JP2012210247A - Method for purifying chlorinated volatile organic compound - Google Patents

Method for purifying chlorinated volatile organic compound Download PDF

Info

Publication number
JP2012210247A
JP2012210247A JP2011076576A JP2011076576A JP2012210247A JP 2012210247 A JP2012210247 A JP 2012210247A JP 2011076576 A JP2011076576 A JP 2011076576A JP 2011076576 A JP2011076576 A JP 2011076576A JP 2012210247 A JP2012210247 A JP 2012210247A
Authority
JP
Japan
Prior art keywords
volatile organic
organic compound
chlorine
semiconductor
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011076576A
Other languages
Japanese (ja)
Other versions
JP5793804B2 (en
JP2012210247A5 (en
Inventor
Hitoshi Mizuguchi
仁 水口
Yuki Hiramatsu
裕貴 平松
Hideki Shima
英樹 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2011076576A priority Critical patent/JP5793804B2/en
Publication of JP2012210247A publication Critical patent/JP2012210247A/en
Publication of JP2012210247A5 publication Critical patent/JP2012210247A5/ja
Application granted granted Critical
Publication of JP5793804B2 publication Critical patent/JP5793804B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To provide a method for purifying a chlorinated volatile organic compound, the method satisfactorily suppressing HCI from being generated and a catalyst from being poisoned, and almost completely removing chlorinated volatile organic compound.SOLUTION: In the method for purifying the chlorinated volatile organic compound, an organic compound is decomposed and removed by oxidization by allowing a semiconductor that is heated under 350°C to contact with gas containing the chlorinated volatile organic compound in a thermally-excited state with oxygen.

Description

本発明は、ジクロロメタン(DCM)やトリクロロエチレン(TCE)等の塩素系揮発性有機化合物の浄化方法に関する。   The present invention relates to a purification method for chlorine-based volatile organic compounds such as dichloromethane (DCM) and trichlorethylene (TCE).

近年、揮発性有機化合物(VOC:volatile organic compound)の排出が、光化学オキシダント、シックハウス症候群、及び、光化学スモッグ等の深刻な環境問題を引き起こしている。揮発性有機化合物の中でも、ジクロロメタン(DCM)やトリクロロエチレン(TCE)等の塩素系揮発性有機化合物が様々な分野で広く用いられている(非特許文献1)。特に、DCMは、有機化合物の抽出溶媒や、種々の酢酸セルロースの溶媒として用いられており、TCEは、ゴム、脂肪、樹脂の非引火性の良好な溶媒や、先端技術半導体分野での脱脂剤として用いられている。   In recent years, the emission of volatile organic compounds (VOCs) has caused serious environmental problems such as photochemical oxidants, sick house syndrome, and photochemical smog. Among volatile organic compounds, chlorinated volatile organic compounds such as dichloromethane (DCM) and trichlorethylene (TCE) are widely used in various fields (Non-Patent Document 1). In particular, DCM is used as an extraction solvent for organic compounds and as a solvent for various cellulose acetates, and TCE is a non-flammable solvent for rubber, fat, and resin, and a degreasing agent in the field of advanced technology semiconductors. It is used as.

N.Bunce:Environmental Chemistry, (Wuerz Publishing Ltd., Winnipeg, 1991)N.Bunce: Environmental Chemistry, (Wuerz Publishing Ltd., Winnipeg, 1991)

しかしながら、これらの化合物は、非常に毒性が高く、健康にとっても有害である。例えば、触媒燃焼は基本的に塩素系揮発性有機化合物を除去し得るが、塩化水素(HCl)やダイオキシン等を発生させる。また、HClは容易に金属触媒を劣化させる。従って、HCl等を発生させない完全な塩素系揮発性有機化合物の除去が可能な新しい技術が待ち望まれている。同様のことはクロロフルオロカーボンにも当てはまり、この場合はHF及び/又はHClが触媒を劣化させる。   However, these compounds are very toxic and harmful to health. For example, catalytic combustion can basically remove chlorine-based volatile organic compounds, but generates hydrogen chloride (HCl), dioxins, and the like. Also, HCl easily degrades the metal catalyst. Therefore, a new technique that can completely remove chlorine-based volatile organic compounds that do not generate HCl or the like is desired. The same applies to chlorofluorocarbons, where HF and / or HCl degrade the catalyst.

そこで、本発明は、HClの発生及び触媒の被毒を良好に抑制して、塩素系揮発性有機化合物をほぼ完全に除去する塩素系揮発性有機化合物の浄化方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide a purification method for a chlorine-based volatile organic compound, which suppresses generation of HCl and poisoning of a catalyst, and removes the chlorine-based volatile organic compound almost completely. .

本発明者は、既に半導体を用いた揮発性有機化合物の浄化方法を研究開発している(国際公開:WO2010/061854A1)。当該技術は、半導体の熱活性を利用して、揮発性有機化合物をほぼ完全に分解して除去するものである。この技術において、500℃で塩素系揮発性有機化合物の分解実験を行ったところ、HClが発生し、半導体触媒が被毒することがわかった。そこで、分解反応の素過程を詳細に検討すると、350℃の臨界温度でHClが発生することを突き止め、この温度未満で動作させることで、HClの発生を抑制し、触媒被毒を避けて、分解反応を持続的に行うことができることを見出した。   The present inventor has already researched and developed a method for purifying volatile organic compounds using a semiconductor (International Publication: WO2010 / 061854A1). This technique uses the thermal activity of a semiconductor to almost completely decompose and remove volatile organic compounds. In this technique, when a decomposition experiment of a chlorine-based volatile organic compound was performed at 500 ° C., it was found that HCl was generated and the semiconductor catalyst was poisoned. Therefore, when examining the elementary process of the decomposition reaction in detail, it was determined that HCl was generated at a critical temperature of 350 ° C., and by operating below this temperature, generation of HCl was suppressed and catalyst poisoning was avoided. It was found that the decomposition reaction can be carried out continuously.

以上の知見を基礎として完成した本発明は、塩素系揮発性有機化合物を含有する気体に、酸素の存在下、350℃未満に加熱された半導体を熱励起状態として接触させることによって前記有機化合物を酸化分解除去することを特徴とする塩素系揮発性有機化合物の浄化方法である。   The present invention, which has been completed based on the above findings, is a method in which a gas containing a chlorine-based volatile organic compound is brought into contact with a semiconductor heated to less than 350 ° C. in the presence of oxygen in a thermally excited state. It is a purification method for chlorine-based volatile organic compounds characterized by oxidative decomposition removal.

本発明に係る塩素系揮発性有機化合物の浄化方法は一実施形態において、前記塩素系揮発性有機化合物がジクロロメタン(DCM)又はトリクロロエチレン(TCE)である。   In one embodiment of the method for purifying a chlorine-based volatile organic compound according to the present invention, the chlorine-based volatile organic compound is dichloromethane (DCM) or trichlorethylene (TCE).

本発明に係る塩素系揮発性有機化合物の浄化方法は別の一実施形態において、半導体の高温状態で生成する熱平衡キャリアーのうち、正孔酸化力を利用する。   In another embodiment, the method for purifying chlorine-based volatile organic compounds according to the present invention uses hole oxidizing power among thermal equilibrium carriers generated in a high temperature state of a semiconductor.

本発明に係る塩素系揮発性有機化合物の浄化方法は別の一実施形態において、前記半導体が高温状態及び酸素雰囲気下でも安定に存在する半導体である。   In another embodiment of the method for purifying a chlorine-based volatile organic compound according to the present invention, the semiconductor is a semiconductor that exists stably even in a high temperature state and in an oxygen atmosphere.

本発明に係る塩素系揮発性有機化合物の浄化方法は更に別の一実施形態において、前記半導体が酸化物半導体である。   In still another embodiment of the method for purifying a chlorine-based volatile organic compound according to the present invention, the semiconductor is an oxide semiconductor.

本発明に係る塩素系揮発性有機化合物の浄化方法は更に別の一実施形態において、前記酸化物半導体がCr23、NiO、TiO2、又は、Fe23である。 In still another embodiment of the method for purifying a chlorine-based volatile organic compound according to the present invention, the oxide semiconductor is Cr 2 O 3 , NiO, TiO 2 , or Fe 2 O 3 .

本発明によれば、HClの発生及び触媒の被毒を良好に抑制して、塩素系揮発性有機化合物をほぼ完全に除去する塩素系揮発性有機化合物の浄化方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the purification | cleaning method of the chlorine-type volatile organic compound which suppresses generation | occurrence | production of HCl and poisoning of a catalyst favorably and removes a chlorine-type volatile organic compound almost completely can be provided.

ポリカーボネート(PC)の分解メカニズムの概略説明図である。It is a schematic explanatory drawing of the decomposition | disassembly mechanism of a polycarbonate (PC). 実施例に係る試験用に設計した質量分析計を有するオートクレーブの模式図である。It is a schematic diagram of the autoclave which has a mass spectrometer designed for the test which concerns on an Example. (a)は実施例に係るファンクションセパレートユニットの模式図である。(A) is a schematic diagram of the function separate unit according to the embodiment. (b)は実施例に係る触媒システムの模式図である。(B) is a schematic diagram of a catalyst system according to an example. (a)は実施例に係る熱交換器を備えたVOC除去システム全体の模式図である。(b)はその外観写真である。(A) is a schematic diagram of the whole VOC removal system provided with the heat exchanger which concerns on an Example. (B) is an appearance photograph thereof. (a)〜(d)は実施例に係る各触媒粉末を用いたサンプルのHCl暴露前後の色調変化の外観写真である。(A)-(d) is an external appearance photograph of the color tone change before and behind HCl exposure of the sample using each catalyst powder concerning an example. (a)は実施例に係る各触媒粉末を用いたサンプルのHCl暴露前後のラマンスペクトルの変化を示すグラフである。(A) is a graph which shows the change of the Raman spectrum before and behind HCl exposure of the sample using each catalyst powder which concerns on an Example. (b)は実施例に係る各触媒粉末を用いたサンプルのHCl暴露前後のラマンスペクトルの変化を示すグラフである。(B) is a graph which shows the change of the Raman spectrum before and behind HCl exposure of the sample using each catalyst powder which concerns on an Example. (c)は実施例に係る各触媒粉末を用いたサンプルのHCl暴露前後のラマンスペクトルの変化を示すグラフである。(C) is a graph which shows the change of the Raman spectrum before and behind HCl exposure of the sample using each catalyst powder concerning an Example. (d)は実施例に係る各触媒粉末を用いたサンプルのHCl暴露前後のラマンスペクトルの変化を示すグラフである。(D) is a graph which shows the change of the Raman spectrum before and behind HCl exposure of the sample using each catalyst powder which concerns on an Example. 実施例に係るDCMの分解特性を示すグラフである。It is a graph which shows the decomposition | disassembly characteristic of DCM which concerns on an Example. 実施例に係るTCEの分解特性を示すグラフである。It is a graph which shows the decomposition | disassembly characteristic of TCE which concerns on an Example. 実施例に係る300℃及び500℃の動作温度におけるDCMの分解特性を示すグラフである。4 is a graph illustrating decomposition characteristics of DCM at operating temperatures of 300 ° C. and 500 ° C. according to an example.

(本発明の塩素系揮発性有機化合物の浄化方法)
本発明は、塩素系揮発性有機化合物を含有する気体に、酸素の存在下、350℃未満に加熱された半導体を熱励起状態として接触させることによって前記有機化合物を酸化分解除去することを特徴とする塩素系揮発性有機化合物の浄化方法に係る。
(Purification method of chlorine-based volatile organic compound of the present invention)
The present invention is characterized in that the organic compound is oxidatively decomposed and removed by contacting a gas containing a chlorine-based volatile organic compound in a thermally excited state with a semiconductor heated to less than 350 ° C. in the presence of oxygen. The present invention relates to a purification method for chlorine-based volatile organic compounds.

本発明の塩素系揮発性有機化合物の浄化方法は、350℃未満に加熱された半導体の熱活性を利用した塩素系揮発性有機化合物の酸化分解による除去で達成される。まず、この酸化分解のメカニズムについて、以下に例を挙げて説明する。   The method for purifying a chlorine-based volatile organic compound according to the present invention is achieved by removing the chlorine-based volatile organic compound by oxidative decomposition using the thermal activity of a semiconductor heated to less than 350 ° C. First, the mechanism of this oxidative decomposition will be described below with an example.

(本発明の浄化方法における塩素系揮発性有機化合物の酸化分解メカニズム)
半導体を熱的に励起すると、指数関数的に電子と正孔とが生成する。この正孔を塩素系揮発性有機化合物の酸化分解に応用する。例として、図1に塩素系揮発性有機化合物(CVOC)に代えて、ポリカーボネート(PC)の分解メカニズムの概略説明図を示す。図1に示すポリカーボネートの分解は、半導体として酸化チタン粉末を用い、これを粒状のポリカーボネートに加えて加熱攪拌することで行っている。ポリカーボネートは約200℃で融解し、固体の酸化チタンと“固体/液体”界面を形成する。界面における様子を図1の挿絵で見ると、まず正孔からポリカーボネートから結合電子を奪い、ポリカーボネート内にカチオンラジカルを生成する。所定の温度でラジカルはポリカーボネート内を伝播し、ラジカル開裂を誘起して、ポリカーボネートはフラグメント化される。この過程におけるラジカルの増殖ならびにポリカーボネートの分子量の低下はESR測定ならびに熱重量分析で実証されている。そして、フラグメント化された分子は酸素下で完全燃焼して水と炭酸ガスとなる。熱エネルギーの役割は単に正孔の大量生成ばかりでなく、ラジカルの伝播と開裂を誘起し、最終的には裁断化された分子を酸素下で完全燃焼させることである。さらに、分解反応が継続的に起こるためには、価電子帯では正孔による酸化反応、また伝導帯では電子による還元反応(O2+e-→O2 -)が起こることが必要である。
(Oxidative decomposition mechanism of chlorine-based volatile organic compounds in the purification method of the present invention)
When a semiconductor is thermally excited, electrons and holes are generated exponentially. This hole is applied to oxidative decomposition of chlorine-based volatile organic compounds. As an example, FIG. 1 shows a schematic explanatory view of the decomposition mechanism of polycarbonate (PC) instead of chlorine-based volatile organic compound (CVOC). The decomposition of the polycarbonate shown in FIG. 1 is performed by using titanium oxide powder as a semiconductor, adding this to a granular polycarbonate, and stirring with heating. Polycarbonate melts at about 200 ° C. and forms a “solid / liquid” interface with solid titanium oxide. When the state at the interface is seen in the illustration of FIG. 1, first, the bound electrons are taken from the polycarbonate from the holes, and a cation radical is generated in the polycarbonate. At a given temperature, radicals propagate in the polycarbonate, inducing radical cleavage and causing the polycarbonate to fragment. The growth of radicals and the decrease in the molecular weight of polycarbonate during this process have been demonstrated by ESR measurement and thermogravimetric analysis. The fragmented molecules are completely burned under oxygen to become water and carbon dioxide. The role of thermal energy is not only to generate a large amount of holes, but also to induce the propagation and cleavage of radicals and ultimately burn the chopped molecules completely under oxygen. Further, in order for the decomposition reaction to occur continuously, it is necessary that an oxidation reaction by holes occurs in the valence band, and a reduction reaction by electrons (O 2 + e → O 2 ) occurs in the conduction band.

上記ポリカーボネートの分解メカニズムのフローについて整理すると、まず、第1段階では、ポリカーボネート鎖が分子中の極性の高いカルボニル基と酸化チタンの酸素欠陥サイトとの静電的な相互作用により酸化チタン表面に吸着する。次に、第2段階では、ポリカーボネートが熱励起により生成した正孔により酸化されてポリカーボネートの低分子化が起こる。次に、第3段階では、低分子化したポリカーボネートが酸素下で完全に燃焼し、炭酸ガスと水とに分解される。   The flow of decomposition mechanism of the polycarbonate is summarized as follows. First, in the first stage, the polycarbonate chain is adsorbed on the titanium oxide surface by electrostatic interaction between the highly polar carbonyl group in the molecule and the oxygen defect site of titanium oxide. To do. Next, in the second stage, the polycarbonate is oxidized by holes generated by thermal excitation, and the molecular weight of the polycarbonate is reduced. Next, in the third stage, the low molecular weight polycarbonate is completely burned under oxygen and decomposed into carbon dioxide and water.

酸化チタン表面の電子の授受について言えば、熱励起された電子は、酸素を還元し、これが酸化チタンの表面に吸着して上向きのバンドベンディング(バンドの湾曲)を誘起する。このバンドベンディングにより、熱励起された正孔は表面に集積し、PCを酸化する。電子による酸化還元のエネルギー準位は酸化チタンの伝導帯の底よりも約0.13eV上方に位置しているから、この反応は活性化過程である。しかしこの反応は350℃の状態では十分に達成されていると考えられる。これに対して正孔の表面への移動はバリヤフリー過程である。このように、酸化チタン表面の酸化サイト(伝導帯)と還元サイト(価電子帯)で反応が起こり、PCが分解するものと考えられる   Regarding the transfer of electrons on the surface of titanium oxide, the thermally excited electrons reduce oxygen, which is adsorbed on the surface of titanium oxide and induces upward band bending (curving of the band). By this band bending, the thermally excited holes accumulate on the surface and oxidize the PC. This reaction is an activation process because the energy level of redox by electrons is located about 0.13 eV above the bottom of the conduction band of titanium oxide. However, this reaction is considered to be sufficiently achieved at 350 ° C. In contrast, the movement of holes to the surface is a barrier-free process. Thus, it is considered that reaction occurs at the oxidation site (conduction band) and reduction site (valence band) on the surface of titanium oxide, and PC is decomposed.

酸化チタンを熱励起し、バンド間遷移により電子と正孔とを生成するシステムでは酸化チタンのバンドギャップが3.2eVと大きいため、バンド間遷移が立ち上がる温度が高く、その結果350〜500℃を必要とする。しかしながら、酸化チタンに限らず、高温、酸素雰囲気で安定であれば、どのような半導体でも使用できるので、バンドギャップの小さな半導体であれば基本的に動作温度が低いこととなる。このため、適した加熱温度はより幅が大きく、100℃以上であってもよい。   In a system in which titanium oxide is thermally excited to generate electrons and holes by interband transition, the bandgap of titanium oxide is as large as 3.2 eV, so the temperature at which the interband transition rises is high. I need. However, not only titanium oxide, but any semiconductor can be used as long as it is stable in a high temperature and oxygen atmosphere. Therefore, an operating temperature is basically low for a semiconductor having a small band gap. For this reason, the suitable heating temperature is larger and may be 100 ° C. or higher.

塩素系揮発性有機化合物の分解実験では、350℃の臨界温度でHClが発生した。これに対し、本発明は、350℃未満に加熱された半導体の熱活性を利用した塩素系揮発性有機化合物の酸化分解による除去を行っており、これによりHClの発生を抑制し、触媒被毒を避けて、分解反応を持続的に行うことができる。   In the decomposition experiment of chlorine-based volatile organic compounds, HCl was generated at a critical temperature of 350 ° C. In contrast, the present invention removes chlorine-based volatile organic compounds by oxidative decomposition using the thermal activity of a semiconductor heated to less than 350 ° C., thereby suppressing the generation of HCl and catalyst poisoning. The decomposition reaction can be carried out continuously.

(本発明の塩素系揮発性有機化合物を含有する気体の種類)
本発明で分解される塩素系揮発性有機化合物としては、例えば、ジクロロメタン(DCM)やトリクロロエチレン(TCE)等が挙げられる。また、これらを含有する気体としては、塩素系揮発性有機化合物のみからなる気体であっても、塩素系揮発性有機化合物と空気とで構成されてもよいが、塩素系揮発性有機化合物の除去効率の観点から、塩素系揮発性有機化合物と酸素とで構成されているものが好ましい。
(Type of gas containing the chlorine-based volatile organic compound of the present invention)
Examples of the chlorine-based volatile organic compound decomposed in the present invention include dichloromethane (DCM) and trichloroethylene (TCE). In addition, the gas containing these may be a gas composed only of a chlorine-based volatile organic compound or may be composed of a chlorine-based volatile organic compound and air. From the viewpoint of efficiency, those composed of a chlorine-based volatile organic compound and oxygen are preferable.

(半導体の種類)
半導体として酸化チタンをもって説明したが、使用できる半導体は、高温状態で酸素雰囲気下にあっても安定な物質であり、例えば、次の化学式で示される物質等が挙げられる。ただし、各半導体のバンドギャップが異なるため有機化合物の分解温度はそれに伴い変化する。
BeO,MgO,CaO,SrO,BaO,CeO2,ThO2,UO3,U38,TiO2,ZrO2,V25,Y23,Y22S,Nb25,Ta25,MoO3,WO3,MnO2,Fe23,MgFe24,NiFe24,ZnFe24,ZnCo24,ZnO,CdO,Al23,MgAl24,ZnAl24,Tl23,In23,SiO2,SnO2,PbO2,UO2,Cr23,MgCr24,FeCrO4,CoCrO4,ZnCr24,WO2,MnO,Mn34,Mn23,FeO,NiO,CoO,Co34,PdO,CuO,Cu2O,Ag2O,CoAl24,NiAl24,Tl2O,GeO,PbO,TiO,Ti23,VO,MoO2,IrO2,RuO2,CdS、CdSe,CdTe。
(Semiconductor type)
Although description has been given with titanium oxide as a semiconductor, a usable semiconductor is a substance that is stable even in an oxygen atmosphere at a high temperature, and examples thereof include a substance represented by the following chemical formula. However, since the band gap of each semiconductor is different, the decomposition temperature of the organic compound changes accordingly.
BeO, MgO, CaO, SrO, BaO, CeO 2, ThO 2, UO 3, U 3 O 8, TiO 2, ZrO 2, V 2 0 5, Y 2 O 3, Y 2 O 2 S, Nb 2 O 5 , Ta 2 O 5 , MoO 3 , WO 3 , MnO 2 , Fe 2 O 3 , MgFe 2 O 4 , NiFe 2 O 4 , ZnFe 2 O 4 , ZnCo 2 O 4 , ZnO, CdO, Al 2 O 3 , MgAl 2 O 4 , ZnAl 2 O 4 , Tl 2 O 3 , In 2 O 3 , SiO 2 , SnO 2 , PbO 2 , UO 2 , Cr 2 O 3 , MgCr 2 O 4 , FeCrO 4 , CoCrO 4 , ZnCr 2 O 4, WO 2, MnO, Mn 3 O 4, Mn 2 O 3, FeO, NiO, CoO, Co 3 O 4, PdO, CuO, Cu 2 O, Ag 2 O, CoAl 2 O 4, NiAl 2 O 4, Tl 2 O, GeO, PbO, TiO, Ti 2 O 3, VO, MoO 2, IrO 2 RuO 2, CdS, CdSe, CdTe .

なかでも、酸化物半導体が好ましく、特に酸化チタンや酸化亜鉛は活性が高く、無害であるため安全性が優れるので、好ましく、特に、酸化チタンの結晶形がアナターゼ型のものは活性が高いが、ルチル型のものでも良い。また、上記の半導体の中でも光伝導を示すものは活性が高い。上記半導体は、熱が加えられると活性化し、塩素系揮発性有機化合物を酸化分解する機能を有する。粒径は特に限定されないが、表面反応であるので比表面積が大きく、かつ、結晶性の高いものが好ましい。   Among them, an oxide semiconductor is preferable, and particularly titanium oxide and zinc oxide are high in activity and harmless, and thus excellent in safety.In particular, a titanium oxide crystal form having anatase type has high activity, A rutile type may be used. Among the above semiconductors, those showing photoconductivity are highly active. The semiconductor is activated when heat is applied, and has a function of oxidizing and decomposing chlorine-based volatile organic compounds. The particle size is not particularly limited, but it is preferably a surface reaction that has a large specific surface area and high crystallinity.

また、場合によっては、酸化チタンに前処理を施すのが良く、好ましくは、ポリカーボネートをトルエンに溶解し、酸化チタンを加えて攪拌し、酸化チタン表面にトルエン溶媒にてポリカーボネートを付着しておくのが良い。前処理としての良溶媒としては、トルエンが好ましいが、アセトンやクロロナフタレン等が挙げられる。   In some cases, titanium oxide may be pretreated. Preferably, the polycarbonate is dissolved in toluene, added with titanium oxide and stirred, and the polycarbonate is adhered to the titanium oxide surface with a toluene solvent. Is good. As a good solvent for pretreatment, toluene is preferable, but acetone, chloronaphthalene, and the like can be given.

酸化チタンにポリマーを被覆する際のポリマー調製液の最適な濃度はポリマーにより異なり、特に限定されないが、一般的には0.1〜30%程度の濃度が好適で、ポリマーにポリカーボネートを使用する場合には特に3〜5%が好適である。   The optimum concentration of the polymer preparation liquid when coating the polymer on titanium oxide varies depending on the polymer and is not particularly limited, but generally a concentration of about 0.1 to 30% is suitable, and when polycarbonate is used for the polymer In particular, 3 to 5% is preferable.

次に、本発明に係る実施例を以下に説明するが、本発明はこれらに限定されるものではない。   Next, examples according to the present invention will be described below, but the present invention is not limited thereto.

(半導体、コージライトハニカム及び塩素系揮発性有機化合物の準備)
半導体粉末として、Cr23〔純度99%、被表面積3m2/g:和光純薬工業社製〕、TiO2〔ST−01:TiO2(被表面積298m2/g、アナターゼ型):石原産業社製〕、NiO〔純度99%、被表面積1m2/g:和光純薬工業社製〕、α−Fe23〔被表面積4.1m2/g:戸田工業社製〕を準備した。また、コージライトハニカム〔2MgO・2Agl23・5SiO2、100cpsi(cells per aquare inch):京セラ社製〕を準備した。また、塩素系揮発性有機化合物として、DCM(bp:40.2℃)及びTCE(bp:86.6℃)〔いずれも和光純薬工業社製〕を準備した。
(Preparation of semiconductors, cordierite honeycombs and chlorine-based volatile organic compounds)
As semiconductor powder, Cr 2 O 3 [purity 99%, surface area 3 m 2 / g: manufactured by Wako Pure Chemical Industries, Ltd.], TiO 2 [ST-01: TiO 2 (surface area 298 m 2 / g, anatase type): Ishihara Sangyo NiO [purity 99%, surface area 1 m 2 / g: Wako Pure Chemical Industries, Ltd.], α-Fe 2 O 3 [surface area 4.1 m 2 / g: Toda Kogyo] were prepared. Also, cordierite honeycomb [2MgO · 2Agl 2 O 3 · 5SiO 2 , 100 cpsi (cells per aquare inch): manufactured by Kyocera Corporation] was prepared. Moreover, DCM (bp: 40.2 degreeC) and TCE (bp: 86.6 degreeC) [all are the Wako Pure Chemical Industries Ltd. make] were prepared as a chlorine-type volatile organic compound.

(コージライトハニカムへの半導体の担持)
コージライトハニカムへの半導体の担持として、浸漬法を用いた。懸濁液は、ケトン化合物の溶媒、分散又は活性剤としての少量のニトロセルロース、及び、金属酸化物の粉末基質で構成した。具体的なコージライトハニカムへの半導体の担持の手順は以下の通りとした。まず、30gの粉末触媒を200℃で1時間乾燥して水分を除去した。次に、粉末を3.0gのニトロセルロースを含むアセトン溶液600mlに懸濁した。次に、懸濁液をジルコニアボール(直径0.6mm)存在下、シングルアームペイントシェイカー(5410型:Red Devil Equipment社製)で30分間攪拌して調整した。
ハニカムを、200℃で24時間乾燥した。次に、ハニカムを10秒間懸濁液に浸漬した。次に、コーティングしたハニカムを200℃で30分間オーブンで乾燥した。この工程の間、ニトロセルロースは約180℃で熱的に分解した。
(Semiconductor loading on cordierite honeycomb)
An immersion method was used for supporting the semiconductor on the cordierite honeycomb. The suspension consisted of a ketone compound solvent, a small amount of nitrocellulose as a dispersion or activator, and a metal oxide powder substrate. The specific procedure for supporting the semiconductor on the cordierite honeycomb was as follows. First, 30 g of the powder catalyst was dried at 200 ° C. for 1 hour to remove moisture. Next, the powder was suspended in 600 ml of an acetone solution containing 3.0 g of nitrocellulose. Next, the suspension was adjusted by stirring for 30 minutes with a single arm paint shaker (model 5410: manufactured by Red Devil Equipment) in the presence of zirconia balls (diameter 0.6 mm).
The honeycomb was dried at 200 ° C. for 24 hours. Next, the honeycomb was immersed in the suspension for 10 seconds. The coated honeycomb was then dried in an oven at 200 ° C. for 30 minutes. During this step, nitrocellulose decomposed thermally at about 180 ° C.

(腐食試験)
HClに対する酸化物触媒の腐食試験を行った。半導体を担持したコージライトハニカム(サンプル)をHCl蒸気に室温で24時間暴露した。次に、暴露の前後におけるサンプルのラマンスペクトル及び色調変化を評価した。
(Corrosion test)
A corrosion test of the oxide catalyst against HCl was performed. A cordierite honeycomb (sample) carrying a semiconductor was exposed to HCl vapor at room temperature for 24 hours. Next, the Raman spectrum and color change of the sample before and after exposure were evaluated.

(装置及び試験条件)
当該試験用に設計した質量分析計を有するオートクレーブを準備した。その模式図を図2に示す。これは、触媒粒子とVOCガスとの衝突頻度を最大にする流動床システムである。反応容器の容積は300mlであり、これに40gの粉末サンプルを設けた。攪拌器は150rpmで回転させた。DCM又はTCEには空気を吹き込んで泡立てた。DCMの濃度は空気に対して20体積%であり、TCEの濃度は空気に対して3体積%であった。ガスの流速は、100ml/分に制御した。反応温度は100〜500℃の範囲で変化させた。分解ガスを種々の温度で採取し、四極子質量分析計〔RG−102型:ULVAC社製〕で分析した。
流動床システムは、VOC分解プロセスの詳細な調査が可能である一方、HClに起因する触媒の劣化の評価には必ずしも適しているとは限らない。このため、本発明のハニカムを用いたVOC除去システムと熱交換器を用いて、DCM又はTCEの分解特性について評価した。VOC除去システムは、「ファンクションセパレートユニット」と呼ばれる触媒を積層したアセンブリであり、発熱素子及び触媒担持ハニカムを有するステンレススチールのボックス状に形成されている(図3(a))。このボックスは、Ni−Crワイヤ(直径0.5mm:500W)による加熱チャンバー、及び、Cr23でコーティングしたハニカム(100×100mm2、厚さ30mm)で構成されている。触媒ユニットの橋桁に取り付けた立方体の絶縁体に螺旋のNi−Crワイヤを巻きつけた。一方、一体のCr23でコーティングしたハニカムを直接発熱素子上に取り付けた。これは、ユニットAで示された標準的な触媒である。ユニットA以外に、Cr23でコーティングしたハニカム2体のみで構成されたユニットB、及び、発熱素子2体のみで構成されたユニットCという、2つの別の構成要素がある。これらを積層して、図3(b)に示す触媒システムを構成する。図3(b)は、VOC分解測定装置も示している。ガスは、底からユニットCであらかじめ加熱されて導かれ、約100〜500℃で加熱されたハニカムユニットを通って分解される。しかしながら、これは、ワンパスシステムであり、排気口における排気ガス温度が高く、エネルギー的に不十分である。このため、熱回収交換器が外気へ排気する前段に設けられている。これにより、非常に熱効率が良好となる。図4(a)は熱交換器を備えたVOC除去システム全体の模式図であり、図4(b)はその外観写真である。VOCガスは熱交換器から入り、加熱されて反応容器へ移る。
この試験において、HClのCr23でコーティングしたハニカムを劣化させる効果を視認できるように、意図的に非常に高い濃度のDCM又はTCEを高流速で用いた。そのため、3000vol ppmのDCM又はTCEを2m3/分の流速で反応容器へ導入した。排気ガスをハイドロカーボンメーター〔TVA−1000B型:Thermo Fischer Scientific社製〕で分析した。
UMSP80 マイクロスコープスペクトロフォトメーター(Carl Zeiss社製)によって、Cr23でコーティングしたハニカムのリフレクションスペクトルを測定した。同様に、NRS−3100 レーザーラマンマイクロスコープスペクトロフォトメーター(JASCO社製)でラマンスペクトルを測定した。
(Equipment and test conditions)
An autoclave having a mass spectrometer designed for the test was prepared. The schematic diagram is shown in FIG. This is a fluidized bed system that maximizes the collision frequency between the catalyst particles and the VOC gas. The volume of the reaction vessel was 300 ml, and a 40 g powder sample was provided thereto. The stirrer was rotated at 150 rpm. DCM or TCE was bubbled with air. The concentration of DCM was 20% by volume with respect to air and the concentration of TCE was 3% by volume with respect to air. The gas flow rate was controlled at 100 ml / min. The reaction temperature was varied in the range of 100 to 500 ° C. The cracked gas was collected at various temperatures and analyzed with a quadrupole mass spectrometer [RG-102 type: manufactured by ULVAC].
While fluidized bed systems allow detailed investigation of the VOC decomposition process, they are not always suitable for assessing catalyst degradation due to HCl. For this reason, the decomposition characteristics of DCM or TCE were evaluated using the VOC removal system using the honeycomb of the present invention and a heat exchanger. The VOC removal system is an assembly in which a catalyst called a “function separate unit” is laminated, and is formed in a stainless steel box shape having a heating element and a catalyst-supporting honeycomb (FIG. 3A). This box is composed of a heating chamber made of Ni—Cr wire (diameter 0.5 mm: 500 W) and a honeycomb (100 × 100 mm 2 , thickness 30 mm) coated with Cr 2 O 3 . A spiral Ni-Cr wire was wound around a cubic insulator attached to the bridge girder of the catalyst unit. On the other hand, a honeycomb coated with an integral Cr 2 O 3 was directly mounted on the heating element. This is the standard catalyst shown in unit A. In addition to unit A, there are two other components: unit B composed of only two honeycombs coated with Cr 2 O 3 and unit C composed of only two heating elements. These are laminated to form the catalyst system shown in FIG. FIG. 3B also shows a VOC decomposition measurement apparatus. The gas is led from the bottom, preheated in unit C, and decomposed through the honeycomb unit heated at about 100-500 ° C. However, this is a one-pass system, and the exhaust gas temperature at the exhaust port is high, which is insufficient in terms of energy. For this reason, the heat recovery exchanger is provided in the previous stage of exhausting to the outside air. Thereby, the thermal efficiency is very good. FIG. 4 (a) is a schematic diagram of the entire VOC removal system equipped with a heat exchanger, and FIG. 4 (b) is an external view photograph thereof. VOC gas enters from the heat exchanger and is heated and transferred to the reaction vessel.
In this test, very high concentrations of DCM or TCE were intentionally used at high flow rates so that the effect of degrading the honeycomb coated with HCl Cr 2 O 3 was visible. Therefore, 3000 vol ppm of DCM or TCE was introduced into the reaction vessel at a flow rate of 2 m 3 / min. The exhaust gas was analyzed with a hydrocarbon meter (TVA-1000B type: manufactured by Thermo Fischer Scientific).
The reflection spectrum of the honeycomb coated with Cr 2 O 3 was measured with a UMSP80 microscope spectrophotometer (Carl Zeiss). Similarly, the Raman spectrum was measured with an NRS-3100 laser Raman microscope spectrophotometer (manufactured by JASCO).

(評価結果)
1.腐食試験
図5及び6に、サンプルのHCl暴露前後の色調変化及びラマンスペクトルを示す。図5(a)及び図6(a)のハニカムでは、色調及びラマンスペクトルの変化がいずれも見られなかった。Cr23の顕著なラマンピークは550cm-1に出現し、小さなピークが310、350及び615cm-1に出現し、暴露後でも変化していなかった。他方、TiO2、NiO、及び、α−Fe23に係るサンプルについては、ラマンスペクトルの大きな変化が見られた。色調については、TiO2に係るサンプルは純白からわずかに黄色がかった(図5(b))。これは、ラマンスペクトル(図6(b))で示されたルチル型からアナターゼ型への変化に対応している。NiOに係るサンプルは、HClによってかなり腐食された。α−Fe23に係るサンプルは、さらに腐食の程度が大きく、完全にHClへ溶け出してしまい、ハニカム上に残らなかった。
以上により、Cr23に係るサンプルが最も良好な結果を示すことから、触媒としては、Cr23がHClに対する耐腐食性において最も優れていることがわかる。
(Evaluation results)
1. Corrosion Test FIGS. 5 and 6 show the color change and Raman spectrum of the sample before and after exposure to HCl. In the honeycombs of FIGS. 5 (a) and 6 (a), neither color tone nor change in Raman spectrum was observed. Prominent Raman peak of cr 2 O 3 is appeared in 550 cm -1, a small peak appeared in the 310, 350 and 615 cm -1, was not changed even after the exposure. On the other hand, for the samples related to TiO 2 , NiO, and α-Fe 2 O 3 , a large change in Raman spectrum was observed. As for the color tone, the sample related to TiO 2 was slightly yellowish from pure white (FIG. 5B). This corresponds to the change from the rutile type to the anatase type shown in the Raman spectrum (FIG. 6B). The sample related to NiO was significantly corroded by HCl. The sample according to α-Fe 2 O 3 had a higher degree of corrosion and was completely dissolved in HCl and did not remain on the honeycomb.
From the above, it can be understood that Cr 2 O 3 is the most excellent in corrosion resistance to HCl as the catalyst because the sample related to Cr 2 O 3 shows the best results.

2.オートクレーブ内の粉末Cr23によるDCMの分解特性
図7は、空気中のDCMの分解特性を示している。O2、CO2及びHClの量は、空気中のN2の量に関連して決定されており、パーセントで示されている。DCMは約100℃で分解し始め、その後急速に分解が進み、450℃で分解が終了する。300〜450℃の範囲でO2の量は顕著に減少し、CO2の量は顕著に増加する。ここで、HClが350℃未満では発生せず、350℃以上で急に発生していることに注目すべきである。100〜340℃は、HClを発生しないDCMの分解のためには非常に重要な温度範囲である。
2. Decomposition characteristics of DCM by powder Cr 2 O 3 in the autoclave FIG. 7 shows the decomposition characteristics of DCM in air. The amounts of O 2 , CO 2 and HCl are determined in relation to the amount of N 2 in the air and are given as a percentage. DCM starts decomposing at about 100 ° C., then proceeds rapidly, and completes at 450 ° C. In the range of 300 to 450 ° C., the amount of O 2 decreases significantly and the amount of CO 2 increases significantly. Here, it should be noted that HCl does not occur below 350 ° C., but abruptly occurs above 350 ° C. 100-340 ° C. is a very important temperature range for the decomposition of DCM which does not generate HCl.

3.オートクレーブ内の粉末Cr23によるTCEの分解特性
図8は、TCEの分解特性を示している。TCEの分解は約200℃で始まり、その後急速に分解が進み、約350℃で分解が終了する。O2はCO2がTCEの分解で増加する間、消費される。ここでも、DCMの場合と同様に、HClが350℃未満では発生せず、350℃以上で急に発生している。
3. Decomposition characteristics of TCE by powder Cr 2 O 3 in the autoclave FIG. 8 shows the decomposition characteristics of TCE. The decomposition of TCE starts at about 200 ° C., then proceeds rapidly, and the decomposition ends at about 350 ° C. O 2 is consumed while CO 2 increases with the decomposition of TCE. Here again, as in the case of DCM, HCl does not occur below 350 ° C., but abruptly occurs above 350 ° C.

4.熱交換器を有するCr23でコーティングしたハニカムシステムによるDCM又はTCEの300℃及び500℃における分解試験
図9は、300℃及び500℃の動作温度におけるDCMの分解特性を示している。排気ガスはハイドロカーボンメーターで測定した。動作温度500℃では、DCMがシステムに導入されるとすぐ、分解効率が急に低下した。これは、ラマンスペクトルから明らかなように、350℃以上で生じるHClがハニカムに担持したCr23を攻撃することに起因する。これに対し、動作温度300℃では、200時間後にDCMが完全に分解した。これはDCMの分解においては非常に重要な結果である。ほぼ同様の結果がTCEに関しても得られた。
4). Decomposition Test of DCM or TCE at 300 ° C. and 500 ° C. with a Honeycomb System Coated with Cr 2 O 3 with Heat Exchanger FIG. 9 shows the decomposition characteristics of DCM at operating temperatures of 300 ° C. and 500 ° C. The exhaust gas was measured with a hydrocarbon meter. At an operating temperature of 500 ° C., the decomposition efficiency suddenly decreased as soon as DCM was introduced into the system. As apparent from the Raman spectrum, this is because HCl generated at 350 ° C. or higher attacks Cr 2 O 3 supported on the honeycomb. In contrast, at an operating temperature of 300 ° C., DCM was completely decomposed after 200 hours. This is a very important result in the decomposition of DCM. Nearly similar results were obtained for TCE.

Claims (6)

塩素系揮発性有機化合物を含有する気体に、酸素の存在下、350℃未満に加熱された半導体を熱励起状態として接触させることによって前記有機化合物を酸化分解除去することを特徴とする塩素系揮発性有機化合物の浄化方法。   Chlorine volatilization characterized in that the organic compound is oxidatively decomposed and removed by bringing a semiconductor heated to less than 350 ° C. in the presence of oxygen into contact with a gas containing a chlorine-based volatile organic compound in a thermally excited state. For purifying organic organic compounds. 前記塩素系揮発性有機化合物がジクロロメタン(DCM)又はトリクロロエチレン(TCE)である請求項1に記載の塩素系揮発性有機化合物の浄化方法。   The method for purifying a chlorine-based volatile organic compound according to claim 1, wherein the chlorine-based volatile organic compound is dichloromethane (DCM) or trichlorethylene (TCE). 半導体の高温状態で生成する熱平衡キャリアーのうち、正孔酸化力を利用した請求項1又は2に記載の塩素系揮発性有機化合物の浄化方法。   The method for purifying a chlorinated volatile organic compound according to claim 1 or 2, wherein hole oxidizing power is utilized among thermal equilibrium carriers generated in a high temperature state of a semiconductor. 前記半導体が高温状態及び酸素雰囲気下でも安定に存在する半導体である請求項1〜3のいずれかに記載の塩素系揮発性有機化合物の浄化方法。   The method for purifying a chlorine-based volatile organic compound according to any one of claims 1 to 3, wherein the semiconductor is a semiconductor that exists stably even in a high temperature state and in an oxygen atmosphere. 前記半導体が酸化物半導体である請求項1〜4のいずれかに記載の塩素系揮発性有機化合物の浄化方法。   The said semiconductor is an oxide semiconductor, The purification | cleaning method of the chlorine-type volatile organic compound in any one of Claims 1-4. 前記酸化物半導体がCr23、NiO、TiO2、又は、Fe23である請求項5に記載の塩素系揮発性有機化合物の浄化方法。 The method for purifying a chlorine-based volatile organic compound according to claim 5, wherein the oxide semiconductor is Cr 2 O 3 , NiO, TiO 2 , or Fe 2 O 3 .
JP2011076576A 2011-03-30 2011-03-30 Purification method for chlorinated volatile organic compounds Expired - Fee Related JP5793804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011076576A JP5793804B2 (en) 2011-03-30 2011-03-30 Purification method for chlorinated volatile organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011076576A JP5793804B2 (en) 2011-03-30 2011-03-30 Purification method for chlorinated volatile organic compounds

Publications (3)

Publication Number Publication Date
JP2012210247A true JP2012210247A (en) 2012-11-01
JP2012210247A5 JP2012210247A5 (en) 2014-03-13
JP5793804B2 JP5793804B2 (en) 2015-10-14

Family

ID=47264757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011076576A Expired - Fee Related JP5793804B2 (en) 2011-03-30 2011-03-30 Purification method for chlorinated volatile organic compounds

Country Status (1)

Country Link
JP (1) JP5793804B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094464A (en) * 2012-11-08 2014-05-22 Shinshu Univ Partial restoration method of fiber reinforced plastic product and processing device thereof
CN114768836A (en) * 2022-04-19 2022-07-22 浙江师范大学 Catalyst for catalytic oxidation of dichloromethane and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122699A (en) * 1974-08-21 1976-02-23 Toa Gosei Chem Ind Jukiensokagobutsuno setsushokusankabunkaiho
JPH03289973A (en) * 1989-01-09 1991-12-19 Nippon Shokubai Co Ltd Decomposition combustion disposal method for organic chlorine compound
JPH04501380A (en) * 1989-05-01 1992-03-12 アライド―シグナル・インコーポレーテッド Catalytic destruction of organohalogen compounds
JPH04118088A (en) * 1990-09-10 1992-04-20 Tsutomu Matsuzaki Method and device for treating waste plastic
JPH09506542A (en) * 1993-10-27 1997-06-30 ザ ユニバーシティ オブ アクロン Selective oxidation catalysts for halogenated organics
JPH10324772A (en) * 1997-05-23 1998-12-08 Nkk Corp Treatment of synthetic resin containing chlorine and device therefor
JP2005139440A (en) * 2003-10-17 2005-06-02 Hitoshi Mizuguchi Method for decomposing compound
JP2008194683A (en) * 2007-01-18 2008-08-28 Shiga Univ Of Medical Science Decomposition method of volatile compound
WO2010061854A1 (en) * 2008-11-26 2010-06-03 国立大学法人横浜国立大学 System for degrading and removing toxic substance by means of thermal excitation of chromium oxide or nickel oxide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122699A (en) * 1974-08-21 1976-02-23 Toa Gosei Chem Ind Jukiensokagobutsuno setsushokusankabunkaiho
JPH03289973A (en) * 1989-01-09 1991-12-19 Nippon Shokubai Co Ltd Decomposition combustion disposal method for organic chlorine compound
JPH04501380A (en) * 1989-05-01 1992-03-12 アライド―シグナル・インコーポレーテッド Catalytic destruction of organohalogen compounds
JPH04118088A (en) * 1990-09-10 1992-04-20 Tsutomu Matsuzaki Method and device for treating waste plastic
JPH09506542A (en) * 1993-10-27 1997-06-30 ザ ユニバーシティ オブ アクロン Selective oxidation catalysts for halogenated organics
JPH10324772A (en) * 1997-05-23 1998-12-08 Nkk Corp Treatment of synthetic resin containing chlorine and device therefor
JP2005139440A (en) * 2003-10-17 2005-06-02 Hitoshi Mizuguchi Method for decomposing compound
JP2008194683A (en) * 2007-01-18 2008-08-28 Shiga Univ Of Medical Science Decomposition method of volatile compound
WO2010061854A1 (en) * 2008-11-26 2010-06-03 国立大学法人横浜国立大学 System for degrading and removing toxic substance by means of thermal excitation of chromium oxide or nickel oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7014003099; 'Complete Removal of Chloro-Based Volatile Organic Compounds by Thermally Activated Oxide Semiconduct' Materials Transactions Vol.52, No.6, 2011, 1281-1287, 日本金属学会 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094464A (en) * 2012-11-08 2014-05-22 Shinshu Univ Partial restoration method of fiber reinforced plastic product and processing device thereof
CN114768836A (en) * 2022-04-19 2022-07-22 浙江师范大学 Catalyst for catalytic oxidation of dichloromethane and preparation method thereof

Also Published As

Publication number Publication date
JP5793804B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
Weon et al. Active {001} facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: from material development to commercial indoor air cleaner application
Miyauchi et al. Visible-light-sensitive photocatalysts: nanocluster-grafted titanium dioxide for indoor environmental remediation
Quici et al. Effect of key parameters on the photocatalytic oxidation of toluene at low concentrations in air under 254+ 185 nm UV irradiation
Einaga et al. Complete oxidation of benzene in gas phase by platinized titania photocatalysts
TWI404567B (en) Photocatalyst material, organic decomposition method, built-in component, air cleaner, oxidizer manufacturing device
Bathla et al. Photocatalytic degradation of gaseous benzene using metal oxide nanocomposites
Taranto et al. Combining cold plasma and TiO2 photocatalysis to purify gaseous effluents: a preliminary study using methanol-contaminated air
JP2009202137A (en) Air treatment apparatus
Subrahmanyam et al. Nonthermal plasma abatement of trichloroethylene enhanced by photocatalysis
Wu et al. A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation
US10507454B2 (en) Photocatalyst material and method for producing same
Reddy et al. A review of photocatalytic treatment for various air pollutants
Slimen et al. Photocatalytic decomposition of cigarette smoke using a TiO2-impregnated titanium mesh filter
JP2008246473A (en) Catalyst and method for cleaning exhaust gas
KR101596401B1 (en) Inorganic hollow beads coated photocatalyst for a water treatment and method for manufacturing the same
JP5793804B2 (en) Purification method for chlorinated volatile organic compounds
JP5117894B2 (en) Method for manufacturing thermal catalyst element and method for manufacturing stacked reaction unit
Rismanchian et al. Photocatalytic removal of gaseous toluene by titanium dioxide coated on nickel foam: influence of relative humidity and toluene concentration
WO2010061854A1 (en) System for degrading and removing toxic substance by means of thermal excitation of chromium oxide or nickel oxide
JP3689754B2 (en) Photocatalyst material and air purification film
Chen et al. The photodegradation of acetone over VOx/MgF2 catalysts
Hiramatsu et al. Complete Removal of Chloro-Based Volatile Organic Compounds by Thermally Activated Oxide Semiconductors
KR20160063693A (en) Apparatus for Removing VOCs and VOCs Removing Method Using the Same
EP3523011A1 (en) A process for low temperature gas cleaning with ozone and a catalytic bag filter for use in the process
Iwamoto et al. Removal of volatile organic compounds by the use of thermally activated Cr2O3+ x (0< x< 1)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150723

R150 Certificate of patent or registration of utility model

Ref document number: 5793804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees