JP2012211276A - Base generator, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, method of producing relief pattern by using the photosensitive resin composition, and molded article - Google Patents

Base generator, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, method of producing relief pattern by using the photosensitive resin composition, and molded article Download PDF

Info

Publication number
JP2012211276A
JP2012211276A JP2011078164A JP2011078164A JP2012211276A JP 2012211276 A JP2012211276 A JP 2012211276A JP 2011078164 A JP2011078164 A JP 2011078164A JP 2011078164 A JP2011078164 A JP 2011078164A JP 2012211276 A JP2012211276 A JP 2012211276A
Authority
JP
Japan
Prior art keywords
group
resin composition
photosensitive resin
base generator
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011078164A
Other languages
Japanese (ja)
Inventor
Asami Katayama
麻美 片山
Hiroko Amano
寛子 天野
Yoshitsuna Amagai
恵維 天下井
Atsuya Miyake
惇哉 三宅
Toshiharu Fukuda
俊治 福田
Katsuya Sakayori
勝哉 坂寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2011078164A priority Critical patent/JP2012211276A/en
Publication of JP2012211276A publication Critical patent/JP2012211276A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Materials For Photolithography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost photosensitive resin composition having high-resolution and having a wide range of choices constitutionally applicable to a macromolecular precursor whose reaction to a final product is promoted by a basic substance or by heating in the presence of the basic substance, and to provide a base generator that can be used for such photosensitive resin composition.SOLUTION: This invention relates to the photosensitive resin composition, comprising: the base generator that has a specific structure and generates a base by the irradiation of electromagnetic wave and the heating; and the macromolecular precursor whose reaction to the final product is promoted by the base generator and the basic substance or by heating in the presence of the basic substance.

Description

本発明は、電磁波の照射及び加熱により塩基を発生する塩基発生剤、及び当該塩基発生剤を用いた感光性樹脂組成物に関し、特に、電磁波によるパターニング工程、又は硬化促進工程を経て形成される製品又は部材の材料として好適に利用することが出来る感光性樹脂組成物、当該感光性樹脂組成物からなるパターン形成用材料、レリーフパターンの製造方法、及び、当該樹脂組成物を用いて作製した物品に関するものである。   The present invention relates to a base generator that generates a base upon irradiation and heating of electromagnetic waves, and a photosensitive resin composition using the base generator, and in particular, a product formed through a patterning step or a curing acceleration step using electromagnetic waves. Or the photosensitive resin composition which can be utilized suitably as a material of a member, the pattern formation material which consists of the said photosensitive resin composition, the manufacturing method of a relief pattern, and the articles | goods produced using the said resin composition Is.

感光性樹脂組成物は、例えば、電子部品、光学製品、光学部品の成形材料、層形成材料又は接着剤などに用いられ、特に、電磁波によるパターニング工程を経て形成される製品又は部材に好適に利用されてきている。
例えば、高分子材料であるポリイミドは、耐熱性、寸法安定性、絶縁特性といった性能が有機物の中でもトップクラスの性能を示すため、電子部品の絶縁材料等へ広く適用され、半導体素子の中のチップコーティング膜や、フレキシブルプリント配線板の基材などとして盛んに利用されてきている。
また、近年、ポリイミドの有する課題を解決する為に、ポリイミドと類似の加工工程が適用される低吸水性で低誘電率を示すポリベンゾオキサゾールや、基板との密着性に優れるポリベンゾイミダゾール等も精力的に研究されている。
The photosensitive resin composition is used for, for example, an electronic component, an optical product, a molding material of an optical component, a layer forming material or an adhesive, and particularly preferably used for a product or a member formed through a patterning process using electromagnetic waves. Has been.
For example, polyimide, which is a polymer material, exhibits top-class performance among organic materials such as heat resistance, dimensional stability, and insulation characteristics, so it is widely applied to insulating materials for electronic components. It has been actively used as a coating film, a base material for flexible printed wiring boards, and the like.
In recent years, in order to solve the problems of polyimide, there are polybenzoxazole, which has low water absorption and low dielectric constant, and polybenzimidazole with excellent adhesion to the substrate, to which processing processes similar to polyimide are applied. It has been studied energetically.

一般にポリイミドは溶媒への溶解性に乏しく、加工が困難なため、ポリイミドを所望の形状にパターニングする方法として、溶媒溶解性に優れるポリイミド前駆体の状態で露光と現像によるパターニングを行い、その後、熱処理等によりイミド化を行いポリイミドのパターンを得るという方法がある。   In general, polyimide is poorly soluble in a solvent and difficult to process. As a method for patterning polyimide into a desired shape, patterning is performed by exposure and development in the state of a polyimide precursor having excellent solvent solubility, and then heat treatment. For example, there is a method of obtaining a polyimide pattern by imidization by the method described above.

ポリイミド前駆体を利用して、パターンを形成する手段として、種々の方法が提案されている。その代表的なものは以下の二つである。
(1)ポリイミド前駆体にはパターン形成能力がなく、ポリイミド前駆体上に感光性樹脂をレジスト層として設けることによりパターンを形成する方法
(2)ポリイミド前駆体自身に感光性部位を結合や配位させて導入し、その作用により、パターンを形成する方法。または、ポリイミド前駆体に感光性成分を混合し樹脂組成物とし、その感光性成分の作用でパターンを形成する方法。
Various methods have been proposed as means for forming a pattern using a polyimide precursor. Two typical ones are as follows.
(1) A method of forming a pattern by providing a photosensitive resin as a resist layer on a polyimide precursor without a pattern forming ability in a polyimide precursor (2) Bonding or coordination of a photosensitive site to the polyimide precursor itself A method of forming a pattern by its action. Alternatively, a method in which a photosensitive component is mixed with a polyimide precursor to form a resin composition, and a pattern is formed by the action of the photosensitive component.

上記(2)を用いるパターニング手法の代表的なものとしては、(i)ポリイミド前駆体のポリアミック酸に電磁波の露光前は溶解抑止剤として作用し、露光後はカルボン酸を形成し溶解促進剤となるナフトキノンジアジド誘導体を混合し、露光部と未露光部の現像液に対する溶解速度のコントラストを大きくすることでパターン形成を行い、その後にイミド化を行い、ポリイミドパターンを得る手法や(特許文献1)、(ii)ポリイミド前駆体にエステル結合またはイオン結合を介してメタクリロイル基を導入し、そこに光ラジカル発生剤を添加し、露光部を架橋させることで露光部と未露光部の現像液に対する溶解速度のコントラストを大きくすることでパターン形成を行い、その後にイミド化を行い、ポリイミドパターンを得る手法などが実用化されている(特許文献2)。   As a typical patterning technique using the above (2), (i) a polyimide precursor polyamic acid acts as a dissolution inhibitor before exposure to electromagnetic waves, and after exposure, a carboxylic acid is formed to form a dissolution accelerator; The naphthoquinonediazide derivative is mixed, and pattern formation is performed by increasing the contrast of the dissolution rate of the exposed area and unexposed area to the developer, followed by imidization to obtain a polyimide pattern (Patent Document 1) (Ii) A methacryloyl group is introduced into the polyimide precursor via an ester bond or an ionic bond, a photo radical generator is added thereto, and the exposed area is crosslinked to dissolve the exposed and unexposed areas in the developer. A method to obtain a polyimide pattern by forming a pattern by increasing the speed contrast and then imidizing it Etc. have been put into practical use (Patent Document 2).

(2)の手法は、(1)の方法と比べ、レジスト層が必要ないため大幅にプロセスを簡略化させることができるが、(i)の方法では、溶解性コントラストを高めるためにナフトキノンジアジド誘導体の添加量を増加させると、ポリイミド本来の物性が得られなくなるという問題があった。また(ii)の方法では、ポリイミド前駆体の構造が制約されてしまうという問題があった。   Compared with the method (1), the method (2) does not require a resist layer and can greatly simplify the process. However, in the method (i), a naphthoquinonediazide derivative is used to increase the solubility contrast. When the amount of addition is increased, there is a problem that the original physical properties of the polyimide cannot be obtained. Further, the method (ii) has a problem that the structure of the polyimide precursor is restricted.

この他のパターニング手法としては、(iii)ポリイミド前駆体のポリアミック酸に、光塩基発生剤を混合し、露光後加熱することで露光によって発生した塩基の作用によって環化を進行させ、現像液に対する溶解性を低下させることで、露光部と未露光部の現像液に対する溶解速度のコントラストを大きくすることでパターン形成を行い、その後にイミド化を行い、ポリイミドパターンを得る手法が報告されている(特許文献3)。   As another patterning technique, (iii) a polyamic acid as a polyimide precursor is mixed with a photobase generator and heated after exposure to cause cyclization to proceed by the action of a base generated by exposure. A technique for obtaining a polyimide pattern by reducing the solubility, forming a pattern by increasing the contrast of the dissolution rate in the developing solution of the exposed part and the unexposed part, and then imidizing is reported ( Patent Document 3).

光塩基発生剤を用いた感光性樹脂組成物としては、その他に、エポキシ系化合物を用いた例がある(例えば、特許文献4)。光塩基発生剤に光を照射することによってエポキシ系化合物を含む層中でアミン類を発生させることで、アミン類が開始剤あるいは触媒として作用し、露光部だけエポキシ系化合物を硬化させることができ、パターン形成を行うことができる。   As another example of the photosensitive resin composition using the photobase generator, there is an example using an epoxy compound (for example, Patent Document 4). By irradiating the photobase generator with light, amines are generated in the layer containing the epoxy compound, so that the amines act as an initiator or a catalyst, and the epoxy compound can be cured only in the exposed area. Pattern formation can be performed.

非特許文献1には、アミンの光反応性保護基として、o−ヒドロキシ−トランス−桂皮酸を用いることが開示されている。また、特許文献5には、o−ヒドロキシ−トランス−桂皮酸アミドを光塩基発生剤として用い、当該光塩基発生剤と塩基反応性樹脂とを含む感光性樹脂組成物が開示されている。更に、本発明者らも、o−ヒドロキシ−トランス−桂皮酸アミド誘導体を光環化型の光塩基発生剤として用い、当該光塩基発生剤と高分子前駆体とを含む感光性樹脂組成物を特許文献6及び特許文献7に開示している。これらの光塩基発生剤は高温耐性に優れるため、加熱により未露光部分において塩基を発生することなくパターン形成を行うことができる。   Non-Patent Document 1 discloses the use of o-hydroxy-trans-cinnamic acid as a photoreactive protecting group for amines. Patent Document 5 discloses a photosensitive resin composition containing o-hydroxy-trans-cinnamic acid amide as a photobase generator and containing the photobase generator and a base-reactive resin. Furthermore, the present inventors also patented a photosensitive resin composition containing an o-hydroxy-trans-cinnamic acid amide derivative as a photocyclization type photobase generator and containing the photobase generator and a polymer precursor. This is disclosed in Document 6 and Patent Document 7. Since these photobase generators are excellent in high temperature resistance, it is possible to form a pattern without generating a base in an unexposed portion by heating.

特開昭52−13315号公報JP 52-13315 A 特開昭54−145794号公報JP 54-145794 A 特開平8−227154号公報JP-A-8-227154 特開2003−212856号公報Japanese Patent Laid-Open No. 2003-212856 特開2009−80452号公報JP 2009-80452 A 国際公開第2009/123122号パンフレットInternational Publication No. 2009/123122 Pamphlet 特開2010−254946号公報JP 2010-254946 A

Chem. Pharm. Bull. 1997, 45(4) p.715-718Chem. Pharm. Bull. 1997, 45 (4) p.715-718

光塩基発生剤を用いた感光性樹脂組成物は、既存の高分子前駆体に、光塩基発生剤を一定比率で混合するだけで感光性高分子前駆体を得ることができるため、樹脂組成物を製造するプロセスが簡便である。特に、従来用いる前駆体化合物の構造が制約されたポリイミド前駆体にとっては、種々の構造のポリイミド前駆体に適用できるため汎用性が高いという利点がある。しかし、後述する比較例でも示したように、従来の光塩基発生剤は未だ感度が不十分なため、電磁波の照射量が多くなってしまうという問題があった。電磁波の照射量が多くなってしまうと、単位時間の処理量(スループット)が低下する問題もあった。単位時間の処理量(スループット)を向上させるためにも、更なる高感度化が望まれていた。   A photosensitive resin composition using a photobase generator is a resin composition because a photosensitive polymer precursor can be obtained simply by mixing a photobase generator at a certain ratio with an existing polymer precursor. The process for manufacturing is simple. In particular, a polyimide precursor in which the structure of a precursor compound used in the past is restricted has an advantage of high versatility because it can be applied to polyimide precursors having various structures. However, as shown in a comparative example described later, the conventional photobase generator has a problem that the irradiation amount of electromagnetic waves increases because the sensitivity is still insufficient. When the amount of electromagnetic wave irradiation increases, there is also a problem that the processing amount (throughput) per unit time decreases. In order to improve the throughput (throughput) per unit time, further enhancement of sensitivity has been desired.

また、従来の光塩基発生剤は、再沈殿や晶析により精製した場合にも、疎水性や結晶性が低いため、純度が悪くなる傾向があり、収率が低いという問題があった。   Further, even when the conventional photobase generator is purified by reprecipitation or crystallization, the hydrophobicity and crystallinity are low, so there is a problem that the purity tends to deteriorate and the yield is low.

本発明は、上記実情を鑑みてなされたものであり、その主目的は、感度が高く、精製が容易で、高分子前駆体の種類を問わずに利用可能な塩基発生剤、及び感度に優れ、高分子前駆体の種類を問わず、露光部と未露光部とで大きな溶解性コントラストが得られ、結果的に十分なプロセスマージンを保ちつつ、形状が良好なパターンを得ることができる感光性樹脂組成物を提供することにある。   The present invention has been made in view of the above circumstances, and its main purpose is high sensitivity, easy purification, and a base generator that can be used regardless of the type of polymer precursor, and excellent sensitivity. Regardless of the type of polymer precursor, a high solubility contrast is obtained between the exposed and unexposed areas, resulting in a photosensitivity capable of obtaining a pattern with a good shape while maintaining a sufficient process margin. The object is to provide a resin composition.

本発明に係る塩基発生剤は、下記化学式(1)で表され且つ電磁波の照射と加熱により、塩基を発生することを特徴とする。   The base generator according to the present invention is represented by the following chemical formula (1) and is characterized by generating a base by irradiation with electromagnetic waves and heating.

Figure 2012211276
(式(1)中、R及びRは、それぞれ独立に、水素又は有機基であり、同一であっても異なっていても良い。R及びRは、それらが結合して環状構造を形成していても良く、ヘテロ原子の結合を含んでいても良い。但し、R及びRの少なくとも1つは有機基である。R及びRはそれぞれ独立に、水素、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、又は有機基であり、同一であっても異なっていても良い。R、R、R及びRは、それぞれ独立に、水素、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、アミノ基、アンモニオ基又は有機基であり、同一であっても異なっていても良く、R、R、R及びRのいずれかは、置換基を有してもよいシクロアルコキシ基又は3級アルコキシ基を有する。R、R、R及びRは、それらの2つ以上が結合して環状構造を形成していても良く、ヘテロ原子の結合を含んでいても良い。Rは、水素原子、或いは、加熱及び/又は電磁波の照射により脱保護可能な保護基である。)
Figure 2012211276
(In Formula (1), R 1 and R 2 are each independently hydrogen or an organic group and may be the same or different. R 1 and R 2 are bonded to form a cyclic structure. And may contain a heteroatom bond, provided that at least one of R 1 and R 2 is an organic group, and R 3 and R 4 are each independently hydrogen, halogen, Hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfino group, sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonate group, or organic group, which are the same be different even good .R 5, R 6, R 7 and R 8 are each independently hydrogen, halogen, a hydroxyl group, a mercapto group, a sulfide group, a silyl group, a silanol group, a nitro group, two Nitroso group, a sulfino group, a sulfo group, a sulfonato group, a phosphino group, a phosphinyl group, a phosphono group, a phosphonate group, an amino group, an ammonio group or an organic group, may be different even in the same, R 5, R 6 , any one of R 7 and R 8 has a cycloalkoxy group or a tertiary alkoxy group which may have a substituent, and R 5 , R 6 , R 7 and R 8 are two or more of them. It may be bonded to form a cyclic structure and may contain a heteroatom bond, and R 9 is a hydrogen atom or a protective group that can be deprotected by heating and / or irradiation with electromagnetic waves. )

前記化学式(1)で表される塩基発生剤は、上記特定の構造を有することにより、電磁波の照射と加熱を組み合わせて少ない電磁波照射量で塩基性物質を発生するため、感度が高く、様々な高分子前駆体の種類を問わずに利用可能で、汎用性の高い優れた塩基発生剤である。
特に、前記化学式(1)で表される塩基発生剤は、芳香環の置換基として、置換基を有してもよいシクロアルコキシ基、または3級アルコキシ基を有している。シクロアルコキシ基、または3級アルコキシ基は、メトキシ基等の1級アルコキシ基や鎖状の2級アルコキシ基に比べて、電子供与性が強い官能基と推定される。前記化学式(1)で表される塩基発生剤は、シクロアルコキシ基、または3級アルコキシ基が置換することで、芳香環への電子供与性が強まり、吸光団である芳香環の電子密度が向上するため、少ない電磁波照射量で塩基性物質を発生でき、高感度を達成できると推定される。また、塗膜にした際の感度の向上は、化合物単体の感度が向上したことに加え、置換基として環状アルコキシ基や3級アルコキシ基のような嵩高い置換基を導入することで、塗膜中に微細な空間が生まれ、発生した塩基が拡散されやすくなり感度が向上したのではないかと推定される。
更に、前記化学式(1)で表される塩基発生剤は、環状アルコキシ基または3級アルコキシ基を導入することにより、化合物の疎水性が向上し、再沈殿法などによる精製が容易な化合物である。そのため、前記化学式(1)で表される塩基発生剤は、製造上、純度が高くなり、収率が高くなる傾向がある。特に、環状アルコキシ基を有する場合や直鎖の炭化水素の炭素数が少ない3級アルコキシ基においては、晶析により、精製がより容易となり、純度の高い化合物を高い収率で得ることができる。
Since the base generator represented by the chemical formula (1) has the above specific structure, it generates a basic substance with a small amount of electromagnetic wave irradiation by combining electromagnetic wave irradiation and heating. It is an excellent base generator that can be used regardless of the type of polymer precursor and is highly versatile.
In particular, the base generator represented by the chemical formula (1) has a cycloalkoxy group or a tertiary alkoxy group which may have a substituent as a substituent of the aromatic ring. A cycloalkoxy group or a tertiary alkoxy group is presumed to be a functional group having a stronger electron donating property than a primary alkoxy group such as a methoxy group or a chain-like secondary alkoxy group. When the base generator represented by the chemical formula (1) is substituted with a cycloalkoxy group or a tertiary alkoxy group, the electron donating property to the aromatic ring is strengthened, and the electron density of the aromatic ring, which is a photophore, is improved. Therefore, it is estimated that a basic substance can be generated with a small amount of electromagnetic wave irradiation and high sensitivity can be achieved. In addition to improving the sensitivity of the compound alone, the sensitivity of the coating film is improved by introducing a bulky substituent such as a cyclic alkoxy group or a tertiary alkoxy group as a substituent. It is presumed that a fine space was created inside, and the generated base was easily diffused to improve the sensitivity.
Furthermore, the base generator represented by the chemical formula (1) is a compound that improves the hydrophobicity of the compound by introducing a cyclic alkoxy group or a tertiary alkoxy group, and is easily purified by a reprecipitation method or the like. . Therefore, the base generator represented by the chemical formula (1) tends to have high purity and high yield in production. In particular, in the case of having a cyclic alkoxy group or a tertiary alkoxy group having a small number of carbon atoms in a straight-chain hydrocarbon, purification becomes easier by crystallization, and a compound with high purity can be obtained in a high yield.

また、本発明に係る感光性樹脂組成物は、塩基性物質によって又は塩基性物質の存在下での加熱によって最終生成物への反応が促進される高分子前駆体、及び、上記本発明に係る塩基発生剤を含有することを特徴とする。   In addition, the photosensitive resin composition according to the present invention relates to a polymer precursor whose reaction to the final product is accelerated by heating with a basic substance or in the presence of the basic substance, and the above-described present invention. It contains a base generator.

本発明に係る感光性樹脂組成物は、前記化学式(1)で表され且つ電磁波の照射と加熱により塩基を発生する塩基発生剤を、塩基性物質によって又は塩基性物質の存在下での加熱によって最終生成物への反応が促進される高分子前駆体に組み合わせたことにより、高感度で、高分子前駆体の種類を問わず、露光部と未露光部とで大きな溶解性コントラストが得られ、結果的に十分なプロセスマージンを保ちつつ、形状が良好なパターンを得ることができる。   The photosensitive resin composition according to the present invention is represented by the chemical formula (1) and generates a base upon irradiation with electromagnetic waves and heating, with a basic substance or by heating in the presence of a basic substance. By combining with a polymer precursor that promotes reaction to the final product, high sensitivity, regardless of the type of polymer precursor, a large solubility contrast can be obtained between exposed and unexposed areas, As a result, it is possible to obtain a pattern having a good shape while maintaining a sufficient process margin.

本発明においては、前記化学式(1)で表される塩基発生剤において、R及び/又はRが、置換基を有してもよいシクロアルコキシ基及び/又は3級アルコキシ基を有することが高感度化の点から好ましい。 In the present invention, in the base generator represented by the chemical formula (1), R 6 and / or R 7 may have a cycloalkoxy group and / or a tertiary alkoxy group which may have a substituent. This is preferable from the viewpoint of high sensitivity.

本発明の前記塩基発生剤においては、前記シクロアルコキシ基は、5員環、6員環、及び/又は7員環を含む単環又は多環のシクロアルコキシ基であることが、高感度化の点から好ましい。   In the base generator of the present invention, the cycloalkoxy group is a monocyclic or polycyclic cycloalkoxy group containing a 5-membered ring, a 6-membered ring, and / or a 7-membered ring. It is preferable from the point.

本発明の前記塩基発生剤においては、前記シクロアルコキシ基は、炭素数が5〜20であることが、高感度化の点から好ましい。   In the base generator of the present invention, the cycloalkoxy group preferably has 5 to 20 carbon atoms from the viewpoint of increasing sensitivity.

本発明の前記塩基発生剤においては、前記3級アルコキシ基は、炭素数が4〜20であることが、高感度化の点から好ましい。   In the base generator of the present invention, the tertiary alkoxy group preferably has 4 to 20 carbon atoms from the viewpoint of increasing sensitivity.

本発明に係る感光性樹脂組成物において、前記高分子前駆体としては、エポキシ基、イソシアネート基、オキセタン基、又はチイラン基を有する化合物及び高分子、ポリシロキサン前駆体、ポリイミド前駆体、並びにポリベンゾオキサゾール前駆体よりなる群から選択される1種以上が好適に用いられる。   In the photosensitive resin composition according to the present invention, the polymer precursor includes a compound and polymer having an epoxy group, an isocyanate group, an oxetane group, or a thiirane group, a polysiloxane precursor, a polyimide precursor, and a polybenzo. One or more selected from the group consisting of oxazole precursors is preferably used.

本発明に係る感光性樹脂組成物において、前記高分子前駆体は、塩基性溶液に可溶であることが、露光部と未露光部の溶解性コントラストを大きくできる点から好ましい。   In the photosensitive resin composition according to the present invention, the polymer precursor is preferably soluble in a basic solution from the viewpoint that the solubility contrast between the exposed portion and the unexposed portion can be increased.

本発明の一実施形態においては、感光性樹脂組成物の高分子前駆体として、ポリアミック酸のようなポリイミド前駆体、又は、ポリベンゾオキサゾール前駆体を用いることができる。このような高分子前駆体を用いると、耐熱性、寸法安定性、及び絶縁特性等の物性に優れた感光性樹脂組成物を得ることができる。前記ポリイミド前駆体は、ポリアミック酸であることが、原料の入手が容易な点から好ましい。   In one embodiment of the present invention, a polyimide precursor such as polyamic acid or a polybenzoxazole precursor can be used as the polymer precursor of the photosensitive resin composition. When such a polymer precursor is used, a photosensitive resin composition having excellent physical properties such as heat resistance, dimensional stability, and insulating properties can be obtained. The polyimide precursor is preferably a polyamic acid from the viewpoint of easy availability of raw materials.

また、本発明は、上記本発明に係る感光性樹脂組成物からなるパターン形成用材料を提供する。
さらに本発明は、上記感光性樹脂組成物を用いるレリーフパターンの製造方法を提供する。
本発明に係るレリーフパターンの製造方法は、上記感光性樹脂組成物を用いて塗膜又は成形体を形成し、当該塗膜又は成形体を、所定パターン状に電磁波を照射し、照射後又は照射と同時に加熱し、前記照射部位の溶解性を変化させた後、現像することを特徴とする。
上記レリーフパターンの製造方法においては、高分子前駆体と、塩基発生剤として上記化学式(1)で表されるような化合物とを組み合わせて用いることにより、感光性樹脂組成物からなる塗膜又は成形体の表面を現像液から保護するためのレジスト膜を用いずに、現像を行うパターン形成が可能である。
Moreover, this invention provides the material for pattern formation which consists of the photosensitive resin composition which concerns on the said invention.
Furthermore, this invention provides the manufacturing method of the relief pattern using the said photosensitive resin composition.
The method for producing a relief pattern according to the present invention comprises forming a coating film or a molded body using the photosensitive resin composition, irradiating the coating film or the molded body with electromagnetic waves in a predetermined pattern, and after irradiation or irradiation. It develops, after heating simultaneously and changing the solubility of the said irradiation part, It is characterized by the above-mentioned.
In the method for producing a relief pattern, a coating film or a molding made of a photosensitive resin composition is used by combining a polymer precursor and a compound represented by the chemical formula (1) as a base generator. Pattern formation for development can be performed without using a resist film for protecting the surface of the body from the developer.

また、本発明は、上記感光性樹脂組成物又はその硬化物により少なくとも一部分が形成されている、印刷物、塗料、シール剤、接着剤、表示装置、半導体装置、電子部品、微小電気機械システム、光造形物、光学部材又は建築材料のいずれかの物品も提供する。   The present invention also provides a printed material, a paint, a sealant, an adhesive, a display device, a semiconductor device, an electronic component, a microelectromechanical system, light, which is at least partly formed of the photosensitive resin composition or a cured product thereof. Articles of either shaped objects, optical members or building materials are also provided.

本発明の塩基発生剤は、上記特定の構造を有することにより、精製が容易で、高分子前駆体の種類を問わずに利用可能であり、高感度を達成できる。
本発明の感光性樹脂組成物は、含まれる化学式(1)で表される塩基発生剤が、従来用いられていた光塩基発生剤と比べて優れた感度を有するため、感度の高い感光性樹脂組成物である。さらに本発明の感光性樹脂組成物においては、酸と異なり塩基が金属の腐食を起こさないため、より信頼性の高い硬化膜を得ることが出来る。
また、パターン形成工程に加熱工程を含む場合、本発明の感光性樹脂組成物は、塩基の発生を促進させる加熱において、前記加熱工程を利用することが可能であり、当該加熱工程を利用する分、電磁波の照射量を少なくできる利点を有する。そのためこの様な加熱工程を含む工程で用いる場合、本発明の感光性樹脂組成物は、電磁波照射のみで塩基を発生させる従来の樹脂組成物と比べ、工程の合理化も可能となる。
Since the base generator of the present invention has the above-mentioned specific structure, purification is easy, it can be used regardless of the type of the polymer precursor, and high sensitivity can be achieved.
In the photosensitive resin composition of the present invention, since the base generator represented by the chemical formula (1) contained has superior sensitivity compared to a conventionally used photobase generator, the photosensitive resin is highly sensitive. It is a composition. Furthermore, in the photosensitive resin composition of the present invention, unlike an acid, a base does not cause metal corrosion, so that a more reliable cured film can be obtained.
In addition, when the pattern forming step includes a heating step, the photosensitive resin composition of the present invention can use the heating step in heating that promotes the generation of a base. , It has the advantage that the irradiation amount of electromagnetic waves can be reduced. Therefore, when used in a process including such a heating process, the photosensitive resin composition of the present invention can be streamlined compared to a conventional resin composition that generates a base only by electromagnetic wave irradiation.

図1は、感光性樹脂組成物(1)及び比較感光性樹脂組成物(1)を用いて作成した、露光量と残膜率の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the exposure amount and the remaining film ratio, which was prepared using the photosensitive resin composition (1) and the comparative photosensitive resin composition (1).

以下、本発明について詳しく説明する。
なお、本発明において、シクロアルコキシ基とは、アルコキシ基のうち、酸素原子に脂環式炭化水素基が結合した基をいい、3級アルコキシ基とは、アルコキシ基のうち、酸素原子に直接結合する炭素原子が、他の3個の炭素原子と結合した3級炭素原子である基をいう。
また、本発明において、(メタ)アクリロイルとは、アクリロイル及び/又はメタクリロイルを意味し、(メタ)アクリルとは、アクリル及び/又はメタクリルを意味し、(メタ)アクリレートとは、アクリレート及び/又はメタクリレートを意味する。
また、本発明において、電磁波とは、波長を特定した場合を除き、可視及び非可視領域の波長の電磁波だけでなく、電子線のような粒子線、及び、電磁波と粒子線を総称する放射線又は電離放射線が含まれる。本明細書では、電磁波の照射を露光ともいう。なお、波長365nm、405nm、436nmの電磁波をそれぞれ、i線、h線、g線とも表記することがある。
<塩基発生剤>
本発明に係る塩基発生剤は、下記化学式(1)で表され且つ電磁波の照射と加熱により、塩基を発生することを特徴とする。
The present invention will be described in detail below.
In the present invention, the cycloalkoxy group means a group in which an alicyclic hydrocarbon group is bonded to an oxygen atom among the alkoxy groups, and the tertiary alkoxy group is directly bonded to an oxygen atom in the alkoxy group. The group in which the carbon atom is a tertiary carbon atom bonded to the other three carbon atoms.
In the present invention, (meth) acryloyl means acryloyl and / or methacryloyl, (meth) acryl means acryl and / or methacryl, and (meth) acrylate means acrylate and / or methacrylate. Means.
In the present invention, the electromagnetic wave is not only an electromagnetic wave having a wavelength in the visible and invisible regions, but also a particle beam such as an electron beam, and radiation or a general term for the electromagnetic wave and the particle beam, unless the wavelength is specified. Contains ionizing radiation. In this specification, irradiation with electromagnetic waves is also referred to as exposure. Note that electromagnetic waves with wavelengths of 365 nm, 405 nm, and 436 nm may be referred to as i-line, h-line, and g-line, respectively.
<Base generator>
The base generator according to the present invention is represented by the following chemical formula (1) and is characterized by generating a base by irradiation with electromagnetic waves and heating.

Figure 2012211276
(式(1)中、R及びRは、それぞれ独立に、水素又は有機基であり、同一であっても異なっていても良い。R及びRは、それらが結合して環状構造を形成していても良く、ヘテロ原子の結合を含んでいても良い。但し、R及びRの少なくとも1つは有機基である。R及びRはそれぞれ独立に、水素、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、又は有機基であり、同一であっても異なっていても良い。R、R、R及びRは、それぞれ独立に、水素、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、アミノ基、アンモニオ基又は有機基であり、同一であっても異なっていても良く、R、R、R及びRのいずれかは、置換基を有してもよいシクロアルコキシ基又は3級アルコキシ基を有する。R、R、R及びRは、それらの2つ以上が結合して環状構造を形成していても良く、ヘテロ原子の結合を含んでいても良い。Rは、水素原子、或いは、加熱及び/又は電磁波の照射により脱保護可能な保護基である。)
Figure 2012211276
(In Formula (1), R 1 and R 2 are each independently hydrogen or an organic group and may be the same or different. R 1 and R 2 are bonded to form a cyclic structure. And may contain a heteroatom bond, provided that at least one of R 1 and R 2 is an organic group, and R 3 and R 4 are each independently hydrogen, halogen, Hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfino group, sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonate group, or organic group, which are the same be different even good .R 5, R 6, R 7 and R 8 are each independently hydrogen, halogen, a hydroxyl group, a mercapto group, a sulfide group, a silyl group, a silanol group, a nitro group, two Nitroso group, a sulfino group, a sulfo group, a sulfonato group, a phosphino group, a phosphinyl group, a phosphono group, a phosphonate group, an amino group, an ammonio group or an organic group, may be different even in the same, R 5, R 6 , any one of R 7 and R 8 has a cycloalkoxy group or a tertiary alkoxy group which may have a substituent, and R 5 , R 6 , R 7 and R 8 are two or more of them. It may be bonded to form a cyclic structure and may contain a heteroatom bond, and R 9 is a hydrogen atom or a protective group that can be deprotected by heating and / or irradiation with electromagnetic waves. )

本発明の塩基発生剤は、光塩基発生剤の1種であり、電磁波が照射されるだけでも塩基を発生するが、適宜加熱をすることにより、塩基の発生が促進される。本発明の塩基発生剤は、上記特定の構造を有するため、電磁波の照射と加熱を組み合わせることにより、少ない電磁波照射量で効率的に塩基を発生することが可能であり、従来の所謂光塩基発生剤と比べて優れた感度を有する。特に、前記化学式(1)で表される塩基発生剤は、芳香環の置換基として、置換基を有してもよいシクロアルコキシ基、または3級アルコキシ基を有しているため、o−ヒドロキシ−トランス−桂皮酸アミド誘導体の中でも高感度を達成できる。シクロアルコキシ基は、酸素原子に直接結合する炭素原子が2級炭素原子であり且つ環状であるため、また、3級アルコキシ基は、酸素原子に直接結合する炭素原子が3級炭素原子であるため、メトキシ基等の1級アルコキシ基や鎖状の2級アルコキシ基に比べて、電子供与性が強い官能基と推定される。前記化学式(1)で表される塩基発生剤は、シクロアルコキシ基、または3級アルコキシ基が置換することで、芳香環への電子供与性が強まり、吸光団である芳香環の電子密度が向上するため、少ない電磁波照射量で塩基性物質を発生でき、高感度を達成できると推定される。また、塗膜にした際の感度の向上は、化合物単体の感度が向上したことに加え、置換基として環状アルコキシ基や3級アルコキシ基のような嵩高い置換基を導入することで、塗膜中に微細な空間が生まれ、発生した塩基が拡散されやすくなり感度が向上したのではないかと推定される。
更に、前記化学式(1)で表される塩基発生剤は、環状アルコキシ基または3級アルコキシ基を導入することにより、化合物の疎水性が向上し、再沈殿法などによる精製が容易な化合物である。そのため、前記化学式(1)で表される塩基発生剤は、製造上、純度が高くなり、収率が高くなる傾向がある。特に、環状アルコキシ基を有する場合や直鎖の炭化水素の炭素数が少ない3級アルコキシ基においては、晶析により、精製がより容易となり、純度の高い化合物を高い収率で得ることができる。
なお、光塩基発生剤とは、常温常圧の通常の条件下では活性を示さないが、外部刺激として電磁波が加えられると、塩基を発生する剤をいう。
The base generator of the present invention is a kind of photobase generator and generates a base only by being irradiated with electromagnetic waves. However, generation of a base is promoted by appropriate heating. Since the base generator of the present invention has the above specific structure, it is possible to efficiently generate a base with a small amount of electromagnetic wave irradiation by combining electromagnetic wave irradiation and heating. Excellent sensitivity compared to the agent. In particular, since the base generator represented by the chemical formula (1) has a cycloalkoxy group or a tertiary alkoxy group which may have a substituent as a substituent of the aromatic ring, o-hydroxy High sensitivity can be achieved among trans-cinnamic amide derivatives. In the cycloalkoxy group, the carbon atom directly bonded to the oxygen atom is a secondary carbon atom and is cyclic, and in the tertiary alkoxy group, the carbon atom directly bonded to the oxygen atom is a tertiary carbon atom. Compared with primary alkoxy groups such as methoxy groups and chain-like secondary alkoxy groups, it is presumed to be a functional group having a strong electron donating property. When the base generator represented by the chemical formula (1) is substituted with a cycloalkoxy group or a tertiary alkoxy group, the electron donating property to the aromatic ring is strengthened, and the electron density of the aromatic ring, which is a photophore, is improved. Therefore, it is estimated that a basic substance can be generated with a small amount of electromagnetic wave irradiation and high sensitivity can be achieved. In addition to improving the sensitivity of the compound alone, the sensitivity of the coating film is improved by introducing a bulky substituent such as a cyclic alkoxy group or a tertiary alkoxy group as a substituent. It is presumed that a fine space was created inside, and the generated base was easily diffused to improve the sensitivity.
Furthermore, the base generator represented by the chemical formula (1) is a compound that improves the hydrophobicity of the compound by introducing a cyclic alkoxy group or a tertiary alkoxy group, and is easily purified by a reprecipitation method or the like. . Therefore, the base generator represented by the chemical formula (1) tends to have high purity and high yield in production. In particular, in the case of having a cyclic alkoxy group or a tertiary alkoxy group having a small number of carbon atoms in a straight-chain hydrocarbon, purification becomes easier by crystallization, and a compound with high purity can be obtained in a high yield.
The photobase generator refers to an agent that does not exhibit activity under normal conditions of normal temperature and pressure, but generates a base when electromagnetic waves are applied as an external stimulus.

本発明に係る塩基発生剤は、上記特定構造を有するため、電磁波が照射されることにより、下記式で示されるように、化学式(1)中の(−CR=CR−C(=O)−)部分がシス体へと異性化し、さらに加熱によって環化し、塩基(NHR)を生成する。塩基の触媒作用によって、高分子前駆体が最終生成物となる際の反応が開始される温度を下げたり、高分子前駆体が最終生成物となる硬化反応を開始することができる。 Since the base generator according to the present invention has the specific structure described above, (-CR 4 = CR 3 -C (= O) in the chemical formula (1) as shown by the following formula when irradiated with electromagnetic waves. The)-) moiety isomerizes to the cis isomer and is further cyclized by heating to produce the base (NHR 1 R 2 ). By the catalytic action of the base, the temperature at which the reaction when the polymer precursor becomes the final product can be lowered, or the curing reaction where the polymer precursor becomes the final product can be started.

Figure 2012211276
Figure 2012211276

化学式(1)で表される塩基発生剤は、環化することで、フェノール性水酸基を消失し、溶解性が変化し、塩基性水溶液等の場合には溶解性が低下する。これにより、本発明に係る感光性樹脂組成物に含まれる高分子前駆体がポリイミド前駆体やポリベンゾオキサゾール前駆体である場合、当該前駆体の最終生成物への反応による溶解性の低下を更に補助する機能を有し、露光部と未露光部の溶解性コントラストを大きくすることが可能となる。   When the base generator represented by the chemical formula (1) is cyclized, the phenolic hydroxyl group disappears, the solubility changes, and in the case of a basic aqueous solution, the solubility decreases. Thereby, when the polymer precursor contained in the photosensitive resin composition according to the present invention is a polyimide precursor or a polybenzoxazole precursor, the solubility is further reduced due to the reaction of the precursor to the final product. It has a function of assisting, and it becomes possible to increase the solubility contrast between the exposed portion and the unexposed portion.

及びRは、それぞれ、独立に水素原子又は有機基であるが、R及びRのうち少なくとも1つは有機基である。また、NHRは、塩基(本発明においては、「塩基性物質」を単に、塩基という。)であるが、R及びRは、それぞれ、アミノ基を含まない有機基であることが好ましい。R及びRに、アミノ基が含まれてしまうと、塩基発生剤自体が塩基性物質となり、高分子前駆体の反応を促進してしまい、露光部と未露光部での溶解性コントラストの差が小さくなってしまう恐れがある。但し、例えば、R及びRの有機基中に存在する芳香環にアミノ基が結合している場合のように、電磁波の照射と加熱後に発生する塩基との塩基性と差が生じる場合には、R及びRの有機基にアミノ基が含まれていても用いることができる場合もある。
有機基としては、飽和又は不飽和アルキル基、飽和又は不飽和シクロアルキル基、アリール基、アラルキル基、及び飽和又は不飽和ハロゲン化アルキル基等が挙げられる。これらの有機基は、当該有機基中にヘテロ原子等の炭化水素基以外の結合や置換基を含んでよく、これらは、直鎖状でも分岐状でも良い。
及びRにおける有機基は、通常、1価の有機基であるが、後述する環状構造を形成する場合や、生成するNHRがジアミン等のアミド結合を形成可能なNH基を2つ以上有する塩基性物質の場合等には、2価以上の有機基となり得る。
R 1 and R 2 are each independently a hydrogen atom or an organic group, but at least one of R 1 and R 2 is an organic group. NHR 1 R 2 is a base (in the present invention, “basic substance” is simply referred to as a base), but R 1 and R 2 are each an organic group that does not contain an amino group. Is preferred. If an amino group is contained in R 1 and R 2 , the base generator itself becomes a basic substance, which accelerates the reaction of the polymer precursor, resulting in a solubility contrast between the exposed and unexposed areas. There is a risk of the difference becoming smaller. However, when there is a difference in basicity between the electromagnetic wave irradiation and the base generated after heating, such as when an amino group is bonded to the aromatic ring present in the organic group of R 1 and R 2. May be used even if the organic group of R 1 and R 2 contains an amino group.
Examples of the organic group include a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, an aryl group, an aralkyl group, and a saturated or unsaturated halogenated alkyl group. These organic groups may contain bonds and substituents other than hydrocarbon groups such as heteroatoms in the organic group, and these may be linear or branched.
The organic group in R 1 and R 2 is usually a monovalent organic group, but in the case of forming a cyclic structure described later, the generated NHR 1 R 2 is an NH group capable of forming an amide bond such as diamine. In the case of a basic substance having two or more, it can be a divalent or higher organic group.

また、R及びRは、それらが結合して環状構造になっていても良い。
環状構造は、飽和又は不飽和の脂環式炭化水素、複素環、及び縮合環、並びに当該脂環式炭化水素、複素環、及び縮合環よりなる群から選ばれる2種以上が組み合されてなる構造であっても良い。
R 1 and R 2 may be bonded to form a cyclic structure.
The cyclic structure is a combination of two or more selected from the group consisting of saturated or unsaturated alicyclic hydrocarbons, heterocycles, and condensed rings, and the alicyclic hydrocarbons, heterocycles, and condensed rings. The structure which becomes may be sufficient.

前記R及びRの有機基中の炭化水素基以外の結合としては、本発明の効果が損なわれない限り、特に限定されず、エーテル結合、チオエーテル結合、カルボニル結合、チオカルボニル結合、エステル結合、アミド結合、ウレタン結合、イミノ結合(−N=C(−R)−、−C(=NR)−:ここでRは水素原子又は1価の有機基)、カーボネート結合、スルホニル結合、スルフィニル結合、アゾ結合等が挙げられる。
耐熱性の点から、有機基中の炭化水素基以外の結合としては、エーテル結合、チオエーテル結合、カルボニル結合、チオカルボニル結合、エステル結合、アミド結合、ウレタン結合、イミノ結合(−N=C(−R)−、−C(=NR)−:ここでRは水素原子又は1価の有機基)、カーボネート結合、スルホニル結合、スルフィニル結合が好ましい。
The bond other than the hydrocarbon group in the organic group of R 1 and R 2 is not particularly limited as long as the effect of the present invention is not impaired, and is an ether bond, a thioether bond, a carbonyl bond, a thiocarbonyl bond, an ester bond. , Amide bond, urethane bond, imino bond (—N═C (—R) —, —C (═NR) —, where R is a hydrogen atom or a monovalent organic group), carbonate bond, sulfonyl bond, sulfinyl bond And an azo bond.
From the viewpoint of heat resistance, the bond other than the hydrocarbon group in the organic group includes an ether bond, a thioether bond, a carbonyl bond, a thiocarbonyl bond, an ester bond, an amide bond, a urethane bond, and an imino bond (—N═C (— R)-, -C (= NR)-: R is preferably a hydrogen atom or a monovalent organic group), carbonate bond, sulfonyl bond, or sulfinyl bond.

前記R及びRの有機基中の炭化水素基以外の置換基としては、本発明の効果が損なわれない限り、特に限定されず、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、シリル基、シラノール基、アルコキシ基、アルコキシカルボニル基、カルバモイル基、チオカルバモイル基、ニトロ基、ニトロソ基、カルボキシル基、カルボキシラート基、アシル基、アシルオキシ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、ヒドロキシイミノ基、飽和又は不飽和アルキルエーテル基、飽和又は不飽和アルキルチオエーテル基、アリールエーテル基、及びアリールチオエーテル基、アミノ基(−NH2, −NHR, −NRR':ここで、R及びR’はそれぞれ独立に炭化水素基)、アンモニオ基等が挙げられる。上記置換基に含まれる水素は、炭化水素基によって置換されていても良い。また、上記置換基に含まれる炭化水素基は、直鎖、分岐、及び環状のいずれでも良い。
前記R及びRの有機基中の炭化水素基以外の置換基としては、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、シリル基、シラノール基、アルコキシ基、アルコキシカルボニル基、カルバモイル基、チオカルバモイル基、ニトロ基、ニトロソ基、カルボキシル基、カルボキシラート基、アシル基、アシルオキシ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、ヒドロキシイミノ基、飽和又は不飽和アルキルエーテル基、飽和又は不飽和アルキルチオエーテル基、アリールエーテル基、及びアリールチオエーテル基が好ましい。
The substituent other than the hydrocarbon group in the organic group of R 1 and R 2 is not particularly limited as long as the effect of the present invention is not impaired. A halogen atom, a hydroxyl group, a mercapto group, a sulfide group, a cyano group, Isocyano group, cyanato group, isocyanato group, thiocyanato group, isothiocyanato group, silyl group, silanol group, alkoxy group, alkoxycarbonyl group, carbamoyl group, thiocarbamoyl group, nitro group, nitroso group, carboxyl group, carboxylate group, acyl group Acyloxy group, sulfino group, sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonate group, hydroxyimino group, saturated or unsaturated alkyl ether group, saturated or unsaturated alkyl thioether group, aryl ether group, and Arylthioether group, a Amino group (-NH2, -NHR, -NRR ': wherein, R and R' are independently a hydrocarbon group) include an ammonio group. The hydrogen contained in the substituent may be substituted with a hydrocarbon group. Further, the hydrocarbon group contained in the substituent may be any of linear, branched, and cyclic.
Examples of the substituent other than the hydrocarbon group in the organic group of R 1 and R 2 include a halogen atom, a hydroxyl group, a mercapto group, a sulfide group, a cyano group, an isocyano group, a cyanato group, an isocyanato group, a thiocyanato group, an isothiocyanato group, Silyl group, silanol group, alkoxy group, alkoxycarbonyl group, carbamoyl group, thiocarbamoyl group, nitro group, nitroso group, carboxyl group, carboxylate group, acyl group, acyloxy group, sulfino group, sulfo group, sulfonate group, phosphino group , A phosphinyl group, a phosphono group, a phosphonato group, a hydroxyimino group, a saturated or unsaturated alkyl ether group, a saturated or unsaturated alkyl thioether group, an aryl ether group, and an aryl thioether group.

生成する塩基はNHRであるため、1級アミン、2級アミン、又は複素環式化合物が挙げられる。またアミンには、それぞれ、脂肪族アミン及び芳香族アミンがある。なお、ここでの複素環式化合物は、NHRが環状構造を有し且つ芳香族性を有しているものをいう。芳香族複素環式化合物ではない、非芳香族複素環式化合物は、ここでは脂環式アミンとして脂肪族アミンに含まれる。 Since the base to be generated is NHR 1 R 2 , primary amines, secondary amines, or heterocyclic compounds can be mentioned. The amine includes an aliphatic amine and an aromatic amine, respectively. In addition, the heterocyclic compound here means that NHR 1 R 2 has a cyclic structure and has aromaticity. Non-aromatic heterocyclic compounds that are not aromatic heterocyclic compounds are included here in aliphatic amines as alicyclic amines.

更に、生成するNHRは、アミド結合を形成可能なNH基を1つだけ有するモノアミン等の塩基だけでなく、ジアミン、トリアミン、テトラアミン等のアミド結合を形成可能なNH基を2つ以上有する塩基であってもよい。生成するNHRがNH基を2つ以上有する塩基の場合としては、前記化学式(1)のR及び/又はRの1つ以上の末端に、アミド結合を形成可能なNH基を有する塩基を電磁波の照射と加熱により発生するような光潜在性部位が更に結合している構造が挙げられる。上記光潜在性部位としては、前記化学式(1)のR及び/又はRの1つ以上の末端に、化学式(1)のR及び/又はRを除いた残基が更に結合している構造が挙げられる。 Further, the NHR 1 R 2 to be generated is not only a base such as monoamine having only one NH group capable of forming an amide bond, but also two or more NH groups capable of forming an amide bond such as diamine, triamine, and tetraamine. It may be a base. In the case where the generated NHR 1 R 2 is a base having two or more NH groups, an NH group capable of forming an amide bond is formed at one or more terminals of R 1 and / or R 2 in the chemical formula (1). The structure which the photolatent part which generate | occur | produces the base which has by irradiation of electromagnetic waves and a heating has couple | bonded further is mentioned. As the photolatent site, to one or more ends of the R 1 and / or R 2 of Formula (1), residues obtained by removing R 1 and / or R 2 is further bonded of formula (1) Structure.

生成するNHRのうち、脂肪族1級アミンとしては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、n−ブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、イソアミルアミン、tert−ペンチルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、シクロヘプタンアミン、オクチルアミン、2−オクタンアミン、2,4,4−トリメチルペンタン−2−アミン、シクロオクチルアミン等が挙げられる。 Among the generated NHR 1 R 2 , aliphatic primary amines include methylamine, ethylamine, propylamine, isopropylamine, n-butylamine, sec-butylamine, tert-butylamine, pentylamine, isoamylamine, tert-pentylamine. , Cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, cycloheptaneamine, octylamine, 2-octaneamine, 2,4,4-trimethylpentan-2-amine, cyclooctylamine and the like.

芳香族1級アミンとしては、アニリン、2−アミノフェノール、3−アミノフェノール、及び4−アミノフェノール等が挙げられる。   Examples of the aromatic primary amine include aniline, 2-aminophenol, 3-aminophenol, and 4-aminophenol.

脂肪族2級アミンとしては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、エチルメチルアミン、アジリジン、アゼチジン、ピロリジン、ピペリジン、アゼパン、アゾカン、メチルアジリジン、ジメチルアジリジン、メチルアゼチジン、ジメチルアゼチジン、トリメチルアゼチジン、メチルピロリジン、ジメチルピロリジン、トリメチルピロリジン、テトラメチルピロリジン、メチルピペリジン、ジメチルピペリジン、トリメチルピペリジン、テトラメチルピペリジン、ペンタメチルピペリジン等が挙げられ、中でも脂環式アミンが好ましい。   Aliphatic secondary amines include dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, ethylmethylamine, aziridine, azetidine, pyrrolidine, piperidine, azepan, azocan, methylaziridine, dimethylaziridine, methylazetidine, dimethyl Examples thereof include azetidine, trimethylazetidine, methylpyrrolidine, dimethylpyrrolidine, trimethylpyrrolidine, tetramethylpyrrolidine, methylpiperidine, dimethylpiperidine, trimethylpiperidine, tetramethylpiperidine, pentamethylpiperidine and the like, among which alicyclic amine is preferable.

芳香族2級アミンとしては、メチルアニリン、ジフェニルアミン、及びN−フェニル−1−ナフチルアミンが挙げられる。また、アミド結合を形成可能なNH基を有する芳香族複素環式化合物としては、塩基性の点から分子内にイミノ結合(−N=C(−R)−、−C(=NR)−:ここでRは水素原子又は1価の有機基)を有することが好ましく、イミダゾール、プリン、トリアゾール、及びこれらの誘導体等が挙げられる。   Aromatic secondary amines include methylaniline, diphenylamine, and N-phenyl-1-naphthylamine. In addition, as an aromatic heterocyclic compound having an NH group capable of forming an amide bond, an imino bond (—N═C (—R) —, —C (═NR) — Here, R preferably has a hydrogen atom or a monovalent organic group), and examples thereof include imidazole, purine, triazole, and derivatives thereof.

アミド結合を形成可能なNH基を2つ以上有する塩基としてはエチレンジアミン、1,3−プロパンジアミン、1,4−ブタンジアミン、1,5−ペンタンジアミン、1,6−ヘキサンジアミン、1,7−ヘプタンジアミン、1,8−オクタンジアミン、1,9−ノナンジアミン、1,10−デカンジアミン等の直鎖状脂肪族アルキレンジアミン;1−ブチル−1,2−エタンジアミン、1,1−ジメチル−1,4−ブタンジアミン、1−エチル−1,4−ブタンジアミン、1,2−ジメチル−1,4−ブタンジアミン、1,3−ジメチル−1,4−ブタンジアミン、1,4−ジメチル−1,4−ブタンジアミン、2,3−ジメチル−1,4−ブタンジアミン等の分岐状脂肪族アルキレンジアミン;ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等の一般式NH(CHCHNH)Hで示されるポリエチレンアミン類;シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン、ノルボルナンジメチルアミン、トリシクロデカンジメチルアミン、メンセンジアミン等の脂環式ジアミン;p−フェニレンジアミン、m−フェニレンジアミン、p−キシリレンジアミン、m−キシリレンジアミン、4,4’−ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族ジアミン;ベンゼントリアミン、メラミン、2,4,6−トリアミノピリミジン等のトリアミン;2,4,5,6−テトラアミノピリミジン等のテトラアミンを挙げることができる。 Bases having two or more NH groups capable of forming an amide bond include ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7- Linear aliphatic alkylenediamines such as heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine; 1-butyl-1,2-ethanediamine, 1,1-dimethyl-1 , 4-butanediamine, 1-ethyl-1,4-butanediamine, 1,2-dimethyl-1,4-butanediamine, 1,3-dimethyl-1,4-butanediamine, 1,4-dimethyl-1 Branched aliphatic alkylenediamines such as 1,4-butanediamine and 2,3-dimethyl-1,4-butanediamine; diethylenetriamine, triethylenetetra Emissions, polyethylene amines represented by the general formula NH 2 (CH 2 CH 2 NH ) n H , such as tetraethylene pentamine; cyclohexane diamine, methylcyclohexane diamine, isophorone diamine, norbornane dimethylamine, tricyclodecane dimethylamine, noodles Alicyclic diamines such as diamines; aromatic diamines such as p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 4,4′-diaminodiphenylmethane, diaminodiphenylsulfone; benzenetriamine, Examples thereof include triamines such as melamine and 2,4,6-triaminopyrimidine; tetraamines such as 2,4,5,6-tetraaminopyrimidine.

及びRの位置に導入される置換基によって、生成する塩基の熱物性や塩基性度が異なる。
高分子前駆体から最終生成物への反応に対する反応開始温度を低下させる等の触媒作用は、塩基性の大きい塩基性物質の方が触媒としての効果が大きく、より少量の添加で、より低い温度での最終生成物への反応が可能となる。一般に1級アミンよりは2級アミンの方が塩基性は高く、その触媒効果が大きい。
また、芳香族アミンよりも脂肪族アミンの方が塩基性が強いため好ましい。
Depending on the substituents introduced at the positions of R 1 and R 2 , the thermal properties and basicity of the generated base are different.
Catalytic action, such as lowering the reaction start temperature for the reaction from the polymer precursor to the final product, is more effective as a catalyst with a basic material having a higher basicity, and a lower temperature with a smaller amount of addition. Reaction to the final product is possible. In general, secondary amines have higher basicity than primary amines, and their catalytic effect is greater.
In addition, aliphatic amines are preferred over aromatic amines because they are more basic.

また、本発明で発生する塩基は、塩基発生剤としての感度が高くなる点から2級アミン及び/又は複素環式化合物であることが好ましく、特に2級アミンであることが好ましい。これは、2級アミンや複素環式化合物を用いることで、アミド結合部位の活性水素がなくなり、このことにより、電子密度が変化し、異性化の感度が向上するからではないかと推定される。   In addition, the base generated in the present invention is preferably a secondary amine and / or a heterocyclic compound, and more preferably a secondary amine, from the viewpoint of increasing sensitivity as a base generator. It is presumed that this is because the use of a secondary amine or a heterocyclic compound eliminates active hydrogen at the amide bond site, thereby changing the electron density and improving the sensitivity of isomerization.

また、脱離する塩基の熱物性、及び塩基性度の点から、R及びRの有機基は、それぞれ独立に炭素数1〜20が好ましく、更に炭素数1〜12が好ましく、特に炭素数1〜8であることが好ましい。 Further, from the viewpoint of the thermophysical properties of the base to be eliminated and the basicity, the organic groups of R 1 and R 2 each independently preferably have 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly carbon. It is preferable that it is number 1-8.

また、化学式(1)において、R及びRは、それぞれ独立に、水素、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、又は有機基であり、同一であっても異なっていても良い。R及びRとしては、高感度を達成しやすい点から、いずれも水素であることが好ましい。
一方、本発明において、特に化学式(1)中のR及びRのうち少なくとも1つが、水素ではなく、上記特定の官能基である場合には、R及びRの両方共が水素の場合と比べて、本発明の塩基発生剤は、有機溶剤に対する溶解性が更に向上したり、高分子前駆体との親和性が向上する。例えば、R及びRのうち少なくとも1つが、アルキル基やアリール基等の有機基である場合、有機溶剤に対する溶解性が向上する。また、例えばR及びRのうち少なくとも1つがフッ素等のハロゲンである場合、フッ素等のハロゲンを含有する高分子前駆体との親和性が向上する。また、例えばR及びRのうち少なくとも1つがシリル基やシラノール基を有する場合、ポリシロキサン前駆体との親和性が向上する。このように、R及び/又はRを所望の有機溶剤や高分子前駆体に合わせて適宜置換基を導入することにより、所望の有機溶剤に対する溶解性が向上したり、所望の高分子前駆体との親和性が向上する。
In the chemical formula (1), R 3 and R 4 are each independently hydrogen, halogen, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfino group, sulfo group, sulfonate. Group, phosphino group, phosphinyl group, phosphono group, phosphonato group, or organic group, which may be the same or different. As R 3 and R 4 , both are preferably hydrogen from the viewpoint of easily achieving high sensitivity.
On the other hand, in the present invention, particularly when at least one of R 3 and R 4 in the chemical formula (1) is not hydrogen but the specific functional group, both R 3 and R 4 are hydrogen. Compared to the case, the base generator of the present invention has further improved solubility in organic solvents and improved affinity with the polymer precursor. For example, when at least one of R 3 and R 4 is an organic group such as an alkyl group or an aryl group, the solubility in an organic solvent is improved. For example, when at least one of R 3 and R 4 is a halogen such as fluorine, the affinity with a polymer precursor containing a halogen such as fluorine is improved. For example, when at least one of R 3 and R 4 has a silyl group or a silanol group, the affinity with the polysiloxane precursor is improved. As described above, R 3 and / or R 4 are appropriately combined with a desired organic solvent or polymer precursor to introduce a substituent, thereby improving the solubility in the desired organic solvent or the desired polymer precursor. Affinity with the body is improved.

ハロゲンとしては、フッ素、塩素、臭素などが挙げられる。
有機基としては、本発明の効果が損なわれない限り、特に制限がなく、飽和又は不飽和アルキル基、飽和又は不飽和シクロアルキル基、アリール基、アラルキル基、及び飽和又は不飽和ハロゲン化アルキル基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、アルコキシ基、アルコキシカルボニル基、カルバモイル基、チオカルバモイル基、カルボキシル基、カルボキシラート基、アシル基、アシルオキシ基、ヒドロキシイミノ基等が挙げられる。これらの有機基は、当該有機基中にヘテロ原子等の炭化水素基以外の結合や置換基を含んでよく、これらは、直鎖状でも分岐状でも良い。R及びRにおける有機基は、通常、1価の有機基である。
前記R及びRの有機基中の炭化水素基以外の結合や、有機基中の炭化水素基以外の置換基としては、上記R及びRで挙げた有機基中の炭化水素基以外の結合や、有機基中の炭化水素基以外の置換基と同様のものを用いることができる。
Examples of the halogen include fluorine, chlorine, bromine and the like.
The organic group is not particularly limited as long as the effect of the present invention is not impaired, and is a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, an aryl group, an aralkyl group, and a saturated or unsaturated halogenated alkyl group. , Cyano group, isocyano group, cyanato group, isocyanato group, thiocyanato group, isothiocyanato group, alkoxy group, alkoxycarbonyl group, carbamoyl group, thiocarbamoyl group, carboxyl group, carboxylate group, acyl group, acyloxy group, hydroxyimino group, etc. Is mentioned. These organic groups may contain bonds and substituents other than hydrocarbon groups such as heteroatoms in the organic group, and these may be linear or branched. The organic group in R 3 and R 4 is usually a monovalent organic group.
Examples of the bond other than the hydrocarbon group in the organic group of R 3 and R 4 and the substituent other than the hydrocarbon group in the organic group include those other than the hydrocarbon group in the organic group mentioned in R 1 and R 2 above. And the same substituents as those other than the hydrocarbon group in the organic group can be used.

及びRとしては、いずれも水素原子であっても良いが、置換基を有する場合には少なくとも一方が、メチル基、エチル基、プロピル基等の炭素数1〜20のアルキル基;シクロペンチル基、シクロヘキシル基等の炭素数4〜23のシクロアルキル基;シクロペンテニル基、シクロヘキセニル基等の炭素数4〜23のシクロアルケニル基;フェノキシメチル基、2−フェノキシエチル基、4−フェノキシブチル基等の炭素数7〜26のアリールオキシアルキル基(−ROAr基);ベンジル基、3−フェニルプロピル基等の炭素数7〜20のアラルキル基;シアノメチル基、β−シアノエチル基等のシアノ基をもつ炭素数2〜21のアルキル基;ヒドロキシメチル基等の水酸基をもつ炭素数1〜20のアルキル基、メトキシ基、エトキシ基等の炭素数1〜20のアルコキシ基、アセトアミド基、ベンゼンスルホナミド基(CHSONH−)等の炭素数2〜21のアミド基、メチルチオ基、エチルチオ基等の炭素数1〜20のアルキルチオ基(−SR基)、アセチル基、ベンゾイル基等の炭素数1〜20のアシル基、メトキシカルボニル基、アセトキシ基等の炭素数2〜21のエステル基(−COOR基及び−OCOR基)、フェニル基、ナフチル基、ビフェニル基、トリル基等の炭素数6〜20のアリール基、電子供与性基及び/又は電子吸引性基が置換した炭素数6〜20のアリール基、電子供与性基及び/又は電子吸引性基が置換したベンジル基、シアノ基、及びメチルチオ基(−SCH)であることが好ましい。また、上記のアルキル部分は直鎖でも分岐状でも環状でも良い。 Each of R 3 and R 4 may be a hydrogen atom, but when it has a substituent, at least one of them is an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group or a propyl group; cyclopentyl Group, a cycloalkyl group having 4 to 23 carbon atoms such as a cyclohexyl group; a cycloalkenyl group having 4 to 23 carbon atoms such as a cyclopentenyl group and a cyclohexenyl group; a phenoxymethyl group, a 2-phenoxyethyl group, and a 4-phenoxybutyl group An aryloxyalkyl group having 7 to 26 carbon atoms such as -ROAr group; an aralkyl group having 7 to 20 carbon atoms such as benzyl group and 3-phenylpropyl group; and a cyano group such as cyanomethyl group and β-cyanoethyl group An alkyl group having 2 to 21 carbon atoms; an alkyl group having 1 to 20 carbon atoms having a hydroxyl group such as a hydroxymethyl group, a methoxy group, and ethoxy Carbon such as an alkoxy group having 1 to 20 carbon atoms such as a group, amide group having 2 to 21 carbon atoms such as acetamido group, benzenesulfonamide group (C 6 H 5 SO 2 NH 2 —), methylthio group, ethylthio group, etc. C1-C20 acyl groups, such as a C1-C20 alkylthio group (-SR group), an acetyl group, a benzoyl group, etc., C2-C21 ester groups, such as a methoxycarbonyl group and an acetoxy group (-COOR group and -OCOR group), a phenyl group, a naphthyl group, a biphenyl group, a tolyl group, etc., an aryl group having 6 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms substituted by an electron donating group and / or an electron withdrawing group, The electron donating group and / or the electron withdrawing group are preferably a benzyl group, a cyano group, and a methylthio group (—SCH 3 ) substituted. The alkyl moiety may be linear, branched or cyclic.

また、化学式(1)において、R、R、R及びRは、それぞれ独立に、水素、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、アミノ基、アンモニオ基、又は有機基であり、各々同一であっても異なっていても良く、R、R、R及びRのいずれかは、置換基を有してもよいシクロアルコキシ基又は3級アルコキシ基を有する。R、R、R及びRは、それらの2つ以上が結合して環状構造を形成していても良く、ヘテロ原子の結合を含んでいても良い。R〜Rにおける有機基は、通常、1価の有機基であるが、後述する環状構造を形成する場合等には、2価以上の有機基となり得る。 In the chemical formula (1), R 5 , R 6 , R 7 and R 8 are each independently hydrogen, halogen, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfino. Group, sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonate group, amino group, ammonio group, or organic group, each of which may be the same or different, R 5 , R 6 , One of R 7 and R 8 has a cycloalkoxy group or a tertiary alkoxy group which may have a substituent. Two or more of R 5 , R 6 , R 7 and R 8 may be bonded to form a cyclic structure, and may include a hetero atom bond. The organic group in R 5 to R 8 is usually a monovalent organic group, but may form a divalent or higher organic group when forming a cyclic structure described later.

上記置換基を有してもよいシクロアルコキシ基又は3級アルコキシ基は、R、R、R及びRの少なくとも1つに含まれれば良い。典型的には、R、R、R及びRのいずれかの位置において、置換基を有してもよいシクロアルコキシ基又は3級アルコキシ基が置換基として直接ベンゼン環に結合している構造が挙げられる。R〜Rの2つ以上が結合してそれらが結合しているベンゼン環の原子を共有してナフタレン、アントラセン、フェナントレン、インデン、フルオレン等の縮合環を形成している場合に、当該環状構造に置換基を有してもよいシクロアルコキシ基又は3級アルコキシ基を置換基として有していても良い。 The cycloalkoxy group or tertiary alkoxy group which may have the above-described substituent may be included in at least one of R 5 , R 6 , R 7 and R 8 . Typically, at any position of R 5 , R 6 , R 7 and R 8, an optionally substituted cycloalkoxy group or tertiary alkoxy group is bonded directly to the benzene ring as a substituent. Structure. When two or more of R 5 to R 8 are bonded and share a benzene ring atom to which they are bonded to form a condensed ring such as naphthalene, anthracene, phenanthrene, indene, fluorene, etc. The structure may have a cycloalkoxy group or a tertiary alkoxy group which may have a substituent as a substituent.

上記シクロアルコキシ基としては、高感度化の点から、炭素数が5〜20であるシクロアルコキシ基であることが好ましく、炭素数が5〜15であるシクロアルコキシ基であることが更に好ましく、炭素数が5〜10であるシクロアルコキシ基であることが、入手が容易である点、及び精製のしやすさの点からより更に好ましい。また、シクロアルコキシ基としては、5員環、6員環、及び/又は7員環を含む単環又は多環のシクロアルコキシ基であることが、入手が容易である点、及び高感度化の点から好ましい。   The cycloalkoxy group is preferably a cycloalkoxy group having 5 to 20 carbon atoms, more preferably a cycloalkoxy group having 5 to 15 carbon atoms, from the viewpoint of increasing sensitivity. A cycloalkoxy group having a number of 5 to 10 is more preferable in terms of easy availability and ease of purification. The cycloalkoxy group is a monocyclic or polycyclic cycloalkoxy group containing a 5-membered ring, a 6-membered ring, and / or a 7-membered ring. It is preferable from the point.

上記シクロアルコキシ基としては、例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロへプチルオキシ基、シクロオクチルオキシ基、シクロノニルオキシ基、シクロヘキセニルオキシ基、シクロオクタジエニルオキシ基等の単環式炭化水素基、又は、1−アダマンチルオキシ基、2−アダマンチルオキシ基、1−ノルボルニルオキシ基、ビシクロ[4.3.0]ノナニルオキシ基、デカヒドロナフタレニルオキシ基、トリシクロ[5.2.1.0(2,6)]デカニルオキシ基、ボルニルオキシ基、イソボルニルオキシ基、ノルアダマンチルオキシ基、1,7,7−トリメチルトリシクロ[2.2.1.0(2,6)]ヘプタニルオキシ基、3,7,7−トリメチルビシクロ[4.1.0]ヘプタニルオキシ基等の多環式炭化水素基等を挙げることができる。   Examples of the cycloalkoxy group include monocyclic hydrocarbons such as a cyclopentyloxy group, a cyclohexyloxy group, a cycloheptyloxy group, a cyclooctyloxy group, a cyclononyloxy group, a cyclohexenyloxy group, and a cyclooctadienyloxy group. Group, 1-adamantyloxy group, 2-adamantyloxy group, 1-norbornyloxy group, bicyclo [4.3.0] nonanyloxy group, decahydronaphthalenyloxy group, tricyclo [5.2.1 .0 (2,6)] decanyloxy group, bornyloxy group, isobornyloxy group, noradamantyloxy group, 1,7,7-trimethyltricyclo [2.2.1.0 (2,6)] heptanyloxy group , 3,7,7-trimethylbicyclo [4.1.0] heptanyloxy group, etc. It can be exemplified hydrogen group.

上記シクロアルコキシ基は、置換基を有していても良く、置換基としては、飽和又は不飽和アルキル基、飽和又は不飽和シクロアルキル基、アリール基、アラルキル基、及び飽和又は不飽和ハロゲン化アルキル基、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、シリル基、シラノール基、アルコキシ基、アルコキシカルボニル基、カルバモイル基、チオカルバモイル基、ニトロ基、ニトロソ基、カルボキシル基、カルボキシラート基、アシル基、アシルオキシ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、ヒドロキシイミノ基、飽和又は不飽和アルキルエーテル基、飽和又は不飽和アルキルチオエーテル基、アリールエーテル基、及びアリールチオエーテル基、アミノ基(−NH2, −NHR, −NRR':ここで、R及びR’はそれぞれ独立に炭化水素基)、アンモニオ基等が挙げられる。
好ましくは飽和又は不飽和アルキル基、飽和又は不飽和シクロアルキル基、アリール基、アラルキル基、及び飽和又は不飽和ハロゲン化アルキル基、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、シリル基、シラノール基、アルコキシ基、カルバモイル基、チオカルバモイル基、アシルオキシ基、スルフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、ヒドロキシイミノ基、飽和又は不飽和アルキルエーテル基、飽和又は不飽和アルキルチオエーテル基、アリールエーテル基、及びアリールチオエーテル基等が挙げられる。
The cycloalkoxy group may have a substituent, and examples of the substituent include a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, an aryl group, an aralkyl group, and a saturated or unsaturated alkyl halide. Group, halogen atom, hydroxyl group, mercapto group, sulfide group, cyano group, isocyano group, cyanato group, isocyanato group, thiocyanato group, isothiocyanato group, silyl group, silanol group, alkoxy group, alkoxycarbonyl group, carbamoyl group, thiocarbamoyl group Nitro group, nitroso group, carboxyl group, carboxylate group, acyl group, acyloxy group, sulfino group, sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonato group, hydroxyimino group, saturated or unsaturated alkyl Ether group, saturated or Examples include unsaturated alkyl thioether groups, aryl ether groups, and aryl thioether groups, amino groups (-NH2, -NHR, -NRR ': where R and R' are each independently a hydrocarbon group), ammonio groups, and the like. .
Preferably saturated or unsaturated alkyl group, saturated or unsaturated cycloalkyl group, aryl group, aralkyl group, and saturated or unsaturated halogenated alkyl group, halogen atom, hydroxyl group, mercapto group, sulfide group, cyano group, isocyano group, Cyanato, isocyanato, thiocyanato, isothiocyanato, silyl, silanol, alkoxy, carbamoyl, thiocarbamoyl, acyloxy, sulfino, phosphinyl, phosphono, phosphonato, hydroxyimino, saturated or unsaturated Examples thereof include a saturated alkyl ether group, a saturated or unsaturated alkyl thioether group, an aryl ether group, and an aryl thioether group.

なお、例えば1−メチルシクロヘキシルオキシ基や2−メチル−2−アダマンチルオキシ基等のように、シクロアルコキシ基の1位の水素原子が上記各種アルキル基やアラルキル基等の置換基を有していても良い炭化水素基と置換された場合や、1−ノルボルニルオキシ基や1−アダマンチルオキシ基等、脂肪族多環式化合物基が1位で酸素原子に結合している場合には、アルコキシ基における酸素原子に直接結合する炭素原子が、他の3個の炭素原子と結合した3級炭素原子となるため、後述の3級アルコキシ基にも該当する。   In addition, for example, the 1-position hydrogen atom of the cycloalkoxy group has a substituent such as the above various alkyl groups or aralkyl groups, such as 1-methylcyclohexyloxy group and 2-methyl-2-adamantyloxy group. In the case where an aliphatic polycyclic compound group such as 1-norbornyloxy group or 1-adamantyloxy group is bonded to the oxygen atom at the 1-position, Since the carbon atom directly bonded to the oxygen atom in the group becomes a tertiary carbon atom bonded to the other three carbon atoms, it corresponds to a tertiary alkoxy group described later.

上記3級アルコキシ基としては、高感度化の点から、炭素数が4〜20である3級アルコキシ基であることが好ましく、炭素数が4〜15である3級アルコキシ基であることが更に好ましく、炭素数が4〜10である3級アルコキシ基であることが
入手が容易である点、及び精製のしやすさの点からより更に好ましい。
また、晶析により、精製がより容易となり、純度の高い化合物が高い収率で得ることができる点から、直鎖の炭化水素の炭素数が1〜4である3級アルコキシ基であることが、更に、直鎖の炭素数が1〜2である3級アルコキシ基であることが好ましい。ここで3級アルコキシ基における直鎖の炭化水素の炭素数とは、分岐状炭化水素の中で、直鎖部分の炭素数を表し、例えば、t−ブチルオキシ基における直鎖の炭化水素の炭素数はいずれも1個となり、t−アミルオキシ基における直鎖の炭化水素の炭素数は1個又は2個となる。
The tertiary alkoxy group is preferably a tertiary alkoxy group having 4 to 20 carbon atoms, more preferably a tertiary alkoxy group having 4 to 15 carbon atoms, from the viewpoint of increasing sensitivity. Preferably, it is a tertiary alkoxy group having 4 to 10 carbon atoms, and is more preferable from the viewpoint of easy availability and the ease of purification.
In addition, it is a tertiary alkoxy group having 1 to 4 carbon atoms in a straight chain hydrocarbon because it is easier to purify by crystallization and a high-purity compound can be obtained in a high yield. Furthermore, it is preferably a tertiary alkoxy group having 1 to 2 linear carbon atoms. Here, the carbon number of the straight chain hydrocarbon in the tertiary alkoxy group represents the carbon number of the straight chain portion in the branched hydrocarbon, for example, the carbon number of the straight chain hydrocarbon in the t-butyloxy group. Is one, and the straight-chain hydrocarbon in the t-amyloxy group has 1 or 2 carbon atoms.

上記3級アルコキシ基としては、例えば、t−ブチルオキシ基、t−アミルオキシ基、1,1,3,3,−テトラメチルブトキシ基、1−メチルシクロヘキシルオキシ基、1−デシルシクロヘキシルオキシ基のほか、2−メチル−2−アダマンチルオキシ基、ビシクロ[4.3.0]ノナニルオキシ基、デカヒドロナフタレニルオキシ基、トリシクロ[5.2.1.0(2,6)]デカニルオキシ基、ボルニルオキシ基、イソボルニルオキシ基、ノルアダマンチルオキシ基、1,7,7−トリメチルトリシクロ[2.2.1.02,6]ヘプタニルオキシ基、3,7,7−トリメチルビシクロ[4.1.0]ヘプタニルオキシ基等の多環式炭化水素基等を挙げることができる。   Examples of the tertiary alkoxy group include, for example, t-butyloxy group, t-amyloxy group, 1,1,3,3, -tetramethylbutoxy group, 1-methylcyclohexyloxy group, 1-decylcyclohexyloxy group, 2-methyl-2-adamantyloxy group, bicyclo [4.3.0] nonanyloxy group, decahydronaphthalenyloxy group, tricyclo [5.2.1.0 (2,6)] decanyloxy group, bornyloxy group, Isobornyloxy group, noradamantyloxy group, 1,7,7-trimethyltricyclo [2.2.1.02,6] heptanyloxy group, 3,7,7-trimethylbicyclo [4.1.0] heptanyloxy group And a polycyclic hydrocarbon group such as a group.

化学式(1)中、R及び/又はRが、置換基を有してもよいシクロアルコキシ基及び/又は3級アルコキシ基を有することが、中でも高感度を達成する点から好ましい。 In the chemical formula (1), it is preferable that R 6 and / or R 7 have a cycloalkoxy group and / or a tertiary alkoxy group which may have a substituent from the viewpoint of achieving high sensitivity.

特に、化学式(1)中、Rが、置換基を有してもよいシクロアルコキシ基又は3級アルコキシ基を有する場合には、高感度で且つ後述する感光性樹脂組成物を厚膜として用いる場合に適している点で好ましい。後述する感光性樹脂組成物は、薄膜としてだけでなく、例えば10μm以上といった膜厚が厚い膜や成形体としても利用される。例えば、感光性樹脂組成物を塗料や、電子部品の形成材料である封止材料、層形成材料として利用する場合、厚膜として利用され得る。特にエポキシ樹脂を用いた感光性樹脂組成物の場合、絶縁性やバリア性などの物性を維持するために、用途により異なるが、50μmから数mmの厚膜が必要な場合がある。絶縁性の高いポリイミドを用いた感光性樹脂組成物の場合においても、電子部品の層形成材料として利用する場合は10μm程度の厚膜が必要な場合がある。
しかしながら、露光に多用されるi線のモル吸光係数が大きい塩基発生剤を厚膜等に利用すると、膜の上層部(光照射側)の塩基発生剤が光を吸収してしまい、膜の下層部分まで光が届かずに、パターンが形成され難いという問題があった。そこで、厚膜用の感光性樹脂組成物に用いられる塩基発生剤としては、i線の吸収が小さく、且つ高感度であることが求められていた。化学式(1)中、Rが、置換基を有してもよいシクロアルコキシ基又は3級アルコキシ基を有する場合には、比較的i線の吸収が小さく、且つ高感度となるため、厚膜用の感光性樹脂組成物に用いられる塩基発生剤として適している。
In particular, in the chemical formula (1), when R 6 has a cycloalkoxy group or a tertiary alkoxy group which may have a substituent, the photosensitive resin composition described later is used as a thick film with high sensitivity. It is preferable in that it is suitable for the case. The photosensitive resin composition to be described later is used not only as a thin film but also as a film or a molded body having a large film thickness of, for example, 10 μm or more. For example, when the photosensitive resin composition is used as a coating material, a sealing material that is a forming material for electronic parts, or a layer forming material, it can be used as a thick film. In particular, in the case of a photosensitive resin composition using an epoxy resin, a thick film having a thickness of 50 μm to several mm may be required depending on the application in order to maintain physical properties such as insulation and barrier properties. Even in the case of a photosensitive resin composition using polyimide having high insulation properties, a thick film of about 10 μm may be required when used as a layer forming material for electronic parts.
However, if a base generator having a large i-line molar extinction coefficient used for exposure is used for a thick film or the like, the base generator in the upper layer part (light irradiation side) of the film absorbs light, and the lower layer of the film. There was a problem that it was difficult to form a pattern because the light did not reach the part. Therefore, the base generator used in the photosensitive resin composition for thick films is required to have low i-line absorption and high sensitivity. In the chemical formula (1), when R 6 has a cycloalkoxy group or a tertiary alkoxy group which may have a substituent, absorption of i-line is relatively small and sensitivity is high. It is suitable as a base generator used in a photosensitive resin composition.

また、化学式(1)中、Rが、置換基を有してもよいシクロアルコキシ基又は3級アルコキシ基を有する場合には、高感度で且つ溶剤溶解性が良好な化合物となる傾向があるため、塩基発生剤が良好な溶剤溶解性を要求される場合に適している点で好ましい。 Further, in the chemical formula (1), when R 7 has a cycloalkoxy group or a tertiary alkoxy group which may have a substituent, it tends to be a compound having high sensitivity and good solvent solubility. Therefore, it is preferable in that the base generator is suitable when good solvent solubility is required.

また、化学式(1)中、R及びRが、置換基を有してもよいシクロアルコキシ基及び/又は3級アルコキシ基を有する場合には、特に高感度で且つ溶剤溶解性が良好な化合物となる傾向があり、更に、h線に感度を有するようになる点から好ましい。この場合、当該塩基発生剤をより幅広い高分子前駆体へ適用することが可能になり、多様な感光性樹脂組成物を得ることができる。 In addition, in the chemical formula (1), when R 6 and R 7 have a cycloalkoxy group and / or a tertiary alkoxy group which may have a substituent, particularly high sensitivity and good solvent solubility are obtained. It is preferable because it tends to be a compound and has sensitivity to h-line. In this case, the base generator can be applied to a wider range of polymer precursors, and various photosensitive resin compositions can be obtained.

上記化学式(1)において、R〜Rのうち、上記置換基を有してもよいシクロアルコキシ基及び/又は3級アルコキシ基を有しないR〜Rは、それぞれ独立に、水素、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、アミノ基、アンモニオ基又は有機基であり、同一であっても異なっていても良い。上記置換基を有してもよいシクロアルコキシ基及び/又は3級アルコキシ基を有しないR〜Rとしては、それぞれ独立に、水素、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、又は有機基であることが好ましい。ハロゲン原子や有機基としては、上記R及びRで挙げたハロゲン原子や有機基と同様のものを用いることができる。 In Chemical Formula (1), among the R 5 ~R 8, R 5 ~R 8 without the an optionally substituted cycloalkoxy group and / or tertiary alkoxy groups are each independently hydrogen, Halogen, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfino group, sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonato group, amino group, ammonio group or organic Groups, which may be the same or different. R 5 to R 8 not having a cycloalkoxy group and / or a tertiary alkoxy group which may have the above substituents are independently hydrogen, halogen, hydroxyl group, mercapto group, sulfide group, silyl group, silanol. It is preferably a group, a nitro group, a nitroso group, a sulfino group, a sulfo group, a sulfonate group, a phosphino group, a phosphinyl group, a phosphono group, a phosphonato group, or an organic group. As the halogen atom or organic group, the same halogen atoms and organic groups as those described above for R 3 and R 4 can be used.

また、式(1)においてRは、水素原子、或いは、加熱及び/又は電磁波の照射により脱保護可能な保護基である。ここで、“脱保護可能な”とは、−ORから−OHに変化する可能性があることを表す。Rが水素の場合には、本発明に係る塩基発生剤は、環化することで、フェノール性水酸基を消失し、溶解性が変化し、塩基性水溶液等の場合には溶解性が低下する。これにより、後述する本発明に係る感光性樹脂組成物に含まれる高分子前駆体がポリイミド前駆体やポリベンゾオキサゾール前駆体である場合、当該前駆体の最終生成物への反応による溶解性の低下を更に補助する機能を有し、露光部と未露光部の溶解性コントラストを大きくすることが可能となる。 In formula (1), R 9 is a hydrogen atom or a protecting group that can be deprotected by heating and / or irradiation with electromagnetic waves. Here, “deprotectable” means that there is a possibility of changing from —OR 9 to —OH. When R 9 is hydrogen, the base generator according to the present invention loses the phenolic hydroxyl group by cyclization to change the solubility, and in the case of a basic aqueous solution, the solubility decreases. . Thereby, when the polymer precursor contained in the photosensitive resin composition according to the present invention, which will be described later, is a polyimide precursor or a polybenzoxazole precursor, the solubility decreases due to the reaction of the precursor to the final product. It is possible to increase the solubility contrast between the exposed area and the unexposed area.

また、Rが加熱及び/又は電磁波の照射により脱保護可能な保護基である場合、加熱及び/又は電磁波の照射により脱保護されて、水酸基を生成する。加熱及び/又は電磁波の照射により脱保護可能な保護基でフェノール性水酸基を保護することにより、当該保護基を適宜選択することによって、組み合わせる化合物、例えば高分子前駆体との相溶性が向上し、組み合わせ可能な化合物の範囲が増える。例えば、フェノール性水酸基と共存することが好ましくない高分子前駆体に対しても、樹脂組成物中に共存させて用いることが可能になる。Rは、本発明で用いられる塩基発生剤において式(1)中に存在するアミド基が分解しない条件下で、加熱及び/又は電磁波の照射により脱保護可能なフェノール性水酸基の保護基であれば、特に限定されず用いることができる。例えば、アミド結合は、三臭化ホウ素や三塩化アルミニウム等の強ルイス酸や硫酸、塩酸、硝酸等の強酸等が存在する強酸性下における加熱や、水酸化ナトリウム等の強塩基が存在する強塩基性下における加熱により分解する。従って、このような強酸性又は強塩基性条件下での加熱でしか脱保護されない保護基は、本発明の塩基発生剤に用いられる保護基としては不適切である。Rは、溶解性や相溶性の向上或いは合成時の反応性の変化などを目的として、当該塩基発生剤と組み合わせて用いられる化合物の種類や、塩基発生剤の適用方法や合成方法により適宜選択されるものである。 In addition, when R 9 is a protective group that can be deprotected by heating and / or irradiation with electromagnetic waves, it is deprotected by heating and / or irradiation with electromagnetic waves to generate a hydroxyl group. By protecting the phenolic hydroxyl group with a protecting group that can be deprotected by heating and / or irradiation with electromagnetic waves, the compatibility with the compound to be combined, for example, the polymer precursor is improved by appropriately selecting the protecting group, The range of compounds that can be combined is increased. For example, a polymer precursor that is not preferably coexisting with a phenolic hydroxyl group can be used in the resin composition. R 9 may be a protecting group for a phenolic hydroxyl group that can be deprotected by heating and / or irradiation with electromagnetic waves under conditions where the amide group present in formula (1) does not decompose in the base generator used in the present invention. As long as it is not particularly limited, it can be used. For example, an amide bond is a strong acid such as boron tribromide or aluminum trichloride, a strong Lewis acid such as sulfuric acid, hydrochloric acid or nitric acid, or a strong base such as sodium hydroxide. Decomposes on heating under basic conditions. Accordingly, such a protecting group that can be deprotected only by heating under strongly acidic or strongly basic conditions is inappropriate as a protecting group used in the base generator of the present invention. R 9 is selected as appropriate depending on the type of compound used in combination with the base generator, the application method of the base generator, and the synthesis method for the purpose of improving solubility and compatibility or changing the reactivity during synthesis. It is what is done.

としては、シリル基、シラノール基、ホスフィノ基、ホスフィニル基、ホスホノ基、又は有機基から選択することができる。Rにおける有機基は、通常、1価の有機基である。 R 9 can be selected from a silyl group, a silanol group, a phosphino group, a phosphinyl group, a phosphono group, or an organic group. The organic group in R 9 is usually a monovalent organic group.

としては、下記式(2−1)〜下記式(2−6)で表される有機基よりなる群から選択される1種以上であることが、式(1)中に存在するアミド基が分解しない条件下で、加熱及び/又は電磁波の照射により脱保護可能な点から好ましい。 R 9 is an amide present in the formula (1) that is at least one selected from the group consisting of organic groups represented by the following formulas (2-1) to (2-6) It is preferable from the viewpoint that it can be deprotected by heating and / or irradiation with electromagnetic waves under conditions where the group does not decompose.

Figure 2012211276
(式(2−1)中、R30、R31、R32はそれぞれ独立に水素、ハロゲン原子、または有機基であり、R33は有機基であり、R30、R31、R32、R33はそれぞれ互いに結合して環状構造を示していても良い。式(2−2)中、R34は、有機基である。式(2−3)中、R35、R36、R37はそれぞれ独立に水素、ハロゲン原子、または有機基である。式(2−4)中、R38は、有機基である。式(2−5)中、R39は、置換基を有していても良い芳香環である。式(2−6)中、R40は、有機基である。)
Figure 2012211276
(In the formula (2-1), R 30 , R 31 and R 32 are each independently hydrogen, a halogen atom or an organic group, R 33 is an organic group, R 30 , R 31 , R 32 and R 33 may be bonded to each other to represent a cyclic structure, wherein R 34 is an organic group, wherein R 35 , R 36 , and R 37 are each an organic group; Each independently represents a hydrogen atom, a halogen atom, or an organic group, wherein R 38 is an organic group, and R 39 has a substituent in formula (2-5); (In formula (2-6), R 40 represents an organic group.)

上記式(2−1)で表される有機基は、水酸基と各種ビニルエーテル化合物との反応により得ることができる。式(2−1)で表される有機基は、例えば、各種ビニルエーテル化合物の残基である。
式(2−1)中、R30、R31、R32は、水素、または、置換または無置換のアルキル基、アリル基、アリール基が好ましい。上記式(2−1)で表される有機基のR33は、炭素数が1以上の有機基である。R33は、炭化水素骨格を有する基が例示される。炭化水素骨格を有する基は、ヘテロ原子等の炭化水素以外の結合や置換基を含んでいてもよいし、そのようなヘテロ原子の部分が芳香環に組み込まれて複素環となっていても良い。炭化水素骨格を有する基としては、例えば、直鎖、分岐鎖、又は環状の飽和又は不飽和炭化水素基、直鎖、分岐鎖又は環状の飽和又は不飽和ハロゲン化アルキル基、或いは、フェニル、ナフチル等の芳香族基、さらには、直鎖又は分岐鎖の飽和又は不飽和の炭化水素骨格中にエーテル結合を含有する基(例えば、−(R−O)n−R’、ここでR及びR’は置換又は無置換の飽和又は不飽和炭化水素、nは1以上の整数;-R”−(O−R”’)、ここでR”及びR”’は置換又は無置換の飽和又は不飽和炭化水素、mは1以上の整数、−(O−R”’)はR”の末端とは異なる炭素に結合している;などが挙げられる。)、直鎖又は分岐鎖の飽和又は不飽和の炭化水素骨格中にチオエーテル結合を含有する基、直鎖又は分岐鎖の飽和又は不飽和の炭化水素骨格上にシアノ基、シリル基、ニトロ基、アセチル基、アセトキシ基等のヘテロ原子又はヘテロ原子を含有する基が結合してなるさまざまな基が挙げられる。また、上記式(2−1)で表される有機基のR33は、R30やR31と連結して環状構造を有していても良い。
The organic group represented by the above formula (2-1) can be obtained by a reaction between a hydroxyl group and various vinyl ether compounds. The organic group represented by the formula (2-1) is, for example, a residue of various vinyl ether compounds.
In formula (2-1), R 30 , R 31 and R 32 are preferably hydrogen or a substituted or unsubstituted alkyl group, allyl group or aryl group. R 33 of the organic group represented by the above formula (2-1) is an organic group having 1 or more carbon atoms. R 33 is exemplified by a group having a hydrocarbon skeleton. The group having a hydrocarbon skeleton may contain a bond or substituent other than a hydrocarbon such as a heteroatom, or such a heteroatom part may be incorporated into an aromatic ring to form a heterocyclic ring. . Examples of the group having a hydrocarbon skeleton include a linear, branched, or cyclic saturated or unsaturated hydrocarbon group, a linear, branched, or cyclic saturated or unsaturated halogenated alkyl group, or phenyl, naphthyl. An aromatic group such as a group containing an ether bond in a linear or branched saturated or unsaturated hydrocarbon skeleton (for example, — (R—O) n —R ′, wherein R and R 'Is a substituted or unsubstituted saturated or unsaturated hydrocarbon, n is an integer greater than or equal to 1; -R "-(O-R"') m , where R "and R"'are substituted or unsubstituted saturated or Unsaturated hydrocarbon, m is an integer of 1 or more,-(O-R "') m is bonded to a carbon different from the terminal of R"; and the like), linear or branched chain saturation Or a group containing a thioether bond in an unsaturated hydrocarbon skeleton, linear or branched saturated or unsaturated Hydrocarbon backbone onto a cyano group, a silyl group, a nitro group, an acetyl group, and a variety of groups groups having a hetero atom or a hetero atom is bonded, such as acetoxy group. Further, R 33 of the organic group represented by the above formula (2-1) may be linked to R 30 or R 31 to have a cyclic structure.

前記式(2−1)中のR33は、炭素数が1〜18であることが、分解物の揮発性の点から好ましく、炭素数が3〜10であることが更に好ましい。
前記式(2−1)のR33としては特に限定されないが、例えば、メチル基、エチル基、エチニル基、プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、シクロヘキシル基、シクロヘキシルメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、シクロヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、シクロヘキシロキシプロピル基、2−テトラヒドロピラニル基等が挙げられる。また、前記式(2−1)においてR33が、R30やR31と連結して環状構造となり、−O−に結合する置換基が2−テトラヒドロピラニル基等の環状エーテルとなったもの等が挙げられる。
R 33 in the formula (2-1) preferably has 1 to 18 carbon atoms from the volatility of the decomposition product, and more preferably 3 to 10 carbon atoms.
R 33 in the formula (2-1) is not particularly limited, and examples thereof include methyl group, ethyl group, ethynyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, cyclohexyl. Group, cyclohexylmethyl group, methoxyethyl group, ethoxyethyl group, propoxyethyl group, butoxyethyl group, cyclohexyloxyethyl group, methoxypropyl group, ethoxypropyl group, propoxypropyl group, butoxypropyl group, cyclohexyloxypropyl group, 2- Tetrahydropyranyl group etc. are mentioned. In the formula (2-1), R 33 is linked to R 30 or R 31 to form a cyclic structure, and the substituent bonded to —O— is a cyclic ether such as a 2-tetrahydropyranyl group. Etc.

上記式(2−2)で表される有機基は、例えば、水酸基と、所謂カーボネート系保護基の導入試薬との反応により得ることができる。
カーボネート系保護基としては、例えば、tert-ブトキシカルボニル基(Boc−)、ベンジルオキシカルボニル基(Z−)、9−フルオレニルメトキシカルボニル(Fmoc−)、1,1−ジオキソベンゾ[b]チオフェン−2−イルメトキシカルボニル基(Bsmoc−)、2−(4−ニトロフェニルスルホニル)エトキシカルボニル基(Nsc−)、p−メトキシベンジルオキシカルボニル基(Z(OMe−))、アリルオキシカルボニル基(Alloc−)、2,2,2−トリクロロエトキシカルボニル基(Troc−)等が挙げられる。
The organic group represented by the above formula (2-2) can be obtained, for example, by a reaction between a hydroxyl group and a so-called carbonate-based protecting group introduction reagent.
Examples of the carbonate protecting group include tert-butoxycarbonyl group (Boc-), benzyloxycarbonyl group (Z-), 9-fluorenylmethoxycarbonyl (Fmoc-), 1,1-dioxobenzo [b] thiophene- 2-ylmethoxycarbonyl group (Bsmoc-), 2- (4-nitrophenylsulfonyl) ethoxycarbonyl group (Nsc-), p-methoxybenzyloxycarbonyl group (Z (OMe-)), allyloxycarbonyl group (Alloc- ), 2,2,2-trichloroethoxycarbonyl group (Troc-) and the like.

前記式(2−2)のR34としては特に限定されないが、例えば、tert−ブチル基、ベンジル基、9−フルオレニルメチル基、2,2,2−トリクロロエチル基、アリル基、p−メトキシベンジル基、1,1−ジオキソベンゾ[b]チオフェン−2−イルメチル基、2−(4−ニトロフェニルスルホニル)エチル基、o−ニトロベンジル基等が挙げられる。o−ニトロベンジル基の場合には、電磁波照射により脱保護が可能である。 R 34 in the formula (2-2) is not particularly limited, and examples thereof include tert-butyl group, benzyl group, 9-fluorenylmethyl group, 2,2,2-trichloroethyl group, allyl group, p- Examples include methoxybenzyl group, 1,1-dioxobenzo [b] thiophen-2-ylmethyl group, 2- (4-nitrophenylsulfonyl) ethyl group, o-nitrobenzyl group and the like. In the case of an o-nitrobenzyl group, deprotection is possible by irradiation with electromagnetic waves.

上記式(2−3)で表される有機基は、例えば、水酸基と、シリルエーテル系保護基の導入試薬との反応により得ることができる。
シリルエーテル系保護基としては例えば、トリメチルシリル基(TMS−)、tert−ブチルジメチルシリル基(TBDMS−)、tert-ブチルジフェニルシリル基(TBDPS−)、トリイソプロピルシリル基(TIPS−)、tert-ブトキシジフェニルシリル基等が挙げられる。
前記式(2−3)のR35、R36、R37としては特に限定されないが、例えば、メチル基、tert−ブチル基、イソプロピル基等のアルキル基、フェニル基のアリール基、アルコキシ基が好適に用いられる。
The organic group represented by the above formula (2-3) can be obtained, for example, by a reaction between a hydroxyl group and a reagent for introducing a silyl ether protecting group.
Examples of silyl ether protecting groups include trimethylsilyl group (TMS-), tert-butyldimethylsilyl group (TBDMS-), tert-butyldiphenylsilyl group (TBDPS-), triisopropylsilyl group (TIPS-), tert-butoxy. A diphenylsilyl group etc. are mentioned.
Although it does not specifically limit as R < 35> , R <36> , R <37 > of said Formula (2-3), For example, alkyl groups, such as a methyl group, a tert-butyl group, an isopropyl group, the aryl group of a phenyl group, and an alkoxy group are suitable Used for.

上記式(2−4)で表される有機基は、例えば、水酸基と、酸塩化物または酸無水物により得ることができる。
式(2−4)で表されるエステル系保護基としては、例えば、アセチル基(Ac−)、ピバロイル基、ベンゾイル基等が挙げられる。
前記式(2−4)のR38としては特に限定されないが、例えば、メチル基、tert−ブチル基等のアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基等が好適に用いられる。
The organic group represented by the above formula (2-4) can be obtained by, for example, a hydroxyl group and an acid chloride or acid anhydride.
Examples of the ester protecting group represented by the formula (2-4) include an acetyl group (Ac-), a pivaloyl group, and a benzoyl group.
R 38 in the formula (2-4) is not particularly limited, and for example, an alkyl group such as a methyl group or a tert-butyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, or the like is preferably used. .

上記式(2−5)で表される有機基は、例えば、Williamson反応を用いて、水酸基とハロゲン化物により得ることができる。
式(2−5)で表されるエーテル系保護基としては、例えば、置換基を有していても良いベンジル基等が挙げられる。
前記式(2−5)のR39は置換基を有していても良い芳香環であり、特に限定されないが、置換基を有していても良いフェニル基、ナフチル基等が挙げられる。特に、式(2−5)で表される有機基が、o−ニトロベンジル基の場合、すなわち、R39が2−ニトロフェニル基の場合には、電磁波照射により脱保護が可能である。
The organic group represented by the above formula (2-5) can be obtained from a hydroxyl group and a halide using, for example, a Williamson reaction.
Examples of the ether protecting group represented by the formula (2-5) include a benzyl group which may have a substituent.
R 39 in the formula (2-5) is an aromatic ring which may have a substituent, and is not particularly limited, and examples thereof include a phenyl group and a naphthyl group which may have a substituent. In particular, when the organic group represented by the formula (2-5) is an o-nitrobenzyl group, that is, when R 39 is a 2-nitrophenyl group, deprotection is possible by electromagnetic wave irradiation.

上記式(2−6)で表される有機基は、例えば、水酸基と、イソシアネートとの反応により得ることができる。
カルバメート系保護基としては、例えば、ベンジルイソシアネート等が挙げられる。
前記式(2−6)のRとしては特に限定されないが、例えば、ベンジル基等が挙げられる。
The organic group represented by the above formula (2-6) can be obtained, for example, by a reaction between a hydroxyl group and an isocyanate.
Examples of the carbamate protecting group include benzyl isocyanate.
Although it does not specifically limit as R of said Formula (2-6), For example, a benzyl group etc. are mentioned.

また、化学式(1)で表される構造は、幾何異性体が存在するが、トランス体のみを用いることが好ましい。しかし、合成および精製工程および保管時などにおいて幾何異性体であるシス体が混ざる可能性もあり、この場合トランス体とシス体の混合物を用いても良いが、溶解性コントラストを高められる点から、シス体の割合が10%未満であることが好ましい。   Further, the structure represented by the chemical formula (1) has a geometric isomer, but it is preferable to use only the trans isomer. However, cis isomers that are geometric isomers may be mixed during synthesis and purification steps and storage, and in this case, a mixture of trans isomer and cis isomer may be used. It is preferable that the ratio of cis-isomer is less than 10%.

上記化学式(1)で表される塩基発生剤は、ポリイミド前駆体やポリベンゾオキサゾール前駆体と組み合わせて用いられる場合には、加熱して初期の重量から5%重量が減少したときの温度(5%重量減少温度)が100℃以上であることが好ましい。ポリイミド前駆体やポリベンゾオキサゾール前駆体の場合、塗膜を形成する際にN−メチル−2−ピロリドンなどの高沸点溶媒を用いる必要があるが、このように5%重量減少温度が高い場合には残留溶媒の影響が少なくなるような乾燥条件で塗膜を形成することができる。これにより、残留溶媒の影響による露光部と未露光部での溶解性コントラストの減少を抑制することができる。
本発明において、5%重量減少温度とは、熱重量分析装置を用いて重量減少を測定した時に、サンプルの重量が初期重量から5%減少した時点(すなわち、サンプル重量が初期の95%となった時点)の温度である。
一方で、本発明の感光性樹脂組成物を用いた製品中に本発明の塩基発生剤に由来する不純物が残存しないことが好ましいため、本発明の塩基発生剤は、現像後に行う加熱のプロセス(例えば、組み合わせる高分子がポリイミド前駆体の場合、イミド化のプロセス)で分解、又は揮発してしまうことが好ましい。具体的には、本発明の塩基発生剤は5%重量減少温度が350℃以下であることが好ましく、更に300℃以下であることが好ましい。
なお、上記化学式(1)で表される塩基発生剤の5%重量減少温度は、上記置換基を適宜選択することにより、調整することができる。
When the base generator represented by the chemical formula (1) is used in combination with a polyimide precursor or a polybenzoxazole precursor, the temperature (5% when the weight is reduced by 5% from the initial weight by heating. % Weight reduction temperature) is preferably 100 ° C. or higher. In the case of a polyimide precursor or a polybenzoxazole precursor, it is necessary to use a high boiling point solvent such as N-methyl-2-pyrrolidone when forming a coating film. Can form a coating film under dry conditions that reduce the influence of the residual solvent. Thereby, the reduction | decrease of the solubility contrast by the influence of a residual solvent in an exposed part and an unexposed part can be suppressed.
In the present invention, the 5% weight reduction temperature is the time when the weight of the sample is reduced by 5% from the initial weight when the weight loss is measured using a thermogravimetric analyzer (that is, the sample weight becomes 95% of the initial weight). Temperature).
On the other hand, since it is preferable that impurities derived from the base generator of the present invention do not remain in the product using the photosensitive resin composition of the present invention, the base generator of the present invention is a heating process (after development) ( For example, when the polymer to be combined is a polyimide precursor, it is preferably decomposed or volatilized by an imidization process). Specifically, the 5% weight loss temperature of the base generator of the present invention is preferably 350 ° C. or lower, more preferably 300 ° C. or lower.
The 5% weight reduction temperature of the base generator represented by the chemical formula (1) can be adjusted by appropriately selecting the substituent.

また、発生する塩基の沸点が25℃以上であることが、室温での取り扱い性が良好になることから好ましい。発生する塩基の沸点が25℃以上でない場合には、塗膜とした際に、特に乾燥時に生成したアミンが蒸発しやすくなってしまうため作業が困難となる恐れがある。また、発生する塩基を、膜中に残存しない硬化促進剤として用いる場合には、発生する塩基の350℃における重量減少が80%以上であると、硬化後の高分子中に塩基が残存するのを抑制しやすい点から好ましい。但し、発生する塩基を、膜中に残存する架橋剤乃至硬化剤として用いる場合は、発生する塩基の上記重量減少は問題にならない。   Moreover, it is preferable that the boiling point of the generated base is 25 ° C. or more because the handleability at room temperature is improved. When the boiling point of the generated base is not 25 ° C. or higher, when it is used as a coating film, the amine generated during drying tends to evaporate, which may make the operation difficult. When the generated base is used as a curing accelerator that does not remain in the film, if the weight loss of the generated base at 350 ° C. is 80% or more, the base remains in the cured polymer. It is preferable because it is easy to suppress the above. However, when the generated base is used as a crosslinking agent or a curing agent remaining in the film, the weight reduction of the generated base is not a problem.

前記化学式(1)で表される塩基発生剤を用いる際の、塩基を発生させるための加熱温度としては、組み合わせる高分子前駆体や目的により適宜選択され、特に限定されない。塩基発生剤が置かれた環境の温度(例えば、室温)による加熱であっても良く、その場合、徐々に塩基が発生する。また、電磁波の照射時に副生される熱によっても塩基が発生するため、電磁波の照射時に副生される熱により実質的に加熱も同時に行われても良い。反応速度を高くし、効率よく塩基を発生させる点から、塩基を発生させるための加熱温度としては、30℃以上であることが好ましく、更に好ましくは60℃以上、より更に好ましくは100℃以上、特に好ましくは120℃以上である。しかしながら、組み合わせて用いられる高分子前駆体によっては、例えば60℃以上の加熱で未露光部についても硬化するものもあるので、好適な加熱温度は、上記に限定されない。
また、前記化学式(1)で表される塩基発生剤の塩基発生以外の分解を防ぐために、300℃以下で加熱することが好ましい。
The heating temperature for generating a base when using the base generator represented by the chemical formula (1) is appropriately selected depending on the polymer precursor to be combined and the purpose, and is not particularly limited. Heating by the temperature (for example, room temperature) of the environment where the base generator is placed may be used, and in this case, the base is gradually generated. Further, since the base is also generated by heat generated as a by-product during irradiation with electromagnetic waves, heating may be performed substantially simultaneously with the heat generated as a by-product during irradiation with electromagnetic waves. From the viewpoint of increasing the reaction rate and generating the base efficiently, the heating temperature for generating the base is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 100 ° C. or higher, Especially preferably, it is 120 degreeC or more. However, depending on the polymer precursors used in combination, for example, the unexposed part may be cured by heating at 60 ° C. or higher, so that the suitable heating temperature is not limited to the above.
Moreover, in order to prevent decomposition | disassembly other than base generation | occurrence | production of the base generator represented by said Chemical formula (1), it is preferable to heat at 300 degrees C or less.

前記化学式(1)で表される塩基発生剤は電磁波の照射のみでも塩基を発生するが、適宜加熱することにより塩基の発生が促進される。従って、効率的に塩基を発生させるために、前記化学式(1)で表される塩基発生剤を用いる際には、露光後又は露光と同時に加熱を行うことにより塩基を発生する。露光と加熱を交互に行ってもよい。最も効率が良い方法は、露光と同時に加熱する方法である。   The base generator represented by the chemical formula (1) generates a base only by irradiation with electromagnetic waves, but generation of the base is promoted by heating appropriately. Therefore, in order to generate a base efficiently, when using the base generator represented by the chemical formula (1), the base is generated by heating after exposure or simultaneously with exposure. Exposure and heating may be performed alternately. The most efficient method is a method of heating simultaneously with exposure.

前記化学式(1)で表される塩基発生剤は、他の成分と組み合わせて用いることが容易になる点から、後述するいずれかの溶剤の25℃における飽和溶解度が0.1重量%以上であることが好ましく、0.5重量%以上であることが更に好ましい。前記化学式(1)で表される塩基発生剤は、中でも、プロピレングリコールモノメチルエーテル、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、γ−ブチロラクトン等の極性溶媒、トルエン等の芳香族炭化水素類、及び、これらの溶媒からなる混合溶媒よりなる群から選択される1種以上の溶剤の25℃における飽和溶解度が0.1重量%以上であることが好ましく、0.5重量%以上であることが更に好ましい。高分子前駆体等の良溶媒であるこれらの溶剤に上記のような良好な溶剤溶解性を有する場合には、高分子前駆体等の他の成分と組み合わせて、十分な量で本発明の塩基発生剤を用いることができるため、光塩基発生剤として十分に機能を発揮することができ、優れた感光性樹脂組成物となる。   Since the base generator represented by the chemical formula (1) can be easily used in combination with other components, the saturation solubility at 25 ° C. of any of the solvents described later is 0.1% by weight or more. It is preferably 0.5% by weight or more. The base generator represented by the chemical formula (1) is, among others, propylene glycol monomethyl ether, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl acetate, propylene glycol monomethyl ether acetate, N, N-dimethylacetamide, N-methyl-2 The saturation solubility at 25 ° C. of one or more solvents selected from the group consisting of polar solvents such as pyrrolidone and γ-butyrolactone, aromatic hydrocarbons such as toluene, and mixed solvents composed of these solvents is 0. The content is preferably 1% by weight or more, and more preferably 0.5% by weight or more. When these solvents, which are good solvents such as polymer precursors, have good solvent solubility as described above, a sufficient amount of the base of the present invention is combined with other components such as polymer precursors. Since the generator can be used, it can sufficiently function as a photobase generator, resulting in an excellent photosensitive resin composition.

本発明の化学式(1)で表される塩基発生剤の合成方法としては、例えば、上記特許文献6や本発明者らによる特開2010−254946号公報を参考に合成することができる。フェノール性水酸基における保護基(R)は、合成途中で導入していても良いし、合成の最後に導入しても良い。 As a method for synthesizing the base generator represented by the chemical formula (1) of the present invention, for example, it can be synthesized with reference to Patent Document 6 and JP 2010-254946 A by the present inventors. The protecting group (R 9 ) in the phenolic hydroxyl group may be introduced during the synthesis or may be introduced at the end of the synthesis.

また、前記式(1)のR及びRのうち、Rに置換基を導入する場合、まず、各置換基を導入したヒドロキシフェニル−(C=O)−R(例えば、Rがメチル基の場合は、各置換基を導入した2’−ヒドロキシフェニルメチルケトン)の合成を行う。次に、各置換基を導入したヒドロキシフェニル−(C=O)−Rに、wittig反応、Knoevenagel反応、又はPerkin反応を行うことで、各置換基を導入した桂皮酸誘導体の合成を行う。
前記式(1)のR及びRのうち、Rのみに置換基を導入する場合、まず、各置換基を導入したヒドロキシベンズアルデヒドの合成を行う。次に、各置換基を導入したヒドロキシベンズアルデヒドにwittig反応の試薬を例えば、1−エトキシカルボニルエチリデン−トリフェニルホスホラン等に変更して、wittig反応を行うことで、Rにメチル基を導入した桂皮酸誘導体の合成を行う。wittig反応の試薬はRに導入したい置換基により適宜選択され、例えばアセチル基の場合には、3−オキソ−2−(トリフェニル−ホスファニリデン)−酪酸エチルエステル等を用いることができる。そして得られた桂皮酸誘導体を用いて、上記と同様に目的物を得ることができる。
Further, among R 3 and R 4 in the formula (1), when introducing a substituent R 4, firstly, hydroxyphenyl introduced each substituent - (C = O) -R 4 ( e.g., R 4 Is a methyl group, 2'-hydroxyphenyl methyl ketone having each substituent introduced therein is synthesized. Next, a cinnamic acid derivative into which each substituent is introduced is synthesized by performing a wittig reaction, a Knoevenagel reaction, or a Perkin reaction on hydroxyphenyl- (C═O) —R 4 into which each substituent is introduced.
When introducing a substituent only into R 3 among R 3 and R 4 in the formula (1), first, hydroxybenzaldehyde into which each substituent is introduced is synthesized. Next, the methyl group was introduced into R 3 by changing the reagent of the wittig reaction to hydroxybenzaldehyde into which each substituent was introduced, for example, by changing the reagent to 1-ethoxycarbonylethylidene-triphenylphosphorane or the like and performing the wittig reaction. Synthesis of cinnamic acid derivatives. The reagent for the wittig reaction is appropriately selected depending on the substituent to be introduced into R 3. For example, in the case of an acetyl group, 3-oxo-2- (triphenyl-phosphanylidene) -butyric acid ethyl ester or the like can be used. Using the cinnamic acid derivative thus obtained, the desired product can be obtained in the same manner as described above.

各置換基を導入したヒドロキシフェニル−(C=O)−Rの合成は、対応する置換基を有するフェノールに、Friedel-Craftsアシル化反応を行うことで合成できる。また、各置換基を導入したヒドロキシフェニル−(C=O)−Rの合成は、ジヒドロキシフェニル−(C=O)−Rに対しウィリアムソン合成を行うことで置換基を導入することもできる。出発原料としてジヒドロキシフェニル−(C=O)−Rからトリヒドロキシ−、テトラヒドロキシ−とすることにより、置換基は適宜選択できる。 The synthesis of hydroxyphenyl- (C═O) —R 4 into which each substituent is introduced can be synthesized by performing Friedel-Crafts acylation reaction on the phenol having the corresponding substituent. Further, hydroxyphenyl introduced each substituent - Synthesis of (C = O) -R 4 is dihydroxyphenyl - (C = O) with respect -R 4 introducing a substituent by performing Williamson synthesis is also it can. By using dihydroxyphenyl- (C═O) —R 4 as a starting material to trihydroxy-, tetrahydroxy-, the substituent can be appropriately selected.

反応終了後、目的化合物を有機溶媒に抽出し、塩基性水溶液および酸性水溶液にて洗浄し濃縮・乾燥することで粗生成物を得る。その後、以下のような再沈殿、晶析、再結晶等の精製方法を用いて精製することが好ましい。精製方法は、目的化合物の性質や不純物に応じて適宜選択される。
再沈殿法は、得られた粗生成物を少量の良溶媒に溶かして溶液とし、これに大量の貧溶媒を加えるか、或いは反対に大量の貧溶媒に溶液を少しずつ加えていくことで、目的化合物を沈殿として得る方法である。
晶析法は、溶解度の温度依存性を利用して冷却または加熱により溶液から目的成分を結晶化させ、目的化合物を得る方法である。
再結晶法は、粗結晶を溶媒に溶かし、溶媒の蒸発、温度差や溶媒の混合比の変化による溶解度の差などを利用して結晶を析出させ、目的化合物を得る方法である。
なお、本発明の塩基発生剤の合成方法は上記の方法に限定されるものではない。本発明の塩基発生剤は、複数の従来公知の合成ルートで合成することができる。
After completion of the reaction, the target compound is extracted into an organic solvent, washed with a basic aqueous solution and an acidic aqueous solution, concentrated and dried to obtain a crude product. Then, it is preferable to refine | purify using purification methods, such as the following reprecipitation, crystallization, and recrystallization. The purification method is appropriately selected according to the properties and impurities of the target compound.
In the reprecipitation method, the obtained crude product is dissolved in a small amount of a good solvent to form a solution, and a large amount of the poor solvent is added thereto, or conversely, the solution is gradually added to the large amount of the poor solvent. In this method, the target compound is obtained as a precipitate.
The crystallization method is a method of obtaining a target compound by crystallizing a target component from a solution by cooling or heating utilizing temperature dependency of solubility.
The recrystallization method is a method of obtaining a target compound by dissolving a crude crystal in a solvent and precipitating the crystal by utilizing solvent evaporation, a difference in solubility due to a temperature difference or a change in the mixing ratio of the solvent, and the like.
In addition, the synthesis | combining method of the base generator of this invention is not limited to said method. The base generator of the present invention can be synthesized by a plurality of conventionally known synthesis routes.

本発明の化学式(1)で表される塩基発生剤は、高分子前駆体が最終生成物となるための塩基発生の機能を十分に発揮させるために、露光波長の少なくとも一部に対して吸収を有する必要がある。一般的な露光光源である高圧水銀灯の波長としては、365nm、405nm、436nmがある。このため、本発明の化学式(1)で表される塩基発生剤は、少なくとも365nm、405nm、436nmの波長の電磁波のうち少なくとも1つの波長の電磁波に対して吸収を有することが好ましい。このような場合、適用可能な高分子前駆体の種類がさらに増える点から好ましい。   The base generator represented by the chemical formula (1) of the present invention absorbs at least a part of the exposure wavelength in order to sufficiently exhibit the function of base generation for the polymer precursor to be the final product. It is necessary to have. The wavelength of a high-pressure mercury lamp that is a general exposure light source includes 365 nm, 405 nm, and 436 nm. For this reason, it is preferable that the base generator represented by the chemical formula (1) of the present invention absorbs at least one electromagnetic wave having a wavelength of 365 nm, 405 nm, or 436 nm. In such a case, it is preferable because the number of applicable polymer precursors is further increased.

前記化学式(1)で表される塩基発生剤は、そのモル吸光係数が、電磁波の波長365nmにおいて100以上、又は405nmにおいて1以上であることが、適用可能な高分子前駆体の種類がさらに増える点から好ましい。   The base generator represented by the chemical formula (1) has a molar extinction coefficient of 100 or more at an electromagnetic wave wavelength of 365 nm, or 1 or more at 405 nm, and the number of applicable polymer precursors further increases. It is preferable from the point.

なお、本発明の化学式(1)で表される塩基発生剤が前記波長領域に吸収を有することは、当該波長領域に吸収をもたない溶媒(例えば、アセトニトリル)に、化学式(1)で表される塩基発生剤を1×10−4mol/L以下の濃度(通常、1×10−4mol/L〜1×10−5mol/L程度。適度な吸収強度となるように、適宜、調節してもよい。)で溶解し、紫外可視分光光度計(例えば、UV−2550(株)島津製作所製))により吸光度を測定することにより明らかにすることができる。 The fact that the base generator represented by the chemical formula (1) of the present invention has absorption in the wavelength region is expressed by the chemical formula (1) in a solvent (for example, acetonitrile) that does not absorb in the wavelength region. bases generating agent 1 × 10 -4 mol / L or less of the concentration (usually, 1 × 10 -4 mol / L~1 × 10 -5 mol / L or so. so as to give suitable absorption intensity, as appropriate, And may be clarified by measuring the absorbance with an ultraviolet-visible spectrophotometer (for example, UV-2550 (manufactured by Shimadzu Corporation)).

上記本発明に係る化学式(1)で表される塩基発生剤は、従来用いられていた光塩基発生剤と比べて高い感度を有するため、種々に応用が可能である。後で詳細に説明する、塩基性物質によって又は塩基性物質の存在下での加熱によって最終生成物への反応が促進される高分子前駆体と組み合わせることに限られず、酸−塩基指示薬等の塩基により構造や物性が変化する化合物と組み合わせて、種々の感光性組成物を形成することができる。このような感光性組成物は、塗料、印刷インキ、シール剤、又は接着剤、或いは、表示装置、半導体装置、電子部品、微小電気機械システム(Micro Electro Mechanical System(MEMS))、光学部材又は建築材料の形成材料として用いることができる。
例えば、光塩基発生剤と酸−塩基指示薬とを少なくとも含む画像形成層を、基材上に被覆又は基材に含浸させてなる画像形成媒体において、画像形成層を露光すると、前記光塩基発生剤が、酸−塩基指示薬と反応する塩基を生成し、画像が形成されることを特徴とする画像形成媒体のような表示装置などにも応用することができる。
Since the base generator represented by the chemical formula (1) according to the present invention has higher sensitivity than the conventionally used photobase generator, various applications are possible. A base such as an acid-base indicator, not limited to combining with a polymer precursor whose reaction to the final product is promoted by heating in the presence of a basic substance or in the presence of a basic substance, which will be described in detail later Thus, various photosensitive compositions can be formed in combination with a compound whose structure and physical properties change. Such a photosensitive composition may be used as a paint, a printing ink, a sealant, an adhesive, a display device, a semiconductor device, an electronic component, a micro electro mechanical system (MEMS), an optical member, or an architecture. It can be used as a material forming material.
For example, when an image forming layer is exposed in an image forming medium obtained by coating or impregnating a base material with an image forming layer containing at least a photobase generator and an acid-base indicator, the photobase generator However, the present invention can also be applied to a display device such as an image forming medium in which an image is formed by generating a base that reacts with an acid-base indicator.

<感光性樹脂組成物>
本発明に係る感光性樹脂組成物は、塩基性物質によって又は塩基性物質の存在下での加熱によって最終生成物への反応が促進される高分子前駆体、及び、前記本発明に係る下記化学式(1)で表され且つ電磁波の照射と加熱により塩基を発生する塩基発生剤を含有することを特徴とする。
<Photosensitive resin composition>
The photosensitive resin composition according to the present invention includes a polymer precursor whose reaction to the final product is promoted by heating with a basic substance or in the presence of the basic substance, and the following chemical formula according to the present invention: It is represented by (1) and contains a base generator that generates a base by irradiation with electromagnetic waves and heating.

Figure 2012211276
(式(1)中、R及びRは、それぞれ独立に、水素又は有機基であり、同一であっても異なっていても良い。R及びRは、それらが結合して環状構造を形成していても良く、ヘテロ原子の結合を含んでいても良い。但し、R及びRの少なくとも1つは有機基である。R及びRはそれぞれ独立に、水素、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、又は有機基であり、同一であっても異なっていても良い。R、R、R及びRは、それぞれ独立に、水素、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、アミノ基、アンモニオ基又は有機基であり、同一であっても異なっていても良く、R、R、R及びRのいずれかは、置換基を有してもよいシクロアルコキシ基又は3級アルコキシ基を有する。R、R、R及びRは、それらの2つ以上が結合して環状構造を形成していても良く、ヘテロ原子の結合を含んでいても良い。Rは、水素原子、或いは、加熱及び/又は電磁波の照射により脱保護可能な保護基である。)
Figure 2012211276
(In Formula (1), R 1 and R 2 are each independently hydrogen or an organic group and may be the same or different. R 1 and R 2 are bonded to form a cyclic structure. And may contain a heteroatom bond, provided that at least one of R 1 and R 2 is an organic group, and R 3 and R 4 are each independently hydrogen, halogen, Hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfino group, sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonate group, or organic group, which are the same be different even good .R 5, R 6, R 7 and R 8 are each independently hydrogen, halogen, a hydroxyl group, a mercapto group, a sulfide group, a silyl group, a silanol group, a nitro group, two Nitroso group, a sulfino group, a sulfo group, a sulfonato group, a phosphino group, a phosphinyl group, a phosphono group, a phosphonate group, an amino group, an ammonio group or an organic group, may be different even in the same, R 5, R 6 , any one of R 7 and R 8 has a cycloalkoxy group or a tertiary alkoxy group which may have a substituent, and R 5 , R 6 , R 7 and R 8 are two or more of them. It may be bonded to form a cyclic structure and may contain a heteroatom bond, and R 9 is a hydrogen atom or a protective group that can be deprotected by heating and / or irradiation with electromagnetic waves. )

上述のように、前記化学式(1)で表される塩基発生剤は、上記特定の構造を有し、電磁波の照射により、(−CR=CR−C(=O)−)部分がシス体へと異性化し、さらに加熱されることにより塩基(NHR)を発生する。さらに、塩基を発生する際に、前記化学式(1)で表される構造は環化し、その結果フェノール性水酸基が失われ、塩基性水溶液の現像液への溶解性が低下する。
前記高分子前駆体は、前記塩基発生剤から発生した塩基性物質の作用によって最終生成物への反応が促進される。
As described above, the base generator represented by the chemical formula (1) has the above-described specific structure, and the (—CR 4 ═CR 3 —C (═O) —) moiety is cis by irradiation with electromagnetic waves. Is isomerized to a body and further heated to generate a base (NHR 1 R 2 ). Furthermore, when the base is generated, the structure represented by the chemical formula (1) is cyclized. As a result, the phenolic hydroxyl group is lost, and the solubility of the basic aqueous solution in the developer is lowered.
The polymer precursor is promoted to react with the final product by the action of the basic substance generated from the base generator.

この様な塩基発生剤及び高分子前駆体の溶解性の変化により、本発明に係る感光性樹脂組成物は、露光部と未露光部との間で溶解性に大きな差が生じ、すなわち、溶解性コントラストが大きくなり、パターン形成が可能となる。   Due to such a change in solubility of the base generator and the polymer precursor, the photosensitive resin composition according to the present invention has a large difference in solubility between the exposed part and the unexposed part. The characteristic contrast increases, and pattern formation becomes possible.

上述のように、前記化学式(1)で表される塩基発生剤は、従来の光塩基発生剤と比べて、高い感度を有するため、本発明の感光性樹脂組成物は、高感度となる。また、本発明の感光性樹脂組成物は、置換基等により有機溶剤に対する溶解性や組み合わせる高分子前駆体との親和性を調整できるため、適用できる高分子前駆体の範囲が広く、その高分子前駆体と塩基発生剤の溶解性の変化等の特性を生かすことが出来る分野で広く応用される。例えば、感光性ポリイミド前駆体樹脂組成物とそのイミド化物の特性を生かすことが出来る分野で好適に応用される。本発明によれば、塩基発生剤及び高分子前駆体の溶解性の変化により溶解性コントラストが大きくなるので、現像液に対する溶解性がもともと大きいポリイミド前駆体についても好適に用いることができる。   As described above, since the base generator represented by the chemical formula (1) has higher sensitivity than the conventional photobase generator, the photosensitive resin composition of the present invention has high sensitivity. In addition, since the photosensitive resin composition of the present invention can adjust solubility in organic solvents and affinity with a polymer precursor to be combined by a substituent or the like, the range of applicable polymer precursors is wide, and the polymer It is widely applied in fields where it is possible to make use of characteristics such as changes in solubility between the precursor and the base generator. For example, it is suitably applied in a field where the characteristics of the photosensitive polyimide precursor resin composition and its imidized product can be utilized. According to the present invention, since the solubility contrast is increased by the change in solubility of the base generator and the polymer precursor, it is possible to suitably use a polyimide precursor that is originally highly soluble in a developer.

以下、本発明に係る感光性樹脂組成物の構成成分を説明するが、本発明に係る感光性樹脂組成物に用いられる塩基発生剤については、上記本発明に係る塩基発生剤と同様のものを用いることができるので、ここでの説明を省略する。従って、高分子前駆体、並びに、必要に応じて適宜含むことができるその他の成分について順に説明する。
塩基発生剤及び高分子前駆体としては、1種単独で用いても良いし、2種以上混合して用いても良い。
Hereinafter, although the structural component of the photosensitive resin composition which concerns on this invention is demonstrated, about the base generator used for the photosensitive resin composition which concerns on this invention, the thing similar to the said base generator concerning this invention is mentioned. Since it can be used, explanation here is omitted. Therefore, the polymer precursor and other components that can be appropriately included as necessary will be described in order.
As the base generator and the polymer precursor, one kind may be used alone, or two or more kinds may be mixed and used.

<高分子前駆体>
本発明の感光性樹脂組成物に用いる高分子前駆体とは、反応により最終的に目的の物性を示す高分子となる物質を意味し、当該反応には分子間反応及び分子内反応がある。高分子前駆体自体は、比較的低分子の化合物であっても高分子化合物であってもよい。
また、本発明の高分子前駆体は、塩基性物質によって又は塩基性物質の存在下での加熱によって最終生成物への反応が促進される化合物である。ここで、高分子前駆体が、塩基性物質によって又は塩基性物質の存在下での加熱によって最終生成物への反応が促進される態様には、高分子前駆体が塩基性物質の作用のみによって最終生成物に変化する態様のみならず、塩基性物質の作用によって高分子前駆体の最終生成物への反応温度が、塩基性物質の作用がない場合に比べて低下するような態様が含まれる。
このような塩基性物質の存在の有無により反応温度差が出来る場合には、反応温度差を利用して、塩基性物質と共存する高分子前駆体のみが最終生成物へと反応する適切な温度で加熱することにより、塩基性物質と共存する高分子前駆体のみが最終生成物へと反応し、現像液等の溶媒への溶解性が変化する。従って、塩基性物質の存在の有無によって、高分子前駆体の前記溶媒への溶解性を変化させることが可能となり、ひいては当該溶媒を現像液として用いて現像によるパターニングが可能になる。
<Polymer precursor>
The polymer precursor used in the photosensitive resin composition of the present invention means a substance that finally becomes a polymer exhibiting the desired physical properties by reaction, and the reaction includes intermolecular reaction and intramolecular reaction. The polymer precursor itself may be a relatively low molecular compound or a high molecular compound.
The polymer precursor of the present invention is a compound whose reaction to the final product is promoted by a basic substance or by heating in the presence of the basic substance. Here, in the aspect in which the polymer precursor is accelerated by the basic substance or by heating in the presence of the basic substance, the reaction to the final product is accelerated only by the action of the basic substance. In addition to the mode of changing to the final product, the mode includes the mode in which the reaction temperature of the polymer precursor to the final product is lowered by the action of the basic substance as compared to the case where there is no action of the basic substance. .
If there is a reaction temperature difference due to the presence or absence of such a basic substance, an appropriate temperature at which only the polymer precursor coexisting with the basic substance reacts to the final product using the reaction temperature difference. By heating at, only the polymer precursor coexisting with the basic substance reacts with the final product, and the solubility in a solvent such as a developer changes. Therefore, the solubility of the polymer precursor in the solvent can be changed depending on the presence or absence of the basic substance, and thus patterning by development can be performed using the solvent as a developer.

本発明の高分子前駆体としては、上記の様な塩基性物質によって又は塩基性物質の存在下での加熱によって最終生成物への反応が促進されるものであれば特に制限なく使用が可能である。下記に代表的な例を挙げるが、これらに限定されるものではない。   The polymer precursor of the present invention can be used without particular limitation as long as the reaction to the final product is promoted by the basic substance as described above or by heating in the presence of the basic substance. is there. The following are typical examples, but the invention is not limited to these.

[分子間反応により高分子となる高分子前駆体]
分子間反応により目的の高分子となる高分子前駆体としては、反応性置換基を有し重合反応をする化合物及び高分子、又は、分子間に結合を形成する反応(架橋反応)をする化合物及び高分子がある。当該反応性置換基としては、エポキシ基、オキセタン基、チイラン基、イソシアネート基、ヒドロキシル基、シラノール基等が挙げられる。また、高分子前駆体には、分子間で加水分解・重縮合する化合物も含まれ、反応性置換基には、ポリシロキサン前駆体の−SiX(ここで、Xはアルコキシ基、アセトキシ基、オキシム基、エノキシ基、アミノ基、アミノキシ基、アミド基、及びハロゲンよりなる群から選択される加水分解性基)も挙げられる。
[Polymer precursor that becomes polymer by intermolecular reaction]
Examples of the polymer precursor that becomes a target polymer by intermolecular reaction include a compound having a reactive substituent and a polymerization reaction and a polymer, or a compound that forms a bond (crosslinking reaction) between molecules. And polymers. Examples of the reactive substituent include an epoxy group, an oxetane group, a thiirane group, an isocyanate group, a hydroxyl group, and a silanol group. In addition, the polymer precursor includes a compound that undergoes hydrolysis and polycondensation between molecules, and the reactive substituent includes -SiX of the polysiloxane precursor (where X is an alkoxy group, an acetoxy group, an oxime). And a hydrolyzable group selected from the group consisting of a group, an enoxy group, an amino group, an aminoxy group, an amide group, and a halogen).

反応性置換基を有し重合反応をする化合物としては、例えば、1個以上のエポキシ基を有する化合物、1個以上のオキセタン基を有する化合物、及び1個以上のチイラン基を有する化合物が挙げられる。
反応性置換基を有し重合反応をする高分子としては、例えば、2個以上のエポキシ基を有する高分子(エポキシ樹脂)、2個以上のオキセタン基を有する高分子、及び2個以上のチイラン基を有する高分子が挙げられる。下記に特にエポキシ基を有する化合物及び高分子について具体的に説明するが、オキセタン基、チイラン基を有する化合物及び高分子についても同様に用いることが可能である。
Examples of the compound having a reactive substituent and undergoing a polymerization reaction include a compound having one or more epoxy groups, a compound having one or more oxetane groups, and a compound having one or more thiirane groups. .
Examples of the polymer that has a reactive substituent and undergoes a polymerization reaction include a polymer having two or more epoxy groups (epoxy resin), a polymer having two or more oxetane groups, and two or more thiiranes. And a polymer having a group. The compounds and polymers having an epoxy group are specifically described below, but compounds and polymers having an oxetane group and a thiirane group can also be used in the same manner.

(エポキシ基を有する化合物及び高分子)
上記1個以上のエポキシ基を有する化合物及び高分子としては、分子内に1個以上のエポキシ基を有するものであれば特に制限なく、従来公知のものを使用できる。
前記塩基発生剤は、一般的には分子内に1個以上のエポキシ基を有する化合物の硬化触媒としての機能も有する。
(Compound having epoxy group and polymer)
The compound and polymer having one or more epoxy groups are not particularly limited as long as they have one or more epoxy groups in the molecule, and conventionally known compounds can be used.
The base generator generally also has a function as a curing catalyst for a compound having one or more epoxy groups in the molecule.

分子内に1個以上のエポキシ基を有する化合物又は分子内に2個以上のエポキシ基を有する高分子(エポキシ樹脂)を用いる場合は、エポキシ基との反応性を有する官能基を分子内に二つ以上有する化合物を併用してもよい。ここでエポキシ基との反応性を有する官能基とは、例えば、カルボキシル基、フェノール性水酸基、メルカプト基、1級又は2級の芳香族アミノ基等が挙げられる。これらの官能基は、3次元硬化性を考慮して、一分子中に2つ以上有することが特に好ましい。
また、重量平均分子量3,000〜100,000のポリマー側鎖に上記官能基を導入したものを用いることが好ましい。3,000未満では膜強度の低下及び硬化膜表面にタック性が生じ、不純物等が付着しやすくなる恐れがある。また、100,000より大きいと粘度が増大する恐れがあり好ましくない。
When using a compound having one or more epoxy groups in the molecule or a polymer (epoxy resin) having two or more epoxy groups in the molecule, two functional groups having reactivity with the epoxy group are contained in the molecule. Two or more compounds may be used in combination. Here, examples of the functional group having reactivity with an epoxy group include a carboxyl group, a phenolic hydroxyl group, a mercapto group, a primary or secondary aromatic amino group, and the like. It is particularly preferable to have two or more of these functional groups in one molecule in consideration of three-dimensional curability.
Moreover, it is preferable to use what introduce | transduced the said functional group into the polymer side chain of weight average molecular weight 3,000-100,000. If it is less than 3,000, the strength of the film is lowered and tackiness is caused on the surface of the cured film, so that impurities and the like are likely to adhere. On the other hand, if it exceeds 100,000, the viscosity may increase, which is not preferable.

分子内に1個以上のエポキシ基を有する高分子としては、例えば、エポキシ樹脂が挙げられ、ビスフェノールAとエピクロルヒドリンから誘導されるビスフェノールA型エポキシ樹脂、ビスフェノールFとエピクロルヒドリンから誘導されるビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、3官能型エポキシ樹脂や4官能型エポキシ樹脂等の多官能型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポキシ樹脂等があり、これらのエポキシ樹脂はハロゲン化されていてもよく、水素添加されていてもよい。市販されているエポキシ樹脂製品としては、例えばジャパンエポキシレジン株式会社製のJERコート828、1001、801N、806、807、152、604、630、871、YX8000、YX8034、YX4000、DIC株式会社製のエピクロン830、EXA835LV、HP4032D、HP820、株式会社ADEKA製のEP4100シリーズ、EP4000シリーズ、EPUシリーズ、ダイセル化学株式会社製のセロキサイドシリーズ(2021、2021P、2083、2085、3000等)、エポリードシリーズ、EHPEシリーズ、新日鐵化学社製のYDシリーズ、YDFシリーズ、YDCNシリーズ、YDBシリーズ、フェノキシ樹脂(ビスフェノール類とエピクロルヒドリンより合成されるポリヒドロキシポリエーテルで両末端にエポキシ基を有する;YPシリーズ等)、ナガセケムテックス社製のデナコールシリーズ、共栄社化学社製のエポライトシリーズ等が挙げられるがこれらに限定されるものではない。これらのエポキシ樹脂は、2種以上を併用してもよい。これらの中で、他の各種のエポキシ化合物と比較すると分子量の異なるグレードが広く入手可能で、接着性や反応性等を任意に設定できる点から、ビスフェノール型エポキシ樹脂が好ましい。   Examples of the polymer having one or more epoxy groups in the molecule include epoxy resins, bisphenol A type epoxy resins derived from bisphenol A and epichlorohydrin, bisphenol F type epoxy derived from bisphenol F and epichlorohydrin. Resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin, alicyclic epoxy resin, diphenyl ether type epoxy resin, hydroquinone type epoxy resin, Polyfunctional epoxy resins such as naphthalene type epoxy resin, biphenyl type epoxy resin, fluorene type epoxy resin, trifunctional type epoxy resin and tetrafunctional type epoxy resin, There are lysidyl ester type epoxy resins, glycidyl amine type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, aliphatic chain epoxy resins, etc. These epoxy resins may be halogenated and hydrogenated. It may be. As commercially available epoxy resin products, for example, JER Coat 828, 1001, 801N, 806, 807, 152, 604, 630, 871, YX8000, YX8034, YX4000 manufactured by Japan Epoxy Resin Co., Ltd., Epicron manufactured by DIC Corporation 830, EXA835LV, HP4032D, HP820, EP4100 series, EP4000 series, EPU series, manufactured by ADEKA Co., Ltd., Celoxide series (2021, 2021P, 2083, 2085, 3000, etc.) manufactured by Daicel Chemical Industries, Ltd., Eporide series, EHPE Series, YD series, YDF series, YDCN series, YDB series, phenoxy resin (polyethylene synthesized from bisphenols and epichlorohydrin) B carboxymethyl having an epoxy group at both ends with polyether; YP series, etc.), Nagase ChemteX Corporation of Denacol series manufactured by Kyoeisha but Chemical Co. Epo light series, and the like are not limited thereto. Two or more of these epoxy resins may be used in combination. Among these, bisphenol-type epoxy resins are preferable because grades having different molecular weights are widely available as compared with other various epoxy compounds, and adhesiveness and reactivity can be arbitrarily set.

一方、分子間で架橋反応をする化合物としては、例えば、分子内に2個以上のイソシアネート基を有する化合物及び分子内に2個以上のヒドロキシル基を有する化合物の組み合わせが挙げられ、当該イソシアネート基とヒドロキシル基との反応により、分子間にウレタン結合が形成され高分子となり得る。
分子間で架橋反応をする高分子としては、例えば、分子内に2個以上のイソシアネート基を有する高分子(イソシアネート樹脂)と分子内に2個以上のヒドロキシル基を有する高分子(ポリオール)の組み合わせが挙げられる。
また、分子間で架橋反応をする化合物と高分子の組み合わせを用いても良い。例えば、分子内に2個以上のイソシアネート基を有する高分子(イソシアネート樹脂)と分子内に2個以上のヒドロキシル基を有する化合物の組み合わせ、及び、分子内に2個以上のイソシアネート基を有する化合物と分子内に2個以上のヒドロキシル基を有する高分子(ポリオール)の組み合わせ等が挙げられる。
On the other hand, examples of the compound that crosslinks between molecules include a combination of a compound having two or more isocyanate groups in the molecule and a compound having two or more hydroxyl groups in the molecule. By the reaction with the hydroxyl group, a urethane bond is formed between the molecules, and the polymer can be formed.
As a polymer that undergoes a cross-linking reaction between molecules, for example, a combination of a polymer having two or more isocyanate groups in the molecule (isocyanate resin) and a polymer having two or more hydroxyl groups in the molecule (polyol) Is mentioned.
A combination of a compound that undergoes a cross-linking reaction between molecules and a polymer may be used. For example, a combination of a polymer (isocyanate resin) having two or more isocyanate groups in the molecule and a compound having two or more hydroxyl groups in the molecule, and a compound having two or more isocyanate groups in the molecule Examples include a combination of polymers (polyols) having two or more hydroxyl groups in the molecule.

(イソシアネート基を有する化合物及び高分子)
イソシアネート基をもつ化合物及び高分子としては、分子内に2個以上のイソシアネート基を有するものであれば特に制限なく、公知のものを使用できる。このような化合物としては、p−フェニレンジイソシアネート、2,4−トルエンジイソシアネート、2,6−トルエンジイソシアネート、1,5−ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート等に代表される低分子化合物の他に、オリゴマー、重量平均分子量3,000以上のポリマーの側鎖又は末端にイソシアネート基が存在する高分子を用いてもよい。
(Compounds and polymers having isocyanate groups)
As the compound and polymer having an isocyanate group, any known compound can be used without particular limitation as long as it has two or more isocyanate groups in the molecule. As such compounds, in addition to low molecular weight compounds represented by p-phenylene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 1,5-naphthalene diisocyanate, hexamethylene diisocyanate, oligomers, A polymer having an isocyanate group in the side chain or terminal of a polymer having a weight average molecular weight of 3,000 or more may be used.

(ヒドロキシル基を有する化合物及び高分子)
前記イソシアネート基を持つ化合物及び高分子は、通常、分子内にヒドロキシル基を持つ化合物と組み合わせて用いられる。このようなヒドロキシル基を有する化合物としては、分子内に2個以上のヒドロキシル基を有するものであれば特に制限なく、公知のものを使用できる。このような化合物としては、エチレングリコール、プロピレングリコール、グリセリン、ジグリセリン、ペンタエリスリトール等の低分子化合物の他に、重量平均分子量3,000以上のポリマーの側鎖又は末端にヒドロキシル基が存在する高分子を用いてもよい。
(Compounds having a hydroxyl group and polymers)
The compound and polymer having an isocyanate group are usually used in combination with a compound having a hydroxyl group in the molecule. The compound having such a hydroxyl group is not particularly limited as long as it has two or more hydroxyl groups in the molecule, and known compounds can be used. As such a compound, in addition to low molecular weight compounds such as ethylene glycol, propylene glycol, glycerin, diglycerin and pentaerythritol, a polymer having a weight average molecular weight of 3,000 or more has a hydroxyl group in the side chain or terminal. A molecule may be used.

(ポリシロキサン前駆体)
分子間で加水分解・重縮合する化合物としては、たとえばポリシロキサン前駆体が挙げられる。
ポリシロキサン前駆体としては、YSiX(4−n)(ここで、Yは置換基を有していても良いアルキル基、フルオロアルキル基、ビニル基、フェニル基、または水素を示し、Xはアルコキシ基、アセトキシ基、オキシム基、エノキシ基、アミノ基、アミノキシ基、アミド基、及びハロゲンよりなる群から選択される加水分解性基を示す。nは0〜3までの整数である。) で示される有機ケイ素化合物及び当該有機ケイ素化合物の加水分解重縮合物が挙げられる。中でも、上記式においてnが0〜2であるものが好ましい。また、シリカ分散オリゴマー溶液の調製がし易く入手も容易な点から、上記加水分解性基としては、アルコキシ基であるものが好ましい。
上記有機ケイ素化合物としては、特に制限なく、公知のものを使用できる。例えば、トリメトキシシラン、トリエトキシシラン、メチルトリクロルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリt−ブトキシシラン、エチルトリブロムシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリエトキシシラン、n−ヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、ジメトキシジエトキシシラン、ジメチルジクロルシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ビニルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メタアクリロキシプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、フッ素系シランカップリング剤として知られたフルオロアルキルシラン、および、それらの加水分解縮合物もしくは共加水分解縮合物;並びに、それらの混合物を挙げることができる。
(Polysiloxane precursor)
Examples of the compound that undergoes hydrolysis and polycondensation between molecules include polysiloxane precursors.
As the polysiloxane precursor, Y n SiX (4-n) (wherein Y represents an alkyl group, fluoroalkyl group, vinyl group, phenyl group, or hydrogen which may have a substituent, A hydrolyzable group selected from the group consisting of an alkoxy group, an acetoxy group, an oxime group, an enoxy group, an amino group, an aminoxy group, an amide group, and a halogen, where n is an integer from 0 to 3. And the hydrolyzed polycondensate of the organosilicon compound. Among these, those in which n is 0 to 2 in the above formula are preferable. In addition, the hydrolyzable group is preferably an alkoxy group because the silica-dispersed oligomer solution is easily prepared and easily available.
There is no restriction | limiting in particular as said organosilicon compound, A well-known thing can be used. For example, trimethoxysilane, triethoxysilane, methyltrichlorosilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltrit-butoxysilane, ethyltribromosilane, ethyltrimethoxysilane, ethyltriethoxysilane , N-propyltriethoxysilane, n-hexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, dimethoxydiethoxysilane, dimethyldichlorosilane, dimethyldimethoxysilane , Diphenyldimethoxysilane, vinyltrimethoxysilane, trifluoropropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, γ-mercaptopropyltrimethoxysilane, β- (3 4-epoxycyclohexyl) ethyltrimethoxysilane, fluoroalkylsilanes known as fluorine-based silane coupling agents, and their hydrolysis condensates or cohydrolysis condensates; and mixtures thereof.

[分子内閉環反応により高分子となる高分子前駆体]
分子内閉環反応によって最終的に目的の物性を示す高分子となる高分子前駆体としてはポリイミド前駆体、ポリベンゾオキサゾール前駆体等がある。これらの前駆体は2種類以上の別々に合成した高分子前駆体の混合物でもよい。
以下、本発明の好ましい高分子前駆体であるポリイミド前駆体とポリベンゾオキサゾール前駆体について説明するが、本発明はこれらに限定されるものではない。
[Polymer precursor that becomes polymer by intramolecular ring-closing reaction]
Examples of the polymer precursor that finally becomes a polymer that exhibits the desired physical properties by the intramolecular ring-closing reaction include a polyimide precursor and a polybenzoxazole precursor. These precursors may be a mixture of two or more separately synthesized polymer precursors.
Hereinafter, although the polyimide precursor and polybenzoxazole precursor which are the preferable polymer precursors of this invention are demonstrated, this invention is not limited to these.

(ポリイミド前駆体)
ポリイミド前駆体としては、下記化学式(5)で表される繰り返し単位を有するポリアミック酸が好適に用いられる。
(Polyimide precursor)
As the polyimide precursor, a polyamic acid having a repeating unit represented by the following chemical formula (5) is preferably used.

Figure 2012211276
Figure 2012211276

(化学式(5)中、R11は4価の有機基である。R12は2価の有機基である。R13及びR14は、水素原子、又は1価の有機基である。nは1以上の自然数である。) (In the chemical formula (5), R 11 is a tetravalent organic group. R 12 is a divalent organic group. R 13 and R 14 are a hydrogen atom or a monovalent organic group. (It is a natural number of 1 or more.)

13及びR14が1価の有機基である場合としては、例えば、アルキル基、アルケニル基、アルキニル基、アリール基、及び、これらにエーテル結合を含有したC2nOC2m+1などで表される構造等を挙げることができる。
ポリイミド前駆体としては、R13及びR14が水素原子であるようなポリアミック酸が、アルカリ現像性の点から好適に用いられる。
Examples of the case where R 13 and R 14 are monovalent organic groups include alkyl groups, alkenyl groups, alkynyl groups, aryl groups, and C n H 2n OC m H 2m + 1 containing an ether bond in these groups. The structure represented can be mentioned.
As the polyimide precursor, a polyamic acid in which R 13 and R 14 are hydrogen atoms is preferably used from the viewpoint of alkali developability.

なお、R11の4価は酸と結合するための価数のみを示しているが、他に更なる置換基を有していても良い。同様に、R12の2価はアミンと結合するための価数のみを示しているが、他に更なる置換基を有していても良い。 Incidentally, tetravalent R 11 represents only valence for bonding with the acid, but may have further substituents other. Similarly, the divalent value of R 12 indicates only the valence for bonding with the amine, but may have other substituents.

ポリアミック酸は、酸二無水物とジアミンを溶液中で混合するのみで得られるので、1段階の反応で合成することができ、合成が容易で低コストで入手できるので好ましい。   Polyamic acid is preferable because it can be obtained by simply mixing acid dianhydride and diamine in a solution, so that it can be synthesized by a one-step reaction, and can be synthesized easily and at low cost.

副次的な効果として、用いる高分子前駆体がポリアミック酸である場合、塩基性物質の触媒効果によりイミド化に要する温度が低くても十分な為、最終キュア温度を300℃未満、更に好ましくは250℃以下まで下げることが可能である。従来のポリアミック酸はイミド化するために最終キュア温度を300℃以上とする必要があった為、用途が制限されていたが、最終キュア温度を下げることが可能になったことによって、より広範囲の用途に適用が可能である。   As a secondary effect, when the polymer precursor to be used is a polyamic acid, the final curing temperature is less than 300 ° C., more preferably because the temperature required for imidization is low due to the catalytic effect of the basic substance. It can be lowered to 250 ° C. or lower. In order to imidize the conventional polyamic acid, the final cure temperature had to be 300 ° C. or higher, so the use was limited. However, it became possible to lower the final cure temperature, so a wider range Applicable to usage.

ポリアミック酸は、酸二無水物とジアミンの反応により得られるが、最終的に得られるポリイミドに優れた耐熱性及び寸法安定性を付与する点から、前記化学式(5)において、R11又はR12が芳香族化合物であることが好ましく、R11及びR12が芳香族化合物であることがより好ましい。またこのとき、前記化学式(5)のR11において、当該R11に結合している4つの基((−CO−)(−COOH))は同一の芳香環に結合していても良く、異なる芳香環に結合していても良い。同様に、前記化学式(5)のR12において、当該R12に結合している2つの基((−NH−))は同一の芳香環に結合していても良く、異なる芳香環に結合していても良い。 Polyamic acid is obtained by the reaction of acid dianhydride and diamine. From the viewpoint of imparting excellent heat resistance and dimensional stability to the finally obtained polyimide, in the chemical formula (5), R 11 or R 12 Is preferably an aromatic compound, and R 11 and R 12 are more preferably aromatic compounds. At this time, in R 11 of the chemical formula (5), four groups ((—CO—) 2 (—COOH) 2 ) bonded to R 11 may be bonded to the same aromatic ring. May be bonded to different aromatic rings. Similarly, in R 12 of the chemical formula (5), two groups ((—NH—) 2 ) bonded to R 12 may be bonded to the same aromatic ring or bonded to different aromatic rings. You may do it.

また、前記化学式(5)で表されるポリアミック酸は、単一の繰り返し単位からなるものでも、2種以上の繰り返し単位から成るものでもよい。   The polyamic acid represented by the chemical formula (5) may be composed of a single repeating unit or may be composed of two or more repeating units.

本発明のポリイミド前駆体を製造する方法としては、従来公知の手法を適用することができる。例えば、(1)酸二無水物とジアミンから前駆体であるポリアミド酸を合成する手法。(2)酸二無水物に1価のアルコールやアミノ化合物、エポキシ化合物等を反応させ合成した、エステル酸やアミド酸モノマーのカルボン酸に、ジアミノ化合物やその誘導体を反応させてポリイミド前駆体を合成する手法などが挙げられるがこれに限定されない。   As a method for producing the polyimide precursor of the present invention, a conventionally known method can be applied. For example, (1) A method of synthesizing a polyamic acid as a precursor from an acid dianhydride and a diamine. (2) A polyimide precursor is synthesized by reacting a carboxylic acid such as an ester acid or an amic acid monomer with a monohydric alcohol, an amino compound, or an epoxy compound synthesized with an acid dianhydride. However, the method is not limited to this.

本発明のポリイミド前駆体を得るための反応に適用可能な酸二無水物としては、例えば、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、メチルシクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物などの脂肪族テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、2,3’,3,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,3’,3,4’−ビフェニルテトラカルボン酸二無水物、2,2’,6,6’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、1,3−ビス〔(3,4−ジカルボキシ)ベンゾイル〕ベンゼン二無水物、1,4−ビス〔(3,4−ジカルボキシ)ベンゾイル〕ベンゼン二無水物、2,2−ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、   Examples of the acid dianhydride applicable to the reaction for obtaining the polyimide precursor of the present invention include ethylene tetracarboxylic dianhydride, butane tetracarboxylic dianhydride, cyclobutane tetracarboxylic dianhydride, and methylcyclobutane. Aliphatic tetracarboxylic dianhydrides such as tetracarboxylic dianhydride and cyclopentanetetracarboxylic dianhydride; pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 2,3 ′, 3,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic Acid dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,3', 3,4'-biphenyltetracarboxylic acid Anhydride, 2,2 ′, 6,6′-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3- Dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-di Carboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxy) Phenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexa Fluoropropane dianhydride, , 3-bis [(3,4-dicarboxy) benzoyl] benzene dianhydride, 1,4-bis [(3,4-dicarboxy) benzoyl] benzene dianhydride, 2,2-bis {4- [ 4- (1,2-dicarboxy) phenoxy] phenyl} propane dianhydride,

2,2−ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、4,4’−ビス〔4−(1,2−ジカルボキシ)フェノキシ〕ビフェニル二無水物、4,4’−ビス〔3−(1,2−ジカルボキシ)フェノキシ〕ビフェニル二無水物、ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、2,2−ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,2−ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(2,3−又は3,4−ジカルボキシフェニル)プロパン二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,2,3,4−ベンゼンテトラカルボン酸二無水物、3,4,9,10−ぺリレンテトラカルボン酸二無水物、2,3,6,7−アントラセンテトラカルボン酸二無水物、1,2,7,8−フェナントレンテトラカルボン酸二無水物、ピリジンテトラカルボン酸二無水物、スルホニルジフタル酸無水物、m−ターフェニル−3,3’,4,4’−テトラカルボン酸二無水物、p−ターフェニル−3,3’,4,4’−テトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物等が挙げられる。これらは単独あるいは2種以上混合して用いられる。そして、特に好ましく用いられるテトラカルボン酸二無水物としてピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,6,6’−ビフェニルテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物が挙げられる。 2,2-bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} propane dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride Bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, 4,4′-bis [4- (1,2-dicarboxy) phenoxy] biphenyl dianhydride, 4,4′-bis [3- (1,2-dicarboxy) phenoxy] biphenyl dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis { 4- [3- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} sulfone dianhydride, bis {4- [3- (1,2-dicarbo Cis) phenoxy] phenyl} sulfone dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} sulfide dianhydride, bis {4- [3- (1,2-dicarboxy) Phenoxy] phenyl} sulfide dianhydride, 2,2-bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} -1,1,1,3,3,3-hexafluoropropane dianhydride 2,2-bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,3,6 , 7-naphthalenetetracarboxylic dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis (2,3- or 3,4-dicarboxyphenyl) propane dianhydride, 1,4,5,8-naphthalenetetraca Boronic acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic Acid dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride, pyridinetetracarboxylic dianhydride, sulfonyldiphthalic anhydride , Aromatic tetra such as m-terphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, p-terphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride Examples thereof include carboxylic dianhydrides. These may be used alone or in combination of two or more. And as a particularly preferred tetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetra Carboxylic dianhydride, 2,2 ′, 6,6′-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, 2,2-bis (3,4-di Carboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride.

併用する酸二無水物としてフッ素が導入された酸二無水物や、脂環骨格を有する酸二無水物を用いると、透明性をそれほど損なわずに溶解性や熱膨張率等の物性を調整することが可能である。また、ピロメリット酸無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物などの剛直な酸二無水物を用いると、最終的に得られるポリイミドの線熱膨張係数が小さくなるが、透明性の向上を阻害する傾向があるので、共重合割合に注意しながら併用してもよい。   When acid dianhydride into which fluorine is introduced or acid dianhydride having an alicyclic skeleton is used as the acid dianhydride to be used in combination, the physical properties such as solubility and thermal expansion coefficient are adjusted without significantly impairing transparency. It is possible. Also, rigid acid dianhydrides such as pyromellitic acid anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, etc. If used, the linear thermal expansion coefficient of the finally obtained polyimide becomes small, but it tends to inhibit the improvement of transparency, so it may be used in combination while paying attention to the copolymerization ratio.

一方、アミン成分も、1種類のジアミン単独で、または2種類以上のジアミンを併用して用いることができる。用いられるジアミン成分は限定されず、p−フェニレンジアミン、
m−フェニレンジアミン、o−フェニレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、2,2−ジ(3−アミノフェニル)プロパン、2,2−ジ(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2,2−ジ(3−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ジ(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、1,1−ジ(3−アミノフェニル)−1−フェニルエタン、1,1−ジ(4−アミノフェニル)−1−フェニルエタン、1−(3−アミノフェニル)−1−(4−アミノフェニル)−1−フェニルエタン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノベンゾイル)ベンゼン、1,3−ビス(4−アミノベンゾイル)ベンゼン、1,4−ビス(3−アミノベンゾイル)ベンゼン、1,4−ビス(4−アミノベンゾイル)ベンゼン、1,3−ビス(3−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(3−アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(3−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,4−ビス(3−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、2,6−ビス(3−アミノフェノキシ)ベンゾニトリル、2,6−ビス(3−アミノフェノキシ)ピリジン、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、
On the other hand, the amine component can also be used alone or in combination of two or more diamines. The diamine component used is not limited, p-phenylenediamine,
m-phenylenediamine, o-phenylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfide, 3,4′-diaminodiphenyl Sulfide, 4,4′-diaminodiphenylsulfide, 3,3′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,3′-diaminobenzophenone, 4,4 ′ -Diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2-di (3-aminophenyl) propane, 2 , 2-Di (4-aminophenyl) propa 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2,2-di (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2, 2-di (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2- (3-aminophenyl) -2- (4-aminophenyl) -1,1,1, 3,3,3-hexafluoropropane, 1,1-di (3-aminophenyl) -1-phenylethane, 1,1-di (4-aminophenyl) -1-phenylethane, 1- (3-amino Phenyl) -1- (4-aminophenyl) -1-phenylethane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3 -Aminophenoxy) benzene, 1,4- (4-aminophenoxy) benzene, 1,3-bis (3-aminobenzoyl) benzene, 1,3-bis (4-aminobenzoyl) benzene, 1,4-bis (3-aminobenzoyl) benzene, 1, 4-bis (4-aminobenzoyl) benzene, 1,3-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 1 , 4-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (3-amino-α, α -Ditrifluoromethylbenzyl) benzene, 1,3-bis (4-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (3-amino-α, α-ditrifluoromethylben) L) benzene, 1,4-bis (4-amino-α, α-ditrifluoromethylbenzyl) benzene, 2,6-bis (3-aminophenoxy) benzonitrile, 2,6-bis (3-aminophenoxy) Pyridine, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (4 -Aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide,

ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(4−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、4,4’−ビス[4−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’−ビス[4−(4−アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’−ジアミノ−4,4’−ジフェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジビフェノキシベンゾフェノン、3,3’−ジアミノ−4−フェノキシベンゾフェノン、3,3’−ジアミノ−4−ビフェノキシベンゾフェノン、6,6’−ビス(3−アミノフェノキシ)−3,3,3’,3’−テトラメチル−1,1’−スピロビインダン、6,6’−ビス(4−アミノフェノキシ)−3,3,3’,3’−テトラメチル−1,1’−スピロビインダン等の芳香族アミン; Bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-amino) Phenoxy) phenyl] ether, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3- (3-Aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3 3,3-hexafluoropropane, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (4-aminophenoxy) benzoyl] ben 1,4-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-amino Phenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (3-aminophenoxy) -Α, α-dimethylbenzyl] benzene, 1,4-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 4,4'-bis [4- (4-aminophenoxy) benzoyl ] Diphenyl ether, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4′-bis [4- (4-amino-α, α-dimethylbenzen) ) Phenoxy] diphenylsulfone, 4,4′-bis [4- (4-aminophenoxy) phenoxy] diphenylsulfone, 3,3′-diamino-4,4′-diphenoxybenzophenone, 3,3′-diamino-4 , 4′-Dibiphenoxybenzophenone, 3,3′-diamino-4-phenoxybenzophenone, 3,3′-diamino-4-biphenoxybenzophenone, 6,6′-bis (3-aminophenoxy) -3,3 Such as 3 ′, 3′-tetramethyl-1,1′-spirobiindane, 6,6′-bis (4-aminophenoxy) -3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane, etc. Aromatic amines;

1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン、1,3−ビス(4−アミノブチル)テトラメチルジシロキサン、α,ω−ビス(3−アミノプロピル)ポリジメチルシロキサン、α,ω−ビス(3−アミノブチル)ポリジメチルシロキサン、ビス(アミノメチル)エーテル、ビス(2−アミノエチル)エーテル、ビス(3−アミノプロピル)エーテル、ビス(2−アミノメトキシ)エチル]エーテル、ビス[2−(2−アミノエトキシ)エチル]エーテル、ビス[2−(3−アミノプロトキシ)エチル]エーテル、1,2−ビス(アミノメトキシ)エタン、1,2−ビス(2−アミノエトキシ)エタン、1,2−ビス[2−(アミノメトキシ)エトキシ]エタン、1,2−ビス[2−(2−アミノエトキシ)エトキシ]エタン、エチレングリコールビス(3−アミノプロピル)エーテル、ジエチレングリコールビス(3−アミノプロピル)エーテル、トリエチレングリコールビス(3−アミノプロピル)エーテル、エチレンジアミン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカン等の脂肪族アミン;   1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, α, ω-bis (3-aminopropyl) polydimethylsiloxane, α, ω -Bis (3-aminobutyl) polydimethylsiloxane, bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, bis (2-aminomethoxy) ethyl] ether, bis [ 2- (2-aminoethoxy) ethyl] ether, bis [2- (3-aminoprotoxy) ethyl] ether, 1,2-bis (aminomethoxy) ethane, 1,2-bis (2-aminoethoxy) ethane 1,2-bis [2- (aminomethoxy) ethoxy] ethane, 1,2-bis [2- (2-aminoethoxy) ethoxy] ethane Ethylene glycol bis (3-aminopropyl) ether, diethylene glycol bis (3-aminopropyl) ether, triethylene glycol bis (3-aminopropyl) ether, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1 , 5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12 -Aliphatic amines such as diaminododecane;

1,2−ジアミノシクロヘキサン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、1,2−ジ(2−アミノエチル)シクロヘキサン、1,3−ジ(2−アミノエチル)シクロヘキサン、1,4−ジ(2−アミノエチル)シクロヘキサン、ビス(4−アミノシクロへキシル)メタン、2,6−ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、2,5−ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン等の脂環式ジアミンが挙げられる。グアナミン類としては、アセトグアナミン、ベンゾグアナミンなどを挙げることができ、また、上記ジアミンの芳香環上水素原子の一部若しくは全てをフルオロ基、メチル基、メトキシ基、トリフルオロメチル基、又はトリフルオロメトキシ基から選ばれた置換基で置換したジアミンも使用することができる。   1,2-diaminocyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,2-di (2-aminoethyl) cyclohexane, 1,3-di (2-aminoethyl) cyclohexane, 1,4 -Di (2-aminoethyl) cyclohexane, bis (4-aminocyclohexyl) methane, 2,6-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,5-bis (aminomethyl) bicyclo [2.2.1] Alicyclic diamines such as heptane. Examples of guanamines include acetoguanamine, benzoguanamine, and the like, and some or all of the hydrogen atoms on the aromatic ring of the diamine are fluoro group, methyl group, methoxy group, trifluoromethyl group, or trifluoromethoxy group. Diamines substituted with substituents selected from the group can also be used.

さらに目的に応じ、架橋点となるエチニル基、ベンゾシクロブテン−4’−イル基、ビニル基、アリル基、シアノ基、イソシアネート基、及びイソプロペニル基のいずれか1種又は2種以上を、上記ジアミンの芳香環上水素原子の一部若しくは全てに置換基として導入しても使用することができる。   Furthermore, depending on the purpose, any one or two or more of the ethynyl group, benzocyclobuten-4′-yl group, vinyl group, allyl group, cyano group, isocyanate group, and isopropenyl group serving as a crosslinking point, Even if it introduce | transduces into some or all of the hydrogen atoms on the aromatic ring of diamine as a substituent, it can be used.

ジアミンは、目的の物性によって選択することができ、p−フェニレンジアミンなどの剛直なジアミンを用いれば、最終的に得られるポリイミドは低膨張率となる。剛直なジアミンとしては、同一の芳香環に2つアミノ基が結合しているジアミンとして、p−フェニレンジアミン、m−フェニレンジアミン、1,4−ジアミノナフタレン、1,5−ジアミノナフタレン、2、6−ジアミノナフタレン、2,7−ジアミノナフタレン、1,4―ジアミノアントラセンなどが挙げられる。   The diamine can be selected depending on the desired physical properties. If a rigid diamine such as p-phenylenediamine is used, the finally obtained polyimide has a low expansion coefficient. Rigid diamines include p-phenylenediamine, m-phenylenediamine, 1,4-diaminonaphthalene, 1,5-diaminonaphthalene, 2, 6 as diamines in which two amino groups are bonded to the same aromatic ring. -Diaminonaphthalene, 2,7-diaminonaphthalene, 1,4-diaminoanthracene and the like can be mentioned.

さらに、2つ以上の芳香族環が単結合により結合し、2つ以上のアミノ基がそれぞれ別々の芳香族環上に直接又は置換基の一部として結合しているジアミンが挙げられ、例えば、下記化学式(6)により表されるものがある。具体例としては、ベンジジン等が挙げられる。   In addition, diamines in which two or more aromatic rings are bonded by a single bond, and two or more amino groups are each bonded directly or as part of a substituent on a separate aromatic ring, for example, There exists what is represented by following Chemical formula (6). Specific examples include benzidine and the like.

Figure 2012211276
Figure 2012211276

(化学式(6)中、aは1以上の自然数、アミノ基はベンゼン環同士の結合に対して、メタ位または、パラ位に結合する。)   (In the chemical formula (6), a is a natural number of 1 or more, and the amino group is bonded to the meta position or the para position with respect to the bond between the benzene rings.)

さらに、上記化学式(6)において、他のベンゼン環との結合に関与せず、ベンゼン環上のアミノ基が置換していない位置に置換基を有するジアミンも用いることができる。これら置換基は、有機基であるがそれらは互いに結合していてもよい。
具体例としては、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル、3,3’−ジクロロ−4,4’−ジアミノビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル等が挙げられる。
Furthermore, in the chemical formula (6), a diamine having a substituent at a position where the amino group on the benzene ring is not substituted and which is not involved in the bond with another benzene ring can also be used. These substituents are organic groups, but they may be bonded to each other.
Specific examples include 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl, 3,3′-dichloro-4,4′-diamino. Biphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl and the like can be mentioned.

最終的に得られるポリイミドを光導波路、光回路部品として用いる場合には、芳香環の置換基としてフッ素を導入すると1μm以下の波長の電磁波に対しての透過率を向上させることができる。   When the finally obtained polyimide is used as an optical waveguide or an optical circuit component, the transmittance for electromagnetic waves having a wavelength of 1 μm or less can be improved by introducing fluorine as a substituent of the aromatic ring.

一方、ジアミンとして、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサンなどのシロキサン骨格を有するジアミンを用いると、最終的に得られるポリイミドの弾性率が低下し、ガラス転移温度を低下させることができる。
ここで、選択されるジアミンは耐熱性の観点より芳香族ジアミンが好ましいが、目的の物性に応じてジアミンの全体の60モル%、好ましくは40モル%を超えない範囲で、脂肪族ジアミンやシロキサン系ジアミン等の芳香族以外のジアミンを用いても良い。
On the other hand, when a diamine having a siloxane skeleton such as 1,3-bis (3-aminopropyl) tetramethyldisiloxane is used as the diamine, the elastic modulus of the finally obtained polyimide is lowered and the glass transition temperature is lowered. be able to.
Here, the selected diamine is preferably an aromatic diamine from the viewpoint of heat resistance. However, depending on the desired physical properties, the diamine may be an aliphatic diamine or siloxane within a range not exceeding 60 mol%, preferably not exceeding 40 mol%. Non-aromatic diamines such as diamines may be used.

一方、ポリイミド前駆体を合成するには、例えば、アミン成分として4,4’−ジアミノジフェニルエーテルをN−メチルピロリドンなどの有機極性溶媒に溶解させた溶液を冷却しながら、そこへ等モルの3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を徐々に加え撹拌し、ポリイミド前駆体溶液を得ることができる。
このようにして合成されるポリイミド前駆体は、最終的に得られるポリイミドに耐熱性及び寸法安定性を求める場合には、芳香族酸成分及び/又は芳香族アミン成分の共重合割合ができるだけ大きいことが好ましい。具体的には、イミド構造の繰り返し単位を構成する酸成分に占める芳香族酸成分の割合が50モル%以上、特に70モル%以上であることが好ましく、イミド構造の繰り返し単位を構成するアミン成分に占める芳香族アミン成分の割合が40モル%以上、特に60モル%以上であることが好ましく、全芳香族ポリイミドであることが特に好ましい。
On the other hand, in order to synthesize a polyimide precursor, for example, while cooling a solution in which 4,4′-diaminodiphenyl ether as an amine component is dissolved in an organic polar solvent such as N-methylpyrrolidone, 3 ′, 4,4′-biphenyltetracarboxylic dianhydride is gradually added and stirred to obtain a polyimide precursor solution.
The polyimide precursor synthesized in this way has a copolymerization ratio of the aromatic acid component and / or aromatic amine component as large as possible when the final polyimide obtained is required to have heat resistance and dimensional stability. Is preferred. Specifically, the proportion of the aromatic acid component in the acid component constituting the repeating unit of the imide structure is preferably 50 mol% or more, particularly preferably 70 mol% or more, and the amine component constituting the repeating unit of the imide structure The proportion of the aromatic amine component in the total is preferably 40 mol% or more, particularly preferably 60 mol% or more, and particularly preferably a wholly aromatic polyimide.

<ポリベンゾオキサゾール前駆体>
本発明に用いられるポリベンゾオキサゾール前駆体としては、下記化学式(7)で表される繰り返し単位を有するポリアミドアルコールが好適に用いられる。
<Polybenzoxazole precursor>
As the polybenzoxazole precursor used in the present invention, a polyamide alcohol having a repeating unit represented by the following chemical formula (7) is preferably used.

ポリアミドアルコールは、従来公知の方法で合成することが可能で、例えば、ジカルボン酸ハロゲン化物などのジカルボン酸誘導体とジヒドロキシジアミンとを有機溶媒中で付加反応することにより得られる。   Polyamide alcohol can be synthesized by a conventionally known method. For example, it can be obtained by addition reaction of a dicarboxylic acid derivative such as a dicarboxylic acid halide and dihydroxydiamine in an organic solvent.

Figure 2012211276
Figure 2012211276

(化学式(7)中、R15は2価の有機基である。R16は4価の有機基である。) (In the chemical formula (7), R 15 is a divalent organic group. R 16 is a tetravalent organic group.)

なお、R15の2価は酸と結合するための価数のみを示しているが、他に更なる置換基を有していても良い。同様に、R16の4価はアミン及びヒドロキシル基と結合するための価数のみを示しているが、他に更なる置換基を有していても良い。 In addition, although the divalent value of R 15 indicates only the valence for bonding with an acid, it may have another substituent. Similarly, the tetravalent value of R 16 indicates only the valency for bonding with an amine and a hydroxyl group, but may have other substituents.

前記化学式(7)で表される繰り返し単位を有するポリアミドアルコールは、最終的に得られるポリベンゾオキサゾールに優れた耐熱性及び寸法安定性を付与する点から、前記化学式(7)において、R15又はR16が芳香族化合物であることが好ましく、R15及びR16が芳香族化合物であることがより好ましい。またこのとき、前記化学式(7)のR15において、当該R15に結合している2つの基(−CO−)は同一の芳香環に結合していても良く、異なる芳香環に結合していても良い。同様に、前記化学式(7)のR16において、当該R16に結合している4つの基((−NH−)(−OH))は同一の芳香環に結合していても良く、異なる芳香環に結合していても良い。 The polyamide alcohol having a repeating unit represented by the chemical formula (7) gives excellent heat resistance and dimensional stability to the finally obtained polybenzoxazole. In the chemical formula (7), R 15 or R 16 is preferably an aromatic compound, and R 15 and R 16 are more preferably aromatic compounds. At this time, in R 15 of the chemical formula (7), two groups (—CO—) 2 bonded to the R 15 may be bonded to the same aromatic ring or bonded to different aromatic rings. May be. Similarly, in R 16 of the chemical formula (7), four groups ((—NH—) 2 (—OH) 2 ) bonded to R 16 may be bonded to the same aromatic ring, It may be bonded to different aromatic rings.

また、前記化学式(7)で表されるポリアミドアルコールは、単一の繰り返し単位からなるものでも、2種以上の繰り返し単位からなるものでもよい。   The polyamide alcohol represented by the chemical formula (7) may be composed of a single repeating unit or may be composed of two or more kinds of repeating units.

上記ポリベンゾオキサゾール前駆体を得るための反応に適用可能なジカルボン酸およびその誘導体としては、例えば、フタル酸、イソフタル酸、テレフタル酸、4,4’−ベンゾフェノンジカルボン酸、3,4’−ベンゾフェノンジカルボン酸、3,3’−ベンゾフェノンジカルボン酸、4,4’−ビフェニルジカルボン酸、3,4’−ビフェニルジカルボン酸、3,3’−ビフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、3,4’−ジフェニルエーテルジカルボン酸、3,3’−ジフェニルエーテルジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸、3,4’−ジフェニルスルホンジカルボン酸、3,3’−ジフェニルスルホンジカルボン酸、4,4’−ヘキサフルオロイソプロピリデン二安息香酸、4,4’−ジカルボキシジフェニルアミド、1,4−フェニレンジエタン酸、1,1−ビス(4−カルボキシフェニル)−1−フェニル−2,2,2−トリフルオロエタン、ビス(4−カルボキシフェニル)テトラフェニルジシロキサン、ビス(4−カルボキシフェニル)テトラメチルジシロキサン、ビス(4−カルボキシフェニル)スルホン、ビス(4−カルボキシフェニル)メタン、5−t−ブチルイソフタル酸、5−ブロモイソフタル酸、5−フルオロイソフタル酸、5−クロロイソフタル酸、2,2−ビス−(p−カルボキシフェニル)プロパン、4,4’−(p−フェニレンジオキシ)二安息香酸、2,6−ナフタレンジカルボン酸、もしくはこれらの酸ハロゲン化物、およびヒドロキシベンゾトリアゾール等との活性エステル体などを挙げることができるが、これらに限定されるものではない。これらは単独であるいは2種類以上を組み合わせて用いられる。   Examples of the dicarboxylic acid and its derivatives applicable to the reaction for obtaining the polybenzoxazole precursor include phthalic acid, isophthalic acid, terephthalic acid, 4,4′-benzophenone dicarboxylic acid, and 3,4′-benzophenone dicarboxylic acid. Acid, 3,3′-benzophenone dicarboxylic acid, 4,4′-biphenyl dicarboxylic acid, 3,4′-biphenyl dicarboxylic acid, 3,3′-biphenyl dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 3,4 '-Diphenyl ether dicarboxylic acid, 3,3'-diphenyl ether dicarboxylic acid, 4,4'-diphenyl sulfone dicarboxylic acid, 3,4'-diphenyl sulfone dicarboxylic acid, 3,3'-diphenyl sulfone dicarboxylic acid, 4,4'- Hexafluoroisopropylidene dibenzoic acid, 4 4′-dicarboxydiphenylamide, 1,4-phenylenediethanoic acid, 1,1-bis (4-carboxyphenyl) -1-phenyl-2,2,2-trifluoroethane, bis (4-carboxyphenyl) Tetraphenyldisiloxane, bis (4-carboxyphenyl) tetramethyldisiloxane, bis (4-carboxyphenyl) sulfone, bis (4-carboxyphenyl) methane, 5-t-butylisophthalic acid, 5-bromoisophthalic acid, 5 -Fluoroisophthalic acid, 5-chloroisophthalic acid, 2,2-bis- (p-carboxyphenyl) propane, 4,4 '-(p-phenylenedioxy) dibenzoic acid, 2,6-naphthalenedicarboxylic acid, or These acid halides and active esters with hydroxybenzotriazole, etc. It can be exemplified, but the invention is not limited thereto. These may be used alone or in combination of two or more.

また、ヒドロキシジアミンの具体例としては、例えば、3,3’−ジヒドロキシベンジジン、3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジアミノ−3,3’−ジヒドロキシジフェニルスルホン、ビス−(3−アミノ−4−ヒドロキシフェニル)メタン、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)プロパン、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス−(4−アミノ−3−ヒドロキシフェニル)ヘキサフルオロプロパン、ビス−(4−アミノ−3−ヒドロキシフェニル)メタン、2,2−ビス−(4−アミノ−3−ヒドロキシフェニル)プロパン、4,4’−ジアミノ−3,3’−ジヒドロキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジヒドロキシベンゾフェノン、4,4’−ジアミノ−3,3’−ジヒドロキシジフェニルエーテル、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルエーテル、1,4−ジアミノ−2,5−ジヒドロキシベンゼン、1,3−ジアミノ−2,4−ジヒドロキシベンゼン、3−ジアミノ−4,6−ジヒドロキシベンゼンなどが挙げられるがこれらに限定されるものではない。これらは単独であるいは2種類以上を組み合わせて用いられる。   Specific examples of hydroxydiamine include, for example, 3,3′-dihydroxybenzidine, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, 3,3′-diamino-4,4′-dihydroxydiphenylsulfone, 4,4′-diamino-3,3′-dihydroxydiphenylsulfone, bis- (3-amino-4-hydroxyphenyl) methane, 2,2- Bis- (3-amino-4-hydroxyphenyl) propane, 2,2-bis- (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis- (4-amino-3-hydroxyphenyl) Hexafluoropropane, bis- (4-amino-3-hydroxyphenyl) methane, 2,2-bis- (4-amino-3- Droxyphenyl) propane, 4,4′-diamino-3,3′-dihydroxybenzophenone, 3,3′-diamino-4,4′-dihydroxybenzophenone, 4,4′-diamino-3,3′-dihydroxydiphenyl ether 3,3′-diamino-4,4′-dihydroxydiphenyl ether, 1,4-diamino-2,5-dihydroxybenzene, 1,3-diamino-2,4-dihydroxybenzene, 3-diamino-4,6- Examples thereof include, but are not limited to, dihydroxybenzene. These may be used alone or in combination of two or more.

ポリイミド前駆体やポリベンゾオキサゾール前駆体等の高分子前駆体は、感光性樹脂組成物とした際の感度を高め、マスクパターンを正確に再現するパターン形状を得るために、1μmの膜厚のときに、露光波長に対して少なくとも5%以上の透過率を示すことが好ましく、15%以上の透過率を示すことが更に好ましい。
露光波長に対してポリイミド前駆体やポリベンゾオキサゾール前駆体等の高分子前駆体の透過率が高いということは、それだけ、電磁波のロスが少ないということであり、高感度の感光性樹脂組成物を得ることができる。
Polymer precursors such as polyimide precursors and polybenzoxazole precursors have a film thickness of 1 μm in order to increase the sensitivity of the photosensitive resin composition and obtain a pattern shape that accurately reproduces the mask pattern. Furthermore, it is preferable that the transmittance is at least 5% or more with respect to the exposure wavelength, and it is more preferable that the transmittance is 15% or more.
The high transmittance of polymer precursors such as polyimide precursors and polybenzoxazole precursors with respect to the exposure wavelength means that there is little loss of electromagnetic waves, and a highly sensitive photosensitive resin composition is used. Can be obtained.

また、一般的な露光光源である高圧水銀灯を用いて露光を行う場合には、少なくとも436nm、405nm、365nmの波長の電磁波のうち1つの波長の電磁波に対する透過率が、厚み1μmのフィルムに成膜した時で好ましくは5%以上、更に好ましくは15%、特に好ましくは50%以上である。   In addition, when exposure is performed using a high-pressure mercury lamp, which is a general exposure light source, a transmittance with respect to an electromagnetic wave having a wavelength of at least 436 nm, 405 nm, and 365 nm is formed on a film having a thickness of 1 μm. Is preferably 5% or more, more preferably 15%, particularly preferably 50% or more.

ポリイミド前駆体やポリベンゾオキサゾール前駆体等の高分子前駆体の重量平均分子量は、その用途にもよるが、3,000〜1,000,000の範囲であることが好ましく、5,000〜500,000の範囲であることがさらに好ましく、10,000〜500,000の範囲であることがさらに好ましい。重量平均分子量が3,000未満であると、塗膜又はフィルムとした場合に十分な強度が得られにくい。また、加熱処理等を施しポリイミド等の高分子とした際の膜の強度も低くなる。一方、重量平均分子量が1,000,000を超えると粘度が上昇し、溶解性も低下しやすく、表面が平滑で膜厚が均一な塗膜又はフィルムが得られにくい。   The weight average molecular weight of a polymer precursor such as a polyimide precursor or a polybenzoxazole precursor is preferably in the range of 3,000 to 1,000,000, although it depends on the application, 5,000 to 500. Is more preferably in the range of 10,000 to 500,000. When the weight average molecular weight is less than 3,000, it is difficult to obtain sufficient strength when a coating film or film is used. In addition, the strength of the film is reduced when heat treatment or the like is performed to obtain a polymer such as polyimide. On the other hand, when the weight average molecular weight exceeds 1,000,000, the viscosity increases, the solubility tends to decrease, and it is difficult to obtain a coating film or film having a smooth surface and a uniform film thickness.

ここで用いている分子量とは、ゲル浸透クロマトグラフィー(GPC)によるポリスチレン換算の値のことをいい、ポリイミド前駆体などの高分子前駆体そのものの分子量でも良いし、無水酢酸等で化学的イミド化処理を行った後のものでも良い。   The molecular weight used here is a value in terms of polystyrene measured by gel permeation chromatography (GPC), which may be the molecular weight of a polymer precursor itself such as a polyimide precursor, or chemical imidization with acetic anhydride or the like. It may be after processing.

なお、ポリイミド前駆体やポリベンゾオキサゾール前駆体合成時における溶媒は、極性溶媒が望ましく、代表的なものとして、N−メチル−2−ピロリドン、N−アセチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルホルムアミド、N,N−ジエチルアセトアミド、N,N−ジメチルメトキシアセトアミド、ジメチルスルホキシド、ヘキサメチルフォスホアミド、ピリジン、ジメチルスルホン、テトラメチレンスルホン、ジメチルテトラメチレンスルホン、ジエチレングリコールジメチルエーテル、シクロペンタノン、γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン等があり、これらの溶媒は単独であるいは2種類以上を組み合わせて用いられる。この他にも溶媒として組合せて用いられるものとしてベンゼン、ベンゾニトリル、1,4−ジオキサン、テトラヒドロフラン、ブチロラクトン、キシレン、トルエン、シクロヘキサノン等の非極性溶媒が挙げられ、これらの溶媒は、原料の分散媒、反応調節剤、あるいは生成物からの溶媒の揮散調節剤、皮膜平滑剤などとして使用される。   In addition, the solvent at the time of the polyimide precursor or polybenzoxazole precursor synthesis is preferably a polar solvent, and representative examples thereof include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, and N, N-dimethylformamide. , N, N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, dimethylsulfoxide, hexamethylphosphoamide, pyridine, dimethylsulfone, tetramethylenesulfone, dimethyltetra Examples include methylene sulfone, diethylene glycol dimethyl ether, cyclopentanone, γ-butyrolactone, α-acetyl-γ-butyrolactone, and these solvents are used alone or in combination of two or more. In addition to these, non-polar solvents such as benzene, benzonitrile, 1,4-dioxane, tetrahydrofuran, butyrolactone, xylene, toluene, cyclohexanone, and the like can be used as a solvent. It is used as a reaction regulator, a volatilization regulator of a solvent from the product, a film smoothing agent, and the like.

ポリアミック酸やポリベンゾオキサゾール前駆体は、塩基性物質の作用によって最終生成物への反応が進むことにより、溶解性が低下するため、前記化学式(1)で表される塩基発生剤の塩基発生による溶解性の低下と組み合わせることにより、本発明の感光性樹脂組成物の露光部と未露光部の溶解性コントラストをさらに大きくできる利点を有する。   Since the solubility of polyamic acid and polybenzoxazole precursor decreases due to the reaction to the final product by the action of the basic substance, the base generation of the base generator represented by the chemical formula (1) By combining with a decrease in solubility, the photosensitive resin composition of the present invention has an advantage that the solubility contrast between the exposed portion and the unexposed portion can be further increased.

<その他の成分>
本発明に係る感光性樹脂組成物は、前記化学式(1)で表される塩基発生剤と、1種類以上の高分子前駆体と、溶媒の単純な混合物であってもよいが、さらに、光又は熱硬化性成分、高分子前駆体以外の非重合性バインダー樹脂、その他の成分を配合して、感光性樹脂組成物を調製してもよい。
<Other ingredients>
The photosensitive resin composition according to the present invention may be a simple mixture of the base generator represented by the chemical formula (1), one or more kinds of polymer precursors, and a solvent. Alternatively, a photosensitive resin composition may be prepared by blending a thermosetting component, a non-polymerizable binder resin other than the polymer precursor, and other components.

感光性樹脂組成物を溶解、分散又は希釈する溶剤としては、各種の汎用溶剤を用いることが出来る。また、前駆体としてポリアミド酸を用いる場合には、ポリアミド酸の合成反応により得られた溶液をそのまま用い、そこに必要に応じて他の成分を混合しても良い。   Various general-purpose solvents can be used as a solvent for dissolving, dispersing or diluting the photosensitive resin composition. Moreover, when using polyamic acid as a precursor, you may use the solution obtained by the synthesis reaction of polyamic acid as it is, and may mix other components there as needed.

使用可能な汎用溶剤としては、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のグリコールモノエーテル類(いわゆるセロソルブ類);メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、前記グリコールモノエーテル類の酢酸エステル(例えば、メチルセロソルブアセテート、エチルセロソルブアセテート)、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、蓚酸ジメチル、乳酸メチル、乳酸エチル等のエステル類;エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、グリセリン等のアルコール類;塩化メチレン、1,1−ジクロロエタン、1,2−ジクロロエチレン、1−クロロプロパン、1−クロロブタン、1−クロロペンタン、クロロベンゼン、ブロムベンゼン、o−ジクロロベンゼン、m−ジクロロベンゼン等のハロゲン化炭化水素類;N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルメトキシアセトアミド等のアミド類;N−メチル−2−ピロリドン、N−アセチル−2−ピロリドンなどのピロリドン類;γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン等のラクトン類;ジメチルスルホキシドなどのスルホキシド類、ジメチルスルホン、テトラメチレンスルホン、ジメチルテトラメチレンスルホンなどのスルホン類、ヘキサメチルフォスホアミド等のリン酸アミド類、その他の有機極性溶媒類等が挙げられ、更には、ベンゼン、トルエン、キシレン、ピリジン等の芳香族炭化水素類、及び、その他の有機非極性溶媒類等も挙げられる。これらの溶媒は単独若しくは組み合わせて用いられる。   Examples of general-purpose solvents that can be used include ethers such as diethyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, and diethylene glycol dimethyl ether; ethylene glycol monomethyl ether, ethylene glycol mono Glycol monoethers (so-called cellosolves) such as ethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether; methyl ethyl ketone, acetone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, etc. Ketones; ethyl acetate, butyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, acetate esters of the above glycol monoethers (for example, methyl cellosolve acetate, ethyl cellosolve acetate), propylene Esters such as glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dimethyl oxalate, methyl lactate, ethyl lactate; alcohols such as ethanol, propanol, butanol, hexanol, cyclohexanol, ethylene glycol, diethylene glycol, glycerin; methylene chloride, 1,1-dichloroethane, 1,2-dichloroethylene, 1-chloropropane, 1-chlorobutane, 1-chloropentane, chlorobenzene, bromobenzene, o- Halogenated hydrocarbons such as chlorobenzene and m-dichlorobenzene; N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide and the like Amides of N; pyrrolidones such as N-methyl-2-pyrrolidone and N-acetyl-2-pyrrolidone; lactones such as γ-butyrolactone and α-acetyl-γ-butyrolactone; sulfoxides such as dimethyl sulfoxide, dimethyl sulfone, Examples include sulfones such as tetramethylene sulfone and dimethyltetramethylene sulfone, phosphoric acid amides such as hexamethylphosphoamide, and other organic polar solvents, and aromatics such as benzene, toluene, xylene, and pyridine. Hydrocarbons and their Other organic nonpolar solvents are also included. These solvents are used alone or in combination.

中でも、プロピレングリコールモノメチルエーテル、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、γ−ブチロラクトン等の極性溶媒、トルエン等の芳香族炭化水素類、及び、これらの溶媒からなる混合溶媒が好適なものとして挙げられる。   Among them, polar solvents such as propylene glycol monomethyl ether, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl acetate, propylene glycol monomethyl ether acetate, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, toluene, etc. Aromatic hydrocarbons and mixed solvents composed of these solvents are preferred.

光硬化性成分としては、エチレン性不飽和結合を1つ又は2つ以上有する化合物を用いることができ、例えば、アミド系モノマー、(メタ)アクリレートモノマー、ウレタン(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレート、及びヒドロキシル基含有(メタ)アクリレート、スチレン等の芳香族ビニル化合物を挙げることができる。また、ポリイミド前駆体が、ポリアミック酸等のカルボン酸成分を構造内に有する場合には、3級アミノ基を有するエチレン性不飽和結合含有化合物を用いると、ポリイミド前駆体のカルボン酸とイオン結合を形成し、感光性樹脂組成物としたときの露光部、未露光部の溶解速度のコントラストが大きくなる。   As the photocurable component, a compound having one or more ethylenically unsaturated bonds can be used. For example, an amide monomer, a (meth) acrylate monomer, a urethane (meth) acrylate oligomer, a polyester (meth) Aromatic vinyl compounds such as acrylate oligomers, epoxy (meth) acrylates, hydroxyl group-containing (meth) acrylates, and styrene can be exemplified. In addition, when the polyimide precursor has a carboxylic acid component such as polyamic acid in the structure, the use of an ethylenically unsaturated bond-containing compound having a tertiary amino group causes the carboxylic acid of the polyimide precursor to have an ionic bond. When the photosensitive resin composition is formed, the contrast of the dissolution rate of the exposed area and the unexposed area is increased.

このようなエチレン性不飽和結合を有する光硬化性化合物を用いる場合には、さらに光ラジカル発生剤を添加してもよい。光ラジカル発生剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテル等のベンゾインとそのアルキルエーテル;アセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン、1−ヒドロキシアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン及び2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン等のアセトフェノン;2−メチルアントラキノン、2−エチルアントラキノン、2−ターシャリ−ブチルアントラキノン、1−クロロアントラキノン及び2−アミルアントラキノン等のアントラキノン;2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2−クロロチオキサントン及び2,4−ジイソピルチオキサントン等のチオキサントン;アセトフェノンジメチルケタール及びベンジルジメチルケタール等のケタール;2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド等のモノアシルホスフィンオキシドあるいはビスアシルホスフィンオキシド類;ベンゾフェノン等のベンゾフェノン類;並びにキサントン類等が挙げられる。   When using a photocurable compound having such an ethylenically unsaturated bond, a photoradical generator may be further added. Examples of the photo radical generator include benzoin such as benzoin, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether and alkyl ethers thereof; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2 Acetophenones such as phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxyacetophenone, 1-hydroxycyclohexyl phenyl ketone and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one Anthraquinones such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiary-butylanthraquinone, 1-chloroanthraquinone and 2-amylanthraquinone; 2,4-dimethyl Thioxanthone such as luthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone and 2,4-diisopropylthioxanthone; ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; 2,4,6-trimethylbenzoyldiphenylphosphine oxide Monoacylphosphine oxides or bisacylphosphine oxides; benzophenones such as benzophenone; and xanthones.

本発明の感光性樹脂組成物には、本発明の効果を妨げない限り、本発明の塩基発生剤の補助的な役割として、光によって酸又は塩基を発生させる他の感光性成分を加えても良い。また、塩基増殖剤や増感剤を加えてもよい。
光によって酸を発生させる化合物としては、1,2−ベンゾキノンジアジドあるいは1,2−ナフトキノンジアジド構造を有する感光性ジアゾキノン化合物があり、米国特許明細書第2,772,972号、第2,797,213号、第3,669,658号に提案されている。また、トリアジンやその誘導体、スルホン酸オキシムエステル化合物、スルホン酸ヨードニウム塩、スルホン酸スルフォニウム塩等、公知の光酸発生剤を用いることができる。光によって塩基を発生させる化合物としては、例えば2,6−ジメチル−3,5−ジシアノ−4−(2’−ニトロフェニル)−1,4−ジヒドロピリジン、2,6−ジメチル−3,5−ジアセチル−4−(2’−ニトロフェニル)−1,4−ジヒドロピリジン、2,6−ジメチル−3,5−ジアセチル−4−(2’,4’−ジニトロフェニル)−1,4−ジヒドロピリジンなどが例示できる。
As long as the effect of the present invention is not hindered, the photosensitive resin composition of the present invention may contain other photosensitive components that generate an acid or a base by light as an auxiliary role of the base generator of the present invention. good. Further, a base proliferating agent or a sensitizer may be added.
Examples of the compound that generates an acid by light include photosensitive diazoquinone compounds having a 1,2-benzoquinone diazide or 1,2-naphthoquinone diazide structure. US Pat. Nos. 2,772,972, No. 213, No. 3,669,658. Further, known photoacid generators such as triazine and derivatives thereof, sulfonic acid oxime ester compounds, sulfonic acid iodonium salts, and sulfonic acid sulfonium salts can be used. Examples of the compound that generates a base by light include 2,6-dimethyl-3,5-dicyano-4- (2′-nitrophenyl) -1,4-dihydropyridine, 2,6-dimethyl-3,5-diacetyl. Examples include -4- (2′-nitrophenyl) -1,4-dihydropyridine, 2,6-dimethyl-3,5-diacetyl-4- (2 ′, 4′-dinitrophenyl) -1,4-dihydropyridine, and the like. it can.

塩基発生剤から発生した少量の塩基の作用によって、分解や転位反応して塩基を発生させる塩基増殖剤を併用しても良い。塩基増殖剤としては、例えば、9−フルオレニルメチルカルバメート結合を有する化合物、1,1−ジメチル−2−シアノメチルカルバメート結合((CN)CHC(CHOC(O)NR)を有する化合物、パラニトロベンジルカルバメート結合を有する化合物、2,4−ジクロロベンジルカルバメート結合を有する化合物、その他にも特開2000−330270号公報の段落0010〜段落0032に記載されているウレタン系化合物や、特開2008−250111号公報の段落0033〜段落0060に記載されているウレタン系化合物等が挙げられる。 A base proliferating agent that generates a base by a decomposition or rearrangement reaction by the action of a small amount of base generated from the base generator may be used in combination. Examples of the base proliferating agent include a compound having 9-fluorenylmethyl carbamate bond, 1,1-dimethyl-2-cyanomethyl carbamate bond ((CN) CH 2 C (CH 3 ) 2 OC (O) NR 2 ), Compounds having a paranitrobenzyl carbamate bond, compounds having a 2,4-dichlorobenzyl carbamate bond, and other urethane compounds described in paragraphs 0010 to 0032 of JP 2000-330270 A And urethane compounds described in paragraphs 0033 to 0060 of JP-A-2008-250111.

高分子を透過する波長の電磁波のエネルギーを塩基発生剤が充分利用できる様にし、感度を向上させたい場合に、増感剤の添加が効果を発揮する場合がある。
特に、ポリイミド前駆体の吸収が360nm以上の波長にもある場合には、増感剤の添加による効果が大きい。増感剤と呼ばれる化合物の具体例としては、チオキサントン及び、ジエチルチオキサントンなどのその誘導体、クマリン系及び、その誘導体、ケトクマリン及び、その誘導体、ケトビスクマリン、及びその誘導体、シクロペンタノン及び、その誘導体、シクロヘキサノン及び、その誘導体、チオピリリウム塩及び、その誘導体、チオキサンテン系、キサンテン系及び、その誘導体などが挙げられる。
Addition of a sensitizer may be effective when it is desired to make the base generator sufficiently use the energy of electromagnetic waves having a wavelength that passes through the polymer to improve sensitivity.
In particular, when the absorption of the polyimide precursor is also at a wavelength of 360 nm or more, the effect of adding a sensitizer is great. Specific examples of compounds called sensitizers include thioxanthone and derivatives thereof such as diethylthioxanthone, coumarins and derivatives thereof, ketocoumarin and derivatives thereof, ketobiscoumarin and derivatives thereof, cyclopentanone and derivatives thereof , Cyclohexanone and derivatives thereof, thiopyrylium salts and derivatives thereof, thioxanthene series, xanthene series and derivatives thereof.

クマリン、ケトクマリン及び、その誘導体の具体例としては、3,3’−カルボニルビスクマリン、3,3’−カルボニルビス(5,7−ジメトキシクマリン)、3,3’−カルボニルビス(7−アセトキシクマリン)等が挙げられる。チオキサントン及び、その誘導体の具体例としては、ジエチルチオキサントン、イソプロピルチオキサントンなどが挙げられる。さらに他にはベンゾフェノン、アセトフェノン、フェナントレン、2−ニトロフルオレン、5−ニトロアセナフテン、ベンゾキノン、2−エチルアントラキノン、2−ターシャリーブチルアントラキノン、1,2−ベンズアンスラキノン、1,2−ナフトキノン、などが挙げられる。
これらは、塩基発生剤との組み合わせによって、特に優れた効果を発揮する為、塩基発生剤の構造によって最適な増感作用を示す増感剤が適宜選択される。
Specific examples of coumarin, ketocoumarin and derivatives thereof include 3,3′-carbonylbiscoumarin, 3,3′-carbonylbis (5,7-dimethoxycoumarin), 3,3′-carbonylbis (7-acetoxycoumarin). ) And the like. Specific examples of thioxanthone and derivatives thereof include diethyl thioxanthone and isopropyl thioxanthone. Furthermore, benzophenone, acetophenone, phenanthrene, 2-nitrofluorene, 5-nitroacenaphthene, benzoquinone, 2-ethylanthraquinone, 2-tertiarybutylanthraquinone, 1,2-benzanthraquinone, 1,2-naphthoquinone, etc. Is mentioned.
Since these exhibit a particularly excellent effect in combination with a base generator, a sensitizer exhibiting an optimal sensitizing action is appropriately selected depending on the structure of the base generator.

本発明に係る樹脂組成物に加工特性や各種機能性を付与するために、その他に様々な有機又は無機の低分子又は高分子化合物を配合してもよい。例えば、染料、界面活性剤、レベリング剤、可塑剤、微粒子等を用いることができる。微粒子には、ポリスチレン、ポリテトラフルオロエチレン等の有機微粒子、コロイダルシリカ、カーボン、層状珪酸塩等の無機微粒子等が含まれ、それらは多孔質や中空構造であってもよい。また、その機能又は形態としては顔料、フィラー、繊維等がある。   In order to impart processing characteristics and various functionalities to the resin composition according to the present invention, various organic or inorganic low-molecular or high-molecular compounds may be blended. For example, dyes, surfactants, leveling agents, plasticizers, fine particles and the like can be used. The fine particles include organic fine particles such as polystyrene and polytetrafluoroethylene, inorganic fine particles such as colloidal silica, carbon, and layered silicate, and these may have a porous or hollow structure. The function or form includes pigments, fillers, fibers, and the like.

本発明に係る感光性樹脂組成物において、前記高分子前駆体(固形分)は、得られるパターンの膜物性、特に膜強度や耐熱性の点から、感光性樹脂組成物の固形分全体に対し、30重量%以上、50重量%以上含有することが好ましい。
前記化学式(1)で表される塩基発生剤は、感光性樹脂組成物に含まれる高分子前駆体の固形分に対し、通常、0.1〜95重量%、好ましくは0.5〜60重量%の範囲内で含有させる。0.1重量%未満であると露光部と未露光部の溶解性コントラストを十分に大きくできない恐れがあり、95重量%を超えると最終的に得られる樹脂硬化物の特性が最終生成物に反映されにくい。
エポキシ系化合物と組み合わせる場合など、硬化剤として用いられる場合には、硬化の程度にもよるが通常、0.1〜95重量%、好ましくは0.5〜60重量%の範囲内で含有させる。
一方、硬化促進剤として用いられる場合には、少量の添加で硬化が可能となり、前記化学式(1)で表される塩基発生剤は、感光性樹脂組成物に含まれる高分子前駆体の固形分に対し、通常、0.1〜30重量%、好ましくは0.5〜20重量%の範囲内で含有させることが好ましい。
In the photosensitive resin composition according to the present invention, the polymer precursor (solid content) is based on the entire solid content of the photosensitive resin composition from the viewpoint of film physical properties of the pattern to be obtained, particularly film strength and heat resistance. 30% by weight or more, preferably 50% by weight or more.
The base generator represented by the chemical formula (1) is usually 0.1 to 95% by weight, preferably 0.5 to 60% by weight based on the solid content of the polymer precursor contained in the photosensitive resin composition. %. If it is less than 0.1% by weight, the solubility contrast between the exposed part and the unexposed part may not be sufficiently increased, and if it exceeds 95% by weight, the properties of the finally obtained cured resin will be reflected in the final product. It is hard to be done.
When used as a curing agent, such as when combined with an epoxy compound, it is usually contained in the range of 0.1 to 95% by weight, preferably 0.5 to 60% by weight, depending on the degree of curing.
On the other hand, when used as a curing accelerator, it can be cured with a small amount of addition, and the base generator represented by the chemical formula (1) is a solid content of the polymer precursor contained in the photosensitive resin composition. On the other hand, it is usually 0.1 to 30% by weight, preferably 0.5 to 20% by weight.

本発明に係る感光性樹脂組成物において、前記高分子前駆体(固形分)は、通常、感光性樹脂組成物の固形分全体に対し、50.1〜99.9重量%、更に62.5〜99.5重量%であることが好ましい。また、前記化学式(1)で表される塩基発生剤は、通常、感光性樹脂組成物の固形分全体に対し、0.1〜49.9重量%、更に0.5〜37.5重量%であることが好ましい。
なお、感光性樹脂組成物の固形分とは、溶剤以外の全成分であり、液状のモノマー成分も固形分に含まれる。
In the photosensitive resin composition according to the present invention, the polymer precursor (solid content) is usually 50.1 to 99.9% by weight, further 62.5% based on the entire solid content of the photosensitive resin composition. It is preferably ˜99.5% by weight. The base generator represented by the chemical formula (1) is usually 0.1 to 49.9% by weight, more preferably 0.5 to 37.5% by weight, based on the entire solid content of the photosensitive resin composition. It is preferable that
In addition, solid content of the photosensitive resin composition is all components other than a solvent, and a liquid monomer component is also contained in solid content.

また、その他の溶剤以外の任意成分の配合割合は、感光性樹脂組成物の固形分全体に対し、0.1重量%〜95重量%の範囲が好ましい。0.1重量%未満だと、添加物を添加した効果が発揮されにくく、95重量%を超えると、最終的に得られる樹脂硬化物の特性が最終生成物に反映されにくい。   Moreover, the mixture ratio of arbitrary components other than a solvent has the preferable range of 0.1 weight%-95 weight% with respect to the whole solid content of the photosensitive resin composition. When the amount is less than 0.1% by weight, the effect of adding the additive is hardly exhibited, and when it exceeds 95% by weight, the properties of the finally obtained resin cured product are not easily reflected in the final product.

本発明に係る感光性樹脂組成物は、さまざまなコーティングプロセスや成形プロセスに用いられて、フィルムや3次元的形状の成形物を作製することができる。   The photosensitive resin composition according to the present invention can be used in various coating processes and molding processes to produce films and molded articles having a three-dimensional shape.

本発明の感光性樹脂組成物の一実施形態としてポリイミド前駆体やポリベンゾオキサゾール前駆体を高分子前駆体として用いた場合、得られるポリイミド及びポリベンゾオキサゾールは、耐熱性、寸法安定性、絶縁性等の特性を確保する点から、当該ポリイミド及びポリベンゾオキサゾールの窒素中で測定した5%重量減少温度は、250℃以上が好ましく、300℃以上がさらに好ましい。特に、はんだリフローの工程を通るような電子部品等の用途に用いる場合は、5%重量減少温度が300℃以下であると、はんだリフローの工程で発生した分解ガスにより気泡等の不具合が発生する恐れがある。   When a polyimide precursor or a polybenzoxazole precursor is used as a polymer precursor as an embodiment of the photosensitive resin composition of the present invention, the resulting polyimide and polybenzoxazole have heat resistance, dimensional stability, and insulating properties. From the viewpoint of securing the above properties, the 5% weight loss temperature measured in nitrogen of the polyimide and polybenzoxazole is preferably 250 ° C. or higher, more preferably 300 ° C. or higher. In particular, when used in applications such as electronic parts that pass through the solder reflow process, if the 5% weight loss temperature is 300 ° C. or less, defects such as bubbles occur due to the decomposition gas generated in the solder reflow process. There is a fear.

本発明の感光性樹脂組成物から得られるポリイミド及びポリベンゾオキサゾールのガラス転移温度は、耐熱性の観点からは高ければ高いほど良いが、光導波路のように熱成形プロセスが考えられる用途においては、120℃〜450℃程度のガラス転移温度を示すことが好ましく、200℃〜380℃程度のガラス転移温度を示すことがさらに好ましい。   The glass transition temperature of the polyimide and polybenzoxazole obtained from the photosensitive resin composition of the present invention is preferably as high as possible from the viewpoint of heat resistance, but in applications where a thermoforming process is considered like an optical waveguide, It preferably exhibits a glass transition temperature of about 120 ° C. to 450 ° C., more preferably about 200 ° C. to 380 ° C.

ここで本発明におけるガラス転移温度は、感光性樹脂組成物から得られるポリイミド及びポリベンゾオキサゾールをフィルム形状にすることが出来る場合には、動的粘弾性測定によって、tanδ(tanδ=損失弾性率(E”)/貯蔵弾性率(E’))のピーク温度から求められる。動的粘弾性測定としては、例えば、粘弾性測定装置Solid Analyzer RSA II(Rheometric Scientific社製)によって、周波数3Hz、昇温速度5℃/minにより行うことができる。感光性樹脂組成物から得られるポリイミド及びポリベンゾオキサゾールをフィルム形状にできない場合には、示差熱分析(DTA)のベースラインの変曲点の温度で判断する。   Here, the glass transition temperature in the present invention is tan δ (tan δ = loss elastic modulus (tan δ) by dynamic viscoelasticity measurement when polyimide and polybenzoxazole obtained from the photosensitive resin composition can be formed into a film shape. E ″) / determined from the peak temperature of the storage elastic modulus (E ′). As the dynamic viscoelasticity measurement, for example, the frequency is increased by 3 Hz using a viscoelasticity measuring device Solid Analyzer RSA II (manufactured by Rheometric Scientific) If the polyimide and polybenzoxazole obtained from the photosensitive resin composition cannot be formed into a film shape, the temperature is determined by the inflection point of the baseline of differential thermal analysis (DTA). To do.

本発明の感光性樹脂組成物から得られるポリイミド及びポリベンゾオキサゾールの寸法安定性の観点から、線熱膨張係数は60ppm以下が好ましく、40ppm以下がさらに好ましい。半導体素子等の製造プロセスにおいてシリコンウェハ上に膜を形成する場合には、密着性、基板のそりの観点から20ppm以下がさらに好ましい。   From the viewpoint of the dimensional stability of the polyimide and polybenzoxazole obtained from the photosensitive resin composition of the present invention, the linear thermal expansion coefficient is preferably 60 ppm or less, and more preferably 40 ppm or less. In the case of forming a film on a silicon wafer in a manufacturing process of a semiconductor element or the like, 20 ppm or less is more preferable from the viewpoint of adhesion and warpage of the substrate.

本発明における線熱膨張係数とは、本発明で得られる感光性樹脂組成物から得られるポリイミド及びポリベンゾオキサゾールのフィルムの熱機械分析装置(TMA)によって求めることができる。熱機械分析装置(例えば、Thermo Plus TMA8310((株)リガク製)によって、昇温速度を10℃/min、評価サンプルの断面積当たりの加重が同じになるように引張り加重を1g/25,000μmとして得られる。 The linear thermal expansion coefficient in this invention can be calculated | required with the thermomechanical analyzer (TMA) of the film of the polyimide and polybenzoxazole obtained from the photosensitive resin composition obtained by this invention. Using a thermomechanical analyzer (for example, Thermo Plus TMA8310 (manufactured by Rigaku Corporation), the heating rate is 10 ° C./min, and the tensile load is 1 g / 25,000 μm so that the weight per cross-sectional area of the evaluation sample is the same. 2 is obtained.

以上に述べたように、本発明によれば、高分子前駆体に上記化学式(1)で表される塩基発生剤を混合するだけという簡便な手法で感光性樹脂組成物を得ることができることから、コストパフォーマンスに優れる。
化学式(1)で表される塩基発生剤を構成する芳香族成分含有カルボン酸、並びに、塩基性物質は安価に入手することが可能で感光性樹脂組成物としての価格も抑えられる。
本発明に係る感光性樹脂組成物は、上記化学式(1)で表される塩基発生剤により、多種多様な高分子前駆体の最終生成物への反応促進に適用することができ、最終的に得られる高分子の構造を広範囲から選択することができる。
さらに、化学式(1)で表される塩基発生剤は、塩基の発生時に環化し、フェノール性水酸基を消失するため、塩基性溶液のような現像液への溶解性が変化し、高分子前駆体がポリイミド前駆体やポリベンゾオキサゾール前駆体等の場合に、感光性樹脂組成物の溶解性の低下を補助し、露光部と未露光部での溶解性コントラストの向上に寄与する。
また、電磁波の照射により発生したアミンなどの塩基性物質の触媒効果により、例えばポリイミド前駆体やポリベンゾオキサゾール前駆体から最終生成物へのイミド化などの環化等の反応に要する処理温度を低減できる為、プロセスへの負荷や製品への熱によるダメージを低減することが可能である。
さらに、電磁波の照射と加熱により塩基を発生する本発明の塩基発生剤は、高分子前駆体から最終生成物を得る工程に加熱工程が含まれる場合、当該加熱工程を利用できるため、電磁波の照射量を低減することが可能であり、工程の有効利用も可能である。
As described above, according to the present invention, the photosensitive resin composition can be obtained by a simple method of simply mixing the base generator represented by the chemical formula (1) with the polymer precursor. Excellent cost performance.
The aromatic component-containing carboxylic acid constituting the base generator represented by the chemical formula (1) and the basic substance can be obtained at low cost, and the price as the photosensitive resin composition can be suppressed.
The photosensitive resin composition according to the present invention can be applied to promote the reaction of a wide variety of polymer precursors to the final product by the base generator represented by the chemical formula (1). The structure of the resulting polymer can be selected from a wide range.
Furthermore, since the base generator represented by the chemical formula (1) is cyclized when the base is generated and the phenolic hydroxyl group disappears, the solubility in a developer such as a basic solution is changed, and the polymer precursor is changed. In the case of a polyimide precursor, a polybenzoxazole precursor or the like, it helps to lower the solubility of the photosensitive resin composition and contributes to the improvement of the solubility contrast in the exposed and unexposed areas.
Also, due to the catalytic effect of amines and other basic substances generated by electromagnetic wave irradiation, the processing temperature required for reactions such as cyclization such as imidation from polyimide precursors or polybenzoxazole precursors to final products is reduced. Therefore, it is possible to reduce the load on the process and damage to the product due to heat.
Furthermore, since the base generator of the present invention that generates a base by irradiation and heating of electromagnetic waves includes a heating step in the step of obtaining a final product from the polymer precursor, the heating step can be used. The amount can be reduced, and the process can be effectively used.

本発明に係る感光性樹脂組成物は、印刷インキ、塗料、シール剤、接着剤、電子材料、光回路部品、成形材料、レジスト材料、建築材料、光造形、光学部材等、樹脂材料が用いられる公知の全ての分野、製品に利用できる。塗料、シール剤、接着剤のように、全面露光して用いる用途にも、永久膜や剥離膜などパターンを形成する用途にも、いずれにも好適に用いることができる。   For the photosensitive resin composition according to the present invention, resin materials such as printing ink, paint, sealant, adhesive, electronic material, optical circuit component, molding material, resist material, building material, stereolithography, and optical member are used. It can be used for all known fields and products. It can be suitably used both for applications that are used by exposing the entire surface, such as paints, sealants, and adhesives, and for applications that form patterns such as permanent films and release films.

本発明に係る感光性樹脂組成物は、耐熱性、寸法安定性、絶縁性等の特性が有効とされる広範な分野、製品、例えば、塗料、印刷インキ、シール剤、又は接着剤、或いは、表示装置、半導体装置、電子部品、微小電気機械システム(Micro Electro Mechanical System(MEMS))、光学部材又は建築材料の形成材料として好適に用いられる。例えば具体的には、電子部品の形成材料としては、封止材料、層形成材料として、プリント配線基板、層間絶縁膜、配線被覆膜等に用いることができる。また、表示装置の形成材料としては、層形成材料や画像形成材料として、カラーフィルター、フレキシブルディスプレー用フィルム、レジスト材料、配向膜等に用いることができる。また、半導体装置の形成材料としては、レジスト材料、バッファーコート膜のような層形成材料等に用いることができる。また、光学部品の形成材料としては、光学材料や層形成材料として、ホログラム、光導波路、光回路、光回路部品、反射防止膜等に用いることができる。また、建築材料としては、塗料、コーティング剤等に用いることができる。また、光造形物の材料としても用いることができる。印刷物、塗料、シール剤、接着剤、表示装置、半導体装置、電子部品、微小電気機械システム、光造形物、光学部材又は建築材料、いずれかの物品が提供される。   The photosensitive resin composition according to the present invention can be used in a wide range of fields, products such as heat resistance, dimensional stability, and insulation, such as paints, printing inks, sealants, or adhesives, or It is suitably used as a forming material for a display device, a semiconductor device, an electronic component, a micro electro mechanical system (MEMS), an optical member or a building material. For example, specifically, as a forming material for an electronic component, a sealing material and a layer forming material can be used for a printed wiring board, an interlayer insulating film, a wiring covering film, and the like. In addition, as a forming material of a display device, a layer forming material or an image forming material can be used for a color filter, a film for flexible display, a resist material, an alignment film, and the like. Further, as a material for forming a semiconductor device, a resist material, a layer forming material such as a buffer coat film, or the like can be used. Further, as a material for forming an optical component, it can be used as an optical material or a layer forming material for a hologram, an optical waveguide, an optical circuit, an optical circuit component, an antireflection film, or the like. Moreover, as a building material, it can use for a coating material, a coating agent, etc. It can also be used as a material for an optically shaped object. A printed matter, a paint, a sealant, an adhesive, a display device, a semiconductor device, an electronic component, a microelectromechanical system, an optically shaped article, an optical member, or a building material is provided.

上記の様な特徴を有することから、本発明に係る感光性樹脂組成物は、パターン形成用材料としても用いることが可能である。特に、ポリイミド前駆体又はポリベンゾオキサゾール前駆体を含有する感光性樹脂組成物をパターン形成用材料(レジスト)として用いた場合、それによって形成されたパターンは、ポリイミド又はポリベンゾオキサゾールからなる永久膜として耐熱性や絶縁性を付与する成分として機能し、例えば、カラーフィルター、フレキシブルディスプレー用フィルム、電子部品、半導体装置、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、その他の光学部材又は電子部材を形成するのに適している。   Since it has the above characteristics, the photosensitive resin composition according to the present invention can also be used as a pattern forming material. In particular, when a photosensitive resin composition containing a polyimide precursor or a polybenzoxazole precursor is used as a pattern forming material (resist), the pattern formed thereby is a permanent film made of polyimide or polybenzoxazole. Functions as a component that imparts heat resistance and insulation, such as color filters, flexible display films, electronic components, semiconductor devices, interlayer insulation films, wiring coating films, optical circuits, optical circuit components, antireflection films, etc. It is suitable for forming an optical member or an electronic member.

<レリーフパターンの製造方法>
本発明に係るレリーフパターンの製造方法は、前記本発明に係る感光性樹脂組成物からなる塗膜又は成形体を形成し、当該塗膜又は成形体を、所定パターン状に電磁波を照射し、照射後又は照射と同時に加熱し、前記照射部位の溶解性を変化させた後、現像することを特徴とする。
<Relief pattern manufacturing method>
The method for producing a relief pattern according to the present invention comprises forming a coating film or a molded body comprising the photosensitive resin composition according to the present invention, irradiating the coating film or the molded body with electromagnetic waves in a predetermined pattern, Development is performed after heating or simultaneously with irradiation to change the solubility of the irradiated portion.

本発明に係る感光性樹脂組成物を何らかの支持体上に塗布するなどして塗膜を形成したり、適した成型方法で成形体を形成し、当該塗膜又は成形体を、所定のパターン状に電磁波を照射し、照射又は照射と同時に加熱することにより、露光部においてのみ、上記化学式(1)で表される塩基発生剤が異性化及び環化して塩基性物質が生成する。塩基性物質は、露光部の高分子前駆体の最終生成物への反応を促進する触媒として作用する。   The photosensitive resin composition according to the present invention is coated on some support to form a coating film, or a molded body is formed by a suitable molding method, and the coating film or molded body is formed into a predetermined pattern shape. Is irradiated with electromagnetic waves and heated at the same time as irradiation or irradiation, the base generator represented by the above chemical formula (1) is isomerized and cyclized only in the exposed portion to produce a basic substance. The basic substance acts as a catalyst that promotes the reaction of the polymer precursor in the exposed area to the final product.

ポリイミド前駆体又はポリベンゾオキサゾール前駆体のように、塩基の触媒作用によって熱硬化温度が低下する高分子前駆体を用いる場合には、先ず、そのような高分子前駆体、及び前記化学式(1)で表される塩基発生剤を組み合わせた感光性樹脂組成物の塗膜又は成形体上のパターンを残したい部分を露光する。露光後又は露光と同時に加熱すると、露光部には、塩基性物質が発生し、その部分の熱硬化温度が選択的に低下する。露光後又は露光と同時に、露光部は熱硬化するが未露光部は熱硬化しない処理温度で加熱し、露光部のみ硬化させる。塩基性物質を発生させる加熱工程と、露光部のみ硬化させる反応を行うための加熱工程(露光後ベイク)は、同一の工程としても良いし、別の工程にしても良い。
次に、所定の現像液(有機溶媒や塩基性水溶液等)で未露光部を溶解して熱硬化物からなるパターンを形成する。このパターンを、更に必要に応じ加熱して熱硬化を完結させる。以上の工程によって、通常ネガ型の所望の2次元樹脂パターン(一般的な平面パターン)又は3次元樹脂パターン(立体的に成形された形状)が得られる。
In the case of using a polymer precursor whose thermal curing temperature is lowered by the catalytic action of a base, such as a polyimide precursor or a polybenzoxazole precursor, first, such a polymer precursor and the chemical formula (1) The part which wants to leave the pattern on the coating film or molded object of the photosensitive resin composition which combined the base generator represented by these is exposed. When heated after exposure or simultaneously with exposure, a basic substance is generated in the exposed portion, and the thermosetting temperature of that portion is selectively lowered. After the exposure or simultaneously with the exposure, the exposed portion is heat-cured but the unexposed portion is heated at a processing temperature that is not heat-cured, and only the exposed portion is cured. The heating step for generating the basic substance and the heating step (post-exposure bake) for performing the reaction for curing only the exposed portion may be the same step or different steps.
Next, the unexposed portion is dissolved with a predetermined developer (such as an organic solvent or a basic aqueous solution) to form a pattern made of a thermoset. This pattern is further heated as necessary to complete thermosetting. Through the above steps, a desired negative two-dimensional resin pattern (general plane pattern) or a three-dimensional resin pattern (three-dimensionally shaped shape) is obtained.

また、エポキシ基やシアネート基を有する化合物及び高分子のように、塩基の触媒作用によって、反応が開始するような高分子前駆体を用いる場合においても、先ず、そのような高分子前駆体、及び前記化学式(1)で表される塩基発生剤を組み合わせた感光性樹脂組成物の塗膜又は成形体上のパターンを残したい部分を露光する。露光後又は露光と同時に加熱すると、露光部には塩基性物質が発生し、その部分のエポキシ基やシアネート基を有する化合物及び高分子の反応が開始され、露光部のみ硬化する。塩基性物質を発生させる加熱工程と、露光部のみ硬化させる反応を行うための加熱工程(露光後ベイク)は、同一の工程としても良いし、別の工程にしても良い。次に、所定の現像液(有機溶媒や塩基性水溶液等)で未露光部を溶解して熱硬化物からなるパターンを形成する。このパターンを、更に必要に応じ加熱して熱硬化を完結させる。以上の工程によって、通常ネガ型の所望の2次元樹脂パターン(一般的な平面パターン)又は3次元樹脂パターン(立体的に成形された形状)が得られる。   Further, even when using a polymer precursor that initiates the reaction by the catalytic action of a base, such as a compound having an epoxy group or a cyanate group and a polymer, first, such a polymer precursor, and The part which wants to leave the pattern on the coating film or molded object of the photosensitive resin composition which combined the base generator represented by the said Chemical formula (1) is exposed. When it is heated after exposure or simultaneously with exposure, a basic substance is generated in the exposed area, the reaction of the compound having an epoxy group or cyanate group and a polymer in that area is initiated, and only the exposed area is cured. The heating step for generating the basic substance and the heating step (post-exposure bake) for performing the reaction for curing only the exposed portion may be the same step or different steps. Next, the unexposed portion is dissolved with a predetermined developer (such as an organic solvent or a basic aqueous solution) to form a pattern made of a thermoset. This pattern is further heated as necessary to complete thermosetting. Through the above steps, a desired negative two-dimensional resin pattern (general plane pattern) or a three-dimensional resin pattern (three-dimensionally shaped shape) is obtained.

本発明の感光性樹脂組成物は、プロピレングリコールモノメチルエーテル、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、γ−ブチロラクトン等の極性溶媒、トルエン等の芳香族炭化水素類、及び、これらの溶媒からなる混合溶媒に溶解後、浸漬法、スプレー法、フレキソ印刷法、グラビア印刷法、スクリーン印刷法、スピンコート法、ディスペンス法などによって、シリコンウエハ、金属基板、セラミック基板、樹脂フィルムなどの基材表面に塗布し、加熱して溶剤の大部分を除くことにより、基材表面に粘着性のない塗膜を与えることができる。塗膜の厚みには特に制限はないが、0.5〜50μmであることが好ましく、感度および現像速度面から1.0〜20μmであることがより望ましい。塗布した塗膜の乾燥条件としては、例えば、80〜100℃、1分〜20分が挙げられる。   The photosensitive resin composition of the present invention includes propylene glycol monomethyl ether, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl acetate, propylene glycol monomethyl ether acetate, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and γ-butyrolactone. After dissolving in polar solvents such as toluene, aromatic hydrocarbons such as toluene, and mixed solvents composed of these solvents, immersion method, spray method, flexographic printing method, gravure printing method, screen printing method, spin coating method, dispensing It can be applied to the surface of a substrate such as a silicon wafer, metal substrate, ceramic substrate or resin film by a method, etc., and heated to remove most of the solvent to give a non-adhesive coating on the surface of the substrate. it can. Although there is no restriction | limiting in particular in the thickness of a coating film, it is preferable that it is 0.5-50 micrometers, and it is more desirable that it is 1.0-20 micrometers from a sensitivity and a development speed surface. As drying conditions of the apply | coated coating film, 80-100 degreeC and 1 minute-20 minutes are mentioned, for example.

この塗膜に、所定のパターンを有するマスクを通して、電磁波を照射しパターン状に露光を行い、加熱後、膜の未露光部分を、適切な現像液で現像して除去することにより、所望のパターン化された膜を得ることができる。   This coating film is exposed to an electromagnetic wave through a mask having a predetermined pattern to be exposed in a pattern, and after heating, the unexposed portion of the film is developed and removed with an appropriate developer to obtain a desired pattern. Can be obtained.

露光工程に用いられる露光方法や露光装置は特に限定されることなく、密着露光でも間接露光でも良く、g線ステッパ、i線ステッパ、超高圧水銀灯を用いるコンタクト/プロキシミティ露光機、ミラープロジェクション露光機、又はその他の紫外線、可視光線、X線、電子線などを照射可能な投影機や線源を使用することができる。   The exposure method and the exposure apparatus used in the exposure process are not particularly limited, and may be contact exposure or indirect exposure. A contact / proximity exposure machine using a g-line stepper, i-line stepper, ultrahigh pressure mercury lamp, or mirror projection exposure machine. Alternatively, a projector or a radiation source that can irradiate ultraviolet rays, visible rays, X-rays, electron beams, or the like can be used.

露光後又は露光と同時に加熱塩基を発生させるための加熱温度としては、組み合わせる高分子前駆体や目的により適宜選択され、特に限定されない。感光性樹脂組成物が置かれた環境の温度(例えば、室温)による加熱であっても良く、その場合、徐々に塩基が発生する。また、電磁波の照射時に副生される熱によっても塩基が発生するため、電磁波の照射時に副生される熱により実質的に加熱が同時に行われても良い。反応速度を高くし、効率よくアミンを発生させる点から、塩基を発生させるための加熱温度としては、30℃以上であることが好ましく、更に好ましくは60℃以上、より更に好ましくは100℃以上、特に好ましくは120℃以上である。しかしながら、組み合わせて用いられる高分子前駆体によっては、例えば60℃以上の加熱で未露光部についても硬化するものもあるので、好適な加熱温度は、上記に限定されない。
例えば、エポキシ樹脂の場合、好ましい熱処理の温度の範囲は、エポキシ樹脂の種類により適宜選択されるが、通常100℃〜150℃程度である。
The heating temperature for generating a heated base after exposure or simultaneously with exposure is appropriately selected depending on the polymer precursor to be combined and the purpose, and is not particularly limited. Heating by the temperature (for example, room temperature) of the environment where the photosensitive resin composition is placed may be used, and in that case, a base is gradually generated. Further, since the base is also generated by heat generated as a by-product during irradiation with electromagnetic waves, heating may be performed substantially simultaneously with the heat generated as a by-product during irradiation with electromagnetic waves. From the viewpoint of increasing the reaction rate and efficiently generating amine, the heating temperature for generating the base is preferably 30 ° C or higher, more preferably 60 ° C or higher, still more preferably 100 ° C or higher, Especially preferably, it is 120 degreeC or more. However, depending on the polymer precursors used in combination, for example, the unexposed part may be cured by heating at 60 ° C. or higher, so that the suitable heating temperature is not limited to the above.
For example, in the case of an epoxy resin, a preferable heat treatment temperature range is appropriately selected depending on the type of the epoxy resin, but is usually about 100 ° C to 150 ° C.

本発明に係る感光性樹脂組成物の塗膜は、架橋反応を物理的に促進するためや、露光部のみ硬化させる反応を行うために、露光工程と現像工程の間に、露光後ベイク(Post Exposure Bake:PEB)を行うことが好ましい。当該PEBは、電磁波の照射及び加熱により発生した塩基の作用により、塩基が存在する部位と、未照射で塩基が存在しない部位とでイミド化率等の硬化反応の反応率が異なるようになる温度で行うことが好ましい。例えば、イミド化の場合、好ましい熱処理の温度の範囲は、通常60℃〜200℃程度であり、より好ましくは120℃〜200℃である。熱処理温度が60℃より低いと、イミド化の効率が悪く、現実的なプロセス条件で露光部、未露光部のイミド化率の差を生ずることが難しくなる。一方、熱処理温度が200℃を超えると、アミンが存在していない未露光部でもイミド化が進行する恐れがあり、露光部と未露光部の溶解性の差を生じ難い。
この熱処理は、公知の方法であればどの方法でもよく、具体的に例示すると、空気、又は窒素雰囲気下の循環オーブン、又はホットプレートによる加熱等が挙げられるが、特に限定されない。
本発明において、電磁波の照射と加熱により塩基発生剤から塩基が生ずるが、この塩基を発生させるための加熱とPEB工程は同一の工程としてもよいし、別の工程としてもよい。
The coating film of the photosensitive resin composition according to the present invention is a post-exposure bake (Post) between the exposure process and the development process in order to physically accelerate the cross-linking reaction or to perform a reaction to cure only the exposed area. It is preferable to perform Exposure Bake (PEB). The PEB is a temperature at which the reaction rate of the curing reaction such as the imidization rate differs between the site where the base is present and the site where the base is not present without irradiation due to the action of the base generated by electromagnetic wave irradiation and heating. It is preferable to carry out with. For example, in the case of imidization, the preferable heat treatment temperature range is usually about 60 ° C to 200 ° C, more preferably 120 ° C to 200 ° C. When the heat treatment temperature is lower than 60 ° C., the imidization efficiency is poor, and it becomes difficult to cause a difference in the imidization ratio between the exposed portion and the unexposed portion under realistic process conditions. On the other hand, when the heat treatment temperature exceeds 200 ° C., imidization may proceed even in an unexposed portion where no amine is present, and it is difficult to cause a difference in solubility between the exposed portion and the unexposed portion.
This heat treatment may be any method as long as it is a known method, and specific examples thereof include heating with a circulating oven in a nitrogen atmosphere or a hot plate, or the like, but is not particularly limited.
In the present invention, a base is generated from the base generator by irradiation with electromagnetic waves and heating. The heating and PEB process for generating the base may be the same process or separate processes.

(現像液)
現像工程に用いられる現像液としては、前記照射部位の溶解性が変化する溶剤を現像液として用いれば、特に限定されず、塩基性水溶液、有機溶剤など、用いられる高分子前駆体に合わせて適宜選択することが可能である。
(Developer)
The developer used in the development step is not particularly limited as long as the solvent that changes the solubility of the irradiation site is used as the developer, and is appropriately selected according to the polymer precursor to be used, such as a basic aqueous solution or an organic solvent. It is possible to select.

塩基性水溶液としては、特に限定されないが、例えば、濃度が、0.01重量%〜10重量%、好ましくは、0.05重量%〜5重量%のテトラメチルアンモニウムヒドロキシド(TMAH)水溶液の他、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミン、テトラメチルアンモニウムなどの水溶液等が挙げられる。
溶質は、1種類でも2種類以上でも良く、全体の重量の50%以上、さらに好ましくは70%以上、水が含まれていれば有機溶媒等を含んでいても良い。
Although it does not specifically limit as basic aqueous solution, For example, other than tetramethylammonium hydroxide (TMAH) aqueous solution whose density | concentration is 0.01 weight%-10 weight%, Preferably, 0.05 weight%-5 weight%. , Diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethylaminoethyl Examples of the aqueous solution include methacrylate, cyclohexylamine, ethylenediamine, hexamethylenediamine, and tetramethylammonium.
The solute may be one type or two or more types, and may contain 50% or more of the total weight, more preferably 70% or more, and an organic solvent or the like as long as water is contained.

また、有機溶剤としては、特に限定されないが、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、γ−ブチロラクロン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、酢酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトン、メチルエチルケトンなどのケトン類、その他テトラヒドロフラン、クロロホルム、アセトニトリルなどを、単独であるいは2種類以上を組み合わせて添加してもよい。現像後は水または貧溶媒にて洗浄を行う。この場合においてもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えても良い。   The organic solvent is not particularly limited, but polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, γ-butyrolaclone, dimethylacrylamide, methanol, Alcohols such as ethanol and isopropanol, esters such as ethyl acetate and propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, methyl isobutyl ketone and methyl ethyl ketone, other tetrahydrofuran, chloroform, acetonitrile, etc. Or you may add in combination of 2 or more types. After development, washing is performed with water or a poor solvent. Also in this case, alcohols such as ethanol and isopropyl alcohol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water.

現像後は必要に応じて水または貧溶媒でリンスを行い、80〜100℃で乾燥しパターンを安定なものとする。このレリーフパターンを、耐熱性のあるものとするために180〜500℃、好ましくは200〜350℃の温度で数十分から数時間加熱することによりパターン化された高耐熱性樹脂層が形成される。   After development, if necessary, rinse with water or a poor solvent and dry at 80 to 100 ° C. to stabilize the pattern. In order to make this relief pattern heat resistant, a patterned high heat resistant resin layer is formed by heating at a temperature of 180 to 500 ° C., preferably 200 to 350 ° C. for several tens of minutes to several hours. The

以下、本発明について実施例を示して具体的に説明する。これらの記載により本発明を制限するものではない。尚、実施例中、部は特に特定しない限り重量部を表す。製造された塩基発生剤は、H NMR測定により、化学構造を確認した。
また、以下に示す装置を用いて各測定、実験を行った。
H NMR測定:日本電子(株)製、JEOL JNM−LA400WB
手動露光:大日本科研製、MA−1100
吸光度測定:(株)島津製作所製、紫外可視分光光度計UV−2550
5%重量減少温度測定:(株)島津製作所製、示差熱・熱重量同時測定装置DTG−60
Hereinafter, the present invention will be specifically described with reference to examples. These descriptions do not limit the present invention. In the examples, parts represent parts by weight unless otherwise specified. The produced base generator was confirmed in chemical structure by 1 H NMR measurement.
Moreover, each measurement and experiment were performed using the apparatus shown below.
1 H NMR measurement: JEOL JNM-LA400WB, manufactured by JEOL Ltd.
Manual exposure: manufactured by Dainippon Kaken, MA-1100
Absorbance measurement: UV-2550 manufactured by Shimadzu Corporation, UV-visible spectrophotometer
5% weight loss temperature measurement: manufactured by Shimadzu Corporation, simultaneous differential heat / thermogravimetric measurement device DTG-60

(製造例1:塩基発生剤(1)の合成)
アルゴン気流下、300mlフラスコに2,4−ジヒドロキシベンズアルデヒド(東京化成工業(株)製)17.5g(127mmol)、ブロモシクロヘキサン(東京化成工業(株)製)49.4g(304mmol)、ジメチルホルムアミド(関東化学(株)製)196mlを入れて撹拌し、炭酸水素カリウム(関東化学(株)製)30.44g(304mmol)を加え、100℃で15時間撹拌した。反応液を放冷し、濾過、濃縮後、シリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/メタノール 100/1〜10/1(体積比))により精製を行い、アルデヒド誘導体Aを3.15g得た。
100mLフラスコ中、炭酸カリウム(関東化学(株)製)1.00gをメタノール(関東化学(株)製)15mLに加えた。50mLフラスコ中、エトキシカルボニルメチル(トリフェニル)ホスホニウム ブロミド(東京化成工業(株)製)2.18g(5.09mmol)、及び上記で得られたアルデヒド誘導体A1.12g(5.09 mmol)をメタノール10mLに溶解し、よく撹拌した炭酸カリウム溶液にゆっくり滴下した。3時間撹拌した後、TLCにより反応の終了を確認したうえでろ過を行い炭酸カリウムを除き、減圧濃縮した。濃縮後、1Nの水酸化ナトリウム水溶液を12mL加え3時間撹拌した。反応終了後、ろ過によりトリフェニルホスフィンオキシドを除いた後、濃塩酸を滴下し反応液を酸性にした。沈殿物をろ過により集め、少量のクロロホルムにより洗浄することで桂皮酸誘導体Bを940mg得た。続いて、100mL三口フラスコ中、桂皮酸誘導体B940mg(3.57mmol)を脱水テトラヒドロフラン(関東化学(株)製)10mLに溶解し、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)(東京化成工業(株)製)0.821g(4.28mmol)を加えた。30分後、ピペリジン(東京化成工業(株)製)0.42ml(4.28mmol)を加えた。反応終了後、反応溶液を濃縮し、水に溶解した。クロロホルムで抽出した後、飽和炭酸水素ナトリウム水溶液、1N塩酸、飽和食塩水で洗浄し、濃縮した。その後、メタノール(関東化学(株)製)10mLを添加し、60℃で加温することにより溶解した後、冷却し、晶析させた。氷冷したのち析出した結晶を冷却した少量のメタノールにより洗浄することで、下記式(11)で表される塩基発生剤(1)を820mg得た(収率70%)。NMRにより目的化合物の合成を確認し、不純物は確認されなかった。
(Production Example 1: Synthesis of base generator (1))
Under a stream of argon, 17.5 g (127 mmol) of 2,4-dihydroxybenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.), 49.4 g (304 mmol) of bromocyclohexane (manufactured by Tokyo Chemical Industry Co., Ltd.), dimethylformamide ( 196 ml of Kanto Chemical Co., Ltd.) was added and stirred, 30.44 g (304 mmol) of potassium hydrogen carbonate (Kanto Chemical Co., Ltd.) was added, and the mixture was stirred at 100 ° C. for 15 hours. The reaction solution was allowed to cool, filtered and concentrated, and then purified by silica gel column chromatography (developing solvent: chloroform / methanol 100/1 to 10/1 (volume ratio)) to obtain 3.15 g of aldehyde derivative A.
In a 100 mL flask, 1.00 g of potassium carbonate (Kanto Chemical Co., Ltd.) was added to 15 mL of methanol (Kanto Chemical Co., Ltd.). In a 50 mL flask, 2.18 g (5.09 mmol) of ethoxycarbonylmethyl (triphenyl) phosphonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) and 1.12 g (5.09 mmol) of the aldehyde derivative A obtained above were methanol. Dissolve in 10 mL and slowly add dropwise to a well-stirred potassium carbonate solution. After stirring for 3 hours, the completion of the reaction was confirmed by TLC, followed by filtration to remove potassium carbonate and concentration under reduced pressure. After concentration, 12 mL of 1N aqueous sodium hydroxide solution was added and stirred for 3 hours. After completion of the reaction, triphenylphosphine oxide was removed by filtration, and then concentrated hydrochloric acid was added dropwise to acidify the reaction solution. The precipitate was collected by filtration and washed with a small amount of chloroform to obtain 940 mg of cinnamic acid derivative B. Subsequently, in a 100 mL three-necked flask, 940 mg (3.57 mmol) of cinnamic acid derivative B was dissolved in 10 mL of dehydrated tetrahydrofuran (manufactured by Kanto Chemical Co., Inc.), and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride ( EDC) (Tokyo Chemical Industry Co., Ltd.) 0.821 g (4.28 mmol) was added. After 30 minutes, 0.42 ml (4.28 mmol) of piperidine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. After completion of the reaction, the reaction solution was concentrated and dissolved in water. After extraction with chloroform, the mixture was washed with saturated aqueous sodium hydrogen carbonate solution, 1N hydrochloric acid and saturated brine, and concentrated. Thereafter, 10 mL of methanol (manufactured by Kanto Chemical Co., Inc.) was added and dissolved by heating at 60 ° C., and then cooled and crystallized. After cooling with ice, the precipitated crystals were washed with a small amount of cooled methanol to obtain 820 mg of a base generator (1) represented by the following formula (11) (yield 70%). The synthesis of the target compound was confirmed by NMR, and no impurities were confirmed.

Figure 2012211276
Figure 2012211276

(製造例2:塩基発生剤(2)の合成)
製造例1において、塩基成分として、ピペリジンを用いる代わりに、ジエチルアミン(東京化成工業(株)製)を等モル量用いた以外は、製造例1と同様にして、下記化学式(12)で表される塩基発生剤(2)を得た(収率68%)。NMRにより目的化合物の合成を確認し、不純物は確認されなかった。
(Production Example 2: Synthesis of base generator (2))
In Production Example 1, it is represented by the following chemical formula (12) in the same manner as in Production Example 1 except that equimolar amounts of diethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) are used as the base component instead of piperidine. The base generator (2) was obtained (yield 68%). The synthesis of the target compound was confirmed by NMR, and no impurities were confirmed.

Figure 2012211276
Figure 2012211276

(製造例3:塩基発生剤(3)の合成)
製造例1において、塩基成分として、ピペリジンを用いる代わりに、ブチルアミン(東京化成工業(株)製)を等モル量用いた以外は、製造例1と同様にして、下記化学式(13)で表される塩基発生剤(3)を得た(収率75%)。NMRにより目的化合物の合成を確認し、不純物は確認されなかった。
(Production Example 3: Synthesis of base generator (3))
In Production Example 1, it is represented by the following chemical formula (13) in the same manner as in Production Example 1 except that equimolar amounts of butylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) are used instead of piperidine as the base component. The base generator (3) was obtained (yield 75%). The synthesis of the target compound was confirmed by NMR, and no impurities were confirmed.

Figure 2012211276
Figure 2012211276

(製造例4:塩基発生剤(4)の合成)
製造例1において、塩基成分として、ピペリジンを用いる代わりに、3−アミノ−1−プロパノール(東京化成工業(株)製)を等モル量用いた以外は、製造例1と同様にして、下記化学式(14)で表される塩基発生剤(4)を得た(収率61%)。NMRにより目的化合物の合成を確認し、不純物は確認されなかった。
(Production Example 4: Synthesis of base generator (4))
In Production Example 1, instead of using piperidine as a base component, the same chemical formula as in Production Example 1 was used except that 3-amino-1-propanol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used in an equimolar amount. The base generator (4) represented by (14) was obtained (61% yield). The synthesis of the target compound was confirmed by NMR, and no impurities were confirmed.

Figure 2012211276
Figure 2012211276

(製造例5:塩基発生剤(5)の合成)
製造例1と同様にして、桂皮酸誘導体Bを得た。
続いて、窒素雰囲気下、100mL三口フラスコ中、桂皮酸誘導体B 836mg(3.19mmol)を脱水ジメチルホルムアミド10mLに溶解し、氷浴下で1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(東京化成工業(株)製)0.73g(3.83mmol、1.2eq)を加えた。30分後、1,6−ジアミノヘキサン(東京化成工業(株)製)178mg(1.53mmol、0.48eq)を加えたのち終夜で攪拌した。反応終了後、反応溶液を濃縮し、水に溶解した。クロロホルムで抽出した後、飽和炭酸水素ナトリウム水溶液、1N塩酸、飽和食塩水で洗浄し、濃縮した。その後、メタノール(関東化学(株)製)10mLを添加し、60℃で加熱することにより溶解した後、冷却し、晶析させた。氷冷したのち析出した結晶を冷却した少量のメタノールにより洗浄することで、下記式(15)で表される塩基発生剤(5)を580mg得た(収率30%)。NMRにより目的化合物の合成を確認し、不純物は確認されなかった。なお、ジアミンを用いる場合には、反応点が2箇所となり素反応の収率が影響するため、モノアミンを用いる場合に比べて収率が低くなる。
(Production Example 5: Synthesis of base generator (5))
In the same manner as in Production Example 1, cinnamic acid derivative B was obtained.
Subsequently, 836 mg (3.19 mmol) of cinnamic acid derivative B was dissolved in 10 mL of dehydrated dimethylformamide in a 100 mL three-necked flask under a nitrogen atmosphere, and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was dissolved in an ice bath. 0.73 g (3.83 mmol, 1.2 eq) of salt (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. After 30 minutes, 178 mg (1.53 mmol, 0.48 eq) of 1,6-diaminohexane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred overnight. After completion of the reaction, the reaction solution was concentrated and dissolved in water. After extraction with chloroform, the mixture was washed with saturated aqueous sodium hydrogen carbonate solution, 1N hydrochloric acid and saturated brine, and concentrated. Thereafter, 10 mL of methanol (manufactured by Kanto Chemical Co., Inc.) was added and dissolved by heating at 60 ° C., and then cooled and crystallized. After cooling with ice, the precipitated crystals were washed with a small amount of cooled methanol to obtain 580 mg of a base generator (5) represented by the following formula (15) (yield 30%). The synthesis of the target compound was confirmed by NMR, and no impurities were confirmed. In addition, when using diamine, since the reaction point becomes two places and the yield of elementary reaction influences, a yield becomes low compared with the case where monoamine is used.

Figure 2012211276
Figure 2012211276

(製造例6:塩基発生剤(6)の合成)
製造例5において、1,6−ジアミノヘキサンの代わりに、p−キシリレンジアミン(東京化成工業(株))を等モル量用いた以外は、製造例6と同様にして、下記化学式(16)で表される塩基発生剤(6)を得た(収率34%)。NMRにより目的化合物の合成を確認し、不純物は確認されなかった。
(Production Example 6: Synthesis of base generator (6))
In Production Example 5, in the same manner as in Production Example 6 except that equimolar amount of p-xylylenediamine (Tokyo Chemical Industry Co., Ltd.) was used instead of 1,6-diaminohexane, the following chemical formula (16) (6) was obtained (yield 34%). The synthesis of the target compound was confirmed by NMR, and no impurities were confirmed.

Figure 2012211276
Figure 2012211276

(製造例7:塩基発生剤(7)の合成)
製造例7において、1,6−ジアミノヘキサンの代わりに、p−キシリレンジアミン(東京化成工業(株))を等モル量用いた以外は、製造例6と同様にして、下記化学式(17)で表される塩基発生剤(7)を得た(収率28%)。NMRにより目的化合物の合成を確認し、不純物は確認されなかった。
(Production Example 7: Synthesis of base generator (7))
In Production Example 7, instead of 1,6-diaminohexane, p-xylylenediamine (Tokyo Chemical Industry Co., Ltd.) was used in an equimolar amount in the same manner as in Production Example 6, and the following chemical formula (17) (7) was obtained (yield 28%). The synthesis of the target compound was confirmed by NMR, and no impurities were confirmed.

Figure 2012211276
Figure 2012211276

(比較製造例1:比較塩基発生剤(1)の合成)
製造例1において、2,4−ジヒドロキシベンズアルデヒドの代わりに、2−ヒドロキシ−4−メトキシベンズアルデヒド(東京化成工業(株))を等モル量用いた以外は、製造例1と同様にして、下記化学式(18)で表される比較塩基発生剤(1)を得た。
製造例1と同様に晶析をしたところ、収率46%であり、NMRにて構造の確認を行ったところ、0.5%不純物を含んでいることが明らかとなった。再度、晶析操作を行うことにより比較塩基発生剤(1)を得た(収率43%)。NMRにより目的化合物の合成を確認し、不純物は確認されなかった。
(Comparative Production Example 1: Synthesis of Comparative Base Generator (1))
In Production Example 1, the same chemical formula as in Production Example 1 was used except that 2-hydroxy-4-methoxybenzaldehyde (Tokyo Chemical Industry Co., Ltd.) was used in an equimolar amount instead of 2,4-dihydroxybenzaldehyde. A comparative base generator (1) represented by (18) was obtained.
Crystallization was conducted in the same manner as in Production Example 1. As a result, the yield was 46%. When the structure was confirmed by NMR, it was found that 0.5% impurities were contained. The comparative base generator (1) was obtained by performing the crystallization operation again (43% yield). The synthesis of the target compound was confirmed by NMR, and no impurities were confirmed.

Figure 2012211276
Figure 2012211276

(比較製造例2:比較塩基発生剤(2)の合成)
比較製造例1において、塩基成分として、ピペリジンを用いる代わりに、ブチルアミン(東京化成工業(株)製)を等モル量用いた以外は、比較製造例1と同様にして、粗生成物を得た。製造例1と同様の晶析操作を2回繰り返すことにより、下記化学式(19)で表される比較塩基発生剤(2)を得た(収率40%)。NMRにより目的化合物の合成を確認し、不純物は確認されなかった。
(Comparative Production Example 2: Synthesis of Comparative Base Generator (2))
In Comparative Production Example 1, a crude product was obtained in the same manner as in Comparative Production Example 1 except that equimolar amounts of butylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) were used as the base component instead of piperidine. . By repeating the same crystallization operation as in Production Example 1 twice, a comparative base generator (2) represented by the following chemical formula (19) was obtained (yield 40%). The synthesis of the target compound was confirmed by NMR, and no impurities were confirmed.

Figure 2012211276
Figure 2012211276

(比較製造例3:比較塩基発生剤(3)の合成)
製造例5において、2,4−ジヒドロキシベンズアルデヒドの代わりに、2−ヒドロキシ−4−メトキシベンズアルデヒド(東京化成工業(株))を等モル量用いた以外は、製造例5と同様にして、粗生成物を得た。製造例1と同様の晶析操作を2回繰り返すことにより、下記化学式(20)で表される比較塩基発生剤(3)を得た(収率21%)。NMRにより目的化合物の合成を確認し、不純物は確認されなかった。
(Comparative Production Example 3: Synthesis of Comparative Base Generator (3))
In Production Example 5, crude production was performed in the same manner as in Production Example 5 except that 2-hydroxy-4-methoxybenzaldehyde (Tokyo Chemical Industry Co., Ltd.) was used in an equimolar amount instead of 2,4-dihydroxybenzaldehyde. I got a thing. By repeating the same crystallization operation as in Production Example 1 twice, a comparative base generator (3) represented by the following chemical formula (20) was obtained (yield 21%). The synthesis of the target compound was confirmed by NMR, and no impurities were confirmed.

Figure 2012211276
Figure 2012211276

(比較製造例4:比較塩基発生剤(4)の合成)
製造例1において、ブロモシクロヘキサンの代わりに、2−ブロモブタン(東京化成工業(株))を等モル量用いた以外は、製造例1と同様にして、粗生成物を得た。製造例1と同様の晶析操作を2回繰り返すことにより、下記化学式(21)で表される比較塩基発生剤(4)を得た(収率38%)。NMRにより目的化合物の合成を確認し、不純物は確認されなかった。
(Comparative Production Example 4: Synthesis of Comparative Base Generator (4))
In Production Example 1, a crude product was obtained in the same manner as in Production Example 1 except that an equimolar amount of 2-bromobutane (Tokyo Chemical Industry Co., Ltd.) was used instead of bromocyclohexane. By repeating the same crystallization operation as in Production Example 1 twice, a comparative base generator (4) represented by the following chemical formula (21) was obtained (yield 38%). The synthesis of the target compound was confirmed by NMR, and no impurities were confirmed.

Figure 2012211276
Figure 2012211276

<塩基発生剤の評価>
合成した塩基発生剤(1)〜(7)、及び比較塩基発生剤(1)〜(4)について、以下の測定を行い、評価した。モル吸光係数及び5%重量減少温度の結果を表1に示す。
(1)モル吸光係数
塩基発生剤(1)〜(7)、及び比較塩基発生剤(1)〜(4)をそれぞれ、アセトニトリルに1×10−4mol/Lの濃度で溶解し、石英セル(光路長10mm)に溶液を満たし、365nmでの吸光度を測定した。なお、モル吸光係数εは、溶液の吸光度を吸収層の厚さと溶質のモル濃度で割った値である。
<Evaluation of base generator>
The synthesized base generators (1) to (7) and comparative base generators (1) to (4) were measured and evaluated as follows. The results of molar extinction coefficient and 5% weight loss temperature are shown in Table 1.
(1) Molar extinction coefficient The base generators (1) to (7) and the comparative base generators (1) to (4) were dissolved in acetonitrile at a concentration of 1 × 10 −4 mol / L, respectively. The solution was filled in (optical path length 10 mm), and the absorbance at 365 nm was measured. The molar extinction coefficient ε is a value obtained by dividing the absorbance of the solution by the thickness of the absorption layer and the molar concentration of the solute.

(2)5%重量減少温度
塩基発生剤(1)〜(7)、及び比較塩基発生剤(1)〜(4)の耐熱性を評価するために、昇温速度10℃/minの条件で5%重量減少温度を測定した。
(2) 5% weight loss temperature In order to evaluate the heat resistance of the base generators (1) to (7) and the comparative base generators (1) to (4), the temperature was increased at a rate of 10 ° C / min. The 5% weight loss temperature was measured.

Figure 2012211276
Figure 2012211276

(3)i線感度
NMR測定を用いて、i線感度を評価した。なお、i線感度とは50%異性化に必要なi線換算における露光量のことである。
塩基発生剤(1)〜(7)、及び比較塩基発生剤(1)〜(4)について、1mgの試料を石英製NMR管中で重ジメチルスルホキシド0.5mLに溶解させた。
塩基発生剤(1)〜(7)、及び比較塩基発生剤(1)〜(4)について、350nm以下の光をカットするフィルタ(商品名:GG385、厚さ1mm、(株)渋谷光学製)と高圧水銀灯を用いて、断続的に光照射を行い、H NMRを測定し、異性化の割合を測定し、異性化率が50%となる照射量を求めた。異性化率が50%となる照射量を表2に示す。
(3) i-line sensitivity i-line sensitivity was evaluated using NMR measurement. In addition, i-line sensitivity is the exposure amount in i-line conversion required for 50% isomerization.
For the base generators (1) to (7) and the comparative base generators (1) to (4), 1 mg of a sample was dissolved in 0.5 mL of heavy dimethyl sulfoxide in a quartz NMR tube.
A filter that cuts light of 350 nm or less for the base generators (1) to (7) and the comparative base generators (1) to (4) (trade name: GG385, thickness 1 mm, manufactured by Shibuya Optical Co., Ltd.) And a high-pressure mercury lamp were used for intermittent light irradiation, 1 H NMR was measured, the isomerization ratio was measured, and the irradiation amount at which the isomerization ratio was 50% was determined. Table 2 shows the irradiation dose at which the isomerization rate is 50%.

Figure 2012211276
Figure 2012211276

(合成例1:ポリイミド前駆体(1)の合成)
ジ(4−アミノフェニル)エーテル10.0g(50mmol)を300mLの3つ口フラスコに投入し、105.4mLの脱水されたN,N−ジメチルアセトアミド(DMAc)に溶解させ窒素気流下、氷浴で冷却しながら撹拌した。そこへ、少しずつ3,3’,4,4’ −ビフェニルテトラカルボン酸二無水物14.7g(50mmol)を添加し、添加終了後、氷浴中で5時間撹拌し、その溶液を、脱水されたジエチルエーテルによって再沈殿し、その沈殿物を室温で減圧下、17時間乾燥し、重量平均分子量10,000のポリアミド酸(ポリイミド前駆体(1))を白色固体として定量的に得た。
(Synthesis Example 1: Synthesis of polyimide precursor (1))
10.0 g (50 mmol) of di (4-aminophenyl) ether was put into a 300 mL three-necked flask, dissolved in 105.4 mL of dehydrated N, N-dimethylacetamide (DMAc), and an ice bath under a nitrogen stream. The mixture was stirred while cooling. Thereto, 14.7 g (50 mmol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added little by little. After completion of the addition, the mixture was stirred in an ice bath for 5 hours, and the solution was dehydrated. The precipitate was re-precipitated with diethyl ether, and the precipitate was dried at room temperature under reduced pressure for 17 hours to quantitatively obtain a polyamic acid (polyimide precursor (1)) having a weight average molecular weight of 10,000 as a white solid.

(合成例2:金属アルコキシド縮合物の合成)
冷却管をつけた100mlのフラスコにフェニルトリエトキシシラン5g、トリエトキシシラン10g、アンモニア水0.05g、水5ml及びプロピレングリコールモノメチルエーテルアセテート50mlを加えた。半円形型のメカニカルスターラーを用いて溶液を撹拌し、マントルヒーターを用いて70℃で6時間反応させた。次いでエバポレーターを用いて水との縮合反応で生成したエタノールと残留水とを除去した。反応終了後、フラスコを室温になるまで放置し、アルコキシシランの縮合物(アルコキシシラン縮合物(1))を調製した。
(Synthesis Example 2: Synthesis of metal alkoxide condensate)
To a 100 ml flask equipped with a condenser, 5 g of phenyltriethoxysilane, 10 g of triethoxysilane, 0.05 g of ammonia water, 5 ml of water and 50 ml of propylene glycol monomethyl ether acetate were added. The solution was stirred using a semicircular type mechanical stirrer and reacted at 70 ° C. for 6 hours using a mantle heater. Subsequently, ethanol and residual water produced by the condensation reaction with water were removed using an evaporator. After completion of the reaction, the flask was left to reach room temperature to prepare an alkoxysilane condensate (alkoxysilane condensate (1)).

(実施例1:感光性樹脂組成物(1)の調製)
下記に示す組成の感光性樹脂組成物(1)を調製した。
・ポリイミド前駆体(1):100重量部
・塩基発生剤(1):15重量部
・溶剤(NMP(N−メチルピロリドン)):843重量部
(Example 1: Preparation of photosensitive resin composition (1))
A photosensitive resin composition (1) having the composition shown below was prepared.
Polyimide precursor (1): 100 parts by weight Base generator (1): 15 parts by weight Solvent (NMP (N-methylpyrrolidone)): 843 parts by weight

(実施例2〜4:感光性樹脂組成物(2)〜(4)の調製)
実施例1において、塩基発生剤(1)を用いる代わりに、塩基発生剤(2)〜(4)を用いた以外は実施例1と同様にして、感光性樹脂組成物(2)〜(4)を調製した。
(Examples 2 to 4: Preparation of photosensitive resin compositions (2) to (4))
In Example 1, photosensitive resin compositions (2) to (4) were used in the same manner as in Example 1 except that base generators (2) to (4) were used instead of the base generator (1). ) Was prepared.

(比較例1:比較感光性樹脂組成物(1)の調製)
実施例1において塩基発生剤(1)を用いる代わりに、比較塩基発生剤(1)を用いた以外は、実施例1と同様にして、比較感光性樹脂組成物(1)を調製した。
(Comparative Example 1: Preparation of comparative photosensitive resin composition (1))
A comparative photosensitive resin composition (1) was prepared in the same manner as in Example 1 except that the comparative base generator (1) was used instead of the base generator (1) in Example 1.

(塗膜の作成)
感光性樹脂組成物(1)、及び比較感光性樹脂組成物(1)を、それぞれ、クロムめっきされたガラス上に最終膜厚13.5μmになるようにスピンコートし、100℃のホットプレート上で15分間乾燥させて、感光性樹脂組成物(1)の塗膜を9枚、及び比較感光性樹脂組成物(1)の塗膜を8枚得た。1枚を除いて、手動露光機を用いて高圧水銀灯により全面露光を行った。感光性樹脂組成物に関しては、8枚用意し、0,10,40,60,80,100,120,150mJ/cmでそれぞれ全面露光を行った。比較感光性樹脂組成物に関しては、7枚用意し、0,40,60,80,100,120,200mJ/cmでそれぞれ全面露光を行った。残りの1枚は、それぞれパターン状に露光を行った。その後、それぞれの塗膜について、155℃で10分間加熱した。
(Creation of coating film)
The photosensitive resin composition (1) and the comparative photosensitive resin composition (1) were each spin-coated on a chrome-plated glass so as to have a final film thickness of 13.5 μm, and then on a hot plate at 100 ° C. Were dried for 15 minutes to obtain 9 coating films of the photosensitive resin composition (1) and 8 coating films of the comparative photosensitive resin composition (1). Except for one sheet, the entire surface was exposed with a high-pressure mercury lamp using a manual exposure machine. Regarding the photosensitive resin composition, 8 sheets were prepared, and the entire surface exposure was performed at 0, 10, 40, 60, 80, 100, 120, and 150 mJ / cm 2 . Regarding the comparative photosensitive resin composition, seven sheets were prepared, and the whole surface exposure was performed at 0, 40, 60, 80, 100, 120, and 200 mJ / cm 2 , respectively. The remaining one sheet was exposed in a pattern. Thereafter, each coating film was heated at 155 ° C. for 10 minutes.

(残膜率の評価)
感光性樹脂組成物(1)、及び比較感光性樹脂組成物(1)を用いて作成し、全面露光した塗膜をそれぞれ、テトラメチルアンモニウムハイドロオキサイド2.38重量%水溶液とイソプロパノールを9:1で混合した溶液に室温で感光性樹脂組成物(1)および比較感光性樹脂組成物(1)を利用した塗膜を40分間浸漬し、ガラス上の残存膜厚を測定した。結果を、図1に示す。なお、図中の規格化残膜率は、現像後膜厚×100/現像後の最高膜厚とした。
(Evaluation of remaining film rate)
Each of the coating films prepared using the photosensitive resin composition (1) and the comparative photosensitive resin composition (1) and exposed to the whole surface was prepared by using a 9: 1 solution of tetramethylammonium hydroxide 2.38 wt% and isopropanol. The coating film using the photosensitive resin composition (1) and the comparative photosensitive resin composition (1) was immersed for 40 minutes in the mixed solution at room temperature, and the remaining film thickness on the glass was measured. The results are shown in FIG. In the figure, the normalized residual film ratio was defined as film thickness after development × 100 / maximum film thickness after development.

UV照射量の増加とともに、残膜率が上昇していることから、UV照射および、加熱によって、塩基発生剤が塩基を発生し、イミド化が進行していることが示された。本発明の感光性樹脂組成物(1)は80mJ/cmで規格化膜厚が約1となり、それに対して、比較感光性樹脂組成物(1)は120mJ/cmで規格化膜厚が約1となった。本発明の感光性樹脂組成物は、比較感光性樹脂組成物に比べて、少ない露光量でイミド化が進行することが明らかになり、感度が高いことが示された。本発明の感光性樹脂組成物(1)は特に少ない露光量でイミド化が進行することが明らかになった。 Since the residual film rate increased with the increase in the amount of UV irradiation, it was shown that the base generator generated a base by UV irradiation and heating, and imidization proceeded. The photosensitive resin composition (1) of the present invention has a normalized film thickness of about 1 at 80 mJ / cm 2 , whereas the comparative photosensitive resin composition (1) has a normalized film thickness of 120 mJ / cm 2. It became about 1. In the photosensitive resin composition of the present invention, it was revealed that imidization proceeds with a small exposure amount as compared with the comparative photosensitive resin composition, and it was shown that the sensitivity was high. The photosensitive resin composition (1) of the present invention was found to proceed with imidization with a particularly small exposure amount.

感光性樹脂組成物(1)を用いて作成したパターン状に露光した塗膜について、テトラメチルアンモニウムハイドロオキサイド2.38重量%水溶液とイソプロパノールを9:1で混合した溶液に浸漬した。その結果、露光部が現像液に溶解せず残存したパターンを得ることができた。さらに、それを350℃で1時間加熱しイミド化を行った。この結果より、本発明の感光性樹脂組成物は、良好なパターンを形成できることが明らかとなった。本発明の感光性樹脂組成物(1)は、150mJ/cmでパターンを形成した。それに対し、比較感光性樹脂組成物(1)は、同様に実験を行ったところ、250mJ/cmでようやくパターンを形成した。 About the coating film exposed to the pattern shape created using the photosensitive resin composition (1), it was immersed in the solution which mixed tetramethylammonium hydroxide 2.38weight% aqueous solution and isopropanol 9: 1. As a result, a pattern was obtained in which the exposed portion remained undissolved in the developer. Furthermore, it was heated at 350 ° C. for 1 hour to perform imidization. From this result, it became clear that the photosensitive resin composition of the present invention can form a good pattern. The photosensitive resin composition (1) of the present invention formed a pattern at 150 mJ / cm 2 . On the other hand, when the comparative photosensitive resin composition (1) was tested in the same manner, a pattern was finally formed at 250 mJ / cm 2 .

(実施例5〜7:感光性樹脂組成物(5)〜(7)の調製)
本発明に係る塩基発生剤(5)〜(7)を用いて、下記に示す組成の感光性樹脂組成物(5)〜(7)を調製した。
・エポキシ樹脂(YP50EK35(フェノキシ樹脂)、35重量%メチルエチルケトン溶液 新日鐵化学社製):100重量部
・各塩基発生剤:10重量部
(Examples 5 to 7: Preparation of photosensitive resin compositions (5) to (7))
Using the base generators (5) to (7) according to the present invention, photosensitive resin compositions (5) to (7) having the following compositions were prepared.
Epoxy resin (YP50EK35 (phenoxy resin), 35% by weight methyl ethyl ketone solution manufactured by Nippon Steel Chemical Co., Ltd.): 100 parts by weight Each base generator: 10 parts by weight

感光性樹脂組成物(5)〜(7)のそれぞれを、ガラス上に最終膜厚0.5μmになるようにスピンコートし、80℃のホットプレート上で15分間乾燥させて、感光性樹脂組成物の塗膜を2枚ずつ得た。感光性樹脂組成物の塗膜の1枚については、手動露光機を用いて高圧水銀灯により100J/cm全面露光を行った。その後、それぞれの塗膜について、150℃で60分間加熱した。加熱した塗膜をイソプロパノールとクロロホルムの混合溶液(イソプロパノール:クロロホルム=4:1(体積比))に室温で10分間浸漬したところ、露光後加熱した塗膜については上記混合溶液に溶解せず、エポキシ樹脂が硬化したことが明らかになった。一方、露光をせずに加熱した塗膜については、上記混合溶液に溶解した。 Each of the photosensitive resin compositions (5) to (7) was spin-coated on glass so as to have a final film thickness of 0.5 μm, and dried on a hot plate at 80 ° C. for 15 minutes. Two coating films were obtained. About 1 sheet of the coating film of the photosensitive resin composition, 100 J / cm < 2 > whole surface exposure was performed with the high pressure mercury lamp using the manual exposure machine. Thereafter, each coating film was heated at 150 ° C. for 60 minutes. When the heated coating film was immersed in a mixed solution of isopropanol and chloroform (isopropanol: chloroform = 4: 1 (volume ratio)) at room temperature for 10 minutes, the heated coating film after the exposure did not dissolve in the mixed solution, but was epoxy. It became clear that the resin was cured. On the other hand, the coating film heated without exposure was dissolved in the mixed solution.

(実施例8:感光性樹脂組成物(8)の調製)
イソシアナート樹脂としてヘキサメチレンジイソシアナート(関東化学製)100重量部、水酸基を持つ樹脂としてポリテトラヒドロフラン(アルドリッチ製)150重量部、塩基発生剤(1)10重量部、テトラヒドロフラン500重量部からなる感光性樹脂組成物(8)を調製した。
(Example 8: Preparation of photosensitive resin composition (8))
Photosensitivity comprising 100 parts by weight of hexamethylene diisocyanate (manufactured by Kanto Chemical) as the isocyanate resin, 150 parts by weight of polytetrahydrofuran (manufactured by Aldrich) as the resin having a hydroxyl group, 10 parts by weight of the base generator (1), and 500 parts by weight of tetrahydrofuran. Resin composition (8) was prepared.

感光性樹脂組成物(8)をクロムめっきされたガラス上に最終膜厚が0.5μmになるようにスピンコートし、60℃のホットプレート上で5分間乾燥させて、感光性樹脂組成物の塗膜を1枚得た。得られた塗膜を、手動露光機を用いて高圧水銀灯により100J/cm全面露光を行った。その後、120℃で10分間加熱し、室温まで冷却したところ、低弾性の固形物が得られ、イソシアナート基と水酸基との硬化が進行したことを確認した。 The photosensitive resin composition (8) was spin-coated on chrome-plated glass so that the final film thickness was 0.5 μm, and dried on a hot plate at 60 ° C. for 5 minutes. One coating film was obtained. The obtained coating film was 100 J / cm 2 whole surface exposed with a high pressure mercury lamp using a manual exposure machine. Then, when it heated at 120 degreeC for 10 minute (s) and cooled to room temperature, the low-elasticity solid substance was obtained and it confirmed that hardening with an isocyanate group and a hydroxyl group advanced.

(実施例9:感光性樹脂組成物(9)の調製)
上記合成例2で得られたアルコキシシラン縮合物(1) 100重量部と、塩基発生剤(1) 10重量部とを混合した後、溶剤であるテトラヒドロフラン500重量部に溶解させ、感光性樹脂組成物(9)を調製した。
(Example 9: Preparation of photosensitive resin composition (9))
After mixing 100 parts by weight of the alkoxysilane condensate (1) obtained in Synthesis Example 2 above and 10 parts by weight of the base generator (1), the mixture is dissolved in 500 parts by weight of tetrahydrofuran as a solvent to obtain a photosensitive resin composition. A product (9) was prepared.

感光性樹脂組成物(9)をクロムめっきされたガラス2枚の上に、それぞれ最終膜厚が0.5μmになるようにスピンコートし、80℃のホットプレート上で5分間乾燥させて、感光性樹脂組成物の塗膜を2枚得た。感光性樹脂組成物の塗膜の1枚については、手動露光機を用いて高圧水銀灯により100J/cm全面露光を行った。その後、露光を行った塗膜と未露光の塗膜のそれぞれについて、120℃で30分間加熱した。加熱前後のサンプルに対してそれぞれ、赤外線吸収スペクトル測定を行った。その結果、露光を行った塗膜の加熱後のサンプルについては、重合したことを示すSi-O-Si結合に帰属される1020cm-1のピークが出現し、原料を示すSi-OCH3に帰属される2850cm-1と850cm-1のピークは加熱前のサンプルよりも減少した。未露光の塗膜の加熱後のサンプルについても、重合したことを示すSi-O-Si結合に帰属される1020cm-1のピークが出現したが、露光を行った塗膜と比較するとそのピークは小さかった。これらにより、本願の光塩基発生剤を用いて、露光を行うと塩基が発生し、アルコキシシラン縮合物の重合を促進することが明らかになった。 The photosensitive resin composition (9) was spin-coated on two chrome-plated glasses so that the final film thickness was 0.5 μm, respectively, and dried on an 80 ° C. hot plate for 5 minutes. Two coating films of the conductive resin composition were obtained. About 1 sheet of the coating film of the photosensitive resin composition, 100 J / cm < 2 > whole surface exposure was performed with the high pressure mercury lamp using the manual exposure machine. Thereafter, each of the exposed coating film and the unexposed coating film was heated at 120 ° C. for 30 minutes. Infrared absorption spectrum measurement was performed on each sample before and after heating. As a result, for the sample after heating of the exposed coating film, a peak of 1020 cm -1 attributed to the Si-O-Si bond indicating polymerization appeared, and it was attributed to Si-OCH 3 indicating the raw material. The peaks at 2850 cm -1 and 850 cm -1 were reduced compared to the sample before heating. In the sample after heating the unexposed film, a peak of 1020 cm -1 attributed to the Si-O-Si bond, indicating that it was polymerized, appeared. It was small. From these, it has been clarified that, when the photobase generator of the present invention is used for exposure, a base is generated and the polymerization of the alkoxysilane condensate is promoted.

Claims (13)

下記化学式(1)で表され且つ電磁波の照射と加熱により、塩基を発生することを特徴とする、塩基発生剤。
Figure 2012211276
(式(1)中、R及びRは、それぞれ独立に、水素又は有機基であり、同一であっても異なっていても良い。R及びRは、それらが結合して環状構造を形成していても良く、ヘテロ原子の結合を含んでいても良い。但し、R及びRの少なくとも1つは有機基である。R及びRはそれぞれ独立に、水素、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、又は有機基であり、同一であっても異なっていても良い。R、R、R及びRは、それぞれ独立に、水素、ハロゲン、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、アミノ基、アンモニオ基又は有機基であり、同一であっても異なっていても良く、R、R、R及びRのいずれかは、置換基を有してもよいシクロアルコキシ基又は3級アルコキシ基を有する。R、R、R及びRは、それらの2つ以上が結合して環状構造を形成していても良く、ヘテロ原子の結合を含んでいても良い。Rは、水素原子、或いは、加熱及び/又は電磁波の照射により脱保護可能な保護基である。)
A base generator, which is represented by the following chemical formula (1) and generates a base by irradiation and heating of electromagnetic waves.
Figure 2012211276
(In Formula (1), R 1 and R 2 are each independently hydrogen or an organic group and may be the same or different. R 1 and R 2 are bonded to form a cyclic structure. And may contain a heteroatom bond, provided that at least one of R 1 and R 2 is an organic group, and R 3 and R 4 are each independently hydrogen, halogen, Hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfino group, sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonate group, or organic group, which are the same be different even good .R 5, R 6, R 7 and R 8 are each independently hydrogen, halogen, a hydroxyl group, a mercapto group, a sulfide group, a silyl group, a silanol group, a nitro group, two Nitroso group, a sulfino group, a sulfo group, a sulfonato group, a phosphino group, a phosphinyl group, a phosphono group, a phosphonate group, an amino group, an ammonio group or an organic group, may be different even in the same, R 5, R 6 , any one of R 7 and R 8 has a cycloalkoxy group or a tertiary alkoxy group which may have a substituent, and R 5 , R 6 , R 7 and R 8 are two or more of them. It may be bonded to form a cyclic structure and may contain a heteroatom bond, and R 9 is a hydrogen atom or a protective group that can be deprotected by heating and / or irradiation with electromagnetic waves. )
化学式(1)中、R及び/又はRが、置換基を有してもよいシクロアルコキシ基及び/又は3級アルコキシ基を有することを特徴とする、請求項1に記載の塩基発生剤。 The base generator according to claim 1, wherein R 6 and / or R 7 in formula (1) has a cycloalkoxy group and / or a tertiary alkoxy group which may have a substituent. . 前記シクロアルコキシ基は、5員環、6員環、及び/又は7員環を含む単環又は多環のシクロアルコキシ基であることを特徴とする、請求項1乃至2に記載の塩基発生剤。   The base generator according to claim 1 or 2, wherein the cycloalkoxy group is a monocyclic or polycyclic cycloalkoxy group containing a 5-membered ring, a 6-membered ring, and / or a 7-membered ring. . 前記シクロアルコキシ基は、炭素数が5〜20であることを特徴とする、請求項1乃至3のいずれか一項に記載の塩基発生剤。   The base generator according to any one of claims 1 to 3, wherein the cycloalkoxy group has 5 to 20 carbon atoms. 前記3級アルコキシ基は、炭素数が4〜20であることを特徴とする、請求項1乃至4のいずれか一項に記載の塩基発生剤。   The base generator according to any one of claims 1 to 4, wherein the tertiary alkoxy group has 4 to 20 carbon atoms. 塩基性物質によって又は塩基性物質の存在下での加熱によって最終生成物への反応が促進される高分子前駆体、及び、前記請求項1乃至5のいずれか一項に記載の塩基発生剤を含有することを特徴とする、感光性樹脂組成物。   A polymer precursor whose reaction to the final product is promoted by heating with a basic substance or in the presence of a basic substance, and the base generator according to any one of claims 1 to 5. A photosensitive resin composition characterized by containing. 前記高分子前駆体が、エポキシ基、イソシアネート基、オキセタン基、又はチイラン基を有する化合物及び高分子、ポリシロキサン前駆体、ポリイミド前駆体、並びにポリベンゾオキサゾール前駆体よりなる群から選択される1種以上を含むことを特徴とする、請求項6に記載の感光性樹脂組成物。   The polymer precursor is selected from the group consisting of a compound and polymer having an epoxy group, an isocyanate group, an oxetane group, or a thiirane group, a polysiloxane precursor, a polyimide precursor, and a polybenzoxazole precursor. The photosensitive resin composition according to claim 6, comprising the above. 前記高分子前駆体が、塩基性溶液に可溶であることを特徴とする、請求項6又は7に記載の感光性樹脂組成物。   The photosensitive resin composition according to claim 6, wherein the polymer precursor is soluble in a basic solution. 前記高分子前駆体が、ポリイミド前駆体又はポリベンゾオキサゾール前駆体であることを特徴とする、請求項6乃至8のいずれか一項に記載の感光性樹脂組成物。   The photosensitive resin composition according to claim 6, wherein the polymer precursor is a polyimide precursor or a polybenzoxazole precursor. 塗料、印刷インキ、シール剤、又は接着剤、或いは、表示装置、半導体装置、電子部品、微小電気機械システム、光造形物、光学部材又は建築材料の形成材料として用いられる請求項6乃至9のいずれか一項に記載の感光性樹脂組成物。   Any one of Claims 6 to 9 used as a material for forming paints, printing inks, sealants, or adhesives, or display devices, semiconductor devices, electronic components, microelectromechanical systems, optically shaped objects, optical members, or building materials. A photosensitive resin composition according to claim 1. 前記請求項6乃至10のいずれか一項に記載の感光性樹脂組成物からなるパターン形成用材料。   The pattern formation material which consists of the photosensitive resin composition as described in any one of Claims 6 thru | or 10. 前記請求項6乃至10のいずれか一項に記載の感光性樹脂組成物を用いて塗膜又は成形体を形成し、当該塗膜又は成形体を、所定パターン状に電磁波を照射し、照射後又は照射と同時に加熱し、前記照射部位の溶解性を変化させた後、現像することを特徴とするレリーフパターンの製造方法。   A coating film or a molded body is formed using the photosensitive resin composition according to any one of claims 6 to 10, and the coating film or the molded body is irradiated with electromagnetic waves in a predetermined pattern, after irradiation. Alternatively, a method for producing a relief pattern is characterized in that development is carried out after heating at the same time as irradiation to change the solubility of the irradiated portion. 前記請求項6乃至10のいずれか一項に記載の感光性樹脂組成物又はその硬化物により少なくとも一部分が形成されている、印刷物、塗料、シール剤、接着剤、表示装置、半導体装置、電子部品、微小電気機械システム、光造形物、光学部材又は建築材料のいずれかの物品。   Printed matter, paint, sealant, adhesive, display device, semiconductor device, electronic component, at least part of which is formed of the photosensitive resin composition according to any one of claims 6 to 10 or a cured product thereof. An article of any one of a micro electro mechanical system, an optically shaped object, an optical member, and a building material.
JP2011078164A 2011-03-31 2011-03-31 Base generator, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, method of producing relief pattern by using the photosensitive resin composition, and molded article Withdrawn JP2012211276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078164A JP2012211276A (en) 2011-03-31 2011-03-31 Base generator, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, method of producing relief pattern by using the photosensitive resin composition, and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078164A JP2012211276A (en) 2011-03-31 2011-03-31 Base generator, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, method of producing relief pattern by using the photosensitive resin composition, and molded article

Publications (1)

Publication Number Publication Date
JP2012211276A true JP2012211276A (en) 2012-11-01

Family

ID=47265497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078164A Withdrawn JP2012211276A (en) 2011-03-31 2011-03-31 Base generator, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, method of producing relief pattern by using the photosensitive resin composition, and molded article

Country Status (1)

Country Link
JP (1) JP2012211276A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040146A (en) * 2011-08-19 2013-02-28 Tokyo Univ Of Science Coumaric acid amide derivative
WO2021049563A1 (en) * 2019-09-10 2021-03-18 学校法人東京理科大学 Photobase generator, compound, photoreactive composition, and reaction product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040146A (en) * 2011-08-19 2013-02-28 Tokyo Univ Of Science Coumaric acid amide derivative
WO2021049563A1 (en) * 2019-09-10 2021-03-18 学校法人東京理科大学 Photobase generator, compound, photoreactive composition, and reaction product

Similar Documents

Publication Publication Date Title
JP5516574B2 (en) Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method and article using the photosensitive resin composition
JP4853594B2 (en) Photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method, article using the photosensitive resin composition, and base generator
KR101552464B1 (en) Base-generating agent, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, pattern formation method using the photosensitive resin composition, and article
JP6656639B2 (en) Novel compound and method for producing the compound
JP5505036B2 (en) Base generator, resin composition, pattern forming material comprising the resin composition, pattern forming method using the resin composition, and article
JP5712926B2 (en) Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method and article using the photosensitive resin composition
JP5644274B2 (en) Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method and article using the photosensitive resin composition
JP2011052214A (en) Base generator, photosensitive resin composition, material for forming pattern including the photosensitive resin composition, and method for forming pattern, and article using the photosensitive resin composition
JP7232241B2 (en) Novel compound, photopolymerization initiator comprising said compound, and photosensitive resin composition containing said photopolymerization initiator
WO2017099130A1 (en) Novel compound, photopolymerization initiator comprising said compound, and photosensitive resin composition containing said photopolymerization initiator
JP2011089119A (en) Base generating agent, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, method for forming pattern and article using the photosensitive resin composition
JP5515560B2 (en) Photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method, article using the photosensitive resin composition, and photolatent resin curing accelerator
JP5581775B2 (en) Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, method for producing relief pattern using the photosensitive resin composition, and article
JP2012092328A (en) Base generator, photosensitive resin composition, pattern formation material comprising the photosensitive resin composition, and method for producing relief pattern and article using the composition
JP2012093744A (en) Photosensitive resin composition, material for forming pattern comprising the photosensitive resin composition, method for manufacturing relief pattern using the photosensitive resin composition, and article using the composition
JP5598031B2 (en) Base generator, photosensitive resin composition, pattern forming material comprising the photosensitive resin composition, pattern forming method and article using the photosensitive resin composition
JP2012241064A (en) Base generator, photosensitive resin composition, pattern formation material comprising the photosensitive resin composition, and method for producing relief pattern and article using the composition
JP7218073B2 (en) Novel compound, photopolymerization initiator comprising said compound, and photosensitive resin composition containing said photopolymerization initiator
JP2012092329A (en) Base generator, photosensitive resin composition, pattern formation material comprising the photosensitive resin composition, and method for producing relief pattern and article using the composition
JP2012211276A (en) Base generator, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, method of producing relief pattern by using the photosensitive resin composition, and molded article
JP2011089116A (en) Base generating agent, photosensitive resin composition, pattern-forming material comprising the photosensitive resin composition, method for forming pattern and article using the photosensitive resin composition
JP2019156803A (en) New compound, photoinitiator containing that compound, and photosensitive resin composition containing that photoinitiator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603