JP2012214007A - Method for manufacturing coil comprising thermoplastic polymer - Google Patents

Method for manufacturing coil comprising thermoplastic polymer Download PDF

Info

Publication number
JP2012214007A
JP2012214007A JP2011175984A JP2011175984A JP2012214007A JP 2012214007 A JP2012214007 A JP 2012214007A JP 2011175984 A JP2011175984 A JP 2011175984A JP 2011175984 A JP2011175984 A JP 2011175984A JP 2012214007 A JP2012214007 A JP 2012214007A
Authority
JP
Japan
Prior art keywords
fiber
coil
melting point
fiber bundle
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011175984A
Other languages
Japanese (ja)
Other versions
JP5802079B2 (en
Inventor
Taketoshi Nakatani
雄俊 中谷
Reiichi Hazama
令一 波左間
Hironori Murotani
浩紀 室谷
Takuya Uenoyama
卓也 上野山
Yoshifumi Moriguchi
芳文 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2011175984A priority Critical patent/JP5802079B2/en
Publication of JP2012214007A publication Critical patent/JP2012214007A/en
Application granted granted Critical
Publication of JP5802079B2 publication Critical patent/JP5802079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Springs (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coil which is mainly composed of non-metal materials and easily molded at low cost without a complex manufacturing process, and flexibly supports various coil wire thickness, coil shape and size.SOLUTION: In a method for manufacturing a coil comprising thermoplastic polymers, a fiber bundle comprising a plurality of fibers, wherein the fiber bundle is composed of a low melting point polymer and a high melting point polymer, is used, the fiber bundle is wound to be a specific spiral-shape, then a heat treatment is performed at a temperature that the low melting point polymer composing the fiber bundle is melted and the high melting point polymer is not melted, and then the fiber bundle is cooled.

Description

本発明は、熱可塑性重合体からなるコイルに関するものである。   The present invention relates to a coil made of a thermoplastic polymer.

従来、コイルは衝撃吸収、エネルギー蓄積、荷重調節、荷重検出、防振などの目的で、自動車、寝具、計器、筆記具、ポンプディスペンサーをはじめ、様々な器具・装置の部材として使用されている。コイルの素材としては、ステンレス鋼材、ばね鋼材、ピアノ線材、洋白線材などの金属からなるものと、合成樹脂、FRPおよび合成繊維などの非金属材料からなるものがある。   Conventionally, coils have been used as members of various appliances and devices such as automobiles, bedding, instruments, writing instruments, and pump dispensers for purposes such as shock absorption, energy storage, load adjustment, load detection, and vibration isolation. As a material of the coil, there are a material made of a metal such as a stainless steel material, a spring steel material, a piano wire material and a white wire material, and a material made of a non-metallic material such as a synthetic resin, FRP and synthetic fiber.

一般的に金属製コイルは合成樹脂より材料の弾性係数が高く、合成樹脂に比べて断面積の小さい部材であっても機械的物性を発揮できる。また温度などの動作環境に対しても物性が比較的安定しているため、応用範囲が広い。しかし、薬品により腐食されやすく、錆びが生じやすいなどの耐久性に劣ることや、着色できないという問題があったまた、樹脂製品中の部材として用いられる場合、分別回収し難いという欠点があった。さらに軽量化の要望もあり、非金属製コイルの開発が進められている。   In general, a metal coil has a higher elastic modulus than a synthetic resin, and can exhibit mechanical properties even with a member having a smaller cross-sectional area than a synthetic resin. In addition, since the physical properties are relatively stable with respect to operating environments such as temperature, the application range is wide. However, there are problems that it is inferior in durability such as being easily corroded by chemicals and easily rusting, and that it cannot be colored, and when used as a member in a resin product, it is difficult to separate and collect. Furthermore, there is a demand for weight reduction, and the development of non-metallic coils is underway.

合成樹脂は、金属と比較して耐熱性および機械的物性には劣るが、軽い、耐摩耗性、耐薬品などの耐久性に優れており、他素材との複合化、一体成型が容易、電気絶縁性が高いなどの特徴を有している。また、着色も容易に行え、特殊形状の成形が容易に行える。さらには、樹脂製品中の部材として用いられる場合、分別回収しやすいという利点がある。   Synthetic resins are inferior in heat resistance and mechanical properties compared to metals, but they are superior in durability, such as lightness, wear resistance, and chemical resistance. It has features such as high insulation. Moreover, coloring can also be performed easily and special-shaped shaping | molding can be performed easily. Furthermore, when used as a member in a resin product, there is an advantage that it is easy to separate and collect.

このような合成樹脂性のコイルとしては、特許文献1には、合成樹脂性のコイルが提案されている。合成樹脂製品中に組み込まれた金属製コイルを分別することは不可能に近いが、合成樹脂成形した合成樹脂製コイルにすることによってこの問題を解決している。また、複数本を螺旋中螺旋の状態に組み合わせ、かつ、一体成形することで、所要の十分な弾力を確保するものである。   As such a synthetic resin coil, Patent Document 1 proposes a synthetic resin coil. Although it is almost impossible to separate metal coils incorporated in a synthetic resin product, this problem is solved by using synthetic resin-molded synthetic resin coils. Moreover, a required sufficient elasticity is ensured by combining a plurality of pieces in a spiral state and integrally forming them.

また、特許文献2には、機械的特性を有する炭素繊維を強化材とした炭素繊維強化樹脂を使用したコイルスプリングが提案されている。樹脂製コイルに比べて機械的物性に優れるものである。   Patent Document 2 proposes a coil spring using a carbon fiber reinforced resin using a carbon fiber having mechanical properties as a reinforcing material. Compared to resin coils, it has excellent mechanical properties.

これらの合成樹脂製コイルの製法には、一体成形法、賦形軸に樹脂線状体を巻き付けた状態で加熱する方法、および加熱した賦形軸に樹脂線状体を巻き付ける方法が知られている。一体成形法では、成形金型の作成に莫大な費用を要するばかりか、得られる成形物の強度が劣るという問題があった。また、上賦形軸に樹脂線状体を巻き付けた状態で加熱する方法、および加熱した賦形軸に樹脂線状体を巻き付ける方法では、スパイラル状の溝を有する賦形軸を用いるため、線径やコイルピッチの変更への対応が困難であり、しかも特に上賦形軸に樹脂線状体を巻き付けた状態で加熱する方法では、連続的な製造プロセスを採用できないばかりか、これらの方法では樹脂線状体への熱履歴にムラを生じ易いため、寸法安定性および形状安定性が均一な成形物を得ることが困難であるという問題があった。   Known methods for producing these synthetic resin coils include an integral molding method, a method in which a resin linear body is wound around a shaping shaft, and a method in which a resin linear body is wound around a heated shaping shaft. Yes. In the integral molding method, there is a problem that not only a huge cost is required for producing a molding die, but also the strength of the obtained molded product is inferior. In addition, in the method of heating in a state where the resin linear body is wound around the upper shaping shaft and the method of winding the resin linear body around the heated shaping shaft, the shaping shaft having a spiral groove is used. It is difficult to respond to changes in diameter and coil pitch, and in particular, the method of heating with the resin wire wound around the top shaping shaft cannot adopt a continuous manufacturing process. There is a problem that it is difficult to obtain a molded product having uniform dimensional stability and shape stability because unevenness in the thermal history of the resin linear body is likely to occur.

特許文献3では、寸法安定性と形状安定性の良好な合成樹脂製コイルを製造する方法として、合成樹脂モノフィラメントを緊張状態で進行させ、モノフィラメント素材のガラス転移温度以上、融点以下の温度に予熱した後、直ちに回転する賦形軸に巻き取り、次いで巻き取られたモノフィラメントを急冷する方法が提案されている。しかし、この方法では、使用するモノフィラメントの直径に限界があり、また、その他性能を付与するための多素材との複合化が困難である。   In Patent Document 3, as a method of manufacturing a synthetic resin coil having good dimensional stability and shape stability, a synthetic resin monofilament is advanced in a tension state and preheated to a temperature not lower than the melting point and not lower than the glass transition temperature of the monofilament material. Thereafter, a method has been proposed in which the wound monofilament is immediately wound on a rotating shaping shaft, and then the wound monofilament is rapidly cooled. However, in this method, there is a limit to the diameter of the monofilament to be used, and it is difficult to combine with other materials for providing other performance.

特開平10−73138号JP-A-10-73138 特開平07−42778号JP 07-42778 A 特開平11−254520号JP-A-11-254520

本発明の課題は、非金属製の材料を主として用いてなるコイルであり、複雑な製造工程を経ることなく安価でかつ容易に成型が可能であり、コイル線の太さ、コイル形状、大きさなどに柔軟に対応可能なコイルを提供することにある。   An object of the present invention is a coil mainly made of a non-metallic material, and can be easily and inexpensively formed without going through a complicated manufacturing process. The coil wire thickness, coil shape, and size It is to provide a coil that can flexibly cope with the above.

本発明は、上記課題を達成するものであり、その要旨は、繊維を複数本集束してなる繊維集束体を用い、該繊維集束体が低融点重合体と高融点重合体によって構成されており、該繊維集束体を所定の螺旋形状となるように巻いた後、該繊維集束体を構成している低融点重合体が溶融し、かつ高融点重合体が溶融しない温度で熱処理を施した後、冷却することを特徴とする熱可塑性重合体からなるコイルの製造方法にある。   The present invention achieves the above-mentioned problems, and the gist of the present invention is to use a fiber bundle formed by bundling a plurality of fibers, and the fiber bundle is composed of a low-melting polymer and a high-melting polymer. After the fiber bundle is wound into a predetermined spiral shape, the low melting point polymer constituting the fiber bundle is melted, and heat treatment is performed at a temperature at which the high melting point polymer does not melt. And a method for producing a coil made of a thermoplastic polymer, characterized by cooling.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明では、まず、複数本の繊維が集束してなる繊維集束体を用意する。本発明は、熱可塑性重合体を主たる材料としてコイルを得るものであるため、繊維集束体を構成する繊維は、熱可塑性重合体によって構成される合成繊維を用いる。合成繊維は、繊度や力学特性を調整しやすいことからも好ましく用いることができる。合成繊維としては、ポリアミド系、芳香族系ポリエステル系、脂肪族系ポリエステル系、ポリオレフィン系、ポリウレタン系等の合成繊維が挙げられる。ポリアミド系の合成繊維は耐摩耗性に優れることから好ましい。また、ポリエステル系の合成繊維は、寸法安定性に優れることから好ましい。また、コイルの用途において、使用後に自然界で分解することを要求される用途に用いるのであれば、生分解性を有する脂肪族系ポリエステル系の合成繊維を用いることが好ましい。ポリオレフィン系の合成繊維は、比重が小さいため、軽量化に優れることから、軽量化が要される用途等に、好ましく用いられる。また、用途や目的に応じて、これらの合成繊維を複数種選択して任意に組み合わせて、繊維集束体としてもよい。また、本発明は、熱可塑性重合体を主たる材料としてコイルを得るが、コイルの用途や目的に応じて、熱可塑性重合体以外の繊維を繊維集束体中に含ませることもできる。合成繊維以外の繊維としては、天然繊維、再生繊維又は半合成繊維を等が挙げられる。また、金属線や金属繊維、ガラス繊維を含ませてもよい。   In the present invention, first, a fiber bundling body formed by bundling a plurality of fibers is prepared. In the present invention, since a coil is obtained using a thermoplastic polymer as a main material, a synthetic fiber made of a thermoplastic polymer is used as the fiber constituting the fiber bundle. Synthetic fibers can be preferably used because they can easily adjust the fineness and mechanical properties. Synthetic fibers include polyamide-based, aromatic polyester-based, aliphatic polyester-based, polyolefin-based and polyurethane-based synthetic fibers. Polyamide-based synthetic fibers are preferred because of their excellent wear resistance. Polyester-based synthetic fibers are preferred because of their excellent dimensional stability. In addition, if the coil is used for an application that is required to be naturally decomposed after use, it is preferable to use an aliphatic polyester-based synthetic fiber having biodegradability. Polyolefin-based synthetic fibers have a small specific gravity and are excellent in weight reduction. Therefore, they are preferably used for applications that require weight reduction. Further, depending on the application and purpose, a plurality of these synthetic fibers may be selected and arbitrarily combined to form a fiber bundle. In the present invention, a coil is obtained using a thermoplastic polymer as a main material, but fibers other than the thermoplastic polymer can be included in the fiber bundle according to the use and purpose of the coil. Examples of fibers other than synthetic fibers include natural fibers, regenerated fibers, and semi-synthetic fibers. Moreover, you may include a metal wire, a metal fiber, and glass fiber.

複数本の繊維が集束してなる繊維集束体とは、繊維が集束してなるものであればよく、複数本の繊維を引き揃えた糸、複数本の繊維を撚り合わせた撚糸、紡績糸、引き揃えた糸や撚糸等を合わせた合撚糸、また、これらの糸を用いて製紐した組紐、あるいは、合撚により得られたロープ等が挙げられる。繊維集束体の太さ(線径)は、所望とするコイルの大きさ等に応じて適宜選択すればよい。本発明において、複数本の繊維が集束してなる繊維集束体を用いる理由は、繊維が単に集束してなるものを用いることにより、繊維間に融通性があり、非常に柔軟であることから、多様な形状に対応できることにある。したがって、本発明によれば、繊維集束体自体の太さが大きくとも、柔軟性があるため、様々な巻き径の大きさや巻きのピッチに応じて巻き付けることが可能となり、様々な形態のコイルを容易に得ることが可能となる。   The fiber bundling body formed by bundling a plurality of fibers may be any fiber bundling as long as the fibers are bundled, a yarn obtained by arranging a plurality of fibers, a twisted yarn obtained by twisting a plurality of fibers, a spun yarn, Examples thereof include a twisted yarn obtained by combining drawn yarns and twisted yarns, a braid made using these yarns, a rope obtained by twisting, and the like. What is necessary is just to select suitably the thickness (wire diameter) of a fiber bundling body according to the magnitude | size etc. of the coil desired. In the present invention, the reason for using a fiber bundling body formed by bundling a plurality of fibers is that the fibers are simply bundled, so that there is flexibility between the fibers and it is very flexible. It is to be able to cope with various shapes. Therefore, according to the present invention, even if the thickness of the fiber bundle itself is large, it is flexible, so that it can be wound according to various winding diameters and winding pitches. It can be easily obtained.

繊維集束体は、低融点重合体と高融点重合体によって構成される。低融点重合体は、後に熱処理されることにより、溶融固化し、繊維相互間を固着一体化させ、所定の螺旋形状を保持する役割を担い、高融点重合体は、熱処理により溶融せずに繊維形態を維持して、コイルの機械的特性を担うこととなる。このとき、繊維集束体が、低融点重合体のみから形成されるものであると、熱処理の際に、低融点重合体が溶融流動してしまい、所定の螺旋形状を得ることができなくなる。低融点重合体と高融点重合体との混合比率は、10/90〜70/30程度がよい。   The fiber bundle is composed of a low melting point polymer and a high melting point polymer. The low-melting point polymer is melted and solidified by heat treatment later, and the fibers are fixed and integrated with each other to maintain a predetermined spiral shape. The high-melting point polymer is not melted by the heat treatment and is not melted. The form will be maintained and the mechanical properties of the coil will be borne. At this time, if the fiber bundle is formed only from the low melting point polymer, the low melting point polymer melts and flows during the heat treatment, and a predetermined spiral shape cannot be obtained. The mixing ratio of the low melting point polymer and the high melting point polymer is preferably about 10/90 to 70/30.

本発明においては、低融点重合体と高融点重合体とが複合されてなる複合繊維であって低融点重合体が少なくとも繊維表面に配されてなる繊維を、繊維集合体を構成する繊維として含有させることにより、繊維集合体を低融点重合体と高融点重合体によって形成させることができる。該複合繊維は、低融点重合体が溶融することにより熱バインダーとして機能することから、複合バインダー繊維ともいう。このような複合バインダー繊維は、熱処理によって、低融点重合体のみが溶融し、繊維集束体を構成している繊維相互間を固着一体化させて、繊維集束体が剛直線条体となる。繊維集束体には、該複合バインダーのみから繊維集束体を構成させてもよいし、また、他の繊維を含有させてもよい。なお、含有させる他の繊維は、熱処理によって溶融せずに繊維形態を維持している繊維を用いるとよい。複合バインダー繊維としては、低融点重合体が鞘部を形成し、高融点重合体が芯部を形成する芯鞘型複合繊維を用いることが好ましい。   In the present invention, a composite fiber in which a low-melting polymer and a high-melting polymer are composited, and a fiber in which the low-melting polymer is arranged on at least the fiber surface is contained as a fiber constituting the fiber assembly. By doing so, the fiber assembly can be formed of a low melting point polymer and a high melting point polymer. The composite fiber is also referred to as a composite binder fiber because it functions as a thermal binder by melting the low melting point polymer. In such a composite binder fiber, only the low melting point polymer is melted by heat treatment, and the fibers constituting the fiber bundle are fixed and integrated with each other, so that the fiber bundle becomes a rigid linear strip. The fiber bundle may be composed of the composite binder alone, or may contain other fibers. In addition, it is good to use the fiber which is maintaining the fiber form, without melt | dissolving by heat processing as the other fiber to contain. As the composite binder fiber, it is preferable to use a core-sheath type composite fiber in which a low melting point polymer forms a sheath part and a high melting point polymer forms a core part.

また、本発明においては、低融点重合体のみによって構成されるバインダー繊維と高融点重合体のみによって構成される高融点繊維とを、繊維集束体を構成する繊維をして含有させることにより、繊維集合体を低融点重合体と高融点重合体によって形成させることができる。バインダー繊維は、低融点重合体のみによって構成されるため、熱処理によって溶融し、繊維形態を維持している高融点繊維同士の繊維相互間を固着一体化させて、繊維集束体が剛直線条体となる。繊維集合体には、前記したバインダー繊維と高融点繊維以外に、他の繊維を含有させてもよい。なお、含有させる他の繊維は、熱処理によって溶融せずに繊維形態を維持している他の高融点繊維であっても、また、前記した複合バインダー繊維であってもよく、目的等に応じて適宜選択すればよい。   Further, in the present invention, a fiber that constitutes a fiber bundle is contained as a fiber by including a binder fiber constituted only by a low-melting polymer and a high-melting fiber constituted only by a high-melting polymer as fibers constituting the fiber bundle. Aggregates can be formed from a low melting polymer and a high melting polymer. Since the binder fiber is composed only of a low-melting polymer, the fiber bundling body is formed as a rigid straight line by fixing and integrating the fibers of high-melting fibers that are melted by heat treatment and maintain the fiber form. It becomes. The fiber assembly may contain other fibers in addition to the above-described binder fibers and high melting point fibers. The other fibers to be contained may be other high melting point fibers that maintain the fiber form without being melted by heat treatment, or may be the above-described composite binder fibers, depending on the purpose and the like. What is necessary is just to select suitably.

また、本発明においては、繊維集束体の断面において、バインダー繊維を含む層とバインダー繊維を含まない層とを二層構造となるように配置した二層構造の繊維集束体を用いることもできる。このとき、(1)バインダー繊維を含む層を繊維集束体の芯の層に配置し、バインダー繊維を含まない層を繊維集束体の表面層(鞘の層)に配置するもの、あるいは、(2)バインダー繊維を含む層を繊維集束体の表面層(鞘の層)に配置し、バインダー繊維を含まない層を繊維集束体の芯の層に配置するものが挙げられる。   In the present invention, it is also possible to use a two-layered fiber bundle in which a layer containing a binder fiber and a layer not containing a binder fiber are arranged in a two-layer structure in the cross section of the fiber bundle. At this time, (1) a layer containing the binder fiber is arranged in the core layer of the fiber bundle, and a layer not containing the binder fiber is arranged in the surface layer (sheath layer) of the fiber bundle, or (2 ) A layer containing a binder fiber is arranged on the surface layer (sheath layer) of the fiber bundle, and a layer not containing the binder fiber is arranged in the core layer of the fiber bundle.

前記(1)の態様では、上記した二層構造の繊維集束体は、繊維集束体の表面にバインダー繊維が露出していない。すなわち、繊維集束体の横断面において、最外層は、熱処理により熱の影響を受けない高融点繊維のみが配置し、バインダー繊維は含まれていない。これにより、熱処理によって溶融する低融点成分が繊維集束体表面に溶融露出することはないため、螺旋形状に成型するための金属軸等の成型の型に溶融接着することなく、熱処理〜冷却後に容易に脱型することができる。また、例えばコイルピッチが小さいコイルの場合等、隣り合うピッチ間におけるコイル同士が、熱処理時に溶融接着することを防ぐこともできる。また、熱処理により得られたコイルにおいて、コイルを構成する線条体の表面は、熱処理による影響を受けずに繊維の風合いを保持しているため、柔らかな風合いを有し、繊維調の温かみのある外観を呈するため、意匠的にも優れたものとなる。   In the above aspect (1), the binder fibers are not exposed on the surface of the fiber bundle of the two-layer structure described above. That is, in the cross section of the fiber bundle, only the high melting point fibers that are not affected by heat by the heat treatment are arranged in the outermost layer, and the binder fibers are not included. As a result, the low melting point component that is melted by the heat treatment is not melt exposed on the surface of the fiber bundle, so that it is easy after heat treatment to cooling without being melt-bonded to a mold such as a metal shaft for forming a spiral shape. Can be demolded. In addition, for example, in the case of a coil having a small coil pitch, it is possible to prevent the coils between adjacent pitches from being melt-bonded during heat treatment. In addition, in the coil obtained by heat treatment, the surface of the striate body constituting the coil retains the texture of the fiber without being affected by the heat treatment, so it has a soft texture and is warm to the fiber tone. Since it has a certain appearance, it is excellent in design.

一方、前記(2)の態様では、前記した二層構造の繊維集束体は、繊維集束体の表面にバインダー繊維が露出している。熱処理により得られたコイルにおけるコイルを構成する線条体の表面部分は、バインダー繊維のみから構成されるので、繊維集束体全てをバインダー繊維のみによって構成されるものを同様の表面形態となる。したがって、得られるコイルの線条体の表面が同様の形態を呈し、またコイル性能も同等程度のものとなることから、繊維集束体におけるバインダー繊維の比率を減らせることによりコスト的に有利である。さらには、(2)の態様の二層構造の繊維集束体であって、バインダー繊維として、芯鞘型複合バインダー繊維が用いられる場合は、バネ係数等のコイル性能が向上する傾向にある。   On the other hand, in the above-described aspect (2), in the above-described two-layered fiber bundle, the binder fiber is exposed on the surface of the fiber bundle. Since the surface part of the linear body which comprises the coil in the coil obtained by heat processing is comprised only from binder fiber, what comprises all the fiber bundling bodies only from binder fiber becomes a similar surface form. Therefore, since the surface of the obtained coil linear body exhibits the same form and the coil performance is comparable, it is advantageous in terms of cost by reducing the ratio of the binder fiber in the fiber bundle. . Further, when the core-sheath type composite binder fiber is used as the binder fiber, the coil performance such as the spring coefficient tends to be improved.

このような二層構造のものとして、具体的には、エア加工糸、混紡糸、カバリング撚糸などが挙げられる。前記(1)の態様では、これらの糸の糸断面の芯の層に、バインダー繊維や複合バインダー繊維のみを配置させ、あるいはバインダー繊維や複合バインダー繊維と高融点繊維とを配置させ、鞘の層には、バインダー繊維や複合バインダー繊維は含ませずに高融点繊維のみを配置させる。(2)の態様では、その配置が逆になる。
また、別の具体例としては、組紐やロープが挙げられる。前記(1)の態様では、組紐においては、少なくともバインダー繊維あるいは複合バインダー繊維を含むマルチフィラメント糸、もしくは該マルチフィラメント糸を複数本引き揃えあるいは合燃したもの、あるいは該マルチフィラメント糸を用いて作成した組紐等を芯材(芯の層)として用い、その外層(鞘の層)にバインダー繊維および複合バインダー繊維を含まず高融点繊維のみから構成されるマルチフィラメント糸を用いて組紐を作製し、バインダー繊維を含む層とバインダー繊維を含まない層とが二層構造となるように配置させた二層構造の組紐により構成される繊維集束体が挙げられる。ロープにおいては、バインダー繊維を含む繊維群に撚りをかけたヤーンと、バインダー繊維を含まない高融点繊維のみから構成される繊維群に撚りをかけたヤーンとを用意し、バインダー繊維を含むヤーンがロープの中心部(芯の層)に配するように、かつ高融点繊維のみから構成されるヤーンがロープの外層(鞘の層)を配するようにそれぞれ配置させて、ヤーンと反対方向に撚り合わせることにより複合ストランドを構成し、この複合ストランドを3本合わせてストランドと反対方向に撚り合わせることによりロープを得る。(2)の態様では、その配置が逆になる。
Specific examples of such a two-layer structure include air-processed yarn, blended yarn, and covering twisted yarn. In the above aspect (1), only the binder fiber or the composite binder fiber is arranged in the core layer of the yarn cross section of these yarns, or the binder fiber, the composite binder fiber and the high melting point fiber are arranged, and the sheath layer In this case, only the high melting point fiber is disposed without including the binder fiber or the composite binder fiber. In the mode (2), the arrangement is reversed.
Another specific example is a braid or a rope. In the above aspect (1), the braid is prepared by using a multifilament yarn including at least a binder fiber or a composite binder fiber, a plurality of the multifilament yarns aligned or combusted, or the multifilament yarn. Using the braids and the like as a core material (core layer), the outer layer (sheath layer) does not contain binder fibers and composite binder fibers, and multifilament yarns composed only of high-melting fibers are used to produce braids, Examples thereof include a fiber bundle composed of a braid having a two-layer structure in which a layer containing a binder fiber and a layer not containing a binder fiber have a two-layer structure. In the rope, a yarn in which a fiber group including a binder fiber is twisted and a yarn in which a fiber group composed only of a high melting point fiber not including a binder fiber is twisted are prepared. Twist in the opposite direction to the yarn by arranging the yarns composed of high-melting fibers only in the center of the rope (core layer) and the outer layer of the rope (sheath layer). A composite strand is formed by combining them, and three of these composite strands are combined and twisted in the opposite direction to the strands to obtain a rope. In the mode (2), the arrangement is reversed.

低融点重合体としては、溶融紡糸による製糸性を有するものであればよく、例えば、ポリエステル系重合体、ポリアミド系重合体、ポリオレフィン系重合体、ポリブチラール系重合体、ポリアクリル系重合体、ポリエチレン−酢酸ビニル共重合体、ポリウレタン系重合体等が挙げられる。なお、低融点重合体の融点は、高融点重合体の融点よりも20℃以上低いことが好ましい。これは、高融点重合体が熱処理によって物性に影響を及ぼさないためである。また、低融点重合体の融点は、加工性や物性等を考慮すると、80〜160℃の範囲が好ましい。また、接着性を考慮すると、低融点重合体/高融点重合体の好ましい組合せとしては、低融点ポリエステル/高融点ポリエステル、低融点ポリプロピレン/高融点ポリプロピレン、ポリエチレン/ポリプロピレン、低融点ナイロン/高融点ナイロンの組合せが挙げられる。さらに具体的には、融点240℃以上の高融点ポリエステルを芯部に、融点が110〜200℃の低融点の共重合ポリエステルを鞘部に配した芯鞘型複合繊維や、融点180℃以上の高融点ポリアミドを芯部に、融点80〜150℃の低融点ポリアミドを鞘部に配した芯鞘型複合繊維が好適に用いられる。   As the low melting point polymer, any polymer having a spinning property by melt spinning may be used. For example, polyester polymer, polyamide polymer, polyolefin polymer, polybutyral polymer, polyacrylic polymer, polyethylene -A vinyl acetate copolymer, a polyurethane-type polymer, etc. are mentioned. The melting point of the low melting point polymer is preferably 20 ° C. or lower than the melting point of the high melting point polymer. This is because the high melting point polymer does not affect the physical properties by heat treatment. Further, the melting point of the low melting point polymer is preferably in the range of 80 to 160 ° C. in consideration of processability and physical properties. In consideration of adhesiveness, preferred combinations of the low melting point polymer / the high melting point polymer include low melting point polyester / high melting point polyester, low melting point polypropylene / high melting point polypropylene, polyethylene / polypropylene, low melting point nylon / high melting point nylon. The combination of these is mentioned. More specifically, a core-sheath type composite fiber in which a high melting point polyester having a melting point of 240 ° C. or higher is disposed in the core and a low melting point copolymer polyester having a melting point of 110 to 200 ° C. is disposed in the sheath, or a melting point of 180 ° C. or higher. A core-sheath type composite fiber in which a high melting point polyamide is disposed in the core and a low melting point polyamide having a melting point of 80 to 150 ° C. is disposed in the sheath is preferably used.

繊維集束体を構成する繊維は、同系の繊維を用いることが好ましい。低融点重合体と高融点重合体とにおける、熱接着性が良好なため、繊維同士がより強く固着一体化させることができ、より剛直な線条体を得ることが可能となる。また、同系の繊維を用いることによって、リサイクルの観点でも好ましい。したがって、熱融着繊維以外に繊維を用いる場合は、熱処理時に熱融着繊維の溶融成分と接着性に優れる繊維を選択することが重要である。   It is preferable to use similar fibers as the fibers constituting the fiber bundle. Since the low-melting-point polymer and the high-melting-point polymer have good thermal adhesiveness, the fibers can be firmly fixed and integrated with each other, and a more rigid linear body can be obtained. In addition, using similar fibers is also preferable from the viewpoint of recycling. Therefore, when using a fiber other than the heat-sealing fiber, it is important to select a fiber that is excellent in the melting component and adhesion of the heat-sealing fiber during the heat treatment.

繊維集束体を構成する繊維の繊度は、螺旋状に巻くときの柔軟性があればよく、3〜20デシテックス程度がよい。また、繊維集束体の繊度もまた、螺旋状に巻くときの柔軟性があればよく、また、コイルを構成する線条体の繊度となるため、コイルの用途等に応じて適宜選択すればよいが、下限は500デシテックス程度、上限は500万デシテックス程度がよい。繊維集束体は、繊維を25本〜数百万本集束させて得るとよい。   The fineness of the fibers constituting the fiber bundling body only needs to be flexible when spirally wound, and is preferably about 3 to 20 dtex. Further, the fineness of the fiber bundling body only needs to be flexible when it is wound in a spiral shape, and the fineness of the filaments constituting the coil can be selected as appropriate according to the use of the coil. However, the lower limit is preferably about 500 dtex and the upper limit is about 5 million dtex. The fiber bundling body may be obtained by bundling 25 to several million fibers.

繊維集束体を構成する繊維の形態は、短繊維であっても連続繊維であってもよいが、連続繊維が好ましい。連続繊維は、毛羽がないため、繊維集束体を熱処理により剛直化させた線条体の表面に毛羽を形成させることがない。   Although the form of the fiber which comprises a fiber bundling body may be a short fiber or a continuous fiber, a continuous fiber is preferable. Since continuous fibers do not have fluff, fluff is not formed on the surface of the filaments obtained by stiffening the fiber bundle by heat treatment.

なお、用いる繊維には、一般に使用されている難燃剤、着色剤、顔料、滑剤、耐候剤、酸化防止剤、耐熱剤などを本発明の効果を損なわない範囲内で適宜添加してもよい。また、繊維断面形状は丸断面、異形断面、中空断面等のいずれであってもよい。また、繊維に仮撚加工やタスラン加工などの加工を施した繊維を用いることもできる。   In addition, you may add suitably to the fiber to be used in the range which does not impair the effect of this invention, such as a flame retardant, a coloring agent, a pigment, a lubricant, a weathering agent, antioxidant, and a heat-resistant agent generally used. Further, the fiber cross-sectional shape may be any of a round cross section, an irregular cross section, a hollow cross section, and the like. Moreover, the fiber which gave processing, such as false twist processing and taslan processing, to a fiber can also be used.

本発明においては、前記した繊維集束体を所定の螺旋形状となるように巻いた後、低融点重合体が溶融し、かつ高融点重合体が溶融しない温度で熱処理を施した後、冷却することで、繊維集束体中の繊維相互間を溶融固化した低融点重合体によって固着一体化させて、繊維集束体が剛直な線条体となり、螺旋形状が固定化されて、熱可塑性重合体からなるコイルを得ることができる。   In the present invention, after winding the above-described fiber bundled body into a predetermined spiral shape, the low-melting polymer is melted and heat-treated at a temperature at which the high-melting polymer does not melt, and then cooled. Then, the low-melting polymer obtained by melting and solidifying the fibers in the fiber bundle is fixed and integrated, so that the fiber bundle becomes a rigid linear body, the helical shape is fixed, and is made of a thermoplastic polymer. A coil can be obtained.

繊維集束体を螺旋形状となるように巻くにあたっては、所定の賦形軸を用いればよい。本発明においては、繊維集束体が、繊維間に融通性があるため、どのような形状にも対応が可能となる。よって、所望のコイルを得るために、賦形軸の直径や螺旋のピッチ、軸の種々の断面形状に応じて、また、軸径の変化やピッチ変化に応じて、適宜設定可能である。また、加熱の方法は、特に限定されないが、アイロン、熱風溶接機、熱風乾燥機、テンターマシンなど周知の手段を用いればよい。また、熱処理温度については、熱処理時間との関係で適宜設定すればよいが、低融点重合体の融点以上の温度であって、高融点重合体の融点を超えない温度に設定する。   In winding the fiber bundle so as to have a spiral shape, a predetermined shaping axis may be used. In the present invention, since the fiber bundling body has flexibility between fibers, any shape can be supported. Therefore, in order to obtain a desired coil, it can be set as appropriate according to the diameter of the shaping shaft, the pitch of the spiral, various cross-sectional shapes of the shaft, and according to changes in the shaft diameter and pitch. Moreover, the heating method is not particularly limited, but a known means such as an iron, a hot air welder, a hot air dryer, or a tenter machine may be used. The heat treatment temperature may be appropriately set in relation to the heat treatment time, but is set to a temperature not lower than the melting point of the high melting point polymer and not lower than the melting point of the high melting point polymer.

熱処理後は、冷却する。冷却により、溶融した低融点重合体が固化し、繊維集束体を構成する繊維相互間が固着して一体化し、繊維集束体は、剛直な線条体(剛直線条体)となる。この処理により、熱可塑性重合体によって構成される剛直線条体が任意の螺旋形状を呈したコイルが得られる。なお、冷却の手段としては、空冷、水冷等の周知の手段を用いればよい。   Cool after heat treatment. By cooling, the melted low-melting point polymer is solidified, and the fibers constituting the fiber bundle are fixed and integrated, and the fiber bundle becomes a rigid linear body (rigid straight line body). By this treatment, a coil in which the rigid linear strip composed of the thermoplastic polymer has an arbitrary spiral shape is obtained. As a cooling means, known means such as air cooling or water cooling may be used.

本発明は、特定の繊維を複数本集束してなる柔軟性のある繊維集束体を用いて、任意の螺旋形状となるように巻いた後、熱処理を施して、繊維集束体を構成する繊維相互間を固着一体化させて剛直線条体としてコイルを得たものであり、螺旋形状を呈する剛直な線条体に、線条体の直径の太さ、螺旋形状や螺旋のピッチ等、様々な任意の螺旋形状を所望に応じて付与することができる。また、熱可塑性重合体によって構成されるコイルにおいて、複雑な製造工程を経ることなく安価でかつ容易に螺旋形状に成型が可能である。   In the present invention, a flexible fiber bundling body formed by bundling a plurality of specific fibers is wound into an arbitrary spiral shape, and then subjected to heat treatment to form a fiber bundling body. The coil is obtained as a rigid linear strip by fixing and integrating the gaps, and the rigid filament having a spiral shape has various diameters such as the diameter of the filament, the spiral shape and the pitch of the spiral. Any helical shape can be applied as desired. In addition, a coil made of a thermoplastic polymer can be easily formed into a spiral shape at low cost without going through a complicated manufacturing process.

次に、実施例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、実施例で得られたコイルについて、ばね特性を下記により評価した。
<ばね定数>
JIS B 2704に準じ、荷重をかけた際のたわみが自然高さに対して30〜70%の間となる2種の荷重A、Bを用い、下式によりばね定数(N/mm)を求めた。
C=(MA−MB)÷(LA−LB)
(C:ばね定数、
MA:荷重Aの質量(N)、
MB:荷重Bの質量(N)、
LA:荷重Aをかけた時のたわみ(mm)、
LB:荷重Bをかけた時のたわみ(mm))
Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. The spring characteristics of the coils obtained in the examples were evaluated as follows.
<Spring constant>
In accordance with JIS B 2704, the spring constant (N / mm) is obtained by the following formula using two types of loads A and B, which are deflections between 30 and 70% of the natural height when a load is applied. It was.
C = (MA-MB) / (LA-LB)
(C: spring constant,
MA: Mass of load A (N),
MB: Mass of load B (N),
LA: Deflection when load A is applied (mm),
LB: Deflection when load B is applied (mm))

実施例1
繊維集束体を構成する繊維として、低融点重合体を鞘部、高融点重合体を芯部に配した同心型の芯鞘型複合繊維(バインダー繊維)のみを用いた。芯鞘型複合繊維は、鞘部がエチレンテレフタレートとブチレンテレフタレート(モル比1/1)によって構成されるアルキレンテレフタレート単位全体とε−カプロラクトンの総モル数に対し、ε−カプロラクトンを12モル%共重合した共重合ポリエステル(融点161℃)、芯部がポリエチレンテレフタレート(融点260℃)が配され、芯部と鞘部の質量比を2.7/1として複合紡糸されたものであり、この繊維からなる1670デシテックス/192fのマルチフィラメント糸を用意した。
Example 1
As the fiber constituting the fiber bundle, only a concentric core-sheath type composite fiber (binder fiber) in which a low melting point polymer is arranged in the sheath part and a high melting point polymer is arranged in the core part was used. The core-sheath type composite fiber is a copolymer of 12 mol% of ε-caprolactone with respect to the total number of moles of ε-caprolactone and the total alkylene terephthalate unit whose sheath is composed of ethylene terephthalate and butylene terephthalate (molar ratio 1/1). Copolyester (melting point: 161 ° C.), polyethylene terephthalate (melting point: 260 ° C.) at the core, and composite spinning with a core / sheath mass ratio of 2.7 / 1. 1670 decitex / 192f multifilament yarn was prepared.

前記マルチフィラメント糸を用いて角8本打ちとして製紐し、外径1.4mmの組紐を得、これを繊維集束体とした。   The multifilament yarn was used to form a string with eight corners to obtain a braid having an outer diameter of 1.4 mm, which was used as a fiber bundle.

金属製軸に繊維集束体(組紐)を巻きつけ、この巻きつけた状態で180℃×10分の条件で熱風処理を施し、空冷後に脱型して、内径9.5mm、自然高さ10mm、有効巻き数5の熱可塑性重合体によって構成されるコイルを得た。得られたコイルのばね定数は0.032N/mmであった。   A fiber bundling body (braid) is wound around a metal shaft, and in this wound state, hot air treatment is performed under conditions of 180 ° C. × 10 minutes, demolded after air cooling, an inner diameter of 9.5 mm, a natural height of 10 mm, A coil composed of a thermoplastic polymer having 5 effective turns was obtained. The spring constant of the obtained coil was 0.032 N / mm.

実施例2
実施例1で用いた芯鞘型複合繊維を用い、1100デシテックス/96fのマルチフィラメント糸として、該マルチフィラメント糸を用いて角8本打ちとして製紐し、外径1.1mmの組紐を得、これを繊維集束体とした。
得られた繊維集束体(組紐)用いて、実施例1と同様にして、内径9.5mm、自然高さ10mm、有効巻き数5の熱可塑性重合体によって構成されるコイルを得た。得られたコイルのばね定数は0.022N/mmであった。
Example 2
Using the core-sheath type composite fiber used in Example 1, as a multifilament yarn of 1100 dtex / 96f, the multifilament yarn was used to form a string with eight corners to obtain a braid having an outer diameter of 1.1 mm, This was used as a fiber bundle.
Using the obtained fiber bundle (braid), a coil constituted by a thermoplastic polymer having an inner diameter of 9.5 mm, a natural height of 10 mm, and an effective winding number of 5 was obtained in the same manner as in Example 1. The spring constant of the obtained coil was 0.022 N / mm.

実施例3
実施例1で用いた芯鞘型複合繊維を用い、560デシテックス/48fのマルチフィラメント糸として、該マルチフィラメント糸を用いて角8本打ちとして製紐し、外径0.7mmの組紐を得、これを繊維集束体とした。
得られた繊維集束体(組紐)を用いて、実施例1と同様にして、内径9.5mm、自然高さ10mm、有効巻き数5の熱可塑性重合体によって構成されるコイルを得た。得られたコイルのばね定数は0.0051N/mmであった。
Example 3
Using the core-sheath type composite fiber used in Example 1, as a multifilament yarn of 560 decitex / 48f, the multifilament yarn was used to form a string with eight corners, and a braid having an outer diameter of 0.7 mm was obtained. This was used as a fiber bundle.
Using the obtained fiber bundle (braid), a coil composed of a thermoplastic polymer having an inner diameter of 9.5 mm, a natural height of 10 mm, and an effective winding number of 5 was obtained in the same manner as in Example 1. The spring constant of the obtained coil was 0.0051 N / mm.

実施例4
繊維集束体を構成する繊維として、低融点重合体のみから構成されるバインダー繊維と、高融点重合体のみから構成される高融点繊維とを用いた。バインダー繊維は、エチレンテレフタレートとブチレンテレフタレート(モル比1/1)によって構成されるアルキレンテレフタレート単位全体とε−カプロラクトンの総モル数に対し、ε−カプロラクトンを12モル%共重合した共重合ポリエステル(融点161℃)によって構成されるものであり、高融点繊維は、ポリエチレンテレフタレート(融点260℃)によって構成されるものである。バインダー繊維を引き揃えたマルチフィラメント糸(560デシテックス/60f)と高融点繊維を引き揃えたマルチフィラメント糸(560デシテックス/96f)とを1/1の混合比率(質量比)で引き揃えて1120デシテックス/156fのマルチフィラメント糸を用意した。
Example 4
As fibers constituting the fiber bundle, binder fibers composed only of a low-melting polymer and high-melting fibers composed only of a high-melting polymer were used. The binder fiber is a copolymerized polyester (melting point) obtained by copolymerizing 12 mol% of ε-caprolactone with respect to the total number of moles of ε-caprolactone and the entire alkylene terephthalate unit composed of ethylene terephthalate and butylene terephthalate (molar ratio 1/1). 161 ° C.), and the high melting point fiber is made of polyethylene terephthalate (melting point 260 ° C.). Multi-filament yarns (560 decitex / 60f) aligned with binder fibers and multi-filament yarns (560 decitex / 96f) aligned with high-melting fibers are aligned at 1/1 mixing ratio (mass ratio) to 1120 decitex A / 156f multifilament yarn was prepared.

前記混合したマルチフィラメント糸を用いて角8本打ちとして製紐し、外径1.1mmの組紐を得、これを繊維集束体とした。
得られた繊維集束体(組紐)を用いて、実施例1と同様にして、内径9.5mm、自然高さ10mm、有効巻き数5の熱可塑性重合体によって構成されるコイルを得た。得られたコイルのばね定数は0.011N/mmであった。
The mixed multifilament yarn was used to form a string with eight corners to obtain a braid with an outer diameter of 1.1 mm, which was used as a fiber bundle.
Using the obtained fiber bundle (braid), a coil composed of a thermoplastic polymer having an inner diameter of 9.5 mm, a natural height of 10 mm, and an effective winding number of 5 was obtained in the same manner as in Example 1. The spring constant of the obtained coil was 0.011 N / mm.

実施例5
繊維集束体を構成する繊維として、実施例4で用いた低融点重合体のみから構成されるバインダー繊維と、高融点重合体のみから構成される高融点繊維とを用いた。高融点繊維のみによって構成する560デシテックス/96fのマルチフィラメント糸、バインダー繊維のみによって構成する560デシテックス/60fのマルチフィラメント糸をそれぞれ用意した。
Example 5
As fibers constituting the fiber bundle, binder fibers composed only of the low melting point polymer used in Example 4 and high melting point fibers composed only of the high melting point polymer were used. A 560 dtex / 96 f multifilament yarn composed only of high melting point fibers and a 560 dtex / 60 f multifilament yarn composed only of binder fibers were prepared.

高融点繊維のみにより構成されるマルチフィラメント糸を用いて角8本打ちとして製紐を行い、得られた組紐を芯部分として、さらに、鞘部分に、バインダー繊維のみにより構成されるマルチフィラメント糸を8本組みにして、2層構造の組紐を得た。得られた外径1.1mmの2層構造の組紐を繊維集束体とした。
得られた繊維集束体(組紐)を用いて、実施例1と同様にして、内径9.5mm、自然高さ10mm、有効巻き数5の熱可塑性重合体によって構成されるコイルを得た。得られたコイルのばね定数は0.0072N/mmであった。また、コイル表面は、繊維が完全に溶融しており、凹凸がほぼなく、滑らかな表面を呈していた。
Using a multifilament yarn composed only of high-melting fibers, making a string with eight corners, using the obtained braid as a core portion, and further forming a multifilament yarn composed only of binder fibers in the sheath portion A pair of braids having a two-layer structure was obtained by using eight pairs. The resulting braided cord having a two-layer structure with an outer diameter of 1.1 mm was used as a fiber bundle.
Using the obtained fiber bundle (braid), a coil composed of a thermoplastic polymer having an inner diameter of 9.5 mm, a natural height of 10 mm, and an effective winding number of 5 was obtained in the same manner as in Example 1. The spring constant of the obtained coil was 0.0072 N / mm. In addition, the coil surface was completely melted, had almost no irregularities, and had a smooth surface.

実施例6
繊維集束体を構成する繊維として、実施例1で用いた芯鞘型複合繊維を用いて、560デシテックス/48fのマルチフィラメント糸とした。また、実施例4で用いた高融点重合体のみから構成される高融点繊維を用いて、高融点繊維のみによって構成する560デシテックス/96fのマルチフィラメント糸とした。
芯鞘型複合繊維のみにより構成されるマルチフィラメント糸を用いて角8本打ちとして製紐を行い、外径1.1mmの組紐を得、この組紐を芯部分として、さらに、鞘部分に、高融点繊維のみにより構成されるマルチフィラメント糸を8本組みにして、2層構造の組紐を得た。得られた2層構造の組紐を繊維集束体とした。
得られた繊維集束体(組紐)を用いて、実施例1と同様にして、内径9.5mm、自然高さ10mm、有効巻き数5の熱可塑性重合体によって構成されるコイルを得た。得られたコイルのばね定数は0.019N/mmであった。コイル表面の繊維は溶融しておらず、繊維の風合いを残した表面柔らかなものであった。
Example 6
The core-sheath type composite fiber used in Example 1 was used as a fiber constituting the fiber bundle, and a multifilament yarn of 560 dtex / 48f was obtained. In addition, a 560 dtex / 96f multifilament yarn composed of only the high-melting fiber was used using the high-melting fiber composed only of the high-melting polymer used in Example 4.
Using a multifilament yarn composed only of a core-sheath type composite fiber, a string is made with eight corners and a braid with an outer diameter of 1.1 mm is obtained. Using this braid as a core part, A multi-layered yarn composed of only melting point fibers was assembled into 8 groups to obtain a braid having a two-layer structure. The obtained braided cord having a two-layer structure was used as a fiber bundle.
Using the obtained fiber bundle (braid), a coil composed of a thermoplastic polymer having an inner diameter of 9.5 mm, a natural height of 10 mm, and an effective winding number of 5 was obtained in the same manner as in Example 1. The spring constant of the obtained coil was 0.019 N / mm. The fiber on the coil surface was not melted, and the surface was soft leaving the texture of the fiber.

実施例7
実施例6で用いた高融点繊維のみによって構成する560デシテックス/96fのマルチフィラメント糸を用いて、角8本打ちとして製紐を行い、外径1.1mmの組紐を得、この組紐を芯部分として、さらに、鞘部分に、実施例6で用いた芯鞘型複合繊維のみからなる560デシテックス/48fのマルチフィラメント糸を8本組みにして、2層構造の組紐を得た。得られた2層構造の組紐を繊維集束体とした。
得られた繊維集束体(組紐)を用いて、実施例1と同様にして、内径9.5mm、自然高さ10mm、有効巻き数5の熱可塑性重合体によって構成されるコイルを得た。得られたコイルのばね定数は0.034N/mmであった。コイル表面の芯鞘型複合繊維の鞘成分は溶融しており、コイル線条体の表面形態は、実施例1と同様の表面形態であった。
Example 7
Using a 560 dtex / 96f multifilament yarn composed only of the high melting point fibers used in Example 6, an eight-cornered string was made to obtain a braid having an outer diameter of 1.1 mm. As a further example, eight multi-filament yarns of 560 dtex / 48f made only of the core-sheath type composite fiber used in Example 6 were assembled in the sheath portion to obtain a braid having a two-layer structure. The obtained braided cord having a two-layer structure was used as a fiber bundle.
Using the obtained fiber bundle (braid), a coil composed of a thermoplastic polymer having an inner diameter of 9.5 mm, a natural height of 10 mm, and an effective winding number of 5 was obtained in the same manner as in Example 1. The spring constant of the obtained coil was 0.034 N / mm. The sheath component of the core-sheath type composite fiber on the coil surface was melted, and the surface form of the coil filament was the same as that of Example 1.

比較例
繊維集束体を構成する繊維として、実施例4に用いたバインダー繊維のみとし、バインダー繊維のみによって構成する1100デシテックス/120fのマルチフィラメント糸を用意した。このマルチフィラメント糸を用いて角8本打ちとして製紐し、外径1.1mmの組紐を得、これを繊維集束体とした。
得られた繊維集束体(組紐)を用いて、実施例1と同様にして、熱処理したところ、繊維が全て溶融して、金属製軸から、溶融物が流れ落ちてしまい、コイルを得ることができなかった。
Comparative Example As a fiber constituting the fiber bundle, only the binder fiber used in Example 4 was used, and a 1100 dtex / 120f multifilament yarn composed only of the binder fiber was prepared. This multifilament yarn was used to form a string with eight corners to obtain a braid with an outer diameter of 1.1 mm, which was used as a fiber bundle.
When the obtained fiber bundling body (braid) was heat-treated in the same manner as in Example 1, all the fibers melted, and the melt flowed down from the metal shaft, so that a coil could be obtained. There wasn't.

Claims (8)

繊維を複数本集束してなる繊維集束体を用い、該繊維集束体が低融点重合体と高融点重合体によって構成されており、該繊維集束体を所定の螺旋形状となるように巻いた後、該繊維集束体を構成している低融点重合体が溶融し、かつ高融点重合体が溶融しない温度で熱処理を施した後、冷却することを特徴とする熱可塑性重合体からなるコイルの製造方法。 After a fiber bundling body formed by bundling a plurality of fibers, the fiber bundling body is composed of a low melting point polymer and a high melting point polymer, and the fiber bundling body is wound into a predetermined spiral shape. Manufacturing a coil comprising a thermoplastic polymer, wherein the low-melting polymer constituting the fiber bundle is melted and heat-treated at a temperature at which the high-melting polymer does not melt, and then cooled. Method. 熱処理を施すことにより、繊維集束体中の繊維相互間は、低融点重合体の溶融固化により固着一体化させて、該繊維集束体を剛直線条体とすることを特徴とする請求項1記載の熱可塑性重合体からなるコイルの製造方法。 2. The fiber bundle is formed into a rigid straight strip by heat-treating and fixing and integrating the fibers in the fiber bundle by melting and solidifying a low melting point polymer. The manufacturing method of the coil which consists of a thermoplastic polymer. 低融点重合体が鞘部を形成し、高融点重合体が芯部を形成する芯鞘型複合繊維が、繊維集束体に含まれることを特徴とする請求項1または2記載の熱可塑性重合体からなるコイルの製造方法。   3. The thermoplastic polymer according to claim 1, wherein a core-sheath type composite fiber in which a low melting point polymer forms a sheath part and a high melting point polymer forms a core part is included in the fiber bundle. The manufacturing method of the coil which consists of. 低融点重合体のみかなるバインダー繊維および高融点重合体のみからなる高融点繊維が、繊維集束体に含まれることを特徴とする請求項1〜3のいずれか1項に記載の熱可塑性重合体からなるコイルの製造方法。 The thermoplastic polymer according to any one of claims 1 to 3, wherein the fiber bundle includes a binder fiber made of only a low-melting polymer and a high-melting fiber made of only a high-melting polymer. The manufacturing method of the coil which consists of. 繊維集束体が、その断面において、バインダー繊維を含む層とバインダー繊維を含まない層とを二層構造となるように配置した二層構造の繊維集束体であることを特徴とする請求項1〜4のいずれか1項に記載の熱可塑性重合体からなるコイルの製造方法。 The fiber bundle is a fiber bundle having a two-layer structure in which a layer containing a binder fiber and a layer not containing a binder fiber are arranged so as to have a two-layer structure in its cross section. A method for producing a coil comprising the thermoplastic polymer according to claim 4. 繊維集束体の断面における最外層に、バインダー繊維を含まない層が配置されていることを特徴とする請求項5記載の熱可塑性重合体からなるコイルの製造方法。 6. The method for producing a coil made of a thermoplastic polymer according to claim 5, wherein a layer not containing binder fibers is disposed on the outermost layer in the cross section of the fiber bundle. 繊維集合体を構成する繊維が、連続繊維であることを特徴とする請求項1〜6のいずれか1項に記載の熱可塑性重合体からなるコイルの製造方法。 The method for producing a coil made of a thermoplastic polymer according to any one of claims 1 to 6, wherein the fibers constituting the fiber assembly are continuous fibers. 請求項1〜7のいずれか1項に記載の熱可塑性重合体からなるコイルの製造方法により得られたコイル。
The coil obtained by the manufacturing method of the coil which consists of a thermoplastic polymer of any one of Claims 1-7.
JP2011175984A 2011-03-30 2011-08-11 Method for manufacturing coil spring made of thermoplastic polymer Active JP5802079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175984A JP5802079B2 (en) 2011-03-30 2011-08-11 Method for manufacturing coil spring made of thermoplastic polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011075297 2011-03-30
JP2011075297 2011-03-30
JP2011175984A JP5802079B2 (en) 2011-03-30 2011-08-11 Method for manufacturing coil spring made of thermoplastic polymer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015137846A Division JP6084659B2 (en) 2011-03-30 2015-07-09 Method for producing coil made of thermoplastic polymer

Publications (2)

Publication Number Publication Date
JP2012214007A true JP2012214007A (en) 2012-11-08
JP5802079B2 JP5802079B2 (en) 2015-10-28

Family

ID=47267296

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011175984A Active JP5802079B2 (en) 2011-03-30 2011-08-11 Method for manufacturing coil spring made of thermoplastic polymer
JP2015137846A Active JP6084659B2 (en) 2011-03-30 2015-07-09 Method for producing coil made of thermoplastic polymer

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015137846A Active JP6084659B2 (en) 2011-03-30 2015-07-09 Method for producing coil made of thermoplastic polymer

Country Status (1)

Country Link
JP (2) JP5802079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084549A (en) * 2012-10-26 2014-05-12 Unitika Ltd Method for manufacturing coil made of synthetic resin
JP2019534754A (en) * 2016-11-04 2019-12-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Controlled stent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043654A1 (en) * 2015-09-09 2017-03-16 日本発條株式会社 Method for producing wire rod for elastic members, wire rod for elastic members, and elastic member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036139A (en) * 1983-07-02 1985-02-25 バイエル・アクチエンゲゼルシヤフト Manufacture of fiber reinforced molding
JPS62135537A (en) * 1985-12-09 1987-06-18 Fuji Standard Res Kk Flexible composite material and production thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249326A (en) * 1988-03-30 1989-10-04 Daido Steel Co Ltd Manufacture of fiber-reinforced resin spring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036139A (en) * 1983-07-02 1985-02-25 バイエル・アクチエンゲゼルシヤフト Manufacture of fiber reinforced molding
JPS62135537A (en) * 1985-12-09 1987-06-18 Fuji Standard Res Kk Flexible composite material and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084549A (en) * 2012-10-26 2014-05-12 Unitika Ltd Method for manufacturing coil made of synthetic resin
JP2019534754A (en) * 2016-11-04 2019-12-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Controlled stent
US11213414B2 (en) 2016-11-04 2022-01-04 Boston Scientific Scimed, Inc. Controlled extension stent

Also Published As

Publication number Publication date
JP5802079B2 (en) 2015-10-28
JP2015194260A (en) 2015-11-05
JP6084659B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
KR102522336B1 (en) Manufacturing method of three-dimensional structure and filament for 3D printer
ES2550462T3 (en) Process and production equipment of composite core with thermoplastic matrix for conductor of recyclable and thermally stable electric transmission line
CN107405796B (en) Composite material, method for producing composite material, and method for producing molded article
CN100556672C (en) The semifinished sheet that comprises the textile fabrics of metal wire and non-metallic fibers and comprise this textile fabrics
US9045856B2 (en) Hybrid rope and method for manufacturing the same
KR20150124947A (en) Combined filamanet yarn, woven and knitted fabric, composite material, and process for manufacturing composite material
KR20100042247A (en) Composite rope structures and systems and methods for making composite rope structures
JP6084659B2 (en) Method for producing coil made of thermoplastic polymer
CN101737571A (en) Fiber band reinforced thermoplastic pipe
CN101855397A (en) A metal element based textile product with improved widthwise stability
KR102385582B1 (en) Composite material, manufacturing method of composite material and manufacturing method of molded article
CN110832123A (en) Synthetic fiber with reduced density using hollow microcapsules
CN107206710A (en) Enhancing fabric for strengthening shock resistance or structure composite part
KR101439150B1 (en) Continuous carbon fiber/thermoplastic resin fiber composite yarn and method for manufacturing the same
KR20080072744A (en) High temperature thermoplastic power steering hose
JP6489773B2 (en) Elastic monofilament
JP7249569B2 (en) Twisted yarn and twisted yarn structure using the same
JP6282903B2 (en) Monofilament
JP7249468B2 (en) double rope structure
JPH11293575A (en) Rope, its production, and net for sport
EP1964952A1 (en) Yarn for technical fabrics and method for manufacturing the same
JP6037604B2 (en) Flat strip structure and manufacturing method thereof
CN220057176U (en) High-strength regenerated polyester filament yarn
CN114016317B (en) High-performance rope core with composite structure and preparation method thereof
EP4209628A1 (en) A braided twine and method for preparing the same for fishing and aquaculture applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150828

R150 Certificate of patent or registration of utility model

Ref document number: 5802079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150