JP2012213685A - Method for controlling chemical feed to water system - Google Patents

Method for controlling chemical feed to water system Download PDF

Info

Publication number
JP2012213685A
JP2012213685A JP2011079518A JP2011079518A JP2012213685A JP 2012213685 A JP2012213685 A JP 2012213685A JP 2011079518 A JP2011079518 A JP 2011079518A JP 2011079518 A JP2011079518 A JP 2011079518A JP 2012213685 A JP2012213685 A JP 2012213685A
Authority
JP
Japan
Prior art keywords
slime
dehydrogenase activity
respiratory activity
activity
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011079518A
Other languages
Japanese (ja)
Other versions
JP5857430B2 (en
Inventor
Wakako Sato
若子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011079518A priority Critical patent/JP5857430B2/en
Publication of JP2012213685A publication Critical patent/JP2012213685A/en
Application granted granted Critical
Publication of JP5857430B2 publication Critical patent/JP5857430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling chemical feed where a slime tendency of a water system can be accurately decided by simple equipment and a simple method and feed of a slime control agent can be properly controlled.SOLUTION: In the method for controlling feed of the slime control agent to the water system, respiratory activity of a deposit is measured, respiratory activity of the deposit per biomass is calculated and the chemical feed is carried out so that the respiratory activity of the deposit per biomass is within a prescribed range. Dehydrogenase activity is preferable as the respiratory activity.

Description

本発明は、水系へのスライムコントロール剤の薬注を制御する方法に関する。   The present invention relates to a method for controlling the injection of a slime control agent into an aqueous system.

冷却水系、ガス処理用スクラバー水系、紙パルプ製造工程水系、膜分離システム水系などにおいて薬注を適切に行うには、水系のスライム発生状況を検知する必要がある。   In order to appropriately perform chemical injection in a cooling water system, a gas processing scrubber water system, a paper pulp manufacturing process water system, a membrane separation system water system, etc., it is necessary to detect the occurrence of water slime.

スライム量を光学的手法によりモニタリングして薬注制御する方法として、特許文献1(特開2004−113981)には、循環水系の流路の一部となる筒状の測定室と水の流れと直角方向に測定室をはさんで発光部および受光部を配置し、受光部からの電気信号を測定データとして演算処理してスライム防止剤添加手段を制御することが記載されている。   As a method for monitoring the slime amount by an optical method and performing chemical injection control, Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-113981) describes a cylindrical measurement chamber that becomes a part of a flow path of a circulating water system, a flow of water, It is described that a light emitting part and a light receiving part are arranged across a measurement chamber in a perpendicular direction, and an electric signal from the light receiving part is arithmetically processed as measurement data to control the slime inhibitor addition means.

この特許文献1の方法では、スライムが水系において増加する傾向なのか、減少する傾向なのかは長期の経時的データで判断しなくてはならない。また、付着物が生物か非生物かを区別できないため、薬注精度が劣る。   In the method of Patent Document 1, it is necessary to determine whether slime tends to increase or decrease in aqueous systems based on long-term data. Moreover, since it cannot distinguish whether a deposit | attachment is a living thing or a non-living thing, chemical injection precision is inferior.

特許文献2(特表2003−519390)には、菌の代謝を測定する方法を利用したモニタリング法として蛍光染料の添加によって、産業用水システムにおける浮遊性及び付着性微生物個体群をモニタリングする方法が記載されている。   Patent Document 2 (Japanese Translation of PCT International Publication No. 2003-519390) describes a method for monitoring floating and adherent microbial populations in an industrial water system by adding a fluorescent dye as a monitoring method using a method for measuring bacterial metabolism. Has been.

この方法では、反応前の蛍光物質と反応後の蛍光物質の測定、そしてその比率の演算を実施している。そのため、現場には高価な蛍光測定装置、演算装置の設置、および、それらへ系内の循環水を取り入れる流路、廃液を流す流路、蛍光物質の流入させる流路、ポンプ、供給する蛍光物質を入れるタンクなどの設備が必要である。これらは多大な初期投資、維持投資、場所の確保を必要とする。   In this method, the measurement of the fluorescent substance before reaction and the fluorescent substance after reaction and the calculation of the ratio are performed. Therefore, installation of expensive fluorescence measuring devices and computing devices in the field, a flow channel for taking in circulating water in the system, a flow channel for flowing waste liquid, a flow channel for flowing in fluorescent material, a pump, a fluorescent material to be supplied A tank and other facilities are required. These require a great deal of initial investment, maintenance investment and space.

特開2004−113981JP 2004-113981 A 特表2003−519390Special table 2003-519390

本発明は、簡易な設備、方法によって水系のスライム傾向を的確に判断して適切なスライムコントロール剤の薬注制御を行うことができる薬注制御方法を提供することを目的とする。   An object of the present invention is to provide a chemical injection control method capable of accurately determining a slime tendency of an aqueous system and performing chemical injection control of an appropriate slime control agent with simple equipment and methods.

請求項1の薬注制御方法は、水系にスライムコントロール剤を添加するスライムコントロール剤の薬注制御方法において、付着物の呼吸活性を測定し、付着物の生物量あたりの呼吸活性を算出し、この付着物の生物量あたりの呼吸活性が所定範囲内となるように薬注することを特徴とするものである。   The chemical injection control method of claim 1 is a slime control agent chemical injection control method in which a slime control agent is added to an aqueous system, measures the respiratory activity of the deposit, calculates the respiratory activity per biomass of the deposit, It is characterized by injecting medicine so that the respiratory activity per biomass of this deposit is within a predetermined range.

請求項2の水系への薬注制御方法は、請求項1において、呼吸活性はデヒドロゲナーゼ活性であることを特徴とするものである。   According to a second aspect of the present invention, there is provided a method for controlling drug injection into an aqueous system according to the first aspect, wherein the respiratory activity is a dehydrogenase activity.

付着微生物の場合、増殖した菌体のうちの一部が残留して微生物層を形成する。そのため、付着微生物の増減は増殖の有無が支配因子と考えることができる。   In the case of an attached microorganism, a part of the grown cells remains to form a microorganism layer. Therefore, the increase / decrease in the number of attached microorganisms can be considered as the controlling factor based on the presence or absence of growth.

デヒドロゲナーゼの反応は電子転移反応、水素化物イオンH−転移反応、水素転移反応に分けられる。多種類の酵素が知られており、代謝中間体の酸化・還元、呼吸・発酵、膜電位の維持、能動輸送に関するものもある。呼吸は微生物増殖に欠かせないことから、この呼吸活性が微生物増殖の判断指標として有効である。   The dehydrogenase reaction is divided into an electron transfer reaction, a hydride ion H-transfer reaction, and a hydrogen transfer reaction. Many types of enzymes are known, including those related to oxidation / reduction of metabolic intermediates, respiration / fermentation, maintenance of membrane potential, and active transport. Since respiration is indispensable for microbial growth, this respiratory activity is effective as an indicator for microbial growth.

本発明者は、種々研究を重ねた結果、水系に付着した付着物の生物量あたりの呼吸活性が増加すると、その後生物量が増加し、逆に付着物の生物量あたりの呼吸活性が低下すると、その後生物量が減少することを見出した。   As a result of repeating various studies, the present inventors have found that when the respiratory activity per biomass of the deposit attached to the water system increases, the biomass increases thereafter, and conversely, the respiratory activity per biomass of the deposit decreases. After that, it was found that the biomass decreased.

本発明は、かかる知見に基づき、付着物の生物量あたりの呼吸活性が所定範囲となるように薬注することにより、水系の生物量を所定量以下とするものである。   Based on this finding, the present invention makes the aqueous biomass less than or equal to a predetermined amount by injecting so that the respiratory activity per biomass of the deposit is within a predetermined range.

本発明によれば、水系で実際にスライムの増減が始まる前にスライムコントロール剤の薬注量を制御することにより、例えば次の1)〜3)の効果を得ることができる。
1) スライムを抑制したい系においては、殺菌剤・抑制剤の、過剰注入、過少注入を避けることができる。
2) スライムを増やしたい系においては、基質の過剰添加、過少添加を避けることができる。
3) スライムを抑制したい系においては、スライムを薄い状態に維持することで、殺菌剤・抑制剤を効率よく作用させることができる。
According to the present invention, the following effects 1) to 3) can be obtained, for example, by controlling the amount of the slime control agent to be injected before the increase or decrease of the slime actually starts in the aqueous system.
1) In systems that want to suppress slime, it is possible to avoid over- and under-injection of fungicides and inhibitors.
2) In systems that want to increase slime, it is possible to avoid over- and under-substrate additions.
3) In a system where slime is desired to be controlled, the fungicide / inhibitor can be efficiently operated by maintaining the slime in a thin state.

本発明では、現地にモニター用の装置を持ち込むことなく、スライムコントロールの良し悪しを簡易かつ迅速に判断することができる。   In the present invention, it is possible to easily and quickly determine whether the slime control is good or bad without bringing a monitoring device to the site.

実験例1の結果を示すグラフである。6 is a graph showing the results of Experimental Example 1. 実験例2の結果を示すグラフである。10 is a graph showing the results of Experimental Example 2. 実施例1の結果を示すグラフである。3 is a graph showing the results of Example 1.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明は、生物量当りのデヒドロゲナーゼ活性などの呼吸活性を測定し、この呼吸活性が所定範囲となるようにスライムコントロール剤の薬注制御を行う。   In the present invention, respiratory activity such as dehydrogenase activity per biomass is measured, and drug injection control of a slime control agent is performed so that this respiratory activity falls within a predetermined range.

デヒドロゲナーゼ活性は呼吸代謝にかかわる酵素である。スライムの増加には増殖が必要であるが、増殖に先だって、増殖に必要な物質の生産、エネルギーの貯えが必要と考えられ、それを供給する呼吸代謝系が活発になると考えられる。このような理由から、増殖前にデヒドロゲナーゼ活性の上昇が起こると考えられる。   Dehydrogenase activity is an enzyme involved in respiratory metabolism. Increase in slime requires growth, but prior to growth, production of substances necessary for growth and storage of energy is considered necessary, and the respiratory metabolic system that supplies it is considered to be active. For this reason, it is considered that an increase in dehydrogenase activity occurs before growth.

また、流水中のスライムは、常に剪断力により剥ぎとられる環境にある。増殖が抑制されると剥ぎとられる分の補給がなされず、スライムは減少すると考えられる。このような理由から、生物量当たりの呼吸活性がスライム減少の前兆となっていると考えられる。   In addition, the slime in running water is always in an environment where it can be peeled off by shearing force. If the growth is suppressed, the amount to be removed is not supplied and slime is considered to decrease. For these reasons, the respiratory activity per biomass is considered to be a precursor to slime reduction.

なお、上記の所定範囲の上限値は、デヒドロゲナーゼ活性がこの値よりも低いときには該水系における生物繁殖量が減少し、高いときには生物繁殖量が増加する境界値であることが好ましい。下限値は、ゼロであってもよいが、過剰薬注のおそれがあるので、ゼロでないことが好ましい。上限値、下限値は水系の水質及び薬剤の種類に依拠するので、現場及び薬剤毎に実験的に定める。   Note that the upper limit value of the predetermined range is preferably a boundary value at which the amount of biological propagation in the water system decreases when the dehydrogenase activity is lower than this value, and increases when the dehydrogenase activity is higher. The lower limit may be zero, but is preferably not zero because there is a risk of overdose. The upper limit and lower limit depend on the quality of the water system and the type of drug, and are experimentally determined for each site and drug.

本発明方法が対象とする水系としては、冷却水系、ガス処理用のスクラバーの水系(特にスクラバーの用水を循環使用する場合に好適である。)、紙パルプ製造工程水系、膜分離装置への通水系などが例示されるが、これらに限定されない。スライムコントロール剤としては、特に限定されることなく、各種のものを用いることができる。   Water systems targeted by the method of the present invention include cooling water systems, scrubber water systems for gas treatment (especially suitable when circulating scrubber water is used), paper pulp manufacturing process water systems, and passage to membrane separation devices. Although an aqueous system etc. are illustrated, it is not limited to these. The slime control agent is not particularly limited, and various types can be used.

[生物量あたりのデヒドロゲナーゼ活性測定手順]
本発明で採用するのに好適な生物量あたりのデヒドロゲナーゼ活性測定手順について次に説明する。
[Measurement procedure of dehydrogenase activity per biomass]
Next, a procedure for measuring dehydrogenase activity per biomass suitable for use in the present invention will be described.

(1) スライムのサンプリング
シリンジ(20mL)で冷却水ピット壁面のスライムを吸い取り、滅菌済みのチューブ(50mL遠沈管など)にサンプリングする。サンプル量は50mL程度採取する。肉眼でスライムが見い出せるレベル量あれば定量できる。
(1) Slime sampling Slime on the wall surface of the cooling water pit is sucked with a syringe (20 mL) and sampled into a sterilized tube (such as a 50 mL centrifuge tube). Collect about 50 mL of sample. It can be quantified as long as the slime can be found with the naked eye.

(2) 2-p-iodophenyl-3-p-nitorophenyl-5-tetrazolium chlorideとの反応(INT染色)
1) あらかじめ、超純水で0.2% 2-p-iodophenyl-3-p-nitorophenyl-5-tetrazolium chloride溶液(以下INT溶液)を作成し、滅菌済みの容器にポアサイズ0.2μmで濾過する。4℃保存。
2) あらかじめ、PY培地(ポリペプトン10g、酵母エキス10g、NaCl 5gを1Lの純水中に含むpH7.0±0.2の培地)を作成する。
3) INT溶液1/10vol.(最終濃度約0.02%,滅菌メスピペットで採取)、PY培地1/100vol.(最終濃度1/100PY、滅菌メスピペットで採取)混合液を超純水で作成し、滅菌済みの容器(100mLポリ瓶、50ml遠沈管、滅菌済みガラスフラスコなど)にポアサイズ0.2μmで濾過する(濾過滅菌操作)。この液をINT染色液と呼ぶ。作成量は1サンプルあたり5mL程度+10mLで算出する。当日作成、使用後廃棄。
4) スライム懸濁液の蛋白濃度を測定する。
5) 濾過器にポアサイズ0.45μm φ25mmニトロセルロースフィルターを設置する。
6) 濾過量が蛋白量200mg〜400mgになるように、スライム懸濁液量を算出し、10ml滅菌ピペットでサンプルを濾過器に供する。サンプルはよく攪拌しさらにピペッティングで攪拌する。できるだけ均一になるようにスライム懸濁液を採取し、吸引濾過する。ブランクとして滅菌水を用いる。−コントロールとしては同量のスライム懸濁液を濾過し、INT染色部分を除いてサンプルと同様の操作を行い抽出に供する。+コントロールとしてはP.putida A660nm 0.1の液を蛋白量として約200mg供する。
7) 滅菌水10mlを添加し、濾過する。(洗浄)
8) INT染色液5mL添加。約1mL程度濾過して、フィルター上の菌に確実に接触させる。
9) 37℃、1時間、暗所静置
10) 濾過したフィルターを濾紙などの上において乾燥させ、反応停止させる。軽い重石をおいて、フィルターが丸まらないようにする。
11) フォルマザンの抽出と吸光度測定をおこなう。
・ フィルターをエッペンドルフチューブに入れる。
・ 1mLのクロロフォルムを添加し、約1時間攪拌する。
・ 光路1cmセルで490nm吸光度を測定する。
(2) Reaction with 2-p-iodophenyl-3-p-nitorophenyl-5-tetrazolium chloride (INT staining)
1) Prepare a 0.2% 2-p-iodophenyl-3-p-nitorophenyl-5-tetrazolium chloride solution (hereinafter referred to as an INT solution) with ultrapure water in advance and filter it in a sterile container with a pore size of 0.2 μm. . Store at 4 ° C.
2) Prepare a PY medium (pH 7.0 ± 0.2 medium containing 10 g of polypeptone, 10 g of yeast extract, and 5 g of NaCl in 1 L of pure water) in advance.
3) INT solution 1/10 vol. (Final concentration about 0.02%, collected with a sterilized measuring pipette), PY medium 1/100 vol. (Final concentration 1/100 PY, collected with a sterilized measuring pipette) Prepare a mixture with ultrapure water and filter into a sterilized container (100 mL plastic bottle, 50 ml centrifuge tube, sterilized glass flask, etc.) with a pore size of 0.2 μm. (Filter sterilization operation). This liquid is called an INT staining liquid. The amount of preparation is calculated as about 5 mL + 10 mL per sample. Created on the day, discarded after use.
4) Measure the protein concentration of the slime suspension.
5) Install a nitrocellulose filter with a pore size of 0.45 μm and φ25 mm on the filter.
6) The amount of slime suspension is calculated so that the amount of filtration is 200 mg to 400 mg of protein, and the sample is applied to the filter with a 10 ml sterile pipette. Stir the sample thoroughly and then pipet. Collect the slime suspension so that it is as uniform as possible and filter with suction. Use sterile water as a blank. -As a control, the same amount of slime suspension is filtered and subjected to extraction by performing the same operation as the sample except for the INT stained part. As a control, about 200 mg of P.putida A660nm 0.1 solution is provided as the amount of protein.
7) Add 10 ml of sterile water and filter. (Washing)
8) Add 5 mL of INT staining solution. Filter about 1 mL to ensure contact with the bacteria on the filter.
9) Leave at 37 ° C for 1 hour in the dark
10) Dry the filtered filter on filter paper to stop the reaction. Place a light weight to keep the filter from curling.
11) Perform formazan extraction and absorbance measurement.
• Place the filter in an Eppendorf tube.
Add 1 mL chloroform and stir for about 1 hour.
• Measure absorbance at 490 nm in a 1 cm cell with optical path.

(3) 蛋白質濃度の定量
蛋白質濃度の定量は、Folin-Ciocaltenのフェノール試薬による測定に基づいて行う。
(3) Quantification of protein concentration Quantification of protein concentration is performed based on measurement with a phenol reagent of Folin-Ciocalten.

(4) 値算出
INT Formazan吸光度をDehydrogenase Activityに換算
活性の単位:一単位(1unit 1U)は1分間に1μmolの基質、または1μ当量の結合に作用する酵素量。この反応はINTが脱水素酵素(Dehydrogenase)によって還元され当量のINT Formazanが形成されると考えられることから、1μmol/minのINT Forumazan生成を1Uとする。酵素活性の単位にはUとkatがあるが、今回は一般に多用されているUnitを用いる。
(4) Value calculation
Conversion of INT Formazan absorbance to Dehydrogenase Activity Unit of activity: 1 unit (1 unit 1 U) is 1 μmol of substrate per minute, or the amount of enzyme acting on 1 μ equivalent of binding. In this reaction, INT is reduced by dehydrogenase to form an equivalent amount of INT Formazan. Therefore, 1 μmol / min of INT Forumazan production is defined as 1 U. Units of enzyme activity include U and kat, but this time we use Unit, which is commonly used.

抽出液量から抽出されたINT Formazan モル数を算出し、反応時間で除算すると活性が算出される。
Dehydrogenase Activity[U]=ミリモル濃度[mmol/L]×μモル換算[1000μmol/mmol]×抽出液量[L]/反応時間[min]
=(0.044×490nm吸光度−0.0004)×1000×(1/1000)/60
* ミリモル濃度[mmol/L]=0.044×490nm吸光度−0.0004
* 抽出液量 1ml
* 反応時間 60min
The activity is calculated by calculating the number of moles of INT Formazan extracted from the amount of the extract and dividing by the reaction time.
Dehydrogenase Activity [U] = mmol concentration [mmol / L] × μmole conversion [1000 μmol / mmol] × extracted solution amount [L] / reaction time [min]
= (0.044 × 490 nm absorbance−0.0004) × 1000 × (1/1000) / 60
* Mmol concentration [mmol / L] = 0.044 × 490 nm absorbance−0.0004
* Extract volume 1ml
* Reaction time 60min

Dehydrogenase Activityから求める生物量当たりのデヒドロゲナーゼ活性は活性を分析に用いた蛋白量で除算した値を100000倍したものとする。
生物量当たりのデヒドロゲナーゼ活性=Dehydrogenase Activity[U]/蛋白量[mg] × 100000
The dehydrogenase activity per biomass determined from Dehydrogenase Activity is obtained by multiplying the value obtained by dividing the activity by the amount of protein used in the analysis by 100,000.
Dehydrogenase activity per biomass = Dehydrogenase Activity [U] / protein amount [mg] × 100,000

生物量当りのデヒドロゲナーゼ活性測定方法の別方法としては、たとえば活性を生物量で割る際に、タンパク質以外の量(たとえばDNAなど)を用いる方法がある。また、デヒドロゲナーゼ活性測定をINT以外の試薬(電子受容により発色、発光する試薬)で行うこともできる。また、呼吸活性をデヒドロゲナーゼ活性で求めているがそれ以外の方法(たとえば微生物燃料電池の電位)を用いることもできる。   As another method of measuring the dehydrogenase activity per biomass, for example, when dividing the activity by the biomass, there is a method of using an amount other than protein (such as DNA). In addition, the dehydrogenase activity can be measured with a reagent other than INT (a reagent that develops color and emits light by electron acceptance). Moreover, although respiratory activity is calculated | required by dehydrogenase activity, other methods (for example, the potential of a microbial fuel cell) can also be used.

[実験例1]
生物量当りのデヒドロゲナーゼ活性と蛋白量との経時変化について測定した。即ち、サンプルはPY培地1/100を含む残留塩素を除いた水道水を一過性でアクリルカラムに流し、その中に設置したスライドグラス上に生育した自然界由来の付着菌を滅菌水5mlを用いてスクレイパーではぎとった菌懸濁液であり、下記の方法に従って蛋白量と生物量当りのデヒドロゲナーゼ活性とを測定した。結果を図1に示す。図1の通り、デヒドロゲナーゼ活性が増加するとその後蛋白量が増加し、デヒドロゲナーゼ活性が減少すると、その後蛋白量が減少する。両者の増減のタイムラグは約50時間程度である。
[Experimental Example 1]
The time course of dehydrogenase activity and protein content per biomass was measured. That is, for the sample, tap water excluding residual chlorine containing 1/100 of PY medium was allowed to flow through an acrylic column temporarily, and 5 ml of sterilized water was used for adhering bacteria derived from nature grown on a slide glass installed therein. The cell suspension was scraped with a scraper, and the amount of protein and the dehydrogenase activity per biomass were measured according to the following method. The results are shown in FIG. As shown in FIG. 1, when the dehydrogenase activity increases, the amount of protein increases thereafter, and when the dehydrogenase activity decreases, the amount of protein decreases thereafter. The time lag between the increase and decrease of both is about 50 hours.

実験方法は次の通りである。
i) サンプル2mL(1.7mL)をニトロセルロースフィルター(ポアサイズ0.45μm φ25mm)で濾過する。
10mLの滅菌水を濾過(洗浄)する。
ii) 0.02%INT溶液(1/100PY培地含む)アプライする。
iii) 37℃に1h静置した後、吸引濾過により溶液除去し、乾燥後、1mLクロロフォルム抽出(1h)を行い、490nm吸光度測定を行う。
The experimental method is as follows.
i) Filter 2 mL (1.7 mL) of the sample through a nitrocellulose filter (pore size 0.45 μm φ25 mm).
Filter (wash) 10 mL of sterile water.
ii) Apply 0.02% INT solution (including 1/100 PY medium).
iii) After standing at 37 ° C. for 1 h, the solution is removed by suction filtration, dried, 1 mL chloroform extraction (1 h) is performed, and the absorbance at 490 nm is measured.

[実験例2]
殺菌剤を添加することによる蛋白量及び生物量当たりのデヒドロゲナーゼ活性の低下を確認するための実験を行った。サンプルは、実験例1と同様の方法で、スライドグラス上に付着菌を生育させ、その後スライムコントロール剤(結合型塩素)濃度が一定に保たれるように添加し、スライドグラス上の菌を実験例1と同じ方法ではぎとった菌懸濁液である。蛋白量及びデヒドロゲナーゼ活性測定を行った。
[Experiment 2]
Experiments were carried out to confirm the decrease in dehydrogenase activity per protein amount and biomass by adding a fungicide. Samples were grown in the same manner as in Experimental Example 1 by growing adherent bacteria on the slide glass, and then added so that the slime control agent (bound chlorine) concentration was kept constant. It is a suspension of fungi that was removed in the same manner as in Example 1. Protein amount and dehydrogenase activity were measured.

結果を図2に示す。図2の通り、スライムコントロール剤の添加により、デヒドロゲナーゼ活性が急激に低下し、薬注後はほぼ一定の低い値となる。蛋白量は、薬注後、徐々に低下し、薬注後、約150時間でほぼゼロとなる。   The results are shown in FIG. As shown in FIG. 2, the addition of the slime control agent causes the dehydrogenase activity to decrease rapidly, and becomes a substantially constant low value after drug injection. The amount of protein gradually decreases after drug injection, and becomes almost zero in about 150 hours after drug injection.

[実施例1]
冷却水系に対して本方法を適用し、熱交換器のLTD(Leaving Temperature Difference)及び生物量当たりのデヒドロゲナーゼ活性の変動を測定した。スライムコントロール剤としては栗田工業(株)製タワークリンNT652を用いた。7月13日からLTDと生物量当たりのデヒドロゲナーゼ活性の測定を開始した。その経時的変動を図3に示す。
LTD(熱交換器の出口側における、被冷却水と冷却水との温度差)は、熱交換器に付着したスライム量にほぼ比例するので、LTDはスライム付着量の指標値になる。9月15日まではLTDが上昇した時、薬品濃度を上げ、低下した時、薬注の低下又は濃度低下を実施した。同時にデヒドロゲナーゼ活性値を測定しLTDの変動との関連を検討した。その結果、LTDの低下に先立ってデヒドロゲナーゼ活性は低下し、LTDの上昇に先立って活性が上昇していた。
[Example 1]
The present method was applied to a cooling water system, and the variation of the dehydrogenase activity per unit amount of the heat exchanger LTD (Leaving Temperature Difference) was measured. As a slime control agent, Tawarin NT652 manufactured by Kurita Kogyo Co., Ltd. was used. Measurement of dehydrogenase activity per LTD and biomass was started from July 13th. The change with time is shown in FIG.
Since the LTD (temperature difference between the water to be cooled and the cooling water at the outlet side of the heat exchanger) is substantially proportional to the amount of slime adhering to the heat exchanger, LTD is an index value for the amount of slime adhering. Until September 15, the drug concentration was increased when the LTD increased, and when the drug decreased, the drug injection was decreased or the concentration was decreased. At the same time, the dehydrogenase activity value was measured to examine the relationship with the variation of LTD. As a result, the dehydrogenase activity decreased prior to the decrease in LTD, and the activity increased prior to the increase in LTD.

9月15日以降、生物量当たりのデヒドロゲナーゼ活性が600U/mg×10を超えた場合に薬注濃度増加を行い、400U/mg×10よりも小さくなった場合には薬注濃度を下げるように薬注制御を行った。その結果を図3に示す。 After September 15th, when the dehydrogenase activity per biomass exceeds 600 U / mg × 10 5 , the drug injection concentration is increased, and when it is lower than 400 U / mg × 10 5 , the drug injection concentration is decreased. The drug injection control was performed. The result is shown in FIG.

図3の通り、生物量当りのデヒドロゲナーゼ活性を所定範囲とすることにより、LTDを約3℃前後の範囲にすることができる。   As shown in FIG. 3, by setting the dehydrogenase activity per biomass to a predetermined range, the LTD can be set to a range of about 3 ° C.

この結果から、本発明方法により過剰・過少なスライムコントロール剤注入をすることなく良好なスライムコントロールがなされたと考えられる。   From this result, it is considered that good slime control was achieved by the method of the present invention without injecting excessive or insufficient slime control agent.

Claims (2)

水系にスライムコントロール剤を添加するスライムコントロール剤の薬注制御方法において、
付着物の呼吸活性を測定し、付着物の生物量あたりの呼吸活性を算出し、
この付着物の生物量あたりの呼吸活性が所定範囲内となるように薬注することを特徴とする薬注制御方法。
In the slime control agent chemical injection control method of adding a slime control agent to an aqueous system,
Measure the respiratory activity of the deposit, calculate the respiratory activity per biomass of the deposit,
A drug injection control method, wherein the drug injection is performed so that the respiratory activity per biomass of the attached substance falls within a predetermined range.
請求項1において、呼吸活性はデヒドロゲナーゼ活性であることを特徴とする薬注制御方法。   2. The method for controlling drug injection according to claim 1, wherein the respiratory activity is dehydrogenase activity.
JP2011079518A 2011-03-31 2011-03-31 Control method of chemical injection to water system Active JP5857430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011079518A JP5857430B2 (en) 2011-03-31 2011-03-31 Control method of chemical injection to water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011079518A JP5857430B2 (en) 2011-03-31 2011-03-31 Control method of chemical injection to water system

Publications (2)

Publication Number Publication Date
JP2012213685A true JP2012213685A (en) 2012-11-08
JP5857430B2 JP5857430B2 (en) 2016-02-10

Family

ID=47267037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011079518A Active JP5857430B2 (en) 2011-03-31 2011-03-31 Control method of chemical injection to water system

Country Status (1)

Country Link
JP (1) JP5857430B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050012A1 (en) * 2020-09-03 2022-03-10 オルガノ株式会社 Cooling water system control method, and cooling water system control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775787A (en) * 1992-12-17 1995-03-20 Katayama Chem Works Co Ltd Method for dealing with sliming in service water
JP2003519390A (en) * 1999-12-30 2003-06-17 ナルコ ケミカル カンパニー Measurement and control of adherent and planktonic microbial activity in industrial water systems
JP2007289004A (en) * 2006-04-20 2007-11-08 Nisshin Kagaku Kenkyusho:Kk Method for measuring viable cell number, apparatus for measuring viable cell number and slime monitoring apparatus and slime controlling agent addition system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775787A (en) * 1992-12-17 1995-03-20 Katayama Chem Works Co Ltd Method for dealing with sliming in service water
JP2003519390A (en) * 1999-12-30 2003-06-17 ナルコ ケミカル カンパニー Measurement and control of adherent and planktonic microbial activity in industrial water systems
JP2007289004A (en) * 2006-04-20 2007-11-08 Nisshin Kagaku Kenkyusho:Kk Method for measuring viable cell number, apparatus for measuring viable cell number and slime monitoring apparatus and slime controlling agent addition system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050012A1 (en) * 2020-09-03 2022-03-10 オルガノ株式会社 Cooling water system control method, and cooling water system control device

Also Published As

Publication number Publication date
JP5857430B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
KR101370689B1 (en) Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
Lei et al. Revisiting the effects of powdered activated carbon on membrane fouling mitigation in an anaerobic membrane bioreactor by evaluating long-term impacts on the surface layer
Goh et al. Impact of a biofouling layer on the vapor pressure driving force and performance of a membrane distillation process
JP5218153B2 (en) Microorganism detection apparatus, detection method, and sample container used therefor
CA2939488C (en) Bioreactor for the in situ study of microbial biofilms inducing corrosion on metal surfaces
Kroukamp et al. CO2 production as an indicator of biofilm metabolism
Wong et al. Enrichment of anodophilic nitrogen fixing bacteria in a bioelectrochemical system
Imachi et al. Cultivation of previously uncultured microorganisms with a continuous-flow down-flow hanging sponge (DHS) bioreactor, using a syntrophic archaeon culture obtained from deep marine sediment as a case study
JP5857430B2 (en) Control method of chemical injection to water system
MX2011002512A (en) Process for controlling the ph and level of target ions of a liquid composition.
PT989188E (en) Microbiosensor for the continuous monitoring of chemical substances in fluids
Papp et al. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea
Lamboursain et al. A lab‐built respirometer for plant and animal cell culture
JP2013078339A (en) Microbial detection apparatus, detection method, and sample container used therein
JP2012210612A (en) Chemical feeding control method
Simões et al. A comparative study of drinking water biofilm monitoring with flow cell and Propella™ bioreactors
Thorne et al. Trapping of redox-mediators at the surface of Chlorella vulgaris leads to error in measurements of cell reducing power
JP5711278B2 (en) Microorganism detection apparatus, detection method, and sample container used therefor
JP2014193452A (en) Method of treating organic sludge
JP7227713B2 (en) Measuring device and measuring method for measuring activity of microorganisms, biological treatment system and biological treatment method
Becerra-Celis et al. Estimation of microalgal photobioreactor production based on total inorganic carbon in the medium
CN114752646A (en) Method for detecting sulfate reducing bacteria
Al-Moniee et al. Laboratory-Scale Evaluation of Single Analyte Bacterial Monitoring Strategies in Water Injection Systems
CN117165580B (en) Composition for stabilizing nucleic acid in sample, preparation method and application thereof
Ogoni et al. Evaluation of substrate uptake by microbial film in a gel-like medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5857430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250