JP2012211524A - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP2012211524A
JP2012211524A JP2011076678A JP2011076678A JP2012211524A JP 2012211524 A JP2012211524 A JP 2012211524A JP 2011076678 A JP2011076678 A JP 2011076678A JP 2011076678 A JP2011076678 A JP 2011076678A JP 2012211524 A JP2012211524 A JP 2012211524A
Authority
JP
Japan
Prior art keywords
fuel
amount
injection
gaseous fuel
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011076678A
Other languages
Japanese (ja)
Other versions
JP5647927B2 (en
Inventor
Yohei Kuriyagawa
陽平 栗谷川
Takayuki Shimazu
隆幸 島津
Wataru Murano
渉 村野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2011076678A priority Critical patent/JP5647927B2/en
Publication of JP2012211524A publication Critical patent/JP2012211524A/en
Application granted granted Critical
Publication of JP5647927B2 publication Critical patent/JP5647927B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately control the injection of gaseous fuel even when a gaseous fuel injection valve is coupled to an air intake pipe via a tubular member.SOLUTION: A fuel injection control device controls the gaseous fuel injection valve 4 coupled to the air intake pipe via the tubular member. The fuel injection control device is configured: to calculate the amount of gaseous fuel remaining in the tubular member based on the capacity of the tubular member and an internal pressure of the air intake pipe every time a gaseous fuel injection amount is calculated; to calculate the mount of gaseous fuel to be injected in the current injection based on the amount of remaining gaseous fuel in the previous injection and the amount of remaining gaseous fuel in the current injection; and controlling the gaseous fuel injection valve 4 according to the result of the calculation.

Description

本発明は、燃料噴射制御装置に関する。  The present invention relates to a fuel injection control device.

下記特許文献1には、ガス燃料供給管内のガス燃料の絶対圧及び温度と、各ガス燃料噴射弁のそれぞれに対応して予め設定されている状態量算出係数とに基づいて、各ガス燃料噴射弁から噴射されるときのガス燃料の絶対圧および温度を算出し、その算出結果を基にガス燃料噴射弁毎の燃料噴射量を算出する技術が開示されている。
このように、ガス燃料を単一エンジンに供給するシステムでは、ガス燃料噴射弁の燃料噴射口が吸気管内に露出するようにガス燃料噴射弁を吸気管に装着し、ガス燃料噴射弁から吸気管内へガス燃料を直接噴射する構成が一般的である。
In the following Patent Document 1, each gas fuel injection is based on the absolute pressure and temperature of the gas fuel in the gas fuel supply pipe and a state quantity calculation coefficient set in advance corresponding to each gas fuel injection valve. A technique is disclosed in which the absolute pressure and temperature of gas fuel when being injected from a valve are calculated, and the fuel injection amount for each gas fuel injection valve is calculated based on the calculation result.
Thus, in a system for supplying gas fuel to a single engine, the gas fuel injection valve is attached to the intake pipe so that the fuel injection port of the gas fuel injection valve is exposed in the intake pipe, and the gas fuel injection valve is connected to the intake pipe. A configuration in which gas fuel is directly injected is common.

特開2000−87771号公報JP 2000-87771 A

ところで、ガソリン燃料とガス燃料とを選択的に単一エンジンに供給するバイフューエルシステムでは、ガス燃料噴射弁が吸気管から離れた位置に設置され、ガス燃料噴射弁と吸気管とがホース等で接続される場合もある。この場合、ガス燃料噴射弁からシリンダ要求燃料量のガス燃料を噴射しても、ホース内に滞留しているガス燃料の影響を受けて、実際にシリンダ内に供給される燃料量はシリンダ要求燃料量とは異なるものとなる。
例えば、加速時にはシリンダ内に供給される燃料量がシリンダ要求燃料量よりも減ってリーン化が発生し、減速時にはシリンダ内に供給される燃料量がシリンダ要求燃料量よりも増えてリッチ化が発生するため、排ガス悪化や加速性の悪化を招く可能性がある。
By the way, in a bi-fuel system that selectively supplies gasoline fuel and gas fuel to a single engine, the gas fuel injection valve is installed at a position away from the intake pipe, and the gas fuel injection valve and intake pipe are connected by a hose or the like. Sometimes connected. In this case, even if gas fuel of the cylinder required fuel amount is injected from the gas fuel injection valve, the amount of fuel actually supplied into the cylinder is affected by the gas fuel remaining in the hose, and the cylinder required fuel amount It will be different from the amount.
For example, when accelerating, the amount of fuel supplied into the cylinder is less than the required fuel amount of the cylinder and leaning occurs, and when decelerating, the amount of fuel supplied into the cylinder is greater than the required fuel amount of cylinder and enrichment occurs. Therefore, there is a possibility of causing deterioration of exhaust gas and acceleration.

また、ホース内に滞留しているガス燃料が噴射タイミング以外のタイミングで吸気管内に流出し、同じシリンダの次の噴射タイミングで、シリンダ内に供給される燃料量がシリンダ要求燃料量よりも増えてリッチ化が発生する可能性がある。
さらに、各シリンダに対する吸気管の取付位置によって各ホースの長さが異なるため、ホース内に滞留しているガス燃料が他シリンダの噴射タイミングやそれ以外のタイミングで吸気管内に流出してしまうと、シリンダ要求燃料量に対して実際の燃料供給量を正確に制御することが困難となる。
In addition, the gas fuel staying in the hose flows into the intake pipe at a timing other than the injection timing, and at the next injection timing of the same cylinder, the amount of fuel supplied into the cylinder is larger than the cylinder required fuel amount. Richness may occur.
Furthermore, since the length of each hose differs depending on the attachment position of the intake pipe to each cylinder, if the gas fuel staying in the hose flows into the intake pipe at the injection timing of other cylinders or other timing, It becomes difficult to accurately control the actual fuel supply amount with respect to the cylinder required fuel amount.

本発明は上述した事情に鑑みてなされたものであり、気体燃料噴射弁が管状部材を介して吸気管に接続されている場合でも、高精度な気体燃料噴射制御を実現可能な燃料噴射制御装置を提供することを目的とする。    The present invention has been made in view of the above-described circumstances, and a fuel injection control device capable of realizing highly accurate gaseous fuel injection control even when a gaseous fuel injection valve is connected to an intake pipe via a tubular member. The purpose is to provide.

上記課題を解決するために、本発明では、燃料噴射制御装置に係る第1の解決手段として、管状部材を介して吸気管と接続された気体燃料噴射弁を制御する燃料噴射制御装置であって、気体燃料噴射量の算出タイミングが到来する毎に、前記管状部材の容積及び前記吸気管の内部圧力に基づいて前記管状部材の気体燃料滞留量を算出し、前回噴射時の気体燃料滞留量及び今回噴射時の気体燃料滞留量に基づいて今回噴射時の気体燃料噴射量を算出し、その算出結果に応じて前記気体燃料噴射弁を制御することを特徴とする。  In order to solve the above-described problems, the present invention provides a fuel injection control device for controlling a gaseous fuel injection valve connected to an intake pipe via a tubular member as a first solution means related to a fuel injection control device. Each time the calculation timing of the gaseous fuel injection amount arrives, the gaseous fuel residence amount of the tubular member is calculated based on the volume of the tubular member and the internal pressure of the intake pipe, and the gaseous fuel residence amount at the previous injection and A gaseous fuel injection amount at the time of the current injection is calculated based on a gaseous fuel retention amount at the time of the current injection, and the gaseous fuel injection valve is controlled according to the calculation result.

また、本発明では、燃料噴射制御装置に係る第2の解決手段として、上記第1の解決手段において、前記管状部材の容積Vh、前記吸気管の内部圧力Pintake、大気圧力Patm、気体燃料密度ρgas、及びエンジン運転条件に応じた滞留補正係数Kgashからなる下記(1)式に基づいて、前記管状部材の気体燃料滞留量Thを算出することを特徴とする。
Th=Vh×Pintake/Patm×ρgas×Kgash ・・・(1)
Further, in the present invention, as a second solving means related to the fuel injection control device, in the first solving means, the volume Vh of the tubular member, the internal pressure Pintake of the intake pipe, the atmospheric pressure Patm, the gaseous fuel density ρgas. And the gaseous fuel retention amount Th of the tubular member is calculated based on the following equation (1) consisting of the retention correction coefficient Kgash corresponding to the engine operating conditions.
Th = Vh × Pintake / Patm × ρgas × Kgash (1)

また、本発明では、燃料噴射制御装置に係る第3の解決手段として、上記第2の解決手段において、前記今回噴射時の気体燃料滞留量Th、前記前回噴射時の気体燃料滞留量Thz、及び気筒要求燃料量Tinjbからなる下記(2)式に基づいて、前記今回噴射時の気体燃料噴射量Tinjを算出することを特徴とする。
Tinj=Tinjb+Th−Thz ・・・(2)
Further, in the present invention, as a third solving means related to the fuel injection control device, in the second solving means, the gaseous fuel retention amount Th during the current injection, the gaseous fuel retention amount Thz during the previous injection, and The gaseous fuel injection amount Tinj at the time of the current injection is calculated based on the following equation (2) consisting of the cylinder required fuel amount Tinjb.
Tinj = Tinjb + Th-Thz (2)

また、本発明では、燃料噴射制御装置に係る第4の解決手段として、上記第1〜第3のいずれか1つの解決手段において、複数の気筒のそれぞれに対応して、前記管状部材を介して吸気管と接続された気体燃料噴射弁が配置されている場合、各気筒毎に、前記管状部材の気体燃料滞留量を算出し、前回噴射時の気体燃料滞留量及び今回噴射時の気体燃料滞留量に基づいて今回噴射時の気体燃料噴射量を算出することを特徴とする。   Further, in the present invention, as a fourth solving means related to the fuel injection control device, in any one of the first to third solving means, corresponding to each of a plurality of cylinders, the tubular member is interposed. When a gas fuel injection valve connected to the intake pipe is arranged, the gas fuel retention amount of the tubular member is calculated for each cylinder, and the gas fuel retention amount at the previous injection and the gas fuel retention at the current injection are calculated. The gaseous fuel injection amount at the time of the current injection is calculated based on the amount.

本発明によれば、気体燃料噴射量の算出タイミングが到来する毎に、管状部材の容積及び吸気管の内部圧力に基づいて管状部材の気体燃料滞留量を算出し、前回噴射時の気体燃料滞留量及び今回噴射時の気体燃料滞留量に基づいて今回噴射時の気体燃料噴射量を算出し、その算出結果に応じて前記気体燃料噴射弁を制御するので、気体燃料噴射弁が管状部材を介して吸気管に接続されている場合でも、高精度な気体燃料噴射制御を実現できる。  According to the present invention, whenever the calculation timing of the gaseous fuel injection amount arrives, the gaseous fuel residence amount of the tubular member is calculated based on the volume of the tubular member and the internal pressure of the intake pipe, and the gaseous fuel residence time at the previous injection is calculated. Gas fuel injection amount at the time of current injection is calculated based on the amount and the amount of gas fuel retained at the time of current injection, and the gas fuel injection valve is controlled according to the calculation result. Even when connected to the intake pipe, highly accurate gaseous fuel injection control can be realized.

本実施形態に係るバイフューエルシステムの概略構成図である。It is a schematic structure figure of the bi-fuel system concerning this embodiment. 各燃料ホース5a〜5dにガス燃料が滞留する様子を示す図である。It is a figure which shows a mode that gaseous fuel stagnates in each fuel hose 5a-5d. (a)は2nd−ECU9が、各シリンダ1a〜1dのそれぞれについて、ガス燃料噴射量の算出タイミングが到来する毎に実行するガス燃料噴射制御のメインルーチンを表し、(b)〜(d)はメインルーチン内の各処理のサブルーチンを表すフローチャートである。(A) represents a main routine of gas fuel injection control that is executed every time the 2nd-ECU 9 calculates the gas fuel injection amount for each of the cylinders 1a to 1d. (B) to (d) It is a flowchart showing the subroutine of each process in a main routine. 図3に従って算出したガス燃料噴射量Tinj(図中の補正有り噴射実行量)と、従来手法で算出したガス燃料噴射量(図中の補正無し噴射実行量)と、シリンダ要求燃料噴射量Tinjbと、吸気圧力Pintakeとの時間的な対応関係を示すタイミングチャートである。The gas fuel injection amount Tinj (corrected injection execution amount in the figure) calculated according to FIG. 3, the gas fuel injection amount (uncorrected injection execution amount in the figure) calculated by the conventional method, and the cylinder required fuel injection amount Tinjb 6 is a timing chart showing the temporal correspondence relationship with intake pressure Pintake.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本実施形態に係るバイフューエルシステムの概略構成図である。この図1において、符号1は例えば直列4気筒エンジンのシリンダブロックである。このシリンダブロック1は、直列に配置された4つのシリンダ(第1シリンダ1a、第2シリンダ1b、第3シリンダ1c及び第4シリンダ1d)を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a bi-fuel system according to the present embodiment. In FIG. 1, reference numeral 1 denotes, for example, a cylinder block of an in-line four cylinder engine. The cylinder block 1 includes four cylinders (first cylinder 1a, second cylinder 1b, third cylinder 1c, and fourth cylinder 1d) arranged in series.

符号2はシリンダブロック1に装着されて外部から取り込んだ空気を4つのシリンダ1a〜1dの各々に分配するインテークマニホールドである。このインテークマニホールド2は、一端が4つの吸気管(第1吸気管2a、第2吸気管2b、第3吸気管2c及び第4吸気管2d)に分岐して各シリンダ1a〜1dと接続されており、他端に設けられた空気導入口2eから導入された空気が各吸気管2a〜2dを介して各シリンダ1a〜1dに分配される構成となっている。   Reference numeral 2 denotes an intake manifold that is mounted on the cylinder block 1 and distributes the air taken in from the outside to each of the four cylinders 1a to 1d. One end of the intake manifold 2 branches into four intake pipes (a first intake pipe 2a, a second intake pipe 2b, a third intake pipe 2c, and a fourth intake pipe 2d) and is connected to the cylinders 1a to 1d. The air introduced from the air inlet 2e provided at the other end is distributed to the cylinders 1a to 1d via the intake pipes 2a to 2d.

符号3はガス燃料分配器、符号4aは第1ガスインジェクタ、符号4bは第2ガスインジェクタ、符号4cは第3ガスインジェクタ、符号4dは第4ガスインジェクタ、符号5aは第1燃料ホース、符号5bは第2燃料ホース、符号5cは第3燃料ホース、符号5dは第4燃料ホースである。  Reference numeral 3 is a gas fuel distributor, reference numeral 4a is a first gas injector, reference numeral 4b is a second gas injector, reference numeral 4c is a third gas injector, reference numeral 4d is a fourth gas injector, reference numeral 5a is a first fuel hose, reference numeral 5b Is a second fuel hose, reference numeral 5c is a third fuel hose, and reference numeral 5d is a fourth fuel hose.

ガス燃料分配器3は、不図示のガス燃料タンクから遮断弁、レギュレータ及びフィルタ等を経由して供給されるガス燃料を各ガスインジェクタ4a〜4dに分配するものである。各ガスインジェクタ4a〜4dは、それぞれ各吸気管2a〜2dから離れた位置に設置されたガス燃料噴射弁(例えばソレノイドバルブ等)であり、それぞれ燃料噴射口と連通する各燃料ホース5a〜5d(管状部材)を介して各吸気管2a〜2dと接続されている。  The gas fuel distributor 3 distributes gas fuel supplied from a gas fuel tank (not shown) via a shut-off valve, a regulator, a filter, and the like to the gas injectors 4a to 4d. Each of the gas injectors 4a to 4d is a gas fuel injection valve (for example, a solenoid valve) installed at a position away from each of the intake pipes 2a to 2d, and each of the fuel hoses 5a to 5d (communication with the fuel injection port). It is connected with each intake pipe 2a-2d via the tubular member.

つまり、第1ガスインジェクタ4aから噴射されたガス燃料は第1燃料ホース5aを介して第1吸気管2a内に供給され、第2ガスインジェクタ4bから噴射されたガス燃料は第2燃料ホース5bを介して第2吸気管2b内に供給され、第3ガスインジェクタ4cから噴射されたガス燃料は第3燃料ホース5cを介して第3吸気管2c内に供給され、第4ガスインジェクタ4dから噴射されたガス燃料は第4燃料ホース5dを介して第4吸気管2d内に供給される。なお、シリンダブロック1に対する各吸気管2a〜2dの取付位置によって各燃料ホース5a〜5dの長さは異なる。  That is, the gas fuel injected from the first gas injector 4a is supplied into the first intake pipe 2a via the first fuel hose 5a, and the gas fuel injected from the second gas injector 4b passes through the second fuel hose 5b. The gas fuel supplied into the second intake pipe 2b through the third gas injector 4c is supplied into the third intake pipe 2c through the third fuel hose 5c and injected from the fourth gas injector 4d. The gas fuel is supplied into the fourth intake pipe 2d through the fourth fuel hose 5d. The lengths of the fuel hoses 5a to 5d differ depending on the attachment positions of the intake pipes 2a to 2d with respect to the cylinder block 1.

符号6aは第1ガソリンインジェクタ、符号6bは第2ガソリンインジェクタ、符号6cは第3ガソリンインジェクタ、符号6dは第4ガソリンインジェクタ、符号7はガソリン燃料分配管である。ガソリン燃料分配管7は、不図示のガソリン燃料タンクから供給されるガソリン燃料を各ガソリンインジェクタ6a〜6dに分配するものである。各ガソリンインジェクタ6a〜6dは、それぞれ燃料噴射口が各シリンダ1a〜1dの燃焼室内に露出するように設置されたガソリン燃料噴射弁(例えばソレノイドバルブ等)である。  Reference numeral 6a is a first gasoline injector, reference numeral 6b is a second gasoline injector, reference numeral 6c is a third gasoline injector, reference numeral 6d is a fourth gasoline injector, and reference numeral 7 is a gasoline fuel distribution pipe. The gasoline fuel distribution pipe 7 distributes gasoline fuel supplied from a gasoline fuel tank (not shown) to the gasoline injectors 6a to 6d. Each of the gasoline injectors 6a to 6d is a gasoline fuel injection valve (for example, a solenoid valve) installed so that the fuel injection port is exposed in the combustion chamber of each cylinder 1a to 1d.

つまり、第1ガソリンインジェクタ6aから噴射されたガソリン燃料は第1シリンダ1aの燃焼室内に直接供給され、第2ガソリンインジェクタ6bから噴射されたガソリン燃料は第2シリンダ1bの燃焼室内に直接供給され、第3ガソリンインジェクタ6cから噴射されたガソリン燃料は第3シリンダ1cの燃焼室内に直接供給され、第4ガソリンインジェクタ6dから噴射されたガソリン燃料は第4シリンダ1dの燃焼室内に直接供給される。なお、各ガソリンインジェクタ6a〜6dを、それぞれ燃料噴射口が各吸気管2a〜2dの内部に露出するように設置しても良い。  That is, the gasoline fuel injected from the first gasoline injector 6a is directly supplied into the combustion chamber of the first cylinder 1a, and the gasoline fuel injected from the second gasoline injector 6b is directly supplied into the combustion chamber of the second cylinder 1b. The gasoline fuel injected from the third gasoline injector 6c is directly supplied into the combustion chamber of the third cylinder 1c, and the gasoline fuel injected from the fourth gasoline injector 6d is directly supplied into the combustion chamber of the fourth cylinder 1d. In addition, you may install each gasoline injector 6a-6d so that a fuel injection port may be exposed inside each intake pipe 2a-2d, respectively.

符号8は1st−ECU(Electronic Control Unit)、符号9は2nd−ECU、符号10は燃料切替スイッチである。1st−ECU8は、エンジン状態を検出する各種センサ(図示省略)から入力される各種センサ信号に基づいて、ガソリン燃料噴射量及びガソリン燃料噴射タイミングを算出し、その算出結果に応じてガソリンインジェクタ通電用パルス信号を生成して2nd−ECU9へ出力する。
具体的には、ガソリン燃料噴射量に応じてガソリンインジェクタ通電用パルス信号のパルス幅が設定され、ガソリン燃料噴射タイミングに応じてガソリンインジェクタ通電用パルス信号の立上がりタイミングが設定される。
Reference numeral 8 denotes a 1st-ECU (Electronic Control Unit), reference numeral 9 denotes a 2nd-ECU, and reference numeral 10 denotes a fuel changeover switch. The 1st-ECU 8 calculates the gasoline fuel injection amount and the gasoline fuel injection timing based on various sensor signals input from various sensors (not shown) for detecting the engine state, and for gasoline injector energization according to the calculation results. A pulse signal is generated and output to the 2nd-ECU 9.
Specifically, the pulse width of the gasoline injector energizing pulse signal is set according to the gasoline fuel injection amount, and the rising timing of the gasoline injector energizing pulse signal is set according to the gasoline fuel injection timing.

1st−ECU8に入力される各種センサ信号には、少なくとも、クランク軸が一定角度回転する時間を1周期とするクランクパルス信号、ピストンが上死点(TDC)に到達する時間を1周期とするTDCパルス信号、吸気温度を示す吸気温度信号、吸気圧力を示す吸気圧力信号、冷却水温を示す冷却水温信号などが含まれている。
1st−ECU8は、クランクパルス信号からエンジン回転数を算出し、エンジン回転数及び吸気温度(冷却水温でも良い)を基にガソリン燃料噴射量を算出し、さらに当該ガソリン燃料噴射量からガソリン燃料噴射タイミング(ガソリン燃料を噴射すべきクランク軸角度)を算出する。なお、これらガソリン燃料噴射量及びガソリン燃料噴射タイミングの算出手法は従来と同様であるので、詳細な説明は省略する。
The various sensor signals input to the 1st-ECU 8 include at least a crank pulse signal having a period for which the crankshaft rotates by a certain angle as one period, and a TDC having a period for the piston reaching top dead center (TDC) as one period. A pulse signal, an intake air temperature signal indicating the intake air temperature, an intake air pressure signal indicating the intake air pressure, a cooling water temperature signal indicating the cooling water temperature, and the like are included.
The 1st-ECU 8 calculates the engine speed from the crank pulse signal, calculates the gasoline fuel injection amount based on the engine speed and the intake air temperature (or the cooling water temperature), and further calculates the gasoline fuel injection timing from the gasoline fuel injection amount. (Crankshaft angle at which gasoline fuel should be injected) is calculated. Note that the method for calculating the gasoline fuel injection amount and the gasoline fuel injection timing is the same as the conventional method, and a detailed description thereof will be omitted.

2nd−ECU9(燃料噴射制御装置)は、エンジン状態を検出する各種センサから入力される各種センサ信号と、1st−ECU8から入力されるガソリンインジェクタ通電用パルス信号と、不図示の燃料圧力センサから入力されるガス燃料圧力信号と、不図示の燃料温度センサから入力されるガス燃料温度信号と、燃料切替スイッチ10から入力される燃料選択信号とに基づいて、各ガスインジェクタ4a〜4d及び各ガソリンインジェクタ6a〜6dの通電制御を行う。  The 2nd-ECU 9 (fuel injection control device) receives various sensor signals input from various sensors for detecting the engine state, a gasoline injector energization pulse signal input from the 1st-ECU 8, and a fuel pressure sensor (not shown). Gas injectors 4a to 4d and gasoline injectors based on a gas fuel pressure signal, a gas fuel temperature signal input from a fuel temperature sensor (not shown), and a fuel selection signal input from the fuel changeover switch 10. The energization control of 6a-6d is performed.

具体的には、2nd−ECU9は、燃料切替スイッチ10から入力される燃料選択信号を基にガソリン燃料が選択されていることを検知した場合、ガソリン燃料噴射モードとなり、1st−ECU8から入力されるガソリンインジェクタ通電用パルス信号と同一のパルス幅、立上がりタイミングを有するパルス信号、すなわちガソリンインジェクタ通電用パルス信号PLを各ガソリンインジェクタ6a〜6dへ出力する。  Specifically, when the 2nd-ECU 9 detects that the gasoline fuel is selected based on the fuel selection signal input from the fuel changeover switch 10, the 2nd-ECU 9 enters the gasoline fuel injection mode and is input from the 1st-ECU 8. A pulse signal having the same pulse width and rising timing as the gasoline injector energization pulse signal, that is, a gasoline injector energization pulse signal PL is output to each of the gasoline injectors 6a to 6d.

また、2nd−ECU9は、燃料切替スイッチ10から入力される燃料選択信号を基にガス燃料が選択されていることを検知した場合、ガス燃料噴射モードとなり、ガス燃料圧力信号、ガス燃料温度信号及び1st−ECU8から入力されるガソリンインジェクタ通電用パルス信号に基づいてガスインジェクタ通電用パルス信号PGを生成して各ガスインジェクタ4a〜4dに出力する。なお、このガス燃料噴射モード時の動作についての詳細は後述する。  When the 2nd-ECU 9 detects that the gas fuel is selected based on the fuel selection signal input from the fuel changeover switch 10, the gas fuel injection mode is set, and the gas fuel pressure signal, the gas fuel temperature signal, A gas injector energization pulse signal PG is generated based on the gasoline injector energization pulse signal input from the 1st-ECU 8, and is output to each of the gas injectors 4a to 4d. Details of the operation in the gas fuel injection mode will be described later.

燃料切替スイッチ10は、手動操作による燃料切替えを可能とするスイッチであり、そのスイッチの状態、つまりエンジンで使用する燃料としてガソリン燃料が選択されているのか、ガス燃料が選択されているのかを示す燃料選択信号を2nd−ECU9に出力する。  The fuel changeover switch 10 is a switch that enables fuel change by manual operation, and indicates the state of the switch, that is, whether gasoline fuel is selected as fuel used in the engine or gas fuel is selected. A fuel selection signal is output to the 2nd-ECU 9.

次に、上記のように構成されたバイフューエルシステムの動作、特に本実施形態の特徴である2nd−ECU9のガス燃料噴射モード時の動作について説明する。
既に述べたように、各ガスインジェクタ4a〜4dと各吸気管2a〜2dとが各燃料ホース5a〜5dで接続される場合、各ガスインジェクタ4a〜4dからシリンダ要求燃料量のガス燃料を噴射しても、各燃料ホース5a〜5d内に滞留しているガス燃料の影響を受けて、実際に各シリンダ1a〜1d内に供給される燃料量はシリンダ要求燃料量とは異なるものとなる。
Next, the operation of the bi-fuel system configured as described above, particularly the operation in the gas fuel injection mode of the 2nd-ECU 9 that is a feature of the present embodiment will be described.
As already described, when the gas injectors 4a to 4d and the intake pipes 2a to 2d are connected by the fuel hoses 5a to 5d, the gas fuel of the cylinder required fuel amount is injected from the gas injectors 4a to 4d. However, the amount of fuel actually supplied into each of the cylinders 1a to 1d differs from the cylinder required fuel amount under the influence of the gas fuel staying in each of the fuel hoses 5a to 5d.

例えば、第1ガスインジェクタ4aに着目すると、加速時には、スロットルバルブが開いて第1吸気管2aの内部圧力(吸気圧力)が正圧側に変化するため、第1燃料ホース5aの内部圧力より第1吸気管2aの内部圧力の方が大きくなる。この状態で、第1ガスインジェクタ4aからガス燃料を噴射すると、第1燃料ホース5a内の燃料密度が大きくなって第1燃料ホース5a内に滞留する燃料量(ガス燃料滞留量)が増加する一方、第1吸気管2a内に流出する燃料量はシリンダ要求燃料量よりも減ってリーン化が発生する(図2(a)〜(c)参照)。  For example, focusing on the first gas injector 4a, during acceleration, the throttle valve opens and the internal pressure (intake pressure) of the first intake pipe 2a changes to the positive pressure side, so that the first pressure is higher than the internal pressure of the first fuel hose 5a. The internal pressure of the intake pipe 2a becomes larger. When gas fuel is injected from the first gas injector 4a in this state, the fuel density in the first fuel hose 5a increases and the amount of fuel that stays in the first fuel hose 5a (gas fuel retention amount) increases. The amount of fuel flowing out into the first intake pipe 2a is smaller than the required cylinder fuel amount, and leaning occurs (see FIGS. 2A to 2C).

また、減速時には、スロットルバルブが閉じて第1吸気管2aの内部圧力(吸気圧力)が負圧側に変化するため、第1燃料ホース5aの内部圧力より第1吸気管2aの内部圧力の方が小さくなる。この状態で、第1ガスインジェクタ4aからガス燃料を噴射すると、第1燃料ホース5a内の燃料密度が小さくなって第1燃料ホース5a内のガス燃料滞留量が減少する一方、第1吸気管2a内に流出する燃料量はシリンダ要求燃料量よりも増えてリッチ化が発生する(図2(d)〜(f)参照)。  Further, at the time of deceleration, the throttle valve is closed and the internal pressure (intake pressure) of the first intake pipe 2a changes to the negative pressure side, so that the internal pressure of the first intake pipe 2a is greater than the internal pressure of the first fuel hose 5a. Get smaller. In this state, when the gas fuel is injected from the first gas injector 4a, the fuel density in the first fuel hose 5a is reduced, and the gas fuel retention amount in the first fuel hose 5a is reduced, while the first intake pipe 2a. The amount of fuel that flows into the cylinder increases more than the required cylinder fuel amount, and richening occurs (see FIGS. 2D to 2F).

このような現象に対し、本実施形態では、ガス燃料噴射量の算出タイミングが到来する毎に、各燃料ホース5a〜5dのホース容積と各吸気管2a〜2dの内部圧力(吸気圧力)から、各燃料ホース5a〜5dのガス燃料滞留量を算出し、前回噴射時のガス燃料滞留量と今回噴射時のガス燃料滞留量から今回噴射時のガス燃料噴射量を算出することにより、高精度なガス燃料噴射制御を実現するものである。  In contrast to such a phenomenon, in this embodiment, every time the calculation timing of the gas fuel injection amount arrives, from the hose volume of each fuel hose 5a to 5d and the internal pressure (intake pressure) of each intake pipe 2a to 2d, By calculating the gas fuel retention amount of each fuel hose 5a-5d and calculating the gas fuel injection amount at the current injection from the gas fuel retention amount at the previous injection and the gas fuel retention amount at the current injection, high accuracy The gas fuel injection control is realized.

具体的には、2nd−ECU9は、ガス燃料噴射モード時において、図3に示すフローチャートに従ってガス燃料噴射制御を行う。図3(a)は2nd−ECU9が、ガス燃料噴射量の算出タイミングが到来する毎に実行するガス燃料噴射制御のメインルーチンを表し、図3(b)〜(d)はメインルーチン内の各処理のサブルーチンを表している。  Specifically, the 2nd-ECU 9 performs gas fuel injection control according to the flowchart shown in FIG. 3 in the gas fuel injection mode. FIG. 3A shows a main routine of gas fuel injection control executed by the 2nd-ECU 9 every time the calculation timing of the gas fuel injection amount arrives, and FIGS. 3B to 3D show each of the main routines. This represents a processing subroutine.

図3(a)に示すように、2nd−ECU9は、ガス燃料噴射量の算出タイミングが到来すると、まず、シリンダ要求燃料量を算出する(ステップS1)。具体的には、2nd−ECU9は、各種センサ信号から得られたエンジン回転数及び吸気温度(冷却水温でも良い)を基にガソリン燃料噴射量を算出し、当該ガソリン燃料噴射量にガス燃料補正係数を乗算することでシリンダ要求噴射量を算出する。なお、2nd−ECU9は、ガス燃料補正テーブルを検索することで、ガス燃料圧力及びガス燃料温度に応じたガス燃料補正係数を取得する。  As shown in FIG. 3A, when the calculation timing of the gas fuel injection amount comes, the 2nd-ECU 9 first calculates the cylinder required fuel amount (step S1). Specifically, the 2nd-ECU 9 calculates the gasoline fuel injection amount based on the engine speed and the intake air temperature (which may be the cooling water temperature) obtained from the various sensor signals, and the gas fuel correction coefficient is calculated as the gasoline fuel injection amount. Is calculated to calculate the cylinder required injection amount. The 2nd-ECU 9 acquires a gas fuel correction coefficient corresponding to the gas fuel pressure and the gas fuel temperature by searching the gas fuel correction table.

以下では、上記ステップS1において、第1シリンダ1aについて算出されたシリンダ要求燃料量をTinjb[1]で表し、第2シリンダ1bについて算出されたシリンダ要求燃料量をTinjb[2]で表し、第3シリンダ1cについて算出されたシリンダ要求燃料量をTinjb[3]で表し、第4シリンダ1dについて算出されたシリンダ要求燃料量をTinjb[4]で表すものとする。  Hereinafter, in step S1, the cylinder required fuel amount calculated for the first cylinder 1a is represented by Tinjb [1], the cylinder required fuel amount calculated for the second cylinder 1b is represented by Tinjb [2], and the third The cylinder required fuel amount calculated for the cylinder 1c is represented by Tinjb [3], and the cylinder required fuel amount calculated for the fourth cylinder 1d is represented by Tinjb [4].

続いて、2nd−ECU9は、図3(b)に示すサブルーチンに従って、今回噴射時のガス燃料滞留量を算出する(ステップS2)。具体的には、2nd−ECU9は、図3(b)に示すように、初期値が「0」にセットされた制御変数Cylをインクリメントし(ステップS2a)、燃料カット状態或いはエンジンストップ状態か否かを判定する(ステップS2b)。  Subsequently, the 2nd-ECU 9 calculates the gas fuel retention amount during the current injection according to the subroutine shown in FIG. 3B (step S2). Specifically, as shown in FIG. 3B, the 2nd-ECU 9 increments the control variable Cyl whose initial value is set to “0” (step S2a), and determines whether the fuel cut state or the engine stop state exists. Is determined (step S2b).

2nd−ECU9は、上記ステップS2bにて「No」の場合、ホース容積Vh[Cyl]、吸気圧力Pintake、大気圧力Patm、ガス燃料密度ρgas、及びエンジン運転条件に応じた滞留補正係数Kgashからなる下記(3)式に基づいて、今回噴射時のガス燃料滞留量Th[Cyl]を算出する(ステップS2c)。
Th[Cyl]=Vh[Cyl]×Pintake/Patm×ρgas×Kgash ・・・(3)
The 2nd-ECU 9 includes the hose volume Vh [Cyl], the intake pressure Pintake, the atmospheric pressure Patm, the gas fuel density ρgas, and the stagnation correction coefficient Kgash according to the engine operating conditions when “No” in step S2b. Based on the equation (3), the gas fuel retention amount Th [Cyl] at the time of the current injection is calculated (step S2c).
Th [Cyl] = Vh [Cyl] × Pintake / Patm × ρgas × Kgash (3)

上記(3)式において、ホース容積Vh[Cyl]は、Cyl番目の燃料ホースの容積を示しており、ガス燃料滞留量Th[Cyl]は、Cyl番目の燃料ホースのガス燃料滞留量を示している。つまり、例えば制御変数Cylが「1」の場合、ホース容積Vh[1]は第1燃料ホース5aの容積を示し、ガス燃料滞留量Th[1]は、第1燃料ホース5aのガス燃料滞留量を示すことになる。これらホース容積Vh[Cyl]は、各燃料ホース5a〜5dの長さや内径から予め計算によって求められている固定値である。  In the above equation (3), the hose volume Vh [Cyl] indicates the volume of the Cylth fuel hose, and the gas fuel retention amount Th [Cyl] indicates the gas fuel retention amount of the Cylth fuel hose. Yes. That is, for example, when the control variable Cyl is “1”, the hose volume Vh [1] indicates the volume of the first fuel hose 5a, and the gas fuel retention amount Th [1] is the gas fuel retention amount of the first fuel hose 5a. Will be shown. These hose volumes Vh [Cyl] are fixed values obtained in advance from the lengths and inner diameters of the fuel hoses 5a to 5d.

また、上記(3)式において、吸気圧力Pintakeは、吸気圧センサから得られた検出値であり、大気圧力Patm及びガス燃料密度ρgasは予め設定された固定値である。また、滞留補正係数Kgashは、エンジン回転数や負荷状態等のエンジン運転条件に応じて予めテーブルデータとして設定された固定値である。つまり、2nd−ECU9は、滞留補正係数テーブルを検索することで、各種センサ信号から得られるエンジン回転数や負荷状態等に応じた滞留補正係数Kgashを取得する。  In the above equation (3), the intake pressure Pintake is a detected value obtained from the intake pressure sensor, and the atmospheric pressure Patm and the gas fuel density ρgas are preset fixed values. The stay correction coefficient Kgash is a fixed value set as table data in advance according to engine operating conditions such as the engine speed and load state. That is, the 2nd-ECU 9 searches the stay correction coefficient table to obtain the stay correction coefficient Kgash corresponding to the engine speed, load state, and the like obtained from various sensor signals.

一方、2nd−ECU9は、上記ステップS2bにて「Yes」の場合、今回噴射時のガス燃料滞留量Vh[Cyl]として予め決定されている初期値を設定し(ステップS2d)、さらに、前回噴射時のガス燃料滞留量Vhz[Cyl]として予め決定されている初期値を設定する(ステップS2e)。  On the other hand, if “Yes” in step S2b, the 2nd-ECU 9 sets an initial value determined in advance as the gas fuel retention amount Vh [Cyl] at the time of the current injection (step S2d), and further the previous injection A predetermined initial value is set as the gas fuel retention amount Vhz [Cyl] at the time (step S2e).

2nd−ECU9は、上記ステップS2c或いはステップS2eの実行後、ループエンドが否か、つまり制御変数Cylがシリンダ数(ここでは「4」)と一致したか否かを判定し(ステップS2f)、「No」の場合(Cyl<4の場合)、ステップS2aの処理に戻る一方、「Yes」の場合(Cyl=4の場合)、本サブルーチンを終了してメインルーチンに戻る。  The 2nd-ECU 9 determines whether or not there is a loop end after the execution of step S2c or step S2e, that is, whether or not the control variable Cyl matches the number of cylinders (here, “4”) (step S2f). If “No” (Cyl <4), the process returns to the process of step S2a. If “Yes” (Cyl = 4), this subroutine is terminated and the process returns to the main routine.

このような図3(b)のサブルーチンに従って、2nd−ECU9は、第1燃料ホース5aの今回噴射時のガス燃料滞留量Th[1]、第2燃料ホース5bの今回噴射時のガス燃料滞留量Th[2]、第3燃料ホース5cの今回噴射時のガス燃料滞留量Th[3]、第4燃料ホース5dの今回噴射時のガス燃料滞留量Th[4]を算出する。  In accordance with the subroutine shown in FIG. 3B, the 2nd-ECU 9 causes the gas fuel retention amount Th [1] during the current injection of the first fuel hose 5a and the gas fuel retention amount during the current injection of the second fuel hose 5b. Th [2], the gas fuel retention amount Th [3] at the time of current injection of the third fuel hose 5c, and the gas fuel retention amount Th [4] at the time of current injection of the fourth fuel hose 5d are calculated.

2nd−ECU9は、上述した図3(b)のサブルーチンの終了後、図3(a)のメインルーチンに戻り、ガス燃料の実行噴射量、つまり今回噴射時のガス燃料噴射量を算出する(ステップS3)。具体的には、2nd−ECU9は、図3(c)のサブルーチンに従って、初期値が「0」にセットされた制御変数Cylをインクリメントし(ステップS3a)、今回噴射時のガス燃料滞留量Th[Cyl]、前回噴射時のガス燃料滞留量Thz[Cyl]、及びシリンダ要求燃料量Tinjb[Cyl]からなる下記(4)式に基づいて、今回噴射時のガス燃料噴射量Tinj[Cyl]を算出する(ステップS3b)。
Tinj[Cyl]=Tinjb[Cyl]+Th[Cyl]−Thz[Cyl] ・・・(4)
The 2nd-ECU 9 returns to the main routine of FIG. 3A after the completion of the above-described subroutine of FIG. 3B, and calculates the effective injection amount of the gas fuel, that is, the gas fuel injection amount at the time of the current injection (step). S3). Specifically, the 2nd-ECU 9 increments the control variable Cyl whose initial value is set to “0” according to the subroutine of FIG. 3C (step S3a), and the gas fuel retention amount Th [ Cyl], gas fuel retention amount Thj [Cyl] at the time of the current injection is calculated based on the following equation (4) consisting of gas fuel retention amount Thz [Cyl] at the previous injection and cylinder required fuel amount Tinjb [Cyl] (Step S3b).
Tinj [Cyl] = Tinjb [Cyl] + Th [Cyl] -Thz [Cyl] (4)

そして、2nd−ECU9は、上記ステップS3bの実行後、ループエンドが否か、つまり制御変数Cylがシリンダ数(ここでは「4」)と一致したか否かを判定し(ステップS3c)、「No」の場合(Cyl<4の場合)、ステップS3aの処理に戻る一方、「Yes」の場合(Cyl=4の場合)、本サブルーチンを終了してメインルーチンに戻る。  After the execution of step S3b, the 2nd-ECU 9 determines whether or not there is a loop end, that is, whether or not the control variable Cyl matches the number of cylinders (here, “4”) (step S3c). "(Cyl <4), the process returns to the process of step S3a. On the other hand, if" Yes "(Cyl = 4), the present subroutine is terminated and the process returns to the main routine.

このような図3(c)のサブルーチンに従って、2nd−ECU9は、第1シリンダ1aに対する今回噴射時のガス燃料噴射量Tinj[1]、第2シリンダ1bに対する今回噴射時のガス燃料噴射量Tinj[2]、第3シリンダ1cに対する今回噴射時のガス燃料噴射量Tinj[3]、第4シリンダ1dに対する今回噴射時のガス燃料噴射量Tinj[4]を算出する。  According to the subroutine of FIG. 3C, the 2nd-ECU 9 causes the gas fuel injection amount Tinj [1] at the time of current injection to the first cylinder 1a and the gas fuel injection amount Tinj [1 at the time of current injection to the second cylinder 1b. 2], a gas fuel injection amount Tinj [3] at the time of current injection for the third cylinder 1c, and a gas fuel injection amount Tinj [4] at the time of current injection for the fourth cylinder 1d are calculated.

2nd−ECU9は、上述した図3(c)のサブルーチンの終了後、図3(a)のメインルーチンに戻り、ガス燃料噴射を実行する(ステップS4)。具体的には、2nd−ECU9は、1st−ECU8から入力される第1シリンダ1aに対応するガソリンインジェクタ通電用パルス信号の立上りタイミング(つまり燃料噴射タイミング)に同期して、ガス燃料噴射量Tinj[1]に応じたパルス幅を有するガスインジェクタ通電用パルス信号PGを第1ガスインジェクタ4aへ出力する。   2nd-ECU9 returns to the main routine of Fig.3 (a) after completion | finish of the subroutine of FIG.3 (c) mentioned above, and performs gas fuel injection (step S4). Specifically, the 2nd-ECU 9 synchronizes with the rising timing (that is, fuel injection timing) of the pulse signal for energizing the gasoline injector corresponding to the first cylinder 1a input from the 1st-ECU 8 (ie, the fuel injection timing Tinj [ 1], a gas injector energization pulse signal PG having a pulse width corresponding to 1] is output to the first gas injector 4a.

また、2nd−ECU9は、第2シリンダ1bに対応するガソリンインジェクタ通電用パルス信号の立上りタイミングに同期して、ガス燃料噴射量Tinj[2]に応じたパルス幅を有するガスインジェクタ通電用パルス信号PGを第2ガスインジェクタ4bへ出力する。
また、2nd−ECU9は、第3シリンダ1cに対応するガソリンインジェクタ通電用パルス信号の立上りタイミングに同期して、ガス燃料噴射量Tinj[3]に応じたパルス幅を有するガスインジェクタ通電用パルス信号PGを第3ガスインジェクタ4cへ出力する。
また、2nd−ECU9は、第4シリンダ1dに対応するガソリンインジェクタ通電用パルス信号の立上りタイミングに同期して、ガス燃料噴射量Tinj[4]に応じたパルス幅を有するガスインジェクタ通電用パルス信号PGを第4ガスインジェクタ4dへ出力する。
In addition, the 2nd-ECU 9 synchronizes with the rising timing of the gasoline injector energization pulse signal corresponding to the second cylinder 1b, and has a pulse width corresponding to the gas fuel injection amount Tinj [2]. Is output to the second gas injector 4b.
Further, the 2nd-ECU 9 synchronizes with the rising timing of the gasoline injector energization pulse signal corresponding to the third cylinder 1c, and the gas injector energization pulse signal PG having a pulse width corresponding to the gas fuel injection amount Tinj [3]. Is output to the third gas injector 4c.
Further, the 2nd-ECU 9 synchronizes with the rising timing of the gasoline injector energization pulse signal corresponding to the fourth cylinder 1d, and the gas injector energization pulse signal PG having a pulse width corresponding to the gas fuel injection amount Tinj [4]. Is output to the fourth gas injector 4d.

最後に、2nd−ECU9は、図3(d)に示すサブルーチンに従って、前回噴射時のガス燃料滞留量Thz[Cyl]の更新処理を行った後、本メインルーチンを終了する(ステップS5)。具体的には、2nd−ECU9は、図3(d)に示すように、燃料噴射を実行したシリンダの番号を制御変数Cylにセットし(ステップS5a)、さらに、今回噴射時のガス燃料滞留量Th[Cyl]を前回噴射時のガス燃料滞留量Thz[Cyl]としてセットする(ステップS5b)。  Finally, the 2nd-ECU 9 ends the main routine after updating the gas fuel retention amount Thz [Cyl] at the previous injection according to the subroutine shown in FIG. 3D (step S5). Specifically, as shown in FIG. 3 (d), the 2nd-ECU 9 sets the number of the cylinder in which the fuel injection has been performed to the control variable Cyl (step S5a), and further, the gas fuel retention amount during the current injection Th [Cyl] is set as the gas fuel retention amount Thz [Cyl] at the previous injection (step S5b).

図4は、2nd−ECU9が、図3に従って算出したガス燃料噴射量Tinj(図中の補正有り噴射実行量)と、従来手法で算出したガス燃料噴射量(図中の補正無し噴射実行量)と、シリンダ要求燃料噴射量Tinjbと、吸気圧力Pintakeとの時間的な対応関係を示すタイミングチャートである。  FIG. 4 shows the gas fuel injection amount Tinj (corrected injection execution amount in the figure) calculated by the 2nd-ECU 9 according to FIG. 3, and the gas fuel injection amount calculated by the conventional method (uncorrected injection execution amount in the figure). 4 is a timing chart showing a temporal correspondence relationship between the cylinder required fuel injection amount Tinjb and the intake pressure Pintake.

この図4からわかるように、加速時(吸気圧力Pintakeの上昇時)には、シリンダ要求燃料噴射量Tinjbからの不足燃料分を補うように、ガス燃料噴射量Tinjが増量されるため、実際にシリンダに供給される燃料量はシリンダ要求燃料噴射量Tinjbにほぼ一致することになる。一方、減速時(吸気圧力Pintakeの下降時)には、シリンダ要求燃料噴射量Tinjbからの過剰燃料分を補うように、ガス燃料噴射量Tinjが減量されるため、実際にシリンダに供給される燃料量はシリンダ要求燃料噴射量Tinjbにほぼ一致することになる。  As can be seen from FIG. 4, at the time of acceleration (when the intake pressure Pintake increases), the gas fuel injection amount Tinj is increased to compensate for the shortage of fuel from the cylinder required fuel injection amount Tinjb. The amount of fuel supplied to the cylinder substantially matches the cylinder required fuel injection amount Tinjb. On the other hand, when decelerating (when the intake pressure Pintake decreases), the gas fuel injection amount Tinj is reduced so as to compensate for the excess fuel from the cylinder required fuel injection amount Tinjb, so the fuel actually supplied to the cylinder The amount substantially coincides with the cylinder required fuel injection amount Tinjb.

以上説明したように、本実施形態によれば、ガス燃料噴射量の算出タイミングが到来する毎に、各燃料ホース5a〜5dのホース容積と各吸気管2a〜2dの内部圧力(吸気圧力)から、各燃料ホース5a〜5dのガス燃料滞留量を算出し、前回噴射時のガス燃料滞留量と今回噴射時のガス燃料滞留量から今回噴射時のガス燃料噴射量を算出し、その算出結果に応じて各ガスインジェクタ4a〜4dを制御するので、各ガスインジェクタ4a〜4dが各燃料ホース5a〜5dを介して各吸気管2a〜2dに接続されている場合でも、高精度なガス燃料噴射制御を実現することができる。  As described above, according to the present embodiment, every time the calculation timing of the gas fuel injection amount arrives, from the hose volume of each fuel hose 5a to 5d and the internal pressure (intake pressure) of each intake pipe 2a to 2d. The gas fuel retention amount of each of the fuel hoses 5a to 5d is calculated, and the gas fuel injection amount at the current injection is calculated from the gas fuel retention amount at the previous injection and the gas fuel retention amount at the current injection. Accordingly, the gas injectors 4a to 4d are controlled accordingly, so even when the gas injectors 4a to 4d are connected to the intake pipes 2a to 2d via the fuel hoses 5a to 5d, highly accurate gas fuel injection control is performed. Can be realized.

以上、本発明の一実施形態について説明したが、この実施形態はあくまで一例であって本発明の趣旨を逸脱しない範囲において実施形態の細部を種々変更可能であることは勿論である。
例えば、上記実施形態では、1st−ECU8と2nd−ECU9とを別個に備えたバイフューエルシステムを例示したが、これら2つのECUの機能を1つのECUに統合するような構成を採用しても良い。
また、上記実施形態では、バイフューエルシステムを例示して説明したが、本発明はこれに限定されず、ガス燃料のみを単一エンジンに供給するモノフューエルシステムであっても、管状部材を介して吸気管と接続された気体燃料噴射弁が設けられているようなシステムであれば、本発明を適用することができる。
Although one embodiment of the present invention has been described above, this embodiment is merely an example, and it is needless to say that various details of the embodiment can be changed without departing from the spirit of the present invention.
For example, in the above-described embodiment, the bi-fuel system provided with the 1st-ECU 8 and the 2nd-ECU 9 separately is illustrated, but a configuration in which the functions of these two ECUs are integrated into one ECU may be adopted. .
In the above-described embodiment, the bi-fuel system has been described as an example. However, the present invention is not limited to this, and even a mono-fuel system that supplies only gas fuel to a single engine may be provided via a tubular member. The present invention can be applied to any system in which a gaseous fuel injection valve connected to the intake pipe is provided.

1…シリンダブロック、1a…第1シリンダ、1b…第2シリンダ、1c…第3シリンダ、1d…第4シリンダ、2…インテークマニホールド、2a…第1吸気管、2b…第2吸気管、2c…第3吸気管、2d…第4吸気管、4a…第1ガスインジェクタ、4b…第2ガスインジェクタ、4c…第3ガスインジェクタ、4d…第4ガスインジェクタ、5a…第1燃料ホース、5b…第2燃料ホース、5c…第3燃料ホース、5d…第4燃料ホース、9…2nd−ECU(燃料噴射制御装置)   DESCRIPTION OF SYMBOLS 1 ... Cylinder block, 1a ... 1st cylinder, 1b ... 2nd cylinder, 1c ... 3rd cylinder, 1d ... 4th cylinder, 2 ... Intake manifold, 2a ... 1st intake pipe, 2b ... 2nd intake pipe, 2c ... 3rd intake pipe, 2d ... 4th intake pipe, 4a ... 1st gas injector, 4b ... 2nd gas injector, 4c ... 3rd gas injector, 4d ... 4th gas injector, 5a ... 1st fuel hose, 5b ... 1st 2 fuel hose, 5c ... 3rd fuel hose, 5d ... 4th fuel hose, 9 ... 2nd-ECU (fuel injection control device)

Claims (4)

管状部材を介して吸気管と接続された気体燃料噴射弁を制御する燃料噴射制御装置であって、
気体燃料噴射量の算出タイミングが到来する毎に、前記管状部材の容積及び前記吸気管の内部圧力に基づいて前記管状部材の気体燃料滞留量を算出し、前回噴射時の気体燃料滞留量及び今回噴射時の気体燃料滞留量に基づいて今回噴射時の気体燃料噴射量を算出し、その算出結果に応じて前記気体燃料噴射弁を制御することを特徴とする燃料噴射制御装置。
A fuel injection control device for controlling a gaseous fuel injection valve connected to an intake pipe via a tubular member,
Each time the calculation timing of the gaseous fuel injection amount arrives, the gaseous fuel retention amount of the tubular member is calculated based on the volume of the tubular member and the internal pressure of the intake pipe, and the gaseous fuel retention amount at the time of the previous injection and this time A fuel injection control device that calculates a gaseous fuel injection amount at the time of current injection based on a gaseous fuel retention amount at the time of injection, and controls the gaseous fuel injection valve according to the calculation result.
前記管状部材の容積Vh、前記吸気管の内部圧力Pintake、大気圧力Patm、気体燃料密度ρgas、及びエンジン運転条件に応じた滞留補正係数Kgashからなる下記(1)式に基づいて、前記管状部材の気体燃料滞留量Thを算出することを特徴とする請求項1に記載の燃料噴射制御装置。
Th=Vh×Pintake/Patm×ρgas×Kgash ・・・(1)
Based on the following equation (1) consisting of the volume Vh of the tubular member, the internal pressure Pintake of the intake pipe, the atmospheric pressure Patm, the gas fuel density ρgas, and the residence correction coefficient Kgash according to the engine operating conditions, 2. The fuel injection control device according to claim 1, wherein a gaseous fuel retention amount Th is calculated.
Th = Vh × Pintake / Patm × ρgas × Kgash (1)
前記今回噴射時の気体燃料滞留量Th、前記前回噴射時の気体燃料滞留量Thz、及び気筒要求燃料量Tinjbからなる下記(2)式に基づいて、前記今回噴射時の気体燃料噴射量Tinjを算出することを特徴とする請求項2に記載の燃料噴射制御装置。
Tinj=Tinjb+Th−Thz ・・・(2)
Based on the following equation (2) consisting of the gaseous fuel retention amount Th during the current injection, the gaseous fuel retention amount Thz during the previous injection, and the cylinder required fuel amount Tinjb, the gaseous fuel injection amount Tinj during the current injection is The fuel injection control device according to claim 2, wherein the fuel injection control device calculates the fuel injection control device.
Tinj = Tinjb + Th-Thz (2)
複数の気筒のそれぞれに対応して、前記管状部材を介して吸気管と接続された気体燃料噴射弁が配置されている場合、各気筒毎に、前記管状部材の気体燃料滞留量を算出し、前回噴射時の気体燃料滞留量及び今回噴射時の気体燃料滞留量に基づいて今回噴射時の気体燃料噴射量を算出することを特徴とする請求項1〜3のいずれか一項に記載の燃料噴射制御装置。   Corresponding to each of a plurality of cylinders, when a gaseous fuel injection valve connected to an intake pipe via the tubular member is arranged, for each cylinder, calculate the gaseous fuel retention amount of the tubular member, The fuel according to any one of claims 1 to 3, wherein a gaseous fuel injection amount at the time of current injection is calculated based on a gaseous fuel retention amount at the time of previous injection and a gaseous fuel retention amount at the time of current injection. Injection control device.
JP2011076678A 2011-03-30 2011-03-30 Fuel injection control device Expired - Fee Related JP5647927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011076678A JP5647927B2 (en) 2011-03-30 2011-03-30 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011076678A JP5647927B2 (en) 2011-03-30 2011-03-30 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2012211524A true JP2012211524A (en) 2012-11-01
JP5647927B2 JP5647927B2 (en) 2015-01-07

Family

ID=47265683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011076678A Expired - Fee Related JP5647927B2 (en) 2011-03-30 2011-03-30 Fuel injection control device

Country Status (1)

Country Link
JP (1) JP5647927B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115510A1 (en) * 2013-01-25 2014-07-31 株式会社デンソー Fuel injection device for internal combustion engine
JP2015017594A (en) * 2013-07-12 2015-01-29 株式会社ニッキ Control method of bi-fuel engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193511A (en) * 2000-01-12 2001-07-17 Fuji Heavy Ind Ltd Fuel feed controller for engine
JP2007332879A (en) * 2006-06-15 2007-12-27 Toyota Motor Corp Fuel supply device of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193511A (en) * 2000-01-12 2001-07-17 Fuji Heavy Ind Ltd Fuel feed controller for engine
JP2007332879A (en) * 2006-06-15 2007-12-27 Toyota Motor Corp Fuel supply device of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115510A1 (en) * 2013-01-25 2014-07-31 株式会社デンソー Fuel injection device for internal combustion engine
JP2015017594A (en) * 2013-07-12 2015-01-29 株式会社ニッキ Control method of bi-fuel engine

Also Published As

Publication number Publication date
JP5647927B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
US8516999B2 (en) Gas fuel injection control device of engine for vehicle
US10450991B2 (en) Fuel injection control apparatus of internal combustion engine
US10337447B2 (en) Fuel injection control apparatus of internal combustion engine
JP5867372B2 (en) Control device for internal combustion engine
JP5647927B2 (en) Fuel injection control device
US7721711B2 (en) Engine control system including means for learning characteristics of individual fuel injectors
JP5557094B2 (en) Fuel supply device for internal combustion engine
JP2012202209A (en) Air-fuel ratio control device of internal combustion engine
US6837223B2 (en) Internal combustion engine purge flow rate controlling apparatus and method
US9932923B2 (en) Abnormality determination apparatus
JP6274401B2 (en) Engine fuel injection control device
JP6489298B2 (en) Fuel injection control device for internal combustion engine
EP2975247B1 (en) Fuel injection control apparatus of internal combustion engine
JP2010053720A (en) Control device of internal combustion engine
JP6414421B2 (en) Fuel injection control device for internal combustion engine
JP2016217330A (en) Fuel injection controller of internal combustion engine
JP4453510B2 (en) Control device for internal combustion engine
JP6331016B2 (en) Fuel injection control device for internal combustion engine
JP6203516B2 (en) Engine fuel injection control device
JP6138551B2 (en) Engine fuel injection control device
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine
JP2015145665A (en) Internal combustion engine air-fuel ratio controller
JP2004190545A (en) Fuel injection control device of internal combustion engine
JP2016217299A (en) Controller for internal combustion engine
JP2016056702A (en) Internal combustion engine fuel temperature estimation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R150 Certificate of patent or registration of utility model

Ref document number: 5647927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees