A1 (en)
FR (1) FR2973334A1 (en)
GB (1) GB2489503A (en)
IN (1) IN2012DE00809A (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9879760B2 (en) 2002-11-25 2018-01-30 Delbert Tesar Rotary actuator with shortest force path configuration
US9169005B2 (en) * 2010-04-28 2015-10-27 L-3 Communications Magnet-Motor Gmbh Drive unit for aircraft running gear
US9631645B2 (en) 2013-02-27 2017-04-25 Woodward, Inc. Rotary piston actuator anti-rotation configurations
US9234535B2 (en) 2013-02-27 2016-01-12 Woodward, Inc. Rotary piston type actuator
US9593696B2 (en) 2013-02-27 2017-03-14 Woodward, Inc. Rotary piston type actuator with hydraulic supply
US8955425B2 (en) 2013-02-27 2015-02-17 Woodward, Inc. Rotary piston type actuator with pin retention features
US9163648B2 (en) 2013-02-27 2015-10-20 Woodward, Inc. Rotary piston type actuator with a central actuation assembly
US9816537B2 (en) 2013-02-27 2017-11-14 Woodward, Inc. Rotary piston type actuator with a central actuation assembly
US9476434B2 (en) 2013-02-27 2016-10-25 Woodward, Inc. Rotary piston type actuator with modular housing
US9862263B2 (en) 2013-03-01 2018-01-09 Delbert Tesar Multi-speed hub drive wheels
US10414271B2 (en) 2013-03-01 2019-09-17 Delbert Tesar Multi-speed hub drive wheels
US9365105B2 (en) 2013-10-11 2016-06-14 Delbert Tesar Gear train and clutch designs for multi-speed hub drives
EP2913265B1 (en) * 2014-02-27 2019-07-17 Goodrich Actuation Systems SAS Stability and control augmentation system
US10422387B2 (en) 2014-05-16 2019-09-24 Delbert Tesar Quick change interface for low complexity rotary actuator
US9657813B2 (en) 2014-06-06 2017-05-23 Delbert Tesar Modified parallel eccentric rotary actuator
US9915319B2 (en) 2014-09-29 2018-03-13 Delbert Tesar Compact parallel eccentric rotary actuator
US10454394B2 (en) * 2014-07-18 2019-10-22 Mitsubishi Heavy Industries Compressor Corporation Rotational driving force imparting device and electric motor device for the same
TWI538363B (en) * 2014-12-02 2016-06-11 財團法人工業技術研究院 Compliance motor structure and manufacturing method thereof
US11014658B1 (en) 2015-01-02 2021-05-25 Delbert Tesar Driveline architecture for rotorcraft featuring active response actuators
WO2017037939A1 (en) 2015-09-04 2017-03-09 三菱重工コンプレッサ株式会社 Starting method for variable speed accelerator and starting control device for variable speed accelerator
US10106245B2 (en) 2015-10-19 2018-10-23 Honeywell International Inc. Automatic flight control actuator systems
US10030756B2 (en) 2016-06-02 2018-07-24 Honeywell International Inc. Automatic flight control actuator systems
WO2017216897A1 (en) 2016-06-15 2017-12-21 三菱重工コンプレッサ株式会社 Variable speed accelerator
US10464413B2 (en) 2016-06-24 2019-11-05 Delbert Tesar Electric multi-speed hub drive wheels
CA3016400A1 (en) * 2017-09-08 2019-03-08 Hamilton Sundstrand Corporation Electromechanical hinge-line rotary actuator
FR3089950B1 (en) * 2018-12-18 2022-06-17 Safran Landing Systems Method of protection against shocks that may affect an aircraft landing gear
US11199248B2 (en) 2019-04-30 2021-12-14 Woodward, Inc. Compact linear to rotary actuator
WO2021207482A1 (en) 2020-04-08 2021-10-14 Woodward, Inc. Rotary piston type actuator with a central actuation assembly
DE102020204915A1 (en) * 2020-04-17 2021-10-21 Zf Friedrichshafen Ag Actuator for aerospace applications
CN112797122B (en) * 2020-12-30 2022-05-24 苏州绿科智能机器人研究院有限公司 Planetary gear integrated speed reducer
CN112849391A (en) * 2021-03-31 2021-05-28 成都纵横大鹏无人机科技有限公司 Unfolding-direction folding mechanism of variable wing of unmanned aerial vehicle and unmanned aerial vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179944A (en) * 1977-06-27 1979-12-25 United Technologies Corporation Fail safe redundant actuator
US4858491A (en) * 1988-01-21 1989-08-22 Plessey Incorporated Fail-free actuator assembly
US5957798A (en) * 1997-09-10 1999-09-28 Gec-Marconi Aerospace Inc. Fail-free actuator assembly
DE10000219A1 (en) * 2000-01-05 2001-07-12 Bosch Gmbh Robert Regulator member for steering angle changes of motor vehicle wheels has overlay transmission with planet carrier, and stepped gears with planet wheels meshing with sun wheels
GB0618902D0 (en) * 2006-09-25 2006-11-01 Airbus Uk Ltd Actuator
JP2010506792A (en) * 2006-10-18 2010-03-04 ムーグ インコーポレイティド Fault-tolerant redundant differential actuator
US8336817B2 (en) * 2007-10-30 2012-12-25 Parker-Hannifin Corporation Jam tolerant electromechanical actuation systems and methods of operation
US8505845B2 (en) * 2010-07-29 2013-08-13 Stoneage, Inc. System and method for storing, rotating, and feeding a high pressure hose

Also Published As

Publication number Publication date
CA2772480A1 (en) 2012-09-30
CN102730186A (en) 2012-10-17
GB2489503A (en) 2012-10-03
US20130249444A1 (en) 2013-09-26
FR2973334A1 (en) 2012-10-05
DE102012102729A1 (en) 2012-10-04
US20150105199A9 (en) 2015-04-16
IN2012DE00809A (en) 2015-08-21
GB201105478D0 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP2012214218A (en) Rotary actuator with high maintainability and method for working the same
EP2054299B1 (en) Jam-tolerant actuator
US7788988B2 (en) Drive assemblies
EP3144220B1 (en) Aircraft control surface actuator
RU2459988C2 (en) Actuator containing overload protection device and designed for actuation of annular gear
US8226522B2 (en) Coupling for generator/starter
EP3835562A1 (en) Aircraft hybrid propulsion system
EP3324078B1 (en) Gearbox assembly
US11085524B2 (en) Transmission, drive assembly having a transmission, and method for operating the drive assembly
EP3121469A1 (en) Drive shaft assembly
EP2915744A1 (en) Flight control actuator drive
US20140004986A1 (en) Electric motor/generator power transfer unit
US9016151B2 (en) High integrity linear actuator and method of operation
WO2017069830A2 (en) Coaxial split torque gear box
CN110953070A (en) Engine with starting aid
EP3722577B1 (en) Variable multiple-drive gas turbine engine
US11092082B2 (en) Transmission for engine with two power inputs
US20220388673A1 (en) Propulsion system for a helicopter
WO2015047498A2 (en) Multi-plate clutch
CN115123557A (en) Power control unit, and hydraulic system and aircraft using same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141024