JP2012213273A - Spherical motor - Google Patents

Spherical motor Download PDF

Info

Publication number
JP2012213273A
JP2012213273A JP2011077566A JP2011077566A JP2012213273A JP 2012213273 A JP2012213273 A JP 2012213273A JP 2011077566 A JP2011077566 A JP 2011077566A JP 2011077566 A JP2011077566 A JP 2011077566A JP 2012213273 A JP2012213273 A JP 2012213273A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic
rotor
spherical motor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011077566A
Other languages
Japanese (ja)
Inventor
Shuhei Kanehara
修平 金原
Yuzuru Suzuki
譲 鈴木
Manabu Nakamura
学 中村
Hiroyuki Furusaki
浩幸 古崎
Masaya Fujimoto
征也 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2011077566A priority Critical patent/JP2012213273A/en
Publication of JP2012213273A publication Critical patent/JP2012213273A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a spherical motor in which a contact of an outer member and an inner member can effectively be prevented and an interval between them can be kept constant by pre-pressuring a bearing ball in an appropriate state.SOLUTION: A holding member 320 installed in an installation side member (outer member: stator 10) of a bearing 32 is pre-pressurized in a direction of an opposite side member (inner member: rotor 20) by magnetic force of a magnetic member (second permanent magnet 380). Thus, the bearing ball 310 held by the holding member 320 abuts on a surface of the rotor 20, and the stator 10 and the rotor 20 are accordingly supported in a relatively rotational manner. Since the magnetic force of the magnetic member has a characteristic that it non-linearly becomes larger as a size of the gap between the stator 10 and the rotor 20 becomes smaller, the bearing ball 310 is pre-pressurized in the appropriate state.

Description

本発明は、外側部材の内部に内側部材を回転可能に保持し、ロータとした一方の部材を複数の軸回りに回転させる球面モータに関する。   The present invention relates to a spherical motor that holds an inner member rotatably inside an outer member and rotates one member serving as a rotor around a plurality of axes.

内部が中空の殻構造を有する球体状の外側部材の内部に球体状の内側部材を回転可能に保持し、一方の部材をステータとし、他方の部材をロータとして、ロータを例えば3自由度、あるいはそれ以上の自由度で回転させる球面モータが知られている(引用文献1)。   A spherical inner member is rotatably held inside a spherical outer member having a hollow shell structure inside, and one member is a stator, the other member is a rotor, and the rotor is, for example, three degrees of freedom, or A spherical motor that rotates with a higher degree of freedom is known (Cited document 1).

特開2009−77463号公報JP 2009-77463 A

従来、球面モータにおいて外側部材と内側部材とを相対回転可能に支持する軸受構造としては、例えばステータ側に回転自在に保持したベアリングボールをロータの表面に転動可能に接触させるものがある。このような軸受構造を、外側部材がステータで内側部材がロータとして構成した球面モータに適用した場合、ステータが外力や衝撃を受けたときや、ロータが急停止したり進行方向(回転方向)を変更したりするときなどに、ロータがステータに接触または極めて近接して回転の制御が不能になるおそれがあるといった問題があった。すなわち、ベアリングボールを適切な状態でロータ側に予圧することで、外側部材と内側部材とが直接接触せず、かつ両者の間隔を一定に保つ構造が必要とされる。   2. Description of the Related Art Conventionally, as a bearing structure that supports an outer member and an inner member so as to be relatively rotatable in a spherical motor, for example, there is a structure in which a bearing ball rotatably held on a stator side is brought into contact with the surface of a rotor so as to allow rolling. When such a bearing structure is applied to a spherical motor in which the outer member is a stator and the inner member is a rotor, when the stator receives an external force or impact, the rotor stops suddenly or the traveling direction (rotation direction) is changed. There is a problem in that, for example, when the rotor is changed, the rotor may come into contact with or very close to the stator and control of rotation may be disabled. That is, by preloading the bearing ball to the rotor side in an appropriate state, a structure is required in which the outer member and the inner member are not in direct contact and the distance between them is kept constant.

本発明は上記事情に鑑みてなされたものであり、ベアリングボールを適切な状態で予圧することで、外側部材と内側部材との接触が効果的に防止されるとともに、両者の間隔が一定に保たれる球面モータを提供することを目的としている。   The present invention has been made in view of the above circumstances, and by preloading the bearing ball in an appropriate state, the contact between the outer member and the inner member is effectively prevented, and the distance between the two is kept constant. The object is to provide a spherical motor that can sag.

本発明の球面モータは、外側部材と、外側部材の内部に設けられる内側部材と、外側部材または内側部材の一方である設置側部材に設置され、外側部材と内側部材とを相対回転可能に支持する複数の軸受とを備えた球面モータであって、前記軸受は、前記設置側部材に、外側部材または内側部材の他方である相手側部材に対して進退自在に設けられた保持部材と、この保持部材の進出側の先端部に回転可能に保持され、相手側部材の表面に転動可能に当接させられるベアリングボールと、前記保持部材に設けられる第1の永久磁石と、前記設置側部材に設けられ、前記保持部材を前記相手側部材方向に予圧して前記ベアリングボールを該相手側部材の表面に当接させる磁気力を発生させる磁性部材とを備え、前記磁性部材から発生する磁気力は、前記外側部材と前記内側部材との間のギャップの大きさが小さくなるほど非線形に大きくなる特性を有していることを特徴とする。   The spherical motor of the present invention is installed on an outer member, an inner member provided inside the outer member, and an installation side member that is one of the outer member or the inner member, and supports the outer member and the inner member so as to be relatively rotatable. A holding member provided on the installation side member so as to be movable forward and backward with respect to a counterpart member which is the other of the outer member and the inner member; A bearing ball that is rotatably held at the tip of the holding member on the advancing side and is brought into contact with the surface of the counterpart member so as to allow rolling, a first permanent magnet provided on the holding member, and the installation side member A magnetic member that preloads the holding member in the direction of the counterpart member and generates a magnetic force that abuts the bearing ball against the surface of the counterpart member, and generates a magnetic force generated from the magnetic member. Characterized in that the size of the gap between the inner member and the outer member has a larger characteristic nonlinearly as decreases.

本発明の球面モータにおいては、(1)外側部材をステータとし、内側部材をロータとする構成、(2)外側部材をロータとし、内側部材をステータとする形態が含まれる。また、(A)ステータ側の磁極を電磁石とし、ロータ側の磁極を永久磁石とする形態、(B)ステータ側の磁極とロータ側の磁極の両方を電磁石とする形態が含まれる。また、外側部材および内側部材は、完全な球体状でなくてもよく、その一部が欠けた形状や半球構造など、球体状の一部を構成する形状であってもよい。   The spherical motor of the present invention includes (1) a configuration in which the outer member is a stator and the inner member is a rotor, and (2) a configuration in which the outer member is a rotor and the inner member is a stator. Further, (A) a configuration in which the stator-side magnetic pole is an electromagnet and a rotor-side magnetic pole is a permanent magnet, and (B) a stator-side magnetic pole and a rotor-side magnetic pole are both electromagnets are included. Further, the outer member and the inner member do not have to be completely spherical, and may have a shape constituting a part of a sphere, such as a shape lacking a part or a hemispherical structure.

本発明によれば、設置側部材に設置された保持部材が磁性部材の磁気力によって相手側部材の方向に予圧されることにより、保持部材に保持されたベアリングボールが相手側部材の表面に当接し、これによって設置側部材と相手側部材、すなわち外側部材と内側部材とが相対回転可能に支持される。この作用において、磁性部材の磁気力が外側部材と内側部材との間のギャップの大きさが小さくなるほど非線形に大きくなる特性、すなわち、該ギャップが小さくなるほど磁性部材の磁気力が加速度的に大きくなるという特性を有していることにより、外側部材と内側部材との間のギャップが狭くなって両者の間で働く吸引力が加速度的に増大した場合、それに応じて設置側部材から相手側部材を反発する反発力が加速度的に増大する。このため、反発力が距離に応じて線形的に変化する場合と比較して内側部材と外側部材との位置関係を維持する機能が高く、その結果、外側部材と内側部材との接触が効果的に防止されるとともに、両者の間隔が一定に保たれる。   According to the present invention, the holding member installed on the installation side member is preloaded in the direction of the mating member by the magnetic force of the magnetic member, so that the bearing ball held by the holding member contacts the surface of the mating member. By this, the installation side member and the counterpart member, that is, the outer member and the inner member are supported so as to be relatively rotatable. In this function, the magnetic force of the magnetic member increases nonlinearly as the gap between the outer member and the inner member decreases, that is, the magnetic force of the magnetic member increases at an accelerated rate as the gap decreases. When the gap between the outer member and the inner member becomes narrow and the suction force acting between the two members increases at an accelerated rate, the mating member is moved from the installation side member accordingly. The repulsive force that repels increases at an accelerated rate. For this reason, compared with the case where repulsive force changes linearly according to distance, the function which maintains the positional relationship of an inner member and an outer member is high, and as a result, contact with an outer member and an inner member is effective. And the distance between the two is kept constant.

本発明は、前記磁性部材が、前記保持部材における後退側の位置であって、前記第1の永久磁石との間に所定の間隔をおいた位置に配置される第2の永久磁石で構成され、これら第1の永久磁石および第2の永久磁石は、同極が互いに対向するように着磁されている形態を含む。   In the present invention, the magnetic member is constituted by a second permanent magnet disposed at a position spaced apart from the first permanent magnet at a position on the backward side of the holding member. The first permanent magnet and the second permanent magnet include a form in which the same poles are magnetized so as to face each other.

また、本発明は、前記第1の永久磁石は円筒状に形成され、前記第2の永久磁石は円環状に形成されて前記第1の永久磁石と同軸的に配置されている形態を含む。   Further, the present invention includes a form in which the first permanent magnet is formed in a cylindrical shape, and the second permanent magnet is formed in an annular shape and is arranged coaxially with the first permanent magnet.

また、本発明は、前記第1の永久磁石が、外周部にコイルが巻かれている円筒部を有する磁極の内側に配置されている形態を含む。   Moreover, this invention includes the form arrange | positioned inside the magnetic pole which has a cylindrical part by which the said 1st permanent magnet has the coil wound by the outer peripheral part.

また、本発明は、前記磁性部材が、外周部にコイルが巻かれている円筒部を有する磁極であり、該円筒部は、前記第1の永久磁石の外周面と一定の距離をおいて対向する内周面を有し、前記第1の永久磁石の前記外周面が着磁されている形態を含む。   According to the present invention, the magnetic member is a magnetic pole having a cylindrical portion in which a coil is wound around an outer peripheral portion, and the cylindrical portion is opposed to the outer peripheral surface of the first permanent magnet at a certain distance. Including a form in which the outer peripheral surface of the first permanent magnet is magnetized.

また、本発明は、前記第1の永久磁石は円筒状に形成されており、かつ周方向に対して回転対称に着磁が施されている形態を含む。   Further, the present invention includes a form in which the first permanent magnet is formed in a cylindrical shape and is magnetized in a rotationally symmetrical manner with respect to the circumferential direction.

また、本発明は、前記第1の永久磁石は、前記磁極から一部が突出している形態を含む。   Further, the present invention includes a form in which the first permanent magnet partially protrudes from the magnetic pole.

本発明によれば、磁性部材の磁気力が外側部材と内側部材との間のギャップの大きさが小さくなるほど非線形に大きくなる特性を有していることにより、両部材の間で働く吸引力に応じた磁気力による反発力を生じさせることができ、このため、反発力が距離に応じて線形的に変化する場合と比較して内側部材と外側部材との位置関係を維持する機能が高く、その結果、外側部材と内側部材との接触が効果的に防止されるとともに、両者の間隔が一定に保たれるといった効果を奏する。   According to the present invention, the magnetic force of the magnetic member has a characteristic that increases nonlinearly as the size of the gap between the outer member and the inner member becomes smaller. A repulsive force due to the corresponding magnetic force can be generated, and therefore, the function of maintaining the positional relationship between the inner member and the outer member is high compared to the case where the repulsive force changes linearly according to the distance, As a result, it is possible to effectively prevent contact between the outer member and the inner member and to keep the distance between them constant.

本発明の一実施形態に係る球面モータを構成するステータの(a)外観斜視図、(b)断面図である。It is (a) external appearance perspective view of the stator which comprises the spherical motor which concerns on one Embodiment of this invention, (b) It is sectional drawing. 同球面モータを構成するロータの斜視図であって、(a)内部構造の分解図、(b)内部構造、(c)全体の分解図、(d)全体外観図である。It is a perspective view of the rotor which comprises the spherical motor, Comprising: (a) Exploded view of internal structure, (b) Internal structure, (c) Exploded view of whole, (d) Whole external view. ステータへの磁極部材の取り付け構造を示す断面図である。It is sectional drawing which shows the attachment structure of the magnetic pole member to a stator. 同磁極部材の分解斜視図である。It is a disassembled perspective view of the magnetic pole member. 一実施形態の変形例に適用された第1の永久磁石の斜視図である。It is a perspective view of the 1st permanent magnet applied to the modification of one Embodiment. 一実施形態の磁極の構成を概略的に示す断面図である。It is sectional drawing which shows the structure of the magnetic pole of one Embodiment roughly. 変形例における第1の永久磁石と磁極との磁界解析(移動量と吸引力)を示す線図である。It is a diagram which shows the magnetic field analysis (movement amount and attractive force) of the 1st permanent magnet and magnetic pole in a modification. 同磁界解析を説明するための図であって、(a)第1の永久磁石の周辺の磁束の流れおよび磁力を模式的に表わす断面図、(b)要部拡大図である。It is a figure for demonstrating the magnetic field analysis, Comprising: (a) Sectional drawing which represents typically the flow of magnetic flux around the 1st permanent magnet, and magnetic force, (b) It is a principal part enlarged view.

以下、本発明の一実施形態を図面を参照して説明する。
(1)一実施形態の構成
図1および図2は、一実施形態に係る球面モータを構成するステータ(外側部材、設置側部材)10およびロータ(内側部材、相手側部材)20をそれぞれ示しており、ステータ10の内部にロータ20が回転可能に収容、保持されて一実施形態の球面モータが構成される。ステータ10側には、図3に示すように磁極(磁性部材)31とともに軸受32が設けられ、軸受32により、ロータ20が3自由度以上に回転可能に保持される構造となっている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(1) Configuration of One Embodiment FIGS. 1 and 2 respectively show a stator (outer member, installation side member) 10 and a rotor (inner member, mating member) 20 constituting a spherical motor according to an embodiment. In addition, the rotor 20 is rotatably accommodated and held in the stator 10 to constitute the spherical motor of one embodiment. On the stator 10 side, a bearing 32 is provided together with a magnetic pole (magnetic member) 31 as shown in FIG. 3, and the rotor 20 is rotatably held by the bearing 32 with three or more degrees of freedom.

図1に示すステータ10は、内部が中空の殻構造であって、軟磁性材料により略球体状に形成されたものである。ステータ10の複数の所定箇所には円形状の平坦部10aが形成されており、これら平坦部10aの内部側に、ステータ10の内部に収容されたロータ20を回転自在に支持する軸受32(図3参照)を備えた磁極部材30が取り付けられている。   A stator 10 shown in FIG. 1 has a hollow shell structure and is formed in a substantially spherical shape from a soft magnetic material. Circular flat portions 10a are formed at a plurality of predetermined locations of the stator 10, and bearings 32 (see FIG. 5) rotatably support the rotor 20 accommodated in the stator 10 inside the flat portions 10a. 3) is attached.

上記ステータ10の内部に保持されるロータ20は、図2に示すように、軟磁性材料からなる内球部21と、この内球部21の表面に埋め込まれた複数のロータマグネット22と、セラミックス等の非磁性材料からなり、ロータマグネット22が埋め込まれた内球部21を覆う球体状の外殻部23とにより構成されている。ロータマグネット22は、この場合、ステータ10に内接する仮想正六面体の頂点に対応する8箇所に配置されている。   As shown in FIG. 2, the rotor 20 held inside the stator 10 includes an inner sphere portion 21 made of a soft magnetic material, a plurality of rotor magnets 22 embedded in the surface of the inner sphere portion 21, ceramics, and the like. It is made of a nonmagnetic material such as a spherical outer shell portion 23 that covers the inner sphere portion 21 in which the rotor magnet 22 is embedded. In this case, the rotor magnets 22 are arranged at eight locations corresponding to the vertices of the virtual regular hexahedron inscribed in the stator 10.

図3は、磁極部材30がステータ10の平坦部10aに取り付けられた状態を示しており、図4は磁極部材30の分解図を示している。これら図に示すように、磁極部材30は、軟磁性材料からなりコイル341の鉄心として機能する円筒状のコイルコア部(円筒部)301を有している。コイルコア部301は、軸線がステータ10の径方向と一致する状態にステータ10に取り付けられる。このコイルコア部301の外部側となる一端部には、本実施形態では、コイルコア部301よりも小径の差し込み部302が段部303を経て形成されており、この差し込み部302が、平坦部10aの中央部に形成された取り付け孔10bに内部側から差し込まれている。   FIG. 3 shows a state in which the magnetic pole member 30 is attached to the flat portion 10 a of the stator 10, and FIG. 4 shows an exploded view of the magnetic pole member 30. As shown in these drawings, the magnetic pole member 30 has a cylindrical coil core portion (cylindrical portion) 301 made of a soft magnetic material and functioning as an iron core of the coil 341. The coil core portion 301 is attached to the stator 10 so that the axis line coincides with the radial direction of the stator 10. In this embodiment, an insertion portion 302 having a diameter smaller than that of the coil core portion 301 is formed at one end portion of the coil core portion 301 through a step portion 303, and this insertion portion 302 is formed on the flat portion 10a. It is inserted from the inside into the mounting hole 10b formed in the center.

コイルコア部301の内部側(ロータ20側)の先端には、傘型に開いてロータ20の球面状の外面に沿った凹曲面である突極面304が形成されている。この突極面304の中央部には円盤状のキャップ309が嵌め込まれており、このキャップ309の中心に、コイルコア部301の内部と突極面304の内側を連通する円形の開口306が形成されている。この開口306は、後述するベアリングボール310よりも径が小さく、開口306に嵌ったベアリングボール310が、突極面304からロータ20側に僅かに突出するようになされている。   A salient pole surface 304 that is a concave curved surface along the spherical outer surface of the rotor 20 is formed at the tip of the coil core portion 301 on the inner side (the rotor 20 side). A disc-shaped cap 309 is fitted into the center of the salient pole surface 304, and a circular opening 306 is formed at the center of the cap 309 to communicate the inside of the coil core portion 301 and the inside of the salient pole surface 304. ing. The diameter of the opening 306 is smaller than that of a bearing ball 310 to be described later, and the bearing ball 310 fitted into the opening 306 slightly protrudes from the salient pole surface 304 to the rotor 20 side.

コイルコア部301内には、非磁性材料からなる円筒状の保持部材320がコイルコア部301と同軸的に収納される。この保持部材320の軸心には軸受孔321が形成されており、この軸受孔321の先端側(ステータ10の内部側)の端部には、先端に向かうにしたがって拡径する円錐状のボール保持部322が開口している。このボール保持部322には、開口306から一部が突出するベアリングボール310が回転可能に収納、保持される。ベアリングボール310は、後述する磁極31で生成される磁束に影響を与えないように非磁性で、かつ、硬度と強度を有する材料からなるものである。そのような材料としては、例えば非磁性のセラミックス材料等が挙げられる。   A cylindrical holding member 320 made of a nonmagnetic material is accommodated in the coil core part 301 coaxially with the coil core part 301. A bearing hole 321 is formed in the shaft center of the holding member 320, and a conical ball whose diameter increases toward the tip is formed at the tip of the bearing hole 321 (inside of the stator 10). The holding part 322 is open. A bearing ball 310 partially protruding from the opening 306 is rotatably accommodated and held in the ball holding portion 322. The bearing ball 310 is made of a non-magnetic material having hardness and strength so as not to affect the magnetic flux generated by the magnetic pole 31 described later. Examples of such a material include nonmagnetic ceramic materials.

保持部材320の外周面は、ボール保持部322側の先端部が大径となっており、外部側である小径側の外周面には、第1の永久磁石370が外装されている。第1の永久磁石370は、内部に保持部材320が圧入されるなどして保持部材320の外周面に固定されており、このように第1の永久磁石370が固定された保持部材320は、コイルコア部301内に挿入される。   The outer peripheral surface of the holding member 320 has a large diameter at the tip end on the ball holding portion 322 side, and a first permanent magnet 370 is externally mounted on the outer peripheral surface on the small diameter side which is the outside. The first permanent magnet 370 is fixed to the outer peripheral surface of the holding member 320 by, for example, press-fitting the holding member 320 therein. Thus, the holding member 320 to which the first permanent magnet 370 is fixed is as follows. It is inserted into the coil core part 301.

コイルコア部301の外周面には、コイル341が巻かれた環状のコイルボビン342が外装されている。本実施形態では、突極面304と、突極面304が形成されたコイルコア部301、およびコイルコア部301の周囲のコイルボビン342ならびにコイル341により、電磁石からなる磁極31が構成される。コイルボビン342には、コイル341の巻線の端部が接続される引出し端子343が端子板344を介して取り付けられている。この引出し端子343に外部の駆動回路からの配線が接続されてコイル341に励磁電流が流される。上記第1の永久磁石370は、外周面にコイル341が巻かれているコイルコア部301を有する磁極31の内側に配置されており、コイルコア部301の内周面は、第1の永久磁石370の外周面と一定の距離をおいて対向している。   On the outer peripheral surface of the coil core portion 301, an annular coil bobbin 342 around which a coil 341 is wound is externally provided. In the present embodiment, the magnetic pole 31 made of an electromagnet is configured by the salient pole surface 304, the coil core portion 301 on which the salient pole surface 304 is formed, and the coil bobbin 342 and the coil 341 around the coil core portion 301. A lead terminal 343 to which an end of a coil 341 is connected is attached to the coil bobbin 342 via a terminal plate 344. A wiring from an external drive circuit is connected to the lead terminal 343 so that an exciting current flows through the coil 341. The first permanent magnet 370 is disposed inside the magnetic pole 31 having the coil core portion 301 around which the coil 341 is wound on the outer peripheral surface, and the inner peripheral surface of the coil core portion 301 is the first permanent magnet 370. It faces the outer peripheral surface with a certain distance.

磁極部材30の差し込み部302の内部には、円環状の第2の永久磁石(磁性部材)380が、第1の永久磁石370と同軸的になるよう固定されている。この第2の永久磁石380の中心には、内部側(ロータ20側)に突出する軸381がコイルコア部301と同軸的に固定されており、この軸381に、保持部材320の軸受孔321が摺動可能に挿通されている。すなわち保持部材320は軸381に対し摺動可能に支持されている。   An annular second permanent magnet (magnetic member) 380 is fixed inside the insertion portion 302 of the magnetic pole member 30 so as to be coaxial with the first permanent magnet 370. At the center of the second permanent magnet 380, a shaft 381 protruding inward (rotor 20 side) is fixed coaxially with the coil core portion 301, and a bearing hole 321 of the holding member 320 is formed on the shaft 381. It is slidably inserted. That is, the holding member 320 is slidably supported with respect to the shaft 381.

第1の永久磁石370および第2の永久磁石380は、図4に示すように、ともに自身の軸方向(球面モータとしては径方向)に仕切って着磁が施されており、かつ、互いに平行となる対向面の全面が、それぞれ同一極(例えばN極)となっている。したがって、第1の永久磁石370と第2の永久磁石380は反発し合うが、第2の永久磁石380は差し込み部302の内部に固定されている一方、第1の永久磁石370が固定されている保持部材320は軸321に摺動可能に支持されていることから、反発により第1の永久磁石370が内部側に動く。   As shown in FIG. 4, the first permanent magnet 370 and the second permanent magnet 380 are both magnetized by being partitioned in their axial directions (in the radial direction as a spherical motor) and parallel to each other. The entire opposing surface is the same pole (for example, N pole). Therefore, the first permanent magnet 370 and the second permanent magnet 380 repel each other, but the second permanent magnet 380 is fixed inside the insertion portion 302 while the first permanent magnet 370 is fixed. Since the holding member 320 is slidably supported on the shaft 321, the first permanent magnet 370 moves inward due to repulsion.

このため、第1の永久磁石370が固定されている保持部材320が内部側(ロータ20側)に予圧され、これによって開口306に嵌っているベアリングボール310は常に突極面304からロータ20側に僅かに突出する。この状態で、第1の永久磁石370の外部側の端部は、コイルコア部301の外部側の端面から外部側に突出し、また、第1の永久磁石370および第2の永久磁石380の互いの対向面の間には、僅かなギャップが形成される。   For this reason, the holding member 320 to which the first permanent magnet 370 is fixed is preloaded on the inner side (the rotor 20 side), so that the bearing ball 310 fitted in the opening 306 always moves from the salient pole surface 304 to the rotor 20 side. Project slightly. In this state, the outer end of the first permanent magnet 370 protrudes from the outer end surface of the coil core portion 301 to the outside, and the first permanent magnet 370 and the second permanent magnet 380 are mutually connected. A slight gap is formed between the opposing surfaces.

コイルコア部301にコイルボビン342が外装された磁極部材30は、差し込み部302がステータ10の平坦部10aの取り付け孔10bに内部側から差し込まれて、段部303およびコイルボビン342が平坦部10aの内面に合わせられた状態で、平坦部10aの外面側に配される円板状の固定部材360により、平坦部10aに固定される。固定部材360の内面には、差し込み部302が嵌合する凹部361が形成されており、固定部材360は、コイルコア部301にねじ等の締結部材で固定される。すなわち磁極部材30は、固定部材360と、コイルコア部301の段部303およびコイルボビン342とが、平坦部10aを挟み込むことで、平坦部10aに固定される。磁極31を備える磁極部材30は、ステータ10に例えば18個設けられ、その場合、球面モータは、ロータ20が8極に対してステータ10が18極となる。   In the magnetic pole member 30 with the coil bobbin 342 externally mounted on the coil core part 301, the insertion part 302 is inserted from the inside into the mounting hole 10b of the flat part 10a of the stator 10, and the step part 303 and the coil bobbin 342 are formed on the inner surface of the flat part 10a. In the combined state, it is fixed to the flat portion 10a by a disk-shaped fixing member 360 disposed on the outer surface side of the flat portion 10a. A concave portion 361 into which the insertion portion 302 is fitted is formed on the inner surface of the fixing member 360, and the fixing member 360 is fixed to the coil core portion 301 with a fastening member such as a screw. That is, the magnetic pole member 30 is fixed to the flat portion 10a by the fixing member 360, the step portion 303 of the coil core portion 301, and the coil bobbin 342 sandwiching the flat portion 10a. For example, 18 magnetic pole members 30 including the magnetic poles 31 are provided in the stator 10. In this case, the spherical motor has 18 rotors for the rotor 20 and 18 poles for the stator 10.

ロータ20は、図3に示すように、外殻部23の表面が、各磁極部材30の突極面304から突出しているベアリングボール310に当接することにより、ステータ10の内部に保持される。第2の永久磁石380でロータ20側に付勢されているベアリングボール310は、ロータ20の外殻部23の表面に当接する。ロータ20はこの状態で突極面304との間に一定の隙間が確保され、ベアリングボール310が転動することにより回転自在に保持される。上記軸受32は、ベアリングボール310、保持部材320、第1の永久磁石370、第2の永久磁石380および軸351によって構成される。   As shown in FIG. 3, the rotor 20 is held inside the stator 10 by the surface of the outer shell portion 23 coming into contact with the bearing ball 310 protruding from the salient pole surface 304 of each magnetic pole member 30. The bearing ball 310 urged toward the rotor 20 by the second permanent magnet 380 contacts the surface of the outer shell portion 23 of the rotor 20. In this state, the rotor 20 is secured with a certain clearance from the salient pole surface 304 and is rotatably held when the bearing ball 310 rolls. The bearing 32 includes a bearing ball 310, a holding member 320, a first permanent magnet 370, a second permanent magnet 380, and a shaft 351.

(2)一実施形態の作用
上記一実施形態の球面モータによれば、外部の駆動回路からコイル341に励磁電流が流され、ロータ20の回転位置に応じてその励磁電流の向きを適宜に切り替えることにより、ロータ20側のロータマグネット22とステータ10側の磁極31との間で生じる磁力の向きが切り替わってロータ20が回転する。すなわち本実施形態はブラシレスモータであり、ロータ20は、回転中心を通る切断面に垂直な方向を軸として、少なくとも1軸である1自由度、あるいは第1軸・第2軸・第3軸を中心に3自由度で回転させることができる。
(2) Action of One Embodiment According to the spherical motor of the one embodiment, an excitation current is passed from the external drive circuit to the coil 341, and the direction of the excitation current is switched appropriately according to the rotational position of the rotor 20. Thus, the direction of the magnetic force generated between the rotor magnet 22 on the rotor 20 side and the magnetic pole 31 on the stator 10 side is switched, and the rotor 20 rotates. That is, the present embodiment is a brushless motor, and the rotor 20 has at least one degree of freedom, or the first axis, the second axis, and the third axis, with the direction perpendicular to the cutting plane passing through the rotation center as an axis. It can be rotated in the center with 3 degrees of freedom.

本実施形態では、上記軸受32を介してロータ20がステータ10に回転可能に支持されているが、この軸受32においては、第1の永久磁石370が第2の永久磁石380の反発力を受け、その反発力が保持部材320を介してベアリングボール310に伝わり、ベアリングボール310がロータ20に予圧された状態で当接している。このように磁石の反発作用で予圧されているベアリングボール310によってロータ20が支持されることにより、例えばステータ10が外部から衝撃を受けたときや、ロータ20が急停止、あるいは進行方向(回転方向)を変更するときなどにおいても、ロータ20とステータ10とが接触せず、かつ、ロータ20とステータ10との間隔が一定に保たれる。   In this embodiment, the rotor 20 is rotatably supported by the stator 10 via the bearing 32, but in this bearing 32, the first permanent magnet 370 receives the repulsive force of the second permanent magnet 380. The repulsive force is transmitted to the bearing ball 310 via the holding member 320, and the bearing ball 310 is in contact with the rotor 20 in a preloaded state. Thus, the rotor 20 is supported by the bearing ball 310 preloaded by the repulsive action of the magnet, so that, for example, when the stator 10 receives an impact from the outside, the rotor 20 stops suddenly, or the traveling direction (rotational direction) ), The rotor 20 and the stator 10 are not in contact with each other, and the distance between the rotor 20 and the stator 10 is kept constant.

さて、その軸受32を構成する2つの永久磁石370,380であるが、これら永久磁石は、同一の極性が互いの対向面間のギャップを隔てて対向配置されている。このような構成にあっては、永久磁石370,380のそれぞれの磁極の強さをm1、m2、両者間のギャップをGとした場合、反発力Fは、
F=K(m1・m2)/G
であり、両者間のギャップGの2乗に反比例することが知られている(Kは係数)。
Now, the two permanent magnets 370 and 380 constituting the bearing 32 are arranged opposite to each other with the same polarity with a gap between the opposing surfaces. In such a configuration, when the strengths of the magnetic poles of the permanent magnets 370 and 380 are m1 and m2, and the gap between the two is G, the repulsive force F is
F = K (m1 · m2) / G 2
And is known to be inversely proportional to the square of the gap G between the two (K is a coefficient).

したがって、第1の永久磁石370と第2の永久磁石380との間には、両者のギャップの2乗に反比例する反発力(非線形な反発力)が球面モータの径方向に沿って働くことになり、これはすなわち、第2の永久磁石380から発生する磁気力は、ステータ10とロータ20との間のギャップの大きさが小さくなるほど非線形に大きくなる特性を有しているということになる。このため、この非線形な反発力が保持部材320を介してベアリングボール310に伝わり、ベアリングボール310はその反発力と同じ大きさの力でロータ20に予圧されて当接し、この状態で常にロータ20が回転自在に支持される。   Therefore, between the first permanent magnet 370 and the second permanent magnet 380, a repulsive force (non-linear repulsive force) that is inversely proportional to the square of the gap between them acts along the radial direction of the spherical motor. That is, this means that the magnetic force generated from the second permanent magnet 380 has a characteristic that increases nonlinearly as the size of the gap between the stator 10 and the rotor 20 decreases. For this reason, this non-linear repulsive force is transmitted to the bearing ball 310 via the holding member 320, and the bearing ball 310 is preloaded against the rotor 20 with a force having the same magnitude as the repulsive force, and in this state, the rotor 20 is always in contact. Is supported rotatably.

(3)一実施形態の変形例
上記一実施形態においては、第2の永久磁石380を廃止し、同じ箇所に、軸381が固定される非磁性の部材を配した変形例を採用することができる。すなわちこの変形例では、永久磁石は保持部材320の周囲の第1の永久磁石370のみとなる。また、第1の永久磁石370は、図5に示すように、周方向に沿って等分複数極(この場合、4極で2極対)の着磁となっている。
(3) Modified example of one embodiment In the above-mentioned one embodiment, the second permanent magnet 380 is eliminated, and a modified example in which a nonmagnetic member to which the shaft 381 is fixed is arranged at the same location may be adopted. it can. That is, in this modification, the permanent magnet is only the first permanent magnet 370 around the holding member 320. Further, as shown in FIG. 5, the first permanent magnet 370 is equally magnetized with a plurality of poles (in this case, four poles and two pole pairs) along the circumferential direction.

このような第1の永久磁石370の周囲にコイルコア部301およびコイル341が配置されてなる磁極の場合、図6に示すように、第1の永久磁石370のコイルコア部301に対する相対移動量をXとすると、図7に示すように、移動量Xが比較的小さい範囲においては移動量Xの略2乗に比例した吸引力(非線形な吸引力)が第1の永久磁石370の移動方向(球面モータの径方向)に働く。ここで移動量Xは、第1の永久磁石370のうち、コイルコア部301の内周面とは対向しない部分(コイルコア部301から外部側に突出している部分)の長さであり、移動量Xは、ロータ20と突極面304との間のギャップが小さくなるほど大きくなる。すなわち、磁極から発生する磁気力は、ステータ10とロータ20との間のギャップの大きさが小さくなるほど非線形に大きくなる特性を有していることになる。この非線形な吸引力が保持部材320を介してベアリングボール310に伝わり、ベアリングボール310はその吸引力と同じ大きさの力でロータ20に予圧されて当接し、この状態で常にロータ20が回転自在に支持される。   In the case of the magnetic pole in which the coil core portion 301 and the coil 341 are arranged around the first permanent magnet 370, the relative movement amount of the first permanent magnet 370 with respect to the coil core portion 301 is represented by X as shown in FIG. Then, as shown in FIG. 7, in a range where the movement amount X is relatively small, an attractive force (nonlinear attractive force) proportional to the square of the movement amount X is a moving direction (spherical surface) of the first permanent magnet 370. Works in the radial direction of the motor). Here, the movement amount X is the length of a portion of the first permanent magnet 370 that does not oppose the inner peripheral surface of the coil core portion 301 (a portion protruding outward from the coil core portion 301). Increases as the gap between the rotor 20 and the salient pole surface 304 decreases. That is, the magnetic force generated from the magnetic pole has a characteristic that increases nonlinearly as the size of the gap between the stator 10 and the rotor 20 decreases. This non-linear suction force is transmitted to the bearing ball 310 via the holding member 320, and the bearing ball 310 is preloaded against the rotor 20 with a force having the same magnitude as the suction force, and the rotor 20 is always rotatable in this state. Supported by

このような作用は、第1の永久磁石370の磁力が磁極31による電磁石よりも強い場合において、磁極31のコイル341に通電している場合と通電していない場合とにかかわらず、同等に起こる。その理由は、以下の磁界解析によって説明される。   Such an action occurs equally regardless of whether the coil 341 of the magnetic pole 31 is energized or not energized when the magnetic force of the first permanent magnet 370 is stronger than the electromagnet of the magnetic pole 31. . The reason is explained by the following magnetic field analysis.

まず、コイル341が無通電の場合には、磁石を極(N極、S極)ごとに考えるのではなく、微小磁石(節点)の集合体として考える。図8は、第1の永久磁石370の周辺の磁束の流れおよび磁力を模式的に表わしており、第1の永久磁石370と磁極31のコイルコア部301の内周面とが対向しているエリアの節点では、図8でほぼ水平(第1の永久磁石370の径方向)に磁力が働く。一方、第1の永久磁石370とコイルコア部301とが対向しないエリアの節点では、近傍のコイルコア部301へ向かって(図では左斜め下方)磁力が働く。   First, when the coil 341 is not energized, the magnet is not considered for each pole (N pole, S pole), but is considered as an aggregate of minute magnets (nodes). FIG. 8 schematically shows the flow of magnetic flux and the magnetic force around the first permanent magnet 370, and the area where the first permanent magnet 370 and the inner peripheral surface of the coil core portion 301 of the magnetic pole 31 are opposed to each other. At this node, the magnetic force acts substantially horizontally (in the radial direction of the first permanent magnet 370) in FIG. On the other hand, at a node in an area where the first permanent magnet 370 and the coil core part 301 are not opposed to each other, a magnetic force acts toward the coil core part 301 in the vicinity (downwardly diagonally downward in the drawing).

このため、第1の永久磁石370が、本実施形態のように対向するコイルコア部301からずれた状態に配置された場合には、主にずれた部分(各節点)がコイルコア部301の方向に移動しようとする力が働く。この磁界解析例は、第1の永久磁石370の外周を4極に着磁した場合であるが、他の着磁数であっても、発生する磁力に多少の差はあるものの発生する方向は同様である。   For this reason, when the 1st permanent magnet 370 is arrange | positioned in the state shifted | deviated from the coil core part 301 which opposes like this embodiment, the part (each node) which mainly shifted | deviated to the direction of the coil core part 301. The power to move is working. This magnetic field analysis example is a case where the outer circumference of the first permanent magnet 370 is magnetized to four poles, but the direction in which the magnetic force is generated is slightly different even at other magnetization numbers. It is the same.

一方、コイル341に通電した状態において磁極31がN極となった場合、磁極31から第1の永久磁石370のS極(この場合、2箇所)へは吸引方向の力が働き、N極(この場合、2箇所)へは反発方向の力が働く。いずれの方向も図8で水平方向(第1の永久磁石370の径方向)であり、第1の永久磁石370の中心には軸381があるため、第1の永久磁石370の径方向への移動は規制される。また、第1の永久磁石370においては中心軸対称の位置に同極が存在するため、磁極31への径方向の吸引力は相殺される。また、第1の永久磁石370の軸方向にもN極2箇所、S極2箇所であるから、軸方向(球面モータの径方向)への磁力は相殺され、発生しない。   On the other hand, when the magnetic pole 31 becomes the N pole in the state where the coil 341 is energized, a force in the attraction direction works from the magnetic pole 31 to the S pole (in this case, two locations) of the first permanent magnet 370, and the N pole ( In this case, a force in the direction of repulsion acts on the two places. Each direction is the horizontal direction in FIG. 8 (the radial direction of the first permanent magnet 370), and since the axis of the first permanent magnet 370 is the shaft 381, the radial direction of the first permanent magnet 370 Movement is restricted. Further, in the first permanent magnet 370, since the same pole exists at a position symmetrical with respect to the central axis, the radial attractive force to the magnetic pole 31 is canceled out. Also, since there are two N poles and two S poles in the axial direction of the first permanent magnet 370, the magnetic force in the axial direction (the radial direction of the spherical motor) is canceled out and is not generated.

また、同様にコイル341に通電した状態において磁極31がS極となった場合、磁極31から第1の永久磁石370のN極(この場合、2箇所)へは吸引方向の力が働き、N極(この場合、2箇所)へは反発方向の力が働く。これにより、磁極31が上記のようにN極であった場合と同様に、第1の永久磁石370の径方向および軸方向の吸引力は相殺され、発生しない。   Similarly, when the magnetic pole 31 becomes the S pole while the coil 341 is energized, a force in the attraction direction acts from the magnetic pole 31 to the N pole (in this case, two locations) of the first permanent magnet 370, and N A repulsive force acts on the pole (in this case, two locations). As a result, as in the case where the magnetic pole 31 is the N pole as described above, the attractive forces in the radial direction and the axial direction of the first permanent magnet 370 are canceled and do not occur.

以上により、第1の永久磁石370は、コイル341への通電時においてもコイル341への無通電時と同様に挙動し、ベアリングボール310は上記の非線形な吸引力と同じ大きさの力でロータ20に予圧されて当接する。   As described above, the first permanent magnet 370 behaves even when the coil 341 is energized in the same manner as when the coil 341 is not energized, and the bearing ball 310 rotates with the same amount of force as the non-linear attractive force described above. 20 is preloaded and abuts.

また、コイル341に通電した場合、コイル341に流す電流により生じる磁束の通過量は磁極31の外周側ほど大きくなり、第1の永久磁石370との間で磁気的な相互作用を起こす磁極31の内周側では大きくはならない。このため、磁極31の内周部の実効的な磁力が第1の永久磁石370の磁力よりも弱く、このことからもコイル通電時は無通電時と同様に作用する。   When the coil 341 is energized, the amount of magnetic flux generated by the current flowing through the coil 341 increases toward the outer periphery of the magnetic pole 31, and the magnetic pole 31 causes a magnetic interaction with the first permanent magnet 370. It does not increase on the inner circumference side. For this reason, the effective magnetic force of the inner peripheral portion of the magnetic pole 31 is weaker than the magnetic force of the first permanent magnet 370, and this also acts when the coil is energized in the same manner as when no current is energized.

なお、上記実施形態においては、第1の永久磁石370は必ずしも円筒状である必要はなく、例えば、円周方向に対して複数のピースに分割されてなるものであってもよい。また、先の一実施形態における第2の永久磁石380についても同様のことが言える。   In the above embodiment, the first permanent magnet 370 is not necessarily cylindrical, and may be divided into a plurality of pieces in the circumferential direction, for example. The same applies to the second permanent magnet 380 in the previous embodiment.

10…ステータ(外側部材、設置側部材)
20…ロータ(内側部材、相手側部材)
31…磁極(磁性部材)
32…軸受
301…コイルコア部(円筒部)
310…ベアリングボール
320…保持部材
341…コイル
370…第1の永久磁石
380…第2の永久磁石(磁性部材)
10: Stator (outer member, installation side member)
20 ... Rotor (inner member, counterpart member)
31 ... Magnetic pole (magnetic member)
32 ... Bearing 301 ... Coil core part (cylindrical part)
310 ... Bearing ball 320 ... Holding member 341 ... Coil 370 ... First permanent magnet 380 ... Second permanent magnet (magnetic member)

Claims (7)

外側部材と、
外側部材の内部に設けられる内側部材と、
外側部材または内側部材の一方である設置側部材に設置され、外側部材と内側部材とを相対回転可能に支持する複数の軸受と、
を備えた球面モータであって、
前記軸受は、
前記設置側部材に、外側部材または内側部材の他方である相手側部材に対して進退自在に設けられた保持部材と、
この保持部材の進出側の先端部に回転可能に保持され、相手側部材の表面に転動可能に当接させられるベアリングボールと、
前記保持部材に設けられる第1の永久磁石と、
前記設置側部材に設けられ、前記保持部材を前記相手側部材方向に予圧して前記ベアリングボールを該相手側部材の表面に当接させる磁気力を発生させる磁性部材と、
を備え、
前記磁性部材から発生する磁気力は、前記外側部材と前記内側部材との間のギャップの大きさが小さくなるほど非線形に大きくなる特性を有していることを特徴とする球面モータ。
An outer member;
An inner member provided inside the outer member;
A plurality of bearings installed on the installation side member that is one of the outer member and the inner member, and supporting the outer member and the inner member in a relatively rotatable manner;
A spherical motor with
The bearing is
A holding member provided on the installation side member so as to be movable forward and backward with respect to the other side member which is the other of the outer member or the inner member;
A bearing ball that is rotatably held at the leading end of the holding member and is brought into contact with the surface of the counterpart member so as to be able to roll;
A first permanent magnet provided on the holding member;
A magnetic member that is provided on the installation side member and generates a magnetic force that preloads the holding member in the direction of the counterpart member and causes the bearing ball to abut against the surface of the counterpart member;
With
The spherical motor according to claim 1, wherein the magnetic force generated from the magnetic member has a characteristic that increases nonlinearly as the size of the gap between the outer member and the inner member decreases.
前記磁性部材は、前記保持部材における後退側の位置であって、前記第1の永久磁石との間に所定の間隔をおいた位置に配置される第2の永久磁石で構成され、これら第1の永久磁石および第2の永久磁石は、同極が互いに対向するように着磁されていることを特徴とする請求項1に記載の球面モータ。   The magnetic member is composed of a second permanent magnet disposed at a position spaced apart from the first permanent magnet at a position on the retracting side of the holding member. The spherical motor according to claim 1, wherein the permanent magnet and the second permanent magnet are magnetized so that the same poles face each other. 前記第1の永久磁石は円筒状に形成され、
前記第2の永久磁石は円環状に形成されて前記第1の永久磁石と同軸的に配置されていることを特徴とする請求項2に記載の球面モータ。
The first permanent magnet is formed in a cylindrical shape,
The spherical motor according to claim 2, wherein the second permanent magnet is formed in an annular shape and is disposed coaxially with the first permanent magnet.
前記第1の永久磁石は、外周部にコイルが巻かれている円筒部を有する磁極の内側に配置されていることを特徴とする請求項1〜3のいずれかに記載の球面モータ。   The spherical motor according to any one of claims 1 to 3, wherein the first permanent magnet is disposed inside a magnetic pole having a cylindrical portion in which a coil is wound around an outer peripheral portion. 前記磁性部材は、外周部にコイルが巻かれている円筒部を有する磁極であり、該円筒部は、前記第1の永久磁石の外周面と一定の距離をおいて対向する内周面を有し、
前記第1の永久磁石の前記外周面が着磁されていることを特徴とする請求項1に記載の球面モータ。
The magnetic member is a magnetic pole having a cylindrical portion around which a coil is wound on an outer peripheral portion, and the cylindrical portion has an inner peripheral surface facing the outer peripheral surface of the first permanent magnet at a certain distance. And
The spherical motor according to claim 1, wherein the outer peripheral surface of the first permanent magnet is magnetized.
前記第1の永久磁石は円筒状に形成されており、かつ周方向に対して回転対称に着磁が施されていることを特徴とする請求項5に記載の球面モータ。   6. The spherical motor according to claim 5, wherein the first permanent magnet is formed in a cylindrical shape and is magnetized in a rotationally symmetrical manner with respect to the circumferential direction. 前記第1の永久磁石は、前記磁極から一部が突出していることを特徴とする請求項5または6に記載の球面モータ。   The spherical motor according to claim 5, wherein a part of the first permanent magnet protrudes from the magnetic pole.
JP2011077566A 2011-03-31 2011-03-31 Spherical motor Withdrawn JP2012213273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011077566A JP2012213273A (en) 2011-03-31 2011-03-31 Spherical motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011077566A JP2012213273A (en) 2011-03-31 2011-03-31 Spherical motor

Publications (1)

Publication Number Publication Date
JP2012213273A true JP2012213273A (en) 2012-11-01

Family

ID=47266770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077566A Withdrawn JP2012213273A (en) 2011-03-31 2011-03-31 Spherical motor

Country Status (1)

Country Link
JP (1) JP2012213273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877608A (en) * 2017-03-15 2017-06-20 天津大学 Three Degree Of Freedom permanent magnet spherical motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877608A (en) * 2017-03-15 2017-06-20 天津大学 Three Degree Of Freedom permanent magnet spherical motor

Similar Documents

Publication Publication Date Title
US20110001379A1 (en) Passive magnetic bearing
JP2003102145A (en) Magnetically levitated motor and magnet bearing device
JP4378327B2 (en) Drive device
JP5488131B2 (en) Electromagnetic actuator
JP2012070522A (en) Spherical motor
US11108287B2 (en) Spherical electromagnetic machine with two degrees of unconstrained rotational freedom
JP2009192041A (en) Thrust force generation device, electromagnetic machine applying thrust force generation device
JP2012213273A (en) Spherical motor
JP4909671B2 (en) Axial gap motor
JP6696855B2 (en) Magnetic bearing
JP4923238B2 (en) Magnetic repulsion support rotating machine
JP6681802B2 (en) Diskless thrust magnetic bearing and 3-axis active control magnetic bearing
CN112983988B (en) Composite magnetic suspension bearing and magnetic suspension bearing system
JP2022131843A (en) motor
JP2008048498A (en) Axial air gap type motor
JP2004316756A (en) Five-axis control magnetic bearing
WO2023189970A1 (en) Magnetic levitation motor
KR20080093482A (en) Motor with ring magnet for reducing noise
JPS6353315A (en) Bearing device for rotary shaft
JP2004003572A (en) Magnetic bearing and bearing device provided with it
JP2520416Y2 (en) Spindle motor
JP2006022944A (en) Magnetic bearing
JP2006153037A (en) Magnetic bearing system
JP2002257135A (en) Magnetic bearing device
JP2002354771A (en) Dual shaft actuator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603