JP2012211447A - Water discharge device - Google Patents

Water discharge device Download PDF

Info

Publication number
JP2012211447A
JP2012211447A JP2011077022A JP2011077022A JP2012211447A JP 2012211447 A JP2012211447 A JP 2012211447A JP 2011077022 A JP2011077022 A JP 2011077022A JP 2011077022 A JP2011077022 A JP 2011077022A JP 2012211447 A JP2012211447 A JP 2012211447A
Authority
JP
Japan
Prior art keywords
standing wave
signal
detecting
detection means
frequency component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011077022A
Other languages
Japanese (ja)
Other versions
JP5743300B2 (en
Inventor
Hidenori Tsunoda
英典 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2011077022A priority Critical patent/JP5743300B2/en
Publication of JP2012211447A publication Critical patent/JP2012211447A/en
Application granted granted Critical
Publication of JP5743300B2 publication Critical patent/JP5743300B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Domestic Plumbing Installations (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water discharge device for suppressing power consumption when using a Doppler sensor for detecting an object, and for achieving a noise resistance and a high reaction rate.SOLUTION: The water discharge device comprises: a discharge part; a sensor part 7 using reflected waves from radiated electric waves for acquiring information about the movement of a detected body; and a control part 9 for controlling water discharge from the discharge part, based on a detection signal from the sensor part 7. The control part 9 comprises: standing wave detecting means 22 for detecting standing waves included in the detection signal from the sensor part 7; and frequency component detecting means 23 for performing digital filter processing to detect frequency components included in the detection signal from the sensor part 7. The control part 9 varies an operation method for the digital filter processing depending on an output value for the standing wave detecting means 22, when detecting the frequency components included in the output of the sensor part 7.

Description

手洗い場、トイレ、キッチンなどに設けられるマイクロ波などを利用した電波センサを用いて吐止水を制御する吐水装置に関する。   The present invention relates to a water discharge device that controls water discharge using a radio wave sensor using a microwave or the like provided in a hand washing place, a toilet, a kitchen, or the like.

マイクロ波ドップラセンサなどのドップラセンサを用いて人体や尿流を検出し、便器内を洗浄する便器洗浄装置が知られている(例えば、特許文献1参照)。 マイクロ波ドップラセンサは、マイクロ波を送信し、対象物によって反射したマイクロ波を受信することにより、対象物の動きを検出するものである。   A toilet cleaning device that detects a human body or urine flow using a Doppler sensor such as a microwave Doppler sensor and cleans the inside of the toilet is known (for example, see Patent Document 1). The microwave Doppler sensor detects movement of an object by transmitting microwaves and receiving microwaves reflected by the object.

すなわち、マイクロ波ドップラセンサは、センサから送信するマイクロ波の周波数と、センサから送信したマイクロ波が人体などの対象物によって反射してセンサにより受信される信号の周波数との差分信号からドップラ信号を生成する。   That is, the microwave Doppler sensor obtains a Doppler signal from a difference signal between the frequency of the microwave transmitted from the sensor and the frequency of the signal received by the sensor when the microwave transmitted from the sensor is reflected by an object such as a human body. Generate.

このドップラ信号は、対象物の動き(例えば、対象物の接近や対象物の離反)を表す信号であり、吐水装置の制御部は、このドップラ信号から対象物の動きを判断することで衛生陶器への給水制御を行う。   The Doppler signal is a signal representing the movement of the object (for example, the approach of the object or the separation of the object), and the control unit of the water discharge device determines the movement of the object from the Doppler signal, thereby sanitary ware. Water supply control is performed.

また、ドップラ信号に含まれる周波数成分と定在波信号を用いて対象物の検出行い、待機中は処理負荷の軽い定在波検出を行い、定在波検出後に処理負荷の重いドップラ信号検出処理を行っていた。(例えば、特許文献2参照)。   In addition, the frequency component contained in the Doppler signal and the standing wave signal are used to detect the object, while standing by, the standing wave with a light processing load is detected, and after the standing wave is detected, the processing load is heavy. Had gone. (For example, refer to Patent Document 2).

定在波信号とはセンサから対象物の距離に応じて変化する信号を指す。対象物との距離が近ければ定在波信号は大きくなり、対象物との距離が遠ければ定在波信号は小さくなる。   The standing wave signal refers to a signal that changes according to the distance from the sensor to the object. The standing wave signal increases when the distance to the object is short, and the standing wave signal decreases when the distance from the object is long.

実開平2−69760号公報Japanese Utility Model Publication 2-69760 特開2008−31825JP2008-31825A

対象物の動きを検出するためには、ドップラ信号の周波数成分及びその大きさを抽出するための処理を行わなければならない。 また人体などの対象物が接近したり離反したりする時刻は一定でないことから、ドップラセンサを常時動作させておく必要がある。すなわち対象物の動きの検出を適切に行うために、従来の吐水装置ではドップラセンサを常に動作状態にしていた。   In order to detect the movement of the object, it is necessary to perform processing for extracting the frequency component and the magnitude of the Doppler signal. In addition, since the time at which an object such as a human body approaches or separates is not constant, the Doppler sensor must be operated at all times. That is, in order to appropriately detect the movement of the object, the Doppler sensor is always in an operating state in the conventional water discharge device.

そのためドップラセンサを動作するための電力、及びドップラ信号処理のための電力を常に消費することになっていた。吐水装置は一般的に電池駆動のものも多く、このようにドップラセンサの動作及びドップラ信号の処理を常時行うことによって、容量の大きい電池を使用しなければならなかった。   For this reason, power for operating the Doppler sensor and power for Doppler signal processing have always been consumed. In general, many water discharge devices are battery-driven, and thus a battery having a large capacity has to be used by constantly performing the operation of the Doppler sensor and processing of the Doppler signal.

定在波信号の検出により対象物を検出する方法は、処理負荷は軽いがノイズ耐性が低いため誤検出の恐れがある。一方で、ドップラ信号から必要な周波数成分を取り出すためにデジタルフィルタ処理を常時処理するのは、低消費の観点から現実的ではない。またデジタルフィルタ処理は遅延データを用いるため、出力結果が発生するまでにディレイが生じるといった問題があった。   The method of detecting an object by detecting a standing wave signal has a light processing load but low noise resistance, and may cause a false detection. On the other hand, it is not practical from the viewpoint of low consumption to always perform digital filter processing in order to extract a necessary frequency component from the Doppler signal. In addition, since digital filter processing uses delay data, there is a problem that a delay occurs before an output result is generated.

そこで本発明は、対象物の検出をドップラセンサで行った場合であっても消費電力を抑制し、ノイズ耐性をさせ、反応速度の速い吐水装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a water discharge device that suppresses power consumption, makes noise resistant, and has a fast reaction speed even when an object is detected by a Doppler sensor.

上記目的を達成するために請求項1記載の発明によれば、吐水部と、吐水部と、放射した電波の反射波によって被検知体の移動に関する情報を取得するセンサ部と、 前記センサ部からの検知信号に基づいて前記吐水部からの吐水を制御する制御部とを備え、前記制御部は前記センサ部からの検知信号に含まれる定在波検出するための定在波検出手段と、前記センサ部からの検知信号に含まれる周波数成分を検出するためのデジタルフィルタ処理を行う周波数成分検出手段とを備え、前記制御部は前記定在波検出手段の出力値に応じて、前記デジタルフィルタ処理の演算方法を可変し、前記周波数成分検出手段は可変した演算方法を用いて前記センサ部の出力に含まれる周波数成分を検出することを特徴とした吐水装置を提供する。   In order to achieve the above object, according to the first aspect of the present invention, there is provided a water discharge unit, a water discharge unit, a sensor unit that acquires information related to the movement of the detected object by the reflected wave of the radiated radio wave, A control unit that controls water discharge from the water discharge unit based on the detection signal of, the control unit, standing wave detection means for detecting a standing wave included in the detection signal from the sensor unit, Frequency component detection means for performing digital filter processing for detecting a frequency component included in the detection signal from the sensor section, and the control section performs the digital filter processing according to an output value of the standing wave detection means. The frequency component detection means detects the frequency component included in the output of the sensor unit using the variable calculation method, and provides a water discharging device.

通常、一日の中で吐水装置が未使用状態である時間が支配的であり、かかる構成とすることにより、吐水装置が未使用状態時のデジタルフィルタ処理の演算方法を処理負荷の軽い演算方法に変更することで、吐水装置の消費電力を抑制することができる。   Usually, the time during which the water discharge device is unused in the day is dominant, and by adopting such a configuration, the digital filter processing calculation method when the water discharge device is unused is a light calculation processing method. By changing to, the power consumption of the water discharger can be suppressed.

また、請求項2記載の発明によれば、請求項1に記載の吐水装置において、前記制御部には使用者の接近を検出するためにアンプで増幅した第一信号と、使用者の存在を検出するために前記第一信号で用いたアンプより小さなゲインで増幅した或いは全く増幅していない第二信号を入力し、前記制御部は前記第一信号に含まれる定在波検出するための定在波検出手段と、前記第一信号に含まれる周波数成分を検出するためのデジタルフィルタ処理を行う周波数成分検出手段と、前記第二信号に含まれる定在波を検出するための第二定在波検出手段とを備え、前記制御部は前記定在波検出手段と前記周波数成分検出手段の出力結果に応じて、前記第二定在波検出手段を動作させることを特徴とした、吐水装置を提供する。   According to a second aspect of the present invention, in the water discharge device according to the first aspect, the control unit includes a first signal amplified by an amplifier to detect the approach of the user and the presence of the user. In order to detect, a second signal amplified by a gain smaller than the amplifier used in the first signal or not amplified at all is input, and the control unit detects a standing wave included in the first signal. Standing wave detection means, frequency component detection means for performing digital filter processing for detecting frequency components contained in the first signal, and second standing for detecting standing waves contained in the second signal A water discharge device comprising: a wave detection unit, wherein the control unit operates the second standing wave detection unit according to output results of the standing wave detection unit and the frequency component detection unit. provide.

かかる構成とすることにより、対象物の誤検出を防ぎつつ、速やかに対象物を検出することができる。   By adopting such a configuration, it is possible to quickly detect an object while preventing erroneous detection of the object.

吐水装置の概略図である。It is the schematic of a water discharging apparatus. 実施例1におけるマイクロ波ドップラセンサと制御部の詳細概略図である。2 is a detailed schematic diagram of a microwave Doppler sensor and a control unit in Embodiment 1. FIG. FIRフィルタの構成図である。It is a block diagram of a FIR filter. 定在波検出手段の出力値が小さい時のSig4の波形図である。It is a wave form diagram of Sig4 when the output value of a standing wave detection means is small. 定在波検出手段の出力値がやや大きい時のSig4の波形図である。It is a wave form diagram of Sig4 when the output value of a standing wave detection means is a little large. 定在波検出手段の出力値が大きい時のSig4の波形図である。It is a wave form diagram of Sig4 when the output value of a standing wave detection means is large. 第1の実施例におけるデジタルフィルタ処理の演算方法変更のフロー図である。It is a flowchart of the calculation method change of the digital filter process in a 1st Example. 第2の実施例におけるマイクロ波ドップラセンサと制御部の詳細概略図である。It is a detailed schematic diagram of a microwave Doppler sensor and a control unit in the second embodiment. 第2の実施例における対象物検出方法を説明したフロー図である。It is the flowchart explaining the target object detection method in a 2nd Example.

以下、本発明にかかる自動水栓装置の実施の形態を図面により詳細に説明する。   Embodiments of an automatic faucet device according to the present invention will be described below in detail with reference to the drawings.

(第1の実施例)
図1に示すように、本実施形態における吐水装置1は、洗面器2とこの洗面器2のボウル内に吐水する吐水部3と、給水路4の中途部に設けられ洗面器2のボウル面への吐水及びその止水を行う給水バルブ5と、洗面器2のボウル内に吐水した水を排水する排水路6と、ドップラ信号を生成するマイクロ波ドップラセンサ7と、このマイクロ波ドップラセンサ7から出力されるドップラ信号に基づいて対象物8(通常は人体)の検出を行い、この検出の結果に応じて給水バルブ5を制御し洗面器1のボウル内への吐水及びその吐水の停止を制御する制御部9とを有している。なお給水バルブ4は電磁弁などから構成される。
(First embodiment)
As shown in FIG. 1, a water discharge device 1 according to this embodiment includes a wash basin 2, a water discharge portion 3 for discharging water into a bowl of the wash basin 2, and a bowl surface of the wash basin 2 provided in the middle of a water supply path 4. A water supply valve 5 for discharging water into and out of the water, a drainage channel 6 for draining water discharged into the bowl of the basin 2, a microwave Doppler sensor 7 for generating a Doppler signal, and the microwave Doppler sensor 7 The object 8 (usually a human body) is detected on the basis of the Doppler signal output from, and the water supply valve 5 is controlled in accordance with the detection result to stop water discharge into the bowl of the basin 1 and stop the water discharge. And a control unit 9 for controlling. The water supply valve 4 is composed of an electromagnetic valve or the like.

マイクロ波ドップラセンサ7は、図1に示すように吐水部3内に配置され、 前方に向けて電波を放射して送信し、この電波の反射波を受信することにより対象物である人体を検出するためのドップラ信号を生成するものであり、具体的には図2に示すように構成されている。またマイクロ波ドップラセンサ7は、以下の式(1)の関係から対象物の動きを検出している。   The microwave Doppler sensor 7 is disposed in the water discharger 3 as shown in FIG. 1, and radiates and transmits a radio wave forward, and receives a reflected wave of the radio wave to detect a human body as an object. The Doppler signal for generating the signal is generated, and specifically, as shown in FIG. The microwave Doppler sensor 7 detects the movement of the object from the relationship of the following formula (1).

基本式:ΔF=FS―Fb=2×FS×ν/c ・・・(1)
ΔF:ドップラ 周波数(ドップラ信号Sig3の周波数)
FS:送信周波数(送信信号Sig1の周波数)
Fb:反射周波数(受信信号Sig2の周波数)
ν:物体の移動速度
c:光速(300×10^6m/s)
Basic formula: ΔF = FS−Fb = 2 × FS × ν / c (1)
ΔF: Doppler frequency (frequency of Doppler signal Sig3)
FS: Transmission frequency (frequency of transmission signal Sig1)
Fb: reflection frequency (frequency of received signal Sig2)
ν: object moving speed c: speed of light (300 × 10 ^ 6 m / s)

図2はマイクロ波ドップラセンサと制御部の詳細構成図である。10.525GHzの電気信号である送信信号Sig1を生成する発振回路10と、発振回路10から出力される送信信号Sig1を10.525GHzのマイクロ波として送信する送信手段11と、送信手段11から送信されたマイクロ波が対象物によって反射され、その反射波を受信して電気信号に変換した受信信号Sig2を出力する受信手段12と、送信信号Sig1と受信信号Sig2とを混合(ミキシング)してSig3を出力するミキシング手段13とから構成され、ローパスフィルタ部21によって高周波成分を除去することによってセンサ出力Sig3からドップラ周波数ΔF(Sig4)を抽出する。   FIG. 2 is a detailed configuration diagram of the microwave Doppler sensor and the control unit. An oscillation circuit 10 that generates a transmission signal Sig1 that is an electrical signal of 10.525 GHz, a transmission unit 11 that transmits a transmission signal Sig1 output from the oscillation circuit 10 as a microwave of 10.525 GHz, and a transmission unit 11 The microwave is reflected by the object, the receiving means 12 that receives the reflected wave and outputs the received signal Sig2 converted into an electric signal, and the transmission signal Sig1 and the received signal Sig2 are mixed (mixed) to obtain Sig3. The high-frequency component is removed by the low-pass filter unit 21 and the Doppler frequency ΔF (Sig4) is extracted from the sensor output Sig3.

制御部9ではSig4が定在波検出手段22へと入力される。定在波検出手段22ではSig4の値が基準値からどの程度の差分があるかを判断する。この差分が定在波検出手段22からの出力値となる。対象物との距離が近ければ定在波検出手段22の出力値は大きくなり、対象物との距離が遠ければ定在波検出手段22の出力値は小さくなる。基準値の設定は、想定されるマイクロ波ドップラセンサの出力の中間値とすれば極性が対象である波形でドップラー信号を歪みなく検出するのに都合が良い。例えば、マイクロ波ドップラセンサの出力が0から5であるならば、基準値は2.5とする。   In the control unit 9, Sig 4 is input to the standing wave detection means 22. The standing wave detecting means 22 determines how much the Sig4 value is different from the reference value. This difference becomes an output value from the standing wave detection means 22. The output value of the standing wave detection means 22 increases when the distance to the object is short, and the output value of the standing wave detection means 22 decreases when the distance from the object is long. The setting of the reference value is convenient for detecting the Doppler signal without distortion in a waveform whose polarity is the object if the output is assumed to be an intermediate value of the microwave Doppler sensor. For example, if the output of the microwave Doppler sensor is 0 to 5, the reference value is 2.5.

また制御部9ではSig4から対象物8を検出する際、必要な周波数成分を抽出するための周波数成分検出手段23を有する。周波数成分を検出するために具体的な処理としてはデジタルフィルタ処理が挙げられる。デジタルフィルタ処理の一つであるFIRフィルタの構成図を図3に示す。   Further, the control unit 9 has a frequency component detection means 23 for extracting a necessary frequency component when detecting the object 8 from the Sig 4. Specific processing for detecting the frequency component includes digital filter processing. FIG. 3 shows a configuration diagram of an FIR filter which is one of digital filter processes.

入力信号に対する遅延素子31とフィルタ係数32を有し、遅延された各入力信号とフィルタ係数を積和演算することで必要な周波数成分である出力が得られる。この出力値に応じて対象物検出判断手段24にて対象物の有無が判断される。また積和演算の方法は定在波検出手段22の出力値に応じて演算方法可変手段25によって変更される。演算方法を可変させるための詳細を以下に記す。   A delay element 31 and a filter coefficient 32 for the input signal are provided, and an output which is a necessary frequency component is obtained by multiply-adding each delayed input signal and the filter coefficient. The presence / absence of the object is determined by the object detection determining means 24 in accordance with the output value. The product-sum operation method is changed by the operation method variable means 25 according to the output value of the standing wave detection means 22. Details for changing the calculation method are described below.

入力信号が4つ(n=3)の時を例にして説明する。この時、FIRフィルタの演算式は式(2)のように表すことができ、処理負荷の大きい乗算演算を4回実施することになる。
y(3) = h0・X(0) + h1・X(1) + h2・X(2) + h3・X(3) ・・・(2)
A case where there are four input signals (n = 3) will be described as an example. At this time, the arithmetic expression of the FIR filter can be expressed as Expression (2), and a multiplication operation with a heavy processing load is performed four times.
y (3) = h0 · X (0) + h1 · X (1) + h2 · X (2) + h3 · X (3) (2)

図4に示すのは対象物8が存在せず定在波検出手段の出力値が小さい時のSig4波形の例である。本実施例では波形振幅値が一番大きい箇所を定在波検出手段22からの出力値V1として採用している。これは各入力データの最大値でも良いし、一定個数の入力データの平均値でも良い。この時入力データは、X(0)=X(1)=X(2)=X(3)と近似することができ、式(2)は式(2)’のように表すことができ、処理負荷の大きい乗算演算を1回で済ませることができる。
y(3) = ( h0 + h1+ h2+ h3 )・X(0) ・・・(2)’
FIG. 4 shows an example of the Sig4 waveform when the object 8 does not exist and the output value of the standing wave detecting means is small. In this embodiment, the portion having the largest waveform amplitude value is adopted as the output value V1 from the standing wave detecting means 22. This may be the maximum value of each input data or an average value of a certain number of input data. At this time, the input data can be approximated as X (0) = X (1) = X (2) = X (3), and Expression (2) can be expressed as Expression (2) ′, A multiplication operation with a heavy processing load can be completed in one time.
y (3) = (h0 + h1 + h2 + h3) .X (0) (2) ′

一般的に、一日の中で吐水装置が使用されない時間帯(対象物8が存在しない時間帯)が支配的であるため、乗算演算処理の軽減による低消費効果は非常に大きい。また入力信号のデータ数に関わらず乗算演算回数は1回で済むため、入力信号のデータ数が多い程その効果は高まる。   In general, since the time zone in which the water discharge device is not used in the day (the time zone in which the object 8 does not exist) is dominant, the low consumption effect due to the reduction of the multiplication operation processing is very large. Further, since the number of multiplication operations is only one regardless of the number of data of the input signal, the effect increases as the number of data of the input signal increases.

図5に示すように定在波検出手段22の出力値がやや大きい時のSig4波形では、X(0)=X(1)、X(2)=X(3)と近似することができ、式(2)は式(2)’’のように表すことができ、式(2)の時よりも乗算演算の処理負荷を減らすことができる。
y(3) = ( h0 + h1 )・X(0) + ( h2 + h3 )・X(2) ・・・(2)’’
As shown in FIG. 5, in the Sig4 waveform when the output value of the standing wave detection means 22 is slightly large, it can be approximated as X (0) = X (1), X (2) = X (3), Expression (2) can be expressed as Expression (2) ″, and the processing load of the multiplication operation can be reduced as compared with Expression (2).
y (3) = (h0 + h1) .X (0) + (h2 + h3) .X (2) (2) ''

上記例では2回分のデータの平均を演算することでローパスフィルタとなるので、フィルタ係数を(h0+h1)と演算するのでなく、サンプリング数を減らした時用のフィルタ係数を予め用意しておき、その係数を用いて演算しても良い。例えば2ms周期サンプリングの場合、2回平均することで4ms周期サンプリングと同等になるので、別途4msサンプリング用のデジタルフィルタ係数を用意しておく。2回平均することでローパスフィルタの効果が得られているのでカットオフ周波数は2ms周期サンプリングの時より少なくて済み、更なる低消費効果が得られる。   In the above example, a low pass filter is obtained by calculating the average of data for two times. Therefore, instead of calculating the filter coefficient as (h0 + h1), a filter coefficient for reducing the number of samplings is prepared in advance. You may calculate using a coefficient. For example, in the case of 2 ms period sampling, averaging twice is equivalent to 4 ms period sampling, so a digital filter coefficient for 4 ms sampling is prepared separately. Since the effect of the low-pass filter is obtained by averaging twice, the cut-off frequency is less than that in the case of 2 ms period sampling, and a further low consumption effect is obtained.

図6に示すように定在波検出手段22の出力値が大きい時のSig4波形では、入力データを近似することができないため、式(2)の通り演算することとなる。この時、乗算処理を4回実施することになるので低消費の効果は望めないが、吐水装置の使用時間を考えると、一日の中で吐水装置が使用されない時間帯(対象物8が存在しない時間帯)が支配的であるため、対象物検出中に通常通りデジタルフィルタ処理を実施しても、全体の消費からするとその割合は非常に少ないと言える。   As shown in FIG. 6, since the input data cannot be approximated with the Sig4 waveform when the output value of the standing wave detecting means 22 is large, the calculation is performed as shown in Expression (2). At this time, since the multiplication process is performed four times, the effect of low consumption cannot be expected. However, considering the usage time of the water discharger, there is a time zone during which the water discharger is not used (the object 8 exists). Time period) is dominant, even if the digital filter processing is performed as usual during the object detection, it can be said that the ratio is very small in terms of the overall consumption.

定在波検出手段22の出力値の判断は、大きさを区別したい分だけの閾値を設け、その閾値より大きいか小さいかで判断するれば良い。本実施例では、定在波検出手段22の出力値小とやや大を判別する閾値、やや大と大を判別する閾値を設ければ良い。   The determination of the output value of the standing wave detecting means 22 may be made based on whether the magnitude is to be distinguished and whether the threshold value is larger or smaller. In the present embodiment, a threshold value for determining whether the output value of the standing wave detecting means 22 is small or slightly large and a threshold value for determining slightly large or large may be provided.

以上の演算方法を変更する流れをまとめると図7のフローチャートのようになる。まず定在波検出手段の出力値を取得する(S000)。続いて定在波検出手段の出力値の判断を行い、その値が小であれば(S001で小)、X(0)=X(1)=X(2)=X(3)と近似し(S002)、(2)式を(2)’式として演算することで必要な周波数成分を求められる(S003)。   The flow of changing the above calculation method is summarized as shown in the flowchart of FIG. First, the output value of the standing wave detection means is acquired (S000). Subsequently, the output value of the standing wave detecting means is determined. If the value is small (small in S001), it is approximated as X (0) = X (1) = X (2) = X (3). A necessary frequency component can be obtained by calculating (S002) and (2) as (2) ′ (S003).

定在波検出手段の出力値がやや大であれば(S001でやや大)、(2)式のデータをX(0)=X(1)、X(2)=X(3)と近似し(S004)、(2)式を(2)’ ’式として演算することで必要な周波数成分を求められる(S005)。   If the output value of the standing wave detecting means is slightly large (slightly large in S001), the data of equation (2) is approximated as X (0) = X (1), X (2) = X (3). A necessary frequency component can be obtained by calculating (S004) and (2) as (2) ′ ′ (S005).

定在波検出手段の出力値が大であれば(S001で大)、(2)式のデータそのまま演算することで必要な周波数成分を求められる(S006)。つまり近似式に応じて(2)式の演算処理負荷が変わり、一日の中で支配的であるといえる吐水装置が使用されない時間帯の演算処理負荷を軽減することで、吐水装置1の消費電力を低減することができる。   If the output value of the standing wave detecting means is large (large in S001), a necessary frequency component can be obtained by calculating the data of equation (2) as it is (S006). In other words, the calculation processing load of the equation (2) changes according to the approximate expression, and the consumption of the water discharge device 1 is reduced by reducing the calculation processing load in the time zone when the water discharge device that can be said to be dominant in the day is not used. Electric power can be reduced.

(第2の実施例)
図8に第2の実施例のマイクロ波ドップラセンサと制御部の詳細構成図を示す。第1の実施例の構成と比較するとマイクロ派ドップラセンサ7の構成は同一であるが、制御部9の構成が異なる。
(Second embodiment)
FIG. 8 shows a detailed configuration diagram of the microwave Doppler sensor and the control unit of the second embodiment. Compared with the configuration of the first embodiment, the configuration of the micro Doppler sensor 7 is the same, but the configuration of the control unit 9 is different.

第1の実施例では周波数成分検出手段23の出力で対象物8の有無を判断している。周波数成分検出手段23を用いれば必要な周波数成分のみを抽出しているためノイズへの耐性は向上するが、FIRフィルタの構成で遅延素子31を用いているため、対象物8の有無を判断するための有効な周波数成分が出力されるまでに遅れが生じてしまう。第2の実施例ではこの課題を鑑みた構成としている。   In the first embodiment, the presence or absence of the object 8 is determined based on the output of the frequency component detection means 23. If the frequency component detecting means 23 is used, only necessary frequency components are extracted, so that the noise resistance is improved. However, since the delay element 31 is used in the configuration of the FIR filter, the presence / absence of the object 8 is determined. Therefore, there is a delay until the effective frequency component is output. In the second embodiment, the configuration is made in consideration of this problem.

第2の実施例はアンプ41を設けSig4の信号を増幅した第一信号としての信号Sig5と、アンプ41よりも小さなゲインで増幅した或いは増幅していない第二信号としての信号Sig4を造り出す。本実施例では増幅していない例で説明する。つまりマイクロ波ドップラセンサ遠方の信号と近傍の信号を入力信号として使用する。検出までの流れを図9のフローチャートに沿って説明する。   In the second embodiment, an amplifier 41 is provided to produce a signal Sig5 as a first signal obtained by amplifying the signal of Sig4, and a signal Sig4 as a second signal amplified by a gain smaller than that of the amplifier 41 or not amplified. In the present embodiment, an example in which amplification is not performed will be described. That is, a signal far from the microwave Doppler sensor and a nearby signal are used as input signals. The flow until detection will be described with reference to the flowchart of FIG.

Sig5を定在波検出手段22と周波数成分検出手段23に入力する。入力した信号の処理と対象物検出判断手段24と演算方法可変手段25の動作は第1の実施例と同一である。(S100)   Sig 5 is input to the standing wave detection means 22 and the frequency component detection means 23. The processing of the input signal and the operations of the object detection determination means 24 and the calculation method variable means 25 are the same as those in the first embodiment. (S100)

この時の対象物検出判断手段24の判断結果が対象物無しであれば(S101で対象物無し)再度対象物の検出を行う。対象物検出判断手段24の判断結果が対象物有りであれば(S101で対象物有り)遠方に対象物が存在すると判断したこととなり、更に接近してきて吐水装置を使用する可能性があるためSig4による第二定在波検出手段42を動作させる(S102)。近傍の検出体を定在波にて検出するのは周波数成分検出手段に比べ、定在波検出手段は処理負荷が軽いため高速で結果を導きだせるからである。また、定在波による検出であるとノイズでの誤検出が懸念されるが、すでに周波数成分検出手段23によって遠方の検出が確定している状況であるのでノイズによる誤検出の恐れは低減できる。更にSig4による対象物検出に制限時間を設けるためにタイマ43による時間計時を開始する(S103)。   If the determination result of the object detection determination means 24 at this time is that there is no object (no object in S101), the object is detected again. If the determination result of the object detection determining means 24 is that there is an object (the object is present in S101), it is determined that the object exists far away, and there is a possibility that the object will come closer and use the water discharge device. The second standing wave detecting means 42 is operated (S102). The reason why the nearby detector is detected by the standing wave is that the standing wave detecting means has a lighter processing load than the frequency component detecting means, so that the result can be derived at high speed. Moreover, although there is a concern about erroneous detection due to noise in the case of detection using a standing wave, since the detection of a distant object has already been confirmed by the frequency component detection means 23, the risk of erroneous detection due to noise can be reduced. Furthermore, in order to set a time limit for detecting the object by Sig4, the timer 43 starts time counting (S103).

タイマ43による制限時間の経過を確認する。制限時間が経過していなければ(S104でNo)Sig4による対象物検出を行う(S105)。制限時間が経過していれば(S104でYes)S108へ処理を移行する。Sig4により対象物の検出を行う(S105)。これは対象物検出判断手段24が実施例1と同様に第二定在波検出手段42の出力値が閾値よりも大きいか小さいかで判断する。第二定在波検出手段42の出力値が閾値よりも大きい時は対象物有り、小さい時は対象物無しと判断する。続いて対象物検出判断手段24の結果が対象物無しであれば(S106で対象物無し)S104へ戻り処理をループさせる。結果が対象物が有りであれば(S106で対象物有り)S107へ移行し対象物の検出が確定となる。引き続きS108にてタイマ43による時間計時を停止し、S109にて第二定在波検出手段42を停止する。これは必要の無い機能を停止して低消費化を図るためである。   The elapse of the time limit by the timer 43 is confirmed. If the time limit has not elapsed (No in S104), the object detection by Sig4 is performed (S105). If the time limit has elapsed (Yes in S104), the process proceeds to S108. An object is detected by Sig4 (S105). This is determined by the object detection determining means 24 based on whether the output value of the second standing wave detecting means 42 is larger or smaller than the threshold value as in the first embodiment. When the output value of the second standing wave detection means 42 is larger than the threshold value, it is determined that there is an object, and when it is smaller, it is determined that there is no object. Subsequently, if the result of the object detection determination unit 24 is that there is no object (no object in S106), the process returns to S104 to loop the process. If the result is that there is an object (the object is present in S106), the process proceeds to S107, and the detection of the object is confirmed. Subsequently, the time counting by the timer 43 is stopped in S108, and the second standing wave detecting means 42 is stopped in S109. This is to stop unnecessary functions and reduce consumption.

かかる処理を行うことによりノイズに対する誤検出を防止し、低消費化を図りつつもFIRフィルタの遅れを生じさせることなく検出体の検出を行うことができる。   By performing such a process, it is possible to prevent erroneous detection of noise, and to detect a detection object without causing a delay of the FIR filter while reducing consumption.

1…吐水装置
2…洗面器
3…吐水部
4…給水路
5…給水バルブ
6…排水路
7…マイクロ波ドップラセンサ
8…対象物
9…制御部
10…発振回路
11…送信手段吐水部
12…受信手段
13…ミキシング手段
21…ローパスフィルタ
22…定在波検出手段
23…周波数成分検出手段(FIRフィルタ)
24…対象物検出判断手段
25…演算方法可変手段
31…遅延素子
32…フィルタ係数
41…アンプ
42…第二定在波検出手段
43…タイマ
DESCRIPTION OF SYMBOLS 1 ... Water discharging apparatus 2 ... Basin 3 ... Water discharging part 4 ... Water supply path 5 ... Water supply valve 6 ... Drainage path 7 ... Microwave Doppler sensor 8 ... Object 9 ... Control part 10 ... Oscillation circuit 11 ... Transmission means water discharging part 12 ... Reception means 13 ... mixing means 21 ... low-pass filter 22 ... standing wave detection means 23 ... frequency component detection means (FIR filter)
24 ... Object detection determination means 25 ... Calculation method variable means 31 ... Delay element 32 ... Filter coefficient 41 ... Amplifier 42 ... Second standing wave detection means 43 ... Timer

Claims (2)

吐水部と、放射した電波の反射波によって被検知体の移動に関する情報を取得するセンサ部と、 前記センサ部からの検知信号に基づいて前記吐水部からの吐水を制御する制御部とを備え、前記制御部は前記センサ部からの検知信号に含まれる定在波検出するための定在波検出手段と、前記センサ部からの検知信号に含まれる周波数成分を検出するためのデジタルフィルタ処理を行う周波数成分検出手段とを備え、前記制御部は前記定在波検出手段の出力値に応じて、前記デジタルフィルタ処理の演算方法を可変し、前記周波数成分検出手段は可変した演算方法を用いて前記センサ部の出力に含まれる周波数成分を検出することを特徴とした吐水装置。   A water discharge unit, a sensor unit that acquires information on the movement of the detected object by the reflected wave of the radiated radio wave, and a control unit that controls water discharge from the water discharge unit based on a detection signal from the sensor unit, The control unit performs standing wave detection means for detecting a standing wave included in the detection signal from the sensor unit, and digital filter processing for detecting a frequency component included in the detection signal from the sensor unit. Frequency component detection means, wherein the control unit varies the calculation method of the digital filter processing according to the output value of the standing wave detection means, and the frequency component detection means uses the variable calculation method A water discharger characterized by detecting a frequency component contained in an output of a sensor unit. 請求項1に記載の吐水装置において、前記制御部には使用者の接近を検出するためにアンプで増幅した第一信号と、使用者の存在を検出するために前記第一信号で用いたアンプより小さなゲインで増幅した或いは全く増幅していない第二信号を入力し、前記制御部は前記第一信号に含まれる定在波検出するための定在波検出手段と、前記第一信号に含まれる周波数成分を検出するためのデジタルフィルタ処理を行う周波数成分検出手段と、前記第二信号に含まれる定在波を検出するための第二定在波検出手段とを備え、前記制御部は前記定在波検出手段と前記周波数成分検出手段の出力結果に応じて、前記第二定在波検出手段を動作させることを特徴とした吐水装置。   The water discharge apparatus according to claim 1, wherein the control unit includes a first signal amplified by an amplifier to detect a user's approach and an amplifier used by the first signal to detect the presence of the user. A second signal amplified by a smaller gain or not amplified at all is input, and the control unit includes a standing wave detecting means for detecting a standing wave included in the first signal, and included in the first signal. Frequency component detection means for performing digital filter processing for detecting a frequency component to be detected, and second standing wave detection means for detecting a standing wave included in the second signal, and the control unit The water discharger characterized by operating said 2nd standing wave detection means according to the output result of a standing wave detection means and said frequency component detection means.
JP2011077022A 2011-03-31 2011-03-31 Water discharge device Expired - Fee Related JP5743300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011077022A JP5743300B2 (en) 2011-03-31 2011-03-31 Water discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011077022A JP5743300B2 (en) 2011-03-31 2011-03-31 Water discharge device

Publications (2)

Publication Number Publication Date
JP2012211447A true JP2012211447A (en) 2012-11-01
JP5743300B2 JP5743300B2 (en) 2015-07-01

Family

ID=47265616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077022A Expired - Fee Related JP5743300B2 (en) 2011-03-31 2011-03-31 Water discharge device

Country Status (1)

Country Link
JP (1) JP5743300B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092993A1 (en) * 2013-12-16 2015-06-25 パナソニックIpマネジメント株式会社 Faucet
TWI623765B (en) * 2015-12-28 2018-05-11 Panasonic Ip Man Co Ltd Sensor and faucet device using the sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275943A (en) * 2005-03-30 2006-10-12 Seiko Precision Inc Human body detection apparatus and control apparatus
JP2008202246A (en) * 2007-02-16 2008-09-04 Toto Ltd Toilet bowl flushing device
JP2009263970A (en) * 2008-04-24 2009-11-12 Toto Ltd Faucet device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275943A (en) * 2005-03-30 2006-10-12 Seiko Precision Inc Human body detection apparatus and control apparatus
JP2008202246A (en) * 2007-02-16 2008-09-04 Toto Ltd Toilet bowl flushing device
JP2009263970A (en) * 2008-04-24 2009-11-12 Toto Ltd Faucet device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092993A1 (en) * 2013-12-16 2015-06-25 パナソニックIpマネジメント株式会社 Faucet
CN105814262A (en) * 2013-12-16 2016-07-27 松下知识产权经营株式会社 Faucet
JPWO2015092993A1 (en) * 2013-12-16 2017-03-16 パナソニックIpマネジメント株式会社 Faucet device
CN105814262B (en) * 2013-12-16 2017-03-29 松下知识产权经营株式会社 Faucet device
TWI634274B (en) * 2013-12-16 2018-09-01 松下知識產權經營股份有限公司 Water faucet device
US10190295B2 (en) 2013-12-16 2019-01-29 Panasonic Intellectual Property Management Co., Ltd. Faucet
TWI623765B (en) * 2015-12-28 2018-05-11 Panasonic Ip Man Co Ltd Sensor and faucet device using the sensor

Also Published As

Publication number Publication date
JP5743300B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5017893B2 (en) Automatic faucet
TWI431302B (en) Water outlet
CN107012931B (en) Toilet flushing device
JP5743300B2 (en) Water discharge device
JP5867231B2 (en) Faucet device
TWI673412B (en) Sensing device, and toilet device having the same
JP6331068B2 (en) Water discharge device
JP2009080073A (en) Automatic feed water equipment
JP6656587B2 (en) Water surrounding equipment
JP2004293103A (en) Urinal device
JP2017222987A (en) Urinal device
JP2016065823A (en) Object detection device
JP6358560B2 (en) Detection device
JP2014194387A (en) Human body detection sensor
JP6349819B2 (en) Water discharge control device
JP2008175061A (en) Automatic faucet
JP6350961B2 (en) Moving body detection device
JP2004283469A (en) Sensor incorporated apparatus
JP5803520B2 (en) Faucet device
JP2009036011A (en) Water discharge device
JP5055870B2 (en) Toilet bowl cleaning device
JP2010148671A (en) Custom kitchen
JP7095248B2 (en) Sanitary equipment
JP6103364B6 (en) Automatic faucet device
JP6765635B2 (en) Human body detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5743300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150426

LAPS Cancellation because of no payment of annual fees