JP2012210017A - Axial gap type electric motor - Google Patents

Axial gap type electric motor Download PDF

Info

Publication number
JP2012210017A
JP2012210017A JP2011072549A JP2011072549A JP2012210017A JP 2012210017 A JP2012210017 A JP 2012210017A JP 2011072549 A JP2011072549 A JP 2011072549A JP 2011072549 A JP2011072549 A JP 2011072549A JP 2012210017 A JP2012210017 A JP 2012210017A
Authority
JP
Japan
Prior art keywords
pole
virtual plane
facing surface
side facing
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011072549A
Other languages
Japanese (ja)
Other versions
JP6020781B2 (en
Inventor
Yoichi Tanabe
洋一 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2011072549A priority Critical patent/JP6020781B2/en
Publication of JP2012210017A publication Critical patent/JP2012210017A/en
Application granted granted Critical
Publication of JP6020781B2 publication Critical patent/JP6020781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an axial gap type electric motor capable of further increasing torque.SOLUTION: A pole fixing side magnetic pole piece is aligned in a circumferential direction coaxial to an output shaft, and pole fixing side opposite faces forming an N-pole and an S-pole are alternately arranged in the circumferential direction coaxial to the output shaft. A pole transition side magnetic pole piece is aligned in a circumferential direction, and passes opposite to the pole fixing side magnetic pole piece on pole transition side opposite faces 42. Magnetic poles transits on the pole transition side opposite faces 42. An electric angle of a projection image on the pole fixing side opposite faces projected on a third imaginary plane parallel to a first imaginary plane, and an electric angle of a projection image of the pole transition side opposite faces 42 projected on the third imaginary plane are set to a numeric value relationship for establishing a maximum value of an effective magnetic flux on a circumferential line coaxial to the output shaft.

Description

本発明はアキシャルギャップ型電動機に関する。   The present invention relates to an axial gap type electric motor.

例えば特許文献2に示されるように、アキシャルギャップ型電動機は広く知られる。アキシャルギャップ型電動機では出力軸に直交する平面内で出力軸に同心の(以下「同軸の」という)円の円周方向に複数個の磁石が配列される。個々の磁石には、出力軸の軸心に直交する第1仮想平面に沿って平面すなわち極固定側対向面が規定される。極固定側対向面にはN極またはS極が形成される。N極およびS極は円周方向に交互にロータ上に配置される。ロータは出力軸に連結される。   For example, as shown in Patent Document 2, an axial gap type electric motor is widely known. In the axial gap type electric motor, a plurality of magnets are arranged in a circumferential direction of a circle concentric with the output shaft (hereinafter referred to as “coaxial”) in a plane orthogonal to the output shaft. A plane, that is, a pole fixing side facing surface is defined for each magnet along a first virtual plane orthogonal to the axis of the output shaft. N poles or S poles are formed on the pole fixing side facing surface. The north and south poles are alternately arranged on the rotor in the circumferential direction. The rotor is connected to the output shaft.

アキシャルギャップ型電動機では複数個のステータコアが出力軸に同軸の円周方向に配列される。個々のステータコアには、第1仮想平面に平行な第2仮想平面に沿って平面すなわち極遷移側対向面が規定される。極遷移側対向面は極固定側第1仮想平面に向き合わせられる。極遷移側対向面では、ステータコアに巻かれる巻き線の働きで磁極はN極とS極との間で変遷する。この磁極の変遷に応じて出力軸の軸心回りでロータは回転する。その結果、出力軸は回転する。   In the axial gap type electric motor, a plurality of stator cores are arranged in a circumferential direction coaxial with the output shaft. Each stator core is defined with a plane, that is, a pole transition side facing surface, along a second virtual plane parallel to the first virtual plane. The pole transition side facing surface faces the pole fixing side first virtual plane. On the pole transition side facing surface, the magnetic pole changes between the N pole and the S pole by the action of the winding wound around the stator core. The rotor rotates around the axis of the output shaft according to the transition of the magnetic pole. As a result, the output shaft rotates.

特開2004−282989号公報JP 2004-282899 A 特開2008−131682号公報JP 2008-131682 A

一般に電動機では磁石やステータコアは出力軸に同軸の円周方向にできる限り隙間なく配置される。こうしてスペースが有効活用されれば、磁石やステータコアで生成される磁束の増大が期待される。その結果、電動機のトルクの増大が見込まれる。   Generally, in an electric motor, a magnet and a stator core are arranged with as little gap as possible in the circumferential direction coaxial with the output shaft. If the space is effectively utilized in this way, an increase in magnetic flux generated by the magnet and the stator core is expected. As a result, the torque of the electric motor is expected to increase.

例えば特許文献2に記載されるように、ステータコアの巻き線が並列接続で結線されると、アキシャルギャップ型電動機のトルクの向上が見込まれる。このアキシャルギャップ型電動機では円周方向に配列される磁石の個数に比べてステータコアの個数は少ない。こうしたアキシャルギャップ型電動機でさらなるトルクの増大が模索される。   For example, as described in Patent Document 2, when the windings of the stator core are connected in parallel, the torque of the axial gap type electric motor is expected to be improved. In this axial gap motor, the number of stator cores is smaller than the number of magnets arranged in the circumferential direction. With such an axial gap type motor, further increase in torque is sought.

本発明のいくつかの態様によれば、さらなるトルクの増大を実現するアキシャルギャップ型電動機が提供されることができる。   According to some aspects of the present invention, an axial gap type electric motor that realizes further increase in torque can be provided.

アキシャルギャップ型電動機の一形態は、出力軸と、前記出力軸に同軸の円周方向に配列されて、前記出力軸の軸心に直交する第1仮想平面に沿って規定される極固定側対向面にN極またはS極を形成し、前記出力軸に同軸の円周方向に交互に前記N極および前記S極を配置する複数の極固定側磁極片と、前記円周方向に配列されて、前記第1仮想平面に平行な第2仮想平面に沿って規定される極遷移側対向面で前記第1仮想平面に向き合わせられ前記極遷移側対向面で磁極を変遷させる複数の極遷移側磁極片とを備え、前記第1仮想平面に平行な第3仮想平面に投影される前記極固定側対向面の投影像に関して前記出力軸に同軸の円周線で横切られる前記投影像の電気角と、前記第3仮想平面に投影される前記極遷移側対向面の投影像に関して前記円周線で横切られる前記投影像の電気角とは、前記円周線上で有効磁束の最大値を確立する数値関係に設定される。   One form of the axial gap type electric motor is an output shaft and a pole fixed side opposed arrayed in a circumferential direction coaxial with the output shaft and defined along a first virtual plane perpendicular to the axis of the output shaft A plurality of pole-fixed side pole pieces, each having an N-pole or S-pole formed on the surface, and alternately arranged in the circumferential direction coaxial with the output shaft, and arranged in the circumferential direction A plurality of pole transition sides that face the first virtual plane at a pole transition side facing surface defined along a second virtual plane parallel to the first virtual plane and cause the magnetic pole to transition at the pole transition side facing surface An electrical angle of the projected image that is crossed by a circumferential line coaxial with the output shaft with respect to a projected image of the pole-fixed facing surface projected onto a third virtual plane parallel to the first virtual plane. And a projected image of the pole transition side facing surface projected onto the third virtual plane. Wherein the electrical angle of the projected image to be traversed by the circumferential line, it is set to a numerical value related to establish a maximum value of the effective magnetic flux by the circumferential line Te.

こうしたアキシャルギャップ型電動機では、極固定側対向面と極遷移側対向面とが互いに向き合いつつすれ違う際に、出力軸に同軸の円周線上で有効磁束の最大値が確立される。有効磁束の増大はトルクを増大させる。アキシャルギャップ型電動機のトルクは増大する。   In such an axial gap type electric motor, when the pole fixing side facing surface and the pole transition side facing surface pass each other while facing each other, the maximum value of the effective magnetic flux is established on a circumferential line coaxial with the output shaft. Increasing the effective magnetic flux increases the torque. The torque of the axial gap type motor increases.

また、アキシャルギャップ型電動機の一形態は、出力軸と、前記出力軸に同軸の円周方向に配列されて、前記出力軸の軸心に直交する第1仮想平面に沿って規定される極固定側対向面にN極またはS極を形成し、前記出力軸に同軸の円周方向に交互に前記N極および前記S極を配置する複数の極固定側磁極片と、前記円周方向に配列されて、前記第1仮想平面に平行な第2仮想平面に沿って規定される極遷移側対向面で前記第1仮想平面に向き合わせられ前記極遷移側対向面で磁極を変遷させる複数の極遷移側磁極片とを備え、前記第1仮想平面に平行な第3仮想平面内で、当該第3仮想平面に投影される前記極遷移側対向面の投影像に関して前記出力軸に同軸の第1円周線で横切られる前記投影像の電気角は、前記第3仮想平面に投影される前記極固定側対向面の投影像に関して同第1円周線で横切られる前記投影像の電気角との間に有効磁束の最大値を確立する角度値よりも小さく設定され、前記第3仮想平面内で、当該第3仮想平面に投影される前記極遷移側対向面の投影像に関して前記出力軸に同軸で前記第1円周線よりも大きい第2円周線で横切られる前記投影像の電気角は、前記第3仮想平面に投影される前記極固定側対向面の投影像に関して同第2円周線で横切られる前記投影像の電気角との間に有効磁束の最大値を確立する角度値よりも大きく設定される。   Further, one form of the axial gap type electric motor is a pole fixed that is arranged along an output shaft and a first virtual plane that is arranged in a circumferential direction coaxial with the output shaft and is orthogonal to the axis of the output shaft. A plurality of pole-fixed side pole pieces, each having a north pole or a south pole on a side facing surface, and alternately arranging the north pole and the south pole in a circumferential direction coaxial with the output shaft; and arranged in the circumferential direction A plurality of poles facing the first virtual plane at a pole transition side facing surface defined along a second virtual plane parallel to the first virtual plane and changing a magnetic pole at the pole transition facing surface A first pole coaxial with the output axis with respect to a projected image of the pole transition side facing surface projected onto the third virtual plane in a third virtual plane parallel to the first virtual plane. The electrical angle of the projected image that is crossed by a circumferential line is projected onto the third virtual plane. The third imaginary plane is set smaller than an angle value that establishes a maximum value of an effective magnetic flux between the projection image of the pole-fixed side facing surface and the electrical angle of the projection image crossed by the first circumferential line. Of the projected image that is crossed by a second circumferential line that is coaxial with the output axis and larger than the first circumferential line with respect to the projected image of the pole transition side facing surface projected onto the third virtual plane. The angle is an angle that establishes the maximum value of the effective magnetic flux between the electrical angle of the projected image crossed by the second circumferential line with respect to the projected image of the pole-fixed facing surface projected onto the third virtual plane. It is set larger than the value.

第1円周線および第2円周線の間では、第1円周線よりも大きく第2円周線よりも小さいいずれかの円周線上で、極固定側対向面の電気角と極遷移側対向面の電気角との間に有効磁束の最大値を確立する数値関係が設定されることができる。その結果、極固定側対向面と極遷移側対向面とが互いに向き合いつつすれ違う際に、出力軸に同軸の円周線上で有効磁束の最大値が確立される。有効磁束の増大はトルクを増大させる。アキシャルギャップ型電動機のトルクは増大する。   Between the first circumferential line and the second circumferential line, the electrical angle of the pole fixing side facing surface and the polar transition on any circumferential line that is larger than the first circumferential line and smaller than the second circumferential line. A numerical relationship that establishes the maximum value of the effective magnetic flux between the electrical angle of the side facing surfaces can be set. As a result, when the pole fixing side facing surface and the pole transition side facing surface pass each other, the maximum value of the effective magnetic flux is established on the circumference line coaxial with the output shaft. Increasing the effective magnetic flux increases the torque. The torque of the axial gap type motor increases.

アキシャルギャップ型電動機では、隣接する前記極固定側磁極片同士は内径側から外径側にかけて等幅の隙間で仕切られればよい。こうした構成によれば、極固定側磁極片は円周方向にできる限り隙間なく配置されることができる。例えば、極固定側磁極片の輪郭が出力軸の軸心を中心に半径線で仕切られると、半径方向に出力軸から遠ざかるにつれて極固定側磁極片同士の間で空間は増大してしまう。   In the axial gap type electric motor, the adjacent pole-fixed side pole pieces may be partitioned by a uniform gap from the inner diameter side to the outer diameter side. According to such a configuration, the pole-fixed side pole pieces can be arranged in the circumferential direction with as little gap as possible. For example, when the contour of the pole-fixed side pole piece is partitioned by a radial line around the axis of the output shaft, the space between the pole-fixed side pole pieces increases as the distance from the output shaft increases in the radial direction.

さらにまた、アキシャルギャップ型電動機では、前記極固定側対向面の半径方向輪郭線は前記出力軸に同軸の半径線から傾斜してもよい。こういった傾斜によれば、極遷移側対向面に対して極固定側対向面がすれ違うと、極固定側対向面の半径方向輪郭線は傾斜なしに比べて長い時間にわたって極遷移側対向面の半径方向輪郭線に交差し続ける。したがって、隣接する極固定側対向面同士の間で極遷移側対向面に作用する磁束の変化は和らげられる。特に、極遷移側対向面の電気角が縮小されても、スムーズな回転が実現されることができる。   Furthermore, in the axial gap type electric motor, the radial contour line of the pole fixed side facing surface may be inclined from a radial line coaxial with the output shaft. According to such an inclination, when the pole fixing side facing surface passes the pole transition side facing surface, the radial contour line of the pole fixing side facing surface is longer than the slope without the slope. Continue to intersect the radial contour. Therefore, the change of the magnetic flux which acts on the pole transition side opposing surface between adjacent pole fixing side opposing surfaces is relieved. In particular, even if the electrical angle of the pole transition side facing surface is reduced, smooth rotation can be realized.

さらにまた、アキシャルギャップ型電動機の一形態は、出力軸と、前記出力軸に同軸の円周方向に配列されて、前記出力軸の軸心に直交する第1仮想平面に沿って規定される第1極固定側対向面にN極またはS極を形成し、前記出力軸に同軸の円周方向に交互に前記N極および前記S極を配置する複数の第1極固定側磁極片と、前記第1仮想平面に平行な第2仮想平面に沿って規定される第2極固定側対向面で空間を挟んで前記第1磁極片に個々に向き合わせられ、向き合う前記第1極固定側対向面と反対の磁極を形成し、前記円周方向に交互にN極およびS極を配置する複数の第2極固定側磁極片と、前記空間内で前記円周方向に配列されて、前記第1仮想平面に平行な第3仮想平面に沿って規定される第1極遷移側対向面で前記第1仮想平面に向き合わせられ前記第1極遷移側対向面で磁極を変遷させ、前記第2仮想平面に平行な第4仮想平面に沿って規定される第2極遷移側対向面で前記第2仮想平面に向き合わせられ前記第2極遷移側対向面で前記第1極遷移側対向面の磁極の変遷に応じて磁極を変遷させる複数の極遷移側磁極片とを備え、前記第1仮想平面に平行な第5仮想平面に投影される前記第1極固定側対向面の投影像に関して前記出力軸に同軸の第1円周線で横切られる前記投影像の電気角と、前記第5仮想平面に投影される前記第1極遷移側対向面の投影像に関して前記第1円周線で横切られる前記投影像の電気角とは、前記円周線上で有効磁束の最大値を確立する数値関係に設定され、前記第5仮想平面に投影される前記第2極固定側対向面の投影像に関して前記出力軸の同軸の第2円周線で横切られる前記投影像の電気角と、前記第5仮想平面に投影される前記第2極遷移側対向面の投影像に関して前記第2円周線で横切られる前記投影像の電気角とは、前記第2円周線上で有効磁束の最大値を確立する数値関係に設定される。   Furthermore, according to one aspect of the axial gap type electric motor, the output shaft is arranged in a circumferential direction coaxial with the output shaft, and is defined along a first virtual plane orthogonal to the axis of the output shaft. A plurality of first pole fixed-side pole pieces, each having an N-pole or S-pole formed on the one-pole fixed-side facing surface, and alternately arranging the N-pole and the S-pole in a circumferential direction coaxial with the output shaft; The first pole-fixing-side facing surfaces that face each other and face each other with the second pole-fixing-side facing surface defined along the second virtual plane parallel to the first virtual plane across the space. A plurality of second pole-fixed-side pole pieces that are alternately arranged with N and S poles in the circumferential direction, and arranged in the circumferential direction in the space, The first virtual transition surface facing the first pole transition side defined along a third virtual plane parallel to the virtual plane The second virtual plane is faced by a second pole transition side facing surface defined along a fourth virtual plane parallel to the second virtual plane. And a plurality of pole transition side pole pieces that change the magnetic pole in accordance with the transition of the magnetic poles of the first pole transition side facing surface at the second pole transition side facing surface parallel to the first virtual plane. An electrical angle of the projected image that is crossed by a first circumferential line coaxial with the output axis with respect to the projected image of the first pole fixed side facing surface projected onto the fifth virtual plane, and projected onto the fifth virtual plane The electrical angle of the projected image traversed by the first circumferential line with respect to the projected image of the first pole transition side facing surface is set to a numerical relationship that establishes the maximum value of the effective magnetic flux on the circumferential line. , And a projected image of the second pole fixed side facing surface projected onto the fifth virtual plane With respect to the electrical angle of the projected image traversed by the coaxial second circumferential line of the output shaft and the projected image of the second pole transition side facing surface projected onto the fifth virtual plane, the second circumferential line The electrical angle of the projected image traversed is set to a numerical relationship that establishes the maximum value of the effective magnetic flux on the second circumferential line.

こうしたアキシャルギャップ型電動機では、第1極固定側対向面と第1極遷移側対向面とが互いに向き合いつつすれ違う際に、出力軸に同軸の円周線線上で有効磁束の最大値が確立される。同様に、第2極固定側対向面と第2極遷移側対向面とが互いに向き合いつつすれ違う際に、出力軸に同軸の円周線上で有効磁束の最大値が確立される。こうして有効磁束の増大はトルクを増大させる。アキシャルギャップ型電動機のトルクは増大する。   In such an axial gap type motor, when the first pole fixed side facing surface and the first pole transition side facing surface pass each other while facing each other, the maximum value of the effective magnetic flux is established on a circumferential line coaxial with the output shaft. . Similarly, when the second pole fixed side facing surface and the second pole transition side facing surface pass each other while facing each other, the maximum value of the effective magnetic flux is established on a circumference line coaxial with the output shaft. Thus, increasing the effective magnetic flux increases the torque. The torque of the axial gap type motor increases.

以上のようなアキシャルギャップ型電動機はいずれも空気調和機で利用されることができる。アキシャルギャップ型電動機は例えば送風ファンの回転駆動に利用されればよい。その他、アキシャルギャップ型電動機はいずれも乗り物で利用されることができる。アキシャルギャップ型電動機は例えば乗り物の動力源に利用されればよい。乗り物には、例えば電動アシスト自転車のほか、電気二輪車、電気自動車、ハイブリッド自動車が含まれることができる。   Any of the above axial gap type motors can be used in an air conditioner. The axial gap type electric motor may be used, for example, for rotationally driving the blower fan. In addition, any axial gap motor can be used in a vehicle. The axial gap type electric motor may be used as a power source for a vehicle, for example. Vehicles can include, for example, electrically assisted bicycles, as well as electric motorcycles, electric vehicles, and hybrid vehicles.

以上のように本発明によれば、さらなるトルクの増大を実現するアキシャルギャップ型電動機は提供される。   As described above, according to the present invention, an axial gap type electric motor that realizes further increase in torque is provided.

本発明の一実施形態に係るアキシャルギャップ型電動機の外観を概略的に示す斜視図である。1 is a perspective view schematically showing an external appearance of an axial gap type electric motor according to an embodiment of the present invention. 出力軸の軸心を含む平面に沿ったアキシャルギャップ型電動機の断面図である。It is sectional drawing of the axial gap type electric motor along the plane containing the axial center of an output shaft. 第1および第2磁石並びにステータコアの構成を概略的に示す分解斜視図である。It is a disassembled perspective view which shows the structure of a 1st and 2nd magnet and a stator core roughly. 円周方向に第1および第2磁石並びにステータコアの相対位置を示す展開図である。It is an expanded view which shows the relative position of a 1st and 2nd magnet and a stator core in the circumferential direction. 出力軸の軸心に直交する仮想平面内で第1極固定側対向面の投影像を概略的に示す平面図である。It is a top view which shows roughly the projection image of the 1st pole fixed side opposing surface in the virtual plane orthogonal to the axial center of an output shaft. 出力軸の軸心に直交する仮想平面内で第1極遷移側対向面の投影像を概略的に示す平面図である。It is a top view which shows roughly the projection image of the 1st pole transition side opposing surface in the virtual plane orthogonal to the axial center of an output shaft. 第1極固定側対向面の半径方向輪郭線と第1極遷移側対向面の半径方向輪郭線との関係を概略的に示す拡大平面図である。It is an enlarged plan view which shows roughly the relationship between the radial direction outline of a 1st pole fixed side opposing surface, and the radial direction outline of a 1st pole transition side opposing surface. 図4に対応し、磁石磁束の短絡の概念を示す概念図である。FIG. 5 is a conceptual diagram corresponding to FIG. 4 and showing the concept of short-circuiting of the magnet magnetic flux. 磁石の電気角およびステータコアの電気角の関係に有効磁束の大きさを関連づけたグラフである。It is the graph which linked | related the magnitude | size of the effective magnetic flux to the relationship between the electrical angle of a magnet, and the electrical angle of a stator core. 無負荷誘起電圧と電気角との関係を示すグラフである。It is a graph which shows the relationship between a no-load induced voltage and an electrical angle. 次数ごとに電圧振幅を示すグラフである。It is a graph which shows a voltage amplitude for every order. 図10に対応し、比較例で無負荷誘起電圧と電気角との関係を示すグラフである。FIG. 11 is a graph corresponding to FIG. 10 and showing the relationship between no-load induced voltage and electrical angle in a comparative example. 図11に対応し、比較例で次数ごとに電圧振幅を示すグラフである。FIG. 12 is a graph corresponding to FIG. 11 and showing the voltage amplitude for each order in the comparative example. アキシャルギャップ型電動機の一用途例すなわち空気調和機を概略的に示す斜視図である。1 is a perspective view schematically showing an application example of an axial gap type electric motor, that is, an air conditioner. 空気調和機の室内機でクロスフローファンを示す透視図である。It is a perspective view which shows a cross flow fan with the indoor unit of an air conditioner. アキシャルギャップ型電動機の他の用途例すなわち電動アシスト自転車を概略的に示す側面図である。It is a side view which shows roughly the other example of an axial gap type motor, ie, an electrically assisted bicycle. 電動アシストユニットの構造を概略的に示す側面図である。It is a side view which shows roughly the structure of an electric assist unit. 第1極固定側対向面の半径方向輪郭線と第1極遷移側対向面の半径方向輪郭線との関係を概略的に示す拡大平面図である。It is an enlarged plan view which shows roughly the relationship between the radial direction outline of a 1st pole fixed side opposing surface, and the radial direction outline of a 1st pole transition side opposing surface.

以下、添付図面を参照しつつ本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の一実施形態に係るアキシャルギャップ型電動機(以下「電動機」という)11の外観を概略的に示す。電動機11は筐体12を備える。筐体12は、鍋形の筐体本体13と、筐体本体13の開口を塞ぐ円板状の蓋体14とを備える。蓋体14の中央から蓋体14の表面に直交する方向に出力軸15が突き出る。出力軸15から駆動力が取り出される。   FIG. 1 schematically shows the external appearance of an axial gap type electric motor (hereinafter referred to as “electric motor”) 11 according to an embodiment of the present invention. The electric motor 11 includes a housing 12. The housing 12 includes a pan-shaped housing body 13 and a disk-shaped lid body 14 that closes the opening of the housing body 13. The output shaft 15 protrudes from the center of the lid body 14 in a direction orthogonal to the surface of the lid body 14. A driving force is extracted from the output shaft 15.

図2に示されるように、筐体本体13内にはステータ16が組み込まれる。ステータ16は筐体本体13に固定される。ステータ16は樹脂製の本体部材17を備える。本体部材17は筐体本体13を兼ねる。本体部材17には複数個の磁極片すなわちステータコア18が支持される。ステータコア18は本体部材17内に組み込まれる。こうした組み込みにあたって例えば成型金型内で一体成型が実施されればよい。個々のステータコア18には出力軸15の軸心に平行な軸回りで巻き線19が巻かれる。巻き線19はコイルを構成する。   As shown in FIG. 2, a stator 16 is incorporated in the housing body 13. The stator 16 is fixed to the housing body 13. The stator 16 includes a resin main body member 17. The main body member 17 also serves as the housing main body 13. A plurality of magnetic pole pieces, that is, stator cores 18 are supported on the body member 17. The stator core 18 is incorporated in the main body member 17. For such assembly, for example, integral molding may be performed in a molding die. A winding 19 is wound around each stator core 18 around an axis parallel to the axis of the output shaft 15. Winding 19 constitutes a coil.

ステータ18の本体部材17には第1軸受け21が組み込まれる。第1軸受け21には出力軸15が結合される。出力軸15は軸心回りで回転自在に第1軸受け21に支持される。同様に、蓋体14には第2軸受け22が支持されてもよい。出力軸15は軸心回りで回転自在に第2軸受け22に支持される。   A first bearing 21 is incorporated in the main body member 17 of the stator 18. The output shaft 15 is coupled to the first bearing 21. The output shaft 15 is supported by the first bearing 21 so as to be rotatable around the axis. Similarly, the second bearing 22 may be supported by the lid body 14. The output shaft 15 is supported by the second bearing 22 so as to be rotatable around the axis.

出力軸15には第1ロータ23および第2ロータ24が連結される。第1ロータ23および第2ロータ24は出力軸15の軸方向に間隔を空けて出力軸15に固定される。第1ロータ23および第2ロータ24はそれぞれ円板状の支持部材25、26を備える。個々の支持部材25、26は出力軸15の軸心に直交する仮想平面に沿って広がる。第1ロータ23の支持部材25には複数個の磁極片すなわち第1磁石27が支持される。同様に、第2ロータ24の支持部材26には複数個の磁極片すなわち第2磁石28が支持される。第1および第2磁石27、28はそれぞれ対応の支持部材25、26に固定されればよい。   A first rotor 23 and a second rotor 24 are connected to the output shaft 15. The first rotor 23 and the second rotor 24 are fixed to the output shaft 15 with an interval in the axial direction of the output shaft 15. The first rotor 23 and the second rotor 24 include disk-shaped support members 25 and 26, respectively. Each support member 25, 26 extends along a virtual plane orthogonal to the axis of the output shaft 15. A plurality of magnetic pole pieces, that is, first magnets 27 are supported on the support member 25 of the first rotor 23. Similarly, a plurality of magnetic pole pieces, that is, second magnets 28 are supported on the support member 26 of the second rotor 24. The first and second magnets 27 and 28 may be fixed to the corresponding support members 25 and 26, respectively.

第1磁石27には第1極固定側対向面27aが区画される。個々の第1極固定側対向面27aは出力軸15の軸心に直交する第1仮想平面29内で広がる。すなわち、第1極固定側対向面27aは平面に形成される。同様に、第2磁石28には第2極固定側対向面28aが区画される。個々の第2極固定側対向面28aは第1仮想平面29に平行な第2仮想平面31内で広がる。すなわち、第2極固定側対向面28aは平面に形成される。第2極固定側対向面28aは空間を挟んで対応の第1極固定側対向面27aに向き合わせられる。第1仮想平面29および第2仮想平面31の間にステータコア18が配置される。   The first magnet 27 has a first pole fixed side facing surface 27a. Each first pole-fixing-side facing surface 27 a extends in a first virtual plane 29 that is orthogonal to the axis of the output shaft 15. That is, the first pole fixed side facing surface 27a is formed in a flat surface. Similarly, a second pole fixed side facing surface 28 a is defined in the second magnet 28. The individual second pole fixed side facing surface 28 a extends in a second virtual plane 31 parallel to the first virtual plane 29. That is, the second pole fixed side facing surface 28a is formed in a flat surface. The second pole fixed side facing surface 28a is opposed to the corresponding first pole fixed side facing surface 27a across the space. The stator core 18 is disposed between the first virtual plane 29 and the second virtual plane 31.

ステータコア18には第1極遷移側対向面18aおよび第2極遷移側対向面18bが区画される。個々の第1極遷移側対向面18aは第1仮想平面29に平行な第3仮想平面32内で広がる。すなわち、第1極遷移側対向面18aは平面に形成される。第1極遷移側対向面18aは第1仮想平面29に所定の距離で向き合わせられる。言い換えれば、出力軸15の静止中および回転中に第1極固定側対向面27aと第1極遷移側対向面18aとの間には常時一定の距離が維持される。   The stator core 18 is divided into a first pole transition side facing surface 18a and a second pole transition side facing surface 18b. Each first pole transition side facing surface 18 a extends in a third virtual plane 32 parallel to the first virtual plane 29. That is, the first pole transition side facing surface 18a is formed in a flat surface. The first pole transition side facing surface 18a is opposed to the first virtual plane 29 at a predetermined distance. In other words, a constant distance is always maintained between the first pole fixing side facing surface 27a and the first pole transition side facing surface 18a while the output shaft 15 is stationary and rotating.

個々の第2極遷移側対向面18bは第1仮想平面29に平行な第4仮想平面33内で広がる。すなわち、第2極遷移側対向面18bは平面に形成される。第2極遷移側対向面18bは第2仮想平面31に所定の距離で向き合わせられる。言い換えれば、出力軸15の静止中および回転中に第2極固定側対向面28aと第2極遷移側対向面18bとの間には常時一定の距離が維持される。   Each second pole transition side facing surface 18 b extends in a fourth virtual plane 33 parallel to the first virtual plane 29. That is, the second pole transition side facing surface 18b is formed in a plane. The second pole transition side facing surface 18b is opposed to the second virtual plane 31 at a predetermined distance. In other words, a constant distance is always maintained between the second pole fixed side facing surface 28a and the second pole transition side facing surface 18b while the output shaft 15 is stationary and rotating.

図3に示されるように、第1磁石27は第1ロータ23上で出力軸15に同軸の円周方向に配列される。ここでは、12個の第1磁石27が等間隔の角位置ごとに配置される。個々の第1磁石27と出力軸15の軸心との相対的な位置関係は同一に設定される。個々の第1極固定側対向面27aではN極およびS極のいずれかが形成される。N極およびS極は円周方向に交互に配置される。   As shown in FIG. 3, the first magnets 27 are arranged on the first rotor 23 in the circumferential direction coaxial with the output shaft 15. Here, twelve first magnets 27 are arranged at equal angular positions. The relative positional relationship between each first magnet 27 and the axis of the output shaft 15 is set to be the same. Either the N pole or the S pole is formed on each first pole fixed side facing surface 27a. N poles and S poles are alternately arranged in the circumferential direction.

同様に、第2磁石28は第2ロータ24上で出力軸15に同軸の円周方向に配列される。ここでは、12個の第2磁石28が等間隔の角位置ごとに配置される。すなわち、第1磁石27と同数の第2磁石28が配置される。個々の第2磁石27と出力軸15の軸心との相対的な位置関係は同一に設定される。個々の第2極固定側対向面28aではN極およびS極のいずれかが形成される。N極およびS極は円周方向に交互に配置される。   Similarly, the second magnets 28 are arranged on the second rotor 24 in the circumferential direction coaxial with the output shaft 15. Here, twelve second magnets 28 are arranged at equal angular positions. That is, the same number of second magnets 28 as the first magnets 27 are arranged. The relative positional relationship between each second magnet 27 and the axis of the output shaft 15 is set to be the same. Either the N pole or the S pole is formed on each second pole fixed side facing surface 28a. N poles and S poles are alternately arranged in the circumferential direction.

ステータコア18はステータ16上で出力軸15に同軸の円周方向に配列される。ステータコア18は薄板の板金材の積層体として構成される。ここでは、9個のステータコア18が等間隔の角位置ごとに配置される。すなわち、第1磁石27の個数や第2磁石28の個数に比べてステータコア18の個数は少ない。個々の第1極遷移側対向面18aと出力軸15の軸心との相対的な位置関係は同一に設定される。同時に、個々の第2極遷移側対向面18bと出力軸15の軸心との相対的な位置関係は同一に設定される。   The stator core 18 is arranged on the stator 16 in the circumferential direction coaxial with the output shaft 15. The stator core 18 is configured as a laminate of thin sheet metal materials. Here, nine stator cores 18 are arranged at equal angular positions. That is, the number of stator cores 18 is smaller than the number of first magnets 27 and the number of second magnets 28. The relative positional relationship between each first pole transition side facing surface 18a and the axis of the output shaft 15 is set to be the same. At the same time, the relative positional relationship between each second pole transition side facing surface 18b and the axis of the output shaft 15 is set to be the same.

図4に示されるように、アキシャルギャップ型電動機11ではN極の第1極固定側対向面27aに対してS極の第2極固定側対向面28aが向き合わせられる。同様に、S極の第1極固定側対向面27aに対してN極の第2極固定側対向面28aが向き合わせられる。巻き線19に駆動電流が流通すると、磁束がステータコア18内を流通する。駆動電流の向きおよび大きさに応じて第1極遷移側対向面18aの磁極は変遷する。同様に、第1極遷移側対向面18aの磁極の変遷に呼応して第2極遷移側対向面18bで磁極は変遷する。第1および第2極遷移側対向面18a、18bでは例えば正弦波曲線に従ってN極およびS極が交互に出現する。こうして第1極固定側対向面27aと第1極遷移側対向面18aとの間で引力および斥力が順番に生成され、第2極固定側対向面28aと第2極遷移側対向面18bとの間で引力および斥力が順番に生成される。ステータ16に対して第1ロータ23および第2ロータ24は相対回転する。出力軸15は回転する。   As shown in FIG. 4, in the axial gap type electric motor 11, the second pole fixed side facing surface 28 a of S pole is opposed to the first pole fixed side facing surface 27 a of N pole. Similarly, the second pole fixing side facing surface 28a of N pole faces the first pole fixing side facing surface 27a of S pole. When drive current flows through the winding 19, magnetic flux flows through the stator core 18. The magnetic pole of the first pole transition side facing surface 18a changes according to the direction and magnitude of the drive current. Similarly, the magnetic pole changes on the second pole transition side facing surface 18b in response to the transition of the magnetic pole on the first pole transition side facing surface 18a. On the first and second pole transition side facing surfaces 18a, 18b, for example, N poles and S poles appear alternately according to a sine wave curve. Thus, attractive force and repulsive force are sequentially generated between the first pole fixed side facing surface 27a and the first pole transition side facing surface 18a, and the second pole fixed side facing surface 28a and the second pole transition side facing surface 18b In between, attractive and repulsive forces are generated in turn. The first rotor 23 and the second rotor 24 rotate relative to the stator 16. The output shaft 15 rotates.

次に、第1極固定側対向面27aの形状および第1極遷移側対向面18aの形状を詳述する。図5および図6には、第1仮想平面29に平行な任意の仮想平面(以下「投影像仮想平面」という)に投影される第1極固定側対向面27aの投影像41と、投影像仮想平面に投影される第1極遷移側対向面18aの投影像42とが描かれる。投影像41、42の投影にあたって第1極固定側対向面27aおよび第1極遷移側対向面18aは出力軸15の軸心に平行に平行移動すればよい。ここでは、第1極固定側対向面27aの輪郭および第1極遷移側対向面18aの輪郭の設定にあたって、投影像仮想平面内に、出力軸15に同軸の第1円周線45と、出力軸15に同軸で第1円周線45よりも大きい第2円周線46とが規定される。図5に示されるように、第1極固定側対向面27aの投影像41では第1円周線45上で電気角α1が特定される。同様に、第1極固定側対向面27aの投影像41では第2円周線46上で電気角α2が特定される。第1円周線45および第2円周線46が少なくとも投影像仮想平面内で途切れなく第1極固定側対向面27aの投影像41を横切る限り、第1円周線45および第2円周線46は任意の大きさに設定されればよい。その他、第1極遷移側対向面18aの投影像42の位置や形状に応じて第1円周線45および第2円周線46の大きさは適宜に調整されればよい。   Next, the shape of the first pole fixed side facing surface 27a and the shape of the first pole transition side facing surface 18a will be described in detail. 5 and 6, the projection image 41 of the first pole fixed side facing surface 27a projected on an arbitrary virtual plane parallel to the first virtual plane 29 (hereinafter referred to as “projection image virtual plane”), and the projection image A projected image 42 of the first pole transition side facing surface 18a projected onto the virtual plane is drawn. In projecting the projection images 41 and 42, the first pole fixed side facing surface 27 a and the first pole transition side facing surface 18 a may be translated in parallel to the axis of the output shaft 15. Here, when setting the contour of the first pole fixed side facing surface 27a and the contour of the first pole transition side facing surface 18a, the first circumferential line 45 coaxial with the output shaft 15 and the output in the projected image virtual plane, and the output A second circumferential line 46 that is coaxial with the shaft 15 and larger than the first circumferential line 45 is defined. As shown in FIG. 5, the electrical angle α <b> 1 is specified on the first circumferential line 45 in the projection image 41 of the first pole fixed side facing surface 27 a. Similarly, in the projection image 41 of the first pole fixing side facing surface 27a, the electrical angle α2 is specified on the second circumferential line 46. As long as the first circumferential line 45 and the second circumferential line 46 traverse the projected image 41 of the first pole fixed side facing surface 27a without interruption in at least the projected image virtual plane, the first circumferential line 45 and the second circumferential line The line 46 may be set to an arbitrary size. In addition, the sizes of the first circumferential line 45 and the second circumferential line 46 may be appropriately adjusted according to the position and shape of the projection image 42 of the first pole transition side facing surface 18a.

図6に示されるように、第1極遷移側対向面18aの投影像42では第1円周線45上で電気角β1が特定される。同様に、第1極遷移側対向面18aの投影像42では第2円周線46上で電気角β2が特定される。ここで、第1極遷移側対向面18aの形状の設定にあたって、電気角β1は、電気角α1との間に有効磁束の最大値を確立する角度値よりも小さく設定される。同時に、第1極遷移側対向面18aの形状の設定にあたって、電気角β2は、電気角α2との間に有効磁束の最大値を確立する角度値よりも大きく設定される。こうすることで、第1円周線45および第2円周線46の間では、第1円周線45よりも大きく第2円周線46よりも小さいいずれかの円周線上で、第1極固定側対向面27aの投影像41の電気角αnと第1極遷移側対向面18aの投影像42の電気角βnとの間に有効磁束の最大値を確立する数値関係が設定されることができる。その結果、第1極固定側対向面27aと第1極遷移側対向面18aとの間で有効磁束の最大値は確立される。有効磁束の増大はトルクを増大させる。アキシャルギャップ型電動機11のトルクは増大する。第2極固定側対向面28aおよび第2極遷移側対向面18bの形状は第1極固定側対向面27aおよび第1極遷移側対向面18aと同様に設定されればよい。電気角β1は、電気角α1との間に有効磁束の最大値を確立する角度値に等しく設定され、電気角β2は、電気角α2との間に有効磁束の最大値を確立する角度値に等しく設定されてもよい。こうすることで、少なくとも第1円周線45や第2円周線46では、第1極固定側対向面27aの投影像41の電気角αnと第1極遷移側対向面18aの投影像42の電気角βnとの間に有効磁束の最大値を確立する数値関係が設定されることができる。   As shown in FIG. 6, the electrical angle β1 is specified on the first circumferential line 45 in the projection image 42 of the first pole transition side facing surface 18a. Similarly, the electrical angle β2 is specified on the second circumferential line 46 in the projection image 42 of the first pole transition side facing surface 18a. Here, in setting the shape of the first pole transition side facing surface 18a, the electrical angle β1 is set smaller than the angle value that establishes the maximum value of the effective magnetic flux with the electrical angle α1. At the same time, in setting the shape of the first pole transition side facing surface 18a, the electrical angle β2 is set larger than the angle value that establishes the maximum value of the effective magnetic flux between the electrical angle α2. By doing so, between the first circumferential line 45 and the second circumferential line 46, the first circumferential line 45 is larger than the first circumferential line 45 and smaller than the second circumferential line 46 on the first circumferential line 45. A numerical relationship that establishes the maximum value of the effective magnetic flux is set between the electrical angle αn of the projection image 41 of the pole fixing side facing surface 27a and the electrical angle βn of the projection image 42 of the first pole transition side facing surface 18a. Can do. As a result, the maximum value of the effective magnetic flux is established between the first pole fixed side facing surface 27a and the first pole transition side facing surface 18a. Increasing the effective magnetic flux increases the torque. The torque of the axial gap type motor 11 increases. The shapes of the second pole fixed side facing surface 28a and the second pole transition side facing surface 18b may be set similarly to the first pole fixed side facing surface 27a and the first pole transition side facing surface 18a. The electrical angle β1 is set equal to the angle value that establishes the maximum value of the effective magnetic flux with the electrical angle α1, and the electrical angle β2 is set to the angle value that establishes the maximum value of the effective magnetic flux with the electrical angle α2. It may be set equal. By doing so, at least at the first circumferential line 45 and the second circumferential line 46, the electrical angle αn of the projected image 41 of the first pole fixed side facing surface 27a and the projected image 42 of the first pole transition side facing surface 18a. A numerical relationship that establishes the maximum value of the effective magnetic flux with respect to the electrical angle βn can be set.

このアキシャルギャップ型電動機11では第1磁石27は出力軸15に同軸の円周方向にできる限り隙間なく配置される。こういった配置にあたって隣接する第1磁石27同士の間では一定幅で隙間が半径方向に延びる。その結果、第1磁石27の投影像41では、第1円周線45上の電気角α1に比べて第2円周線46上の電気角α2は増大する。第2磁石28は第1磁石27と同様に円周方向にできる限り隙間なく配置される。したがって、同様に第2磁石28の輪郭では半径方向外側に向かうにつれて電気角は増大する。   In the axial gap type electric motor 11, the first magnet 27 is arranged as far as possible in the circumferential direction coaxial with the output shaft 15. In such an arrangement, the gap extends in the radial direction with a constant width between the adjacent first magnets 27. As a result, in the projected image 41 of the first magnet 27, the electrical angle α2 on the second circumferential line 46 is larger than the electrical angle α1 on the first circumferential line 45. Similar to the first magnet 27, the second magnet 28 is arranged in the circumferential direction with as little gap as possible. Accordingly, similarly, the electrical angle increases toward the outer side in the radial direction in the contour of the second magnet 28.

加えて、このアキシャルギャップ型電動機11では、図7に示されるように、第1極固定側対向面27aの第1半径方向輪郭線47に対して第1極遷移側対向面18aの第2半径方向輪郭線48が大きく傾斜する。したがって、第1ロータ23の回転時にステータコア18の第1極遷移側対向面18aに対して第1磁石27の第1極固定側対向面27aがすれ違うと、第1極遷移側対向面18aの第2半径方向輪郭線48は比較的に長い時間にわたって第1極固定側対向面27aの第1半径方向輪郭線47に交差し続ける。すなわち、第1極遷移側対向面18aの磁束の作用は徐々に第1極遷移側対向面18aの磁界から抜け出し隣接の第1極遷移側対向面18aの磁界に進入する。その結果、隣接する第1磁石27同士の間で第1極遷移側対向面18aに作用する磁束の変化は和らげられる。スムーズな回転が実現される。同様に、第2極固定側対向面28aの半径方向輪郭線に対して第2極遷移側対向面18bの半径方向輪郭線は大きく傾斜する。   In addition, in this axial gap type electric motor 11, as shown in FIG. 7, the second radius of the first pole transition side facing surface 18a with respect to the first radial direction contour line 47 of the first pole fixed side facing surface 27a. The direction outline 48 is greatly inclined. Therefore, when the first pole fixing side facing surface 27a of the first magnet 27 passes the first pole transition side facing surface 18a of the stator core 18 during rotation of the first rotor 23, the first pole transition side facing surface 18a The two radial contour lines 48 continue to intersect the first radial contour line 47 of the first pole fixed side facing surface 27a for a relatively long time. That is, the action of the magnetic flux of the first pole transition side facing surface 18a gradually escapes from the magnetic field of the first pole transition side facing surface 18a and enters the magnetic field of the adjacent first pole transition side facing surface 18a. As a result, the change in magnetic flux acting on the first pole transition side facing surface 18a between the adjacent first magnets 27 is moderated. Smooth rotation is realized. Similarly, the radial contour of the second pole transition side facing surface 18b is greatly inclined with respect to the radial contour of the second pole fixing side facing surface 28a.

ここで、有効磁束の最大値を確立する角度値および数値関係を詳述する。ここで、有効磁束とは、第1磁石27または第2磁石28の表面から放出される磁束のうち、ステータコア18の内部を通過する磁束をいう。図8は、第1磁石27の個数に比べてステータコア18の個数が少ない際に一般的な第1磁石27およびステータコア18を示す。一般に、電動機では、磁石やステータコアは出力軸に同軸の円周方向にできる限り隙間なく配置される。こうしてスペースが有効活用されれば、磁石やステータコアで生成される磁束の増大が期待される。その結果、電動機のトルクの増大が見込まれる。しかしながら、本発明者は、図8に示されるように、磁石磁束の短絡に気づいた。そして、本発明者は、有効磁束の最大値を確立する角度値および数値関係をコンピュータシミュレーションで検証した。その結果、図9に示されるように、磁石の電気角すなわち円周方向の大きさと、ステータコアの電気角すなわち円周方向の大きさとの間に特定の数値関係が成立すると、有効磁束が最大値を示すことを見出した。例えば第1磁石27や第2磁石28の電気角αが156度〜180度の範囲(限界値を含む)で設定される場合には、ステータコア18の電気角βが150度〜156度の範囲(限界値を含む)で設定されれば、ステータコア18で有効磁束の最大値は確立されることができる。   Here, the angle value and the numerical relationship for establishing the maximum value of the effective magnetic flux will be described in detail. Here, the effective magnetic flux refers to a magnetic flux passing through the inside of the stator core 18 among the magnetic flux emitted from the surface of the first magnet 27 or the second magnet 28. FIG. 8 shows a general first magnet 27 and stator core 18 when the number of stator cores 18 is smaller than the number of first magnets 27. Generally, in an electric motor, a magnet and a stator core are arranged with as little gap as possible in the circumferential direction coaxial with the output shaft. If the space is effectively utilized in this way, an increase in magnetic flux generated by the magnet and the stator core is expected. As a result, the torque of the electric motor is expected to increase. However, the inventor has noticed a short circuit of the magnetic flux as shown in FIG. Then, the inventor has verified the angle value and the numerical relationship for establishing the maximum value of the effective magnetic flux by computer simulation. As a result, as shown in FIG. 9, when a specific numerical relationship is established between the electrical angle of the magnet, that is, the size in the circumferential direction, and the electrical angle of the stator core, that is, the size in the circumferential direction, the effective magnetic flux becomes the maximum value. It was found to show. For example, when the electrical angle α of the first magnet 27 and the second magnet 28 is set in the range of 156 to 180 degrees (including the limit value), the electrical angle β of the stator core 18 is in the range of 150 to 156 degrees. If set at (including the limit value), the maximum value of the effective magnetic flux can be established in the stator core 18.

本発明者は、さらに、有効磁束の最大値を確立する数値関係に基づき前述のアキシャルギャップ型電動機11の性能を検証した。検証にあたってコンピュータシミュレーションが用いられた。12個の第1磁石27と9個のステータコア18とがそれぞれ円周方向に等間隔で配列された。第1極固定側対向面27aでは第1円周線45上で157.68度の電気角が設定され第2円周線46上で166.25度の電気角が設定された。その一方で、第1極遷移側対向面18aでは第1円周線45上で136.89度の電気角が設定され第2円周線46上で170.60度の電気角が設定された。実効値で5.5ボルトの無負荷誘起電圧が得られた。7.7ボルトの基本波振幅が得られた。349ワットの出力にあたって83.9%の効率が得られた。損失は67.1ワットであった。図10に示されるように、無負荷誘起電圧で滑らかな正弦波波形が得られた。この結果をフーリエ変換したところ、図11に示されるように、振動の原因となる5次の高調波のレベルが著しく小さくなることが確認された。   The inventor further verified the performance of the axial gap motor 11 described above based on a numerical relationship that establishes the maximum value of the effective magnetic flux. Computer simulation was used for verification. Twelve first magnets 27 and nine stator cores 18 are arranged at equal intervals in the circumferential direction. On the first pole fixing side facing surface 27a, an electrical angle of 157.68 degrees was set on the first circumferential line 45, and an electrical angle of 166.25 degrees was set on the second circumferential line 46. On the other hand, an electrical angle of 136.89 degrees is set on the first circumferential line 45 and an electrical angle of 170.60 degrees is set on the second circumferential line 46 on the first pole transition side facing surface 18a. . A no-load induced voltage of 5.5 volts was obtained as an effective value. A fundamental amplitude of 7.7 volts was obtained. An efficiency of 83.9% was obtained at a power of 349 watts. The loss was 67.1 watts. As shown in FIG. 10, a smooth sine wave waveform was obtained with no-load induced voltage. As a result of Fourier transform of this result, as shown in FIG. 11, it was confirmed that the level of the fifth-order harmonics causing the vibration was remarkably reduced.

本発明者は検証にあたって比較例を用意した。この比較例では、具体例と同様に、12個の第1磁石27と9個のステータコア18とがそれぞれ円周方向に等間隔で配列された。第1極固定側対向面27aで第1円周線45上の電気角は157.68度に設定され第2円周線46上の電気角は166.25度に設定された。その一方で、第1極遷移側対向面18aでは第1円周線45上で215.72度の電気角が設定され第2円周線46上で220.32度の電気角が設定された。実効値で5.3ボルトの無負荷誘起電圧が得られた。7.4ボルトの基本波振幅が得られた。349ワットの出力にあたって81.9%の効率が得られた。損失は76.8ワットであった。図12に示されるように、無負荷誘起電圧で正弦波波形に歪みが発生した。この結果をフーリエ変換したところ、図13に示されるように、振動の原因となる5次の高調波のレベルの増加が確認された。   The inventor prepared a comparative example for verification. In this comparative example, similarly to the specific example, twelve first magnets 27 and nine stator cores 18 are arranged at equal intervals in the circumferential direction. The electrical angle on the first circumferential line 45 in the first pole fixed side facing surface 27a was set to 157.68 degrees, and the electrical angle on the second circumferential line 46 was set to 166.25 degrees. On the other hand, on the first pole transition side facing surface 18a, an electrical angle of 215.72 degrees is set on the first circumferential line 45, and an electrical angle of 220.32 degrees is set on the second circumferential line 46. . A no-load induced voltage of 5.3 volts was obtained as an effective value. A fundamental amplitude of 7.4 volts was obtained. An efficiency of 81.9% was obtained at a power of 349 watts. The loss was 76.8 watts. As shown in FIG. 12, distortion occurred in the sinusoidal waveform due to the no-load induced voltage. As a result of Fourier transform of this result, as shown in FIG. 13, an increase in the level of the fifth harmonic that causes vibration was confirmed.

図14はアキシャルギャップ型電動機11の一用途例すなわち空気調和機51を概略的に示す。空気調和機51は室外機52と室内機53とを備える。室外機52は例えば屋外に設置される。室内機53は例えば家屋の室内に設置される。室外機52には圧縮機、膨張弁および第1熱交換器が組み込まれる。室内機53には第2熱交換器が組み込まれる。圧縮機は高温高圧の冷媒を送り出す。冷房運転時、高温高圧の冷媒は膨張弁の手前で第1熱交換器に送り込まれる。第1熱交換器で冷媒は凝縮される。凝縮後の冷媒は膨張弁で減圧されて第2熱交換器に送り込まれる。第2熱交換器で冷媒は気化する。周囲の空気から熱エネルギが冷媒に受け渡される。冷気が生成される。気化した冷媒は圧縮機に戻される。その一方で、暖房運転時、高温高圧の冷媒は膨張弁の手前で第2熱交換器に送り込まれる。第2熱交換器で冷媒は凝縮化する。冷媒から周囲の空気に熱エネルギが受け渡される。暖気が生成される。凝縮後の冷媒は膨張弁で減圧されて第1熱交換器に送り込まれる。第1熱交換器で冷媒は気化する。気化した冷媒は圧縮機に送り込まれる。   FIG. 14 schematically shows an application example of the axial gap type electric motor 11, that is, an air conditioner 51. The air conditioner 51 includes an outdoor unit 52 and an indoor unit 53. The outdoor unit 52 is installed outdoors, for example. The indoor unit 53 is installed in a room of a house, for example. The outdoor unit 52 incorporates a compressor, an expansion valve, and a first heat exchanger. A second heat exchanger is incorporated in the indoor unit 53. The compressor sends out high-temperature and high-pressure refrigerant. During the cooling operation, the high-temperature and high-pressure refrigerant is sent to the first heat exchanger before the expansion valve. The refrigerant is condensed in the first heat exchanger. The condensed refrigerant is decompressed by the expansion valve and sent to the second heat exchanger. The refrigerant is vaporized in the second heat exchanger. Thermal energy is transferred from the surrounding air to the refrigerant. Cold air is generated. The evaporated refrigerant is returned to the compressor. On the other hand, at the time of heating operation, the high-temperature and high-pressure refrigerant is sent to the second heat exchanger before the expansion valve. The refrigerant is condensed in the second heat exchanger. Thermal energy is transferred from the refrigerant to the surrounding air. Warm air is generated. The condensed refrigerant is decompressed by the expansion valve and sent to the first heat exchanger. The refrigerant is vaporized in the first heat exchanger. The vaporized refrigerant is sent to the compressor.

図15に示されるように、室内機53にはクロスフローファン54が組み込まれる。クロスフローファン54は水平方向に延びる回転軸回りで回転する。回転の生成にあたってクロスフローファン54にはアキシャルギャップ型電動機11が連結される。例えばクロスフローファン54の回転軸に同軸にアキシャルギャップ型電動機11の出力軸15が配置される。出力軸15はクロスフローファン54に結合される。クロスフローファン54はアキシャルギャップ型電動機11の駆動力に応じて回転する。回転時、クロスフローファン54は気流を生成する。気流は第2熱交換器を伝う。こうして第2熱交換器では気流と冷媒との間で熱エネルギが交換される。   As shown in FIG. 15, a cross flow fan 54 is incorporated in the indoor unit 53. The cross flow fan 54 rotates about a rotation axis extending in the horizontal direction. The axial gap type electric motor 11 is connected to the cross flow fan 54 when generating the rotation. For example, the output shaft 15 of the axial gap type electric motor 11 is arranged coaxially with the rotation shaft of the cross flow fan 54. The output shaft 15 is coupled to the cross flow fan 54. The cross flow fan 54 rotates according to the driving force of the axial gap type electric motor 11. During rotation, the cross flow fan 54 generates an air flow. The airflow travels through the second heat exchanger. Thus, in the second heat exchanger, heat energy is exchanged between the airflow and the refrigerant.

図16はアキシャルギャップ型電動機11の他の用途例すなわち電動アシスト自転車61を概略的に示す。電動アシスト自転車61は車体フレーム62を備える。車体フレーム62には後輪63が水平軸回りで回転自在に取り付けられる。車体フレーム62には揺動軸回りで揺動自在に操舵フレーム64が取り付けられる。揺動軸は、後輪63の回転軸に直交する仮想平面内に配置される。揺動軸は、地面から離れるにつれて後に傾斜する傾斜姿勢に保持される。操舵フレーム64には前輪65が回転自在に取り付けられる。操舵フレーム64の基準位置で前輪65の回転軸は後輪63の回転軸に平行に延びる。操舵フレーム64にはハンドル66が固定される。   FIG. 16 schematically shows another application example of the axial gap type electric motor 11, that is, the electric assist bicycle 61. The electrically assisted bicycle 61 includes a body frame 62. A rear wheel 63 is attached to the body frame 62 so as to be rotatable about a horizontal axis. A steering frame 64 is attached to the body frame 62 so as to be swingable about a swing shaft. The swing axis is disposed in a virtual plane orthogonal to the rotation axis of the rear wheel 63. The swing shaft is held in an inclined posture that inclines later as it moves away from the ground. A front wheel 65 is rotatably attached to the steering frame 64. The rotational axis of the front wheel 65 extends parallel to the rotational axis of the rear wheel 63 at the reference position of the steering frame 64. A handle 66 is fixed to the steering frame 64.

前輪65および後輪63の間で車体フレーム62にはサドル67が固定される。サドル67の下方で車体フレーム62には駆動軸68が回転自在に支持される。駆動軸68は後輪63の回転軸に平行に延びる。駆動軸68には左右1対のペダルアーム69が固定される。ペダルアーム69の先端には駆動軸68に平行な回転軸回りで回転自在にペダル71が取り付けられる。運転者は、サドル67に腰掛けると、左右のペダル71にそれぞれ足を置くことができる。   A saddle 67 is fixed to the vehicle body frame 62 between the front wheel 65 and the rear wheel 63. A drive shaft 68 is rotatably supported by the body frame 62 below the saddle 67. The drive shaft 68 extends parallel to the rotation axis of the rear wheel 63. A pair of left and right pedal arms 69 are fixed to the drive shaft 68. A pedal 71 is attached to the tip of the pedal arm 69 so as to be rotatable about a rotation axis parallel to the drive shaft 68. When the driver sits on the saddle 67, the driver can place his / her feet on the left and right pedals 71, respectively.

駆動軸68には大径スプロケット73が連結される。大径スプロケット73の回転中心は駆動軸68の軸心に一致する。大径スプロケット73は駆動軸68に固定される。後輪63には小径スプロケット74が連結される。小径スプロケット74の回転中心は後輪63の回転軸に一致する。小径スプロケット74は後輪63に固定される。大径スプロケット73および小径スプロケット74にはチェーン75が巻き付けられる。こうして所定の減速比で大径スプロケット73の回転は小径スプロケット74に伝達される。ペダル71の踏力は後輪63の回転に変換される。   A large-diameter sprocket 73 is connected to the drive shaft 68. The rotation center of the large-diameter sprocket 73 coincides with the axis of the drive shaft 68. The large-diameter sprocket 73 is fixed to the drive shaft 68. A small-diameter sprocket 74 is connected to the rear wheel 63. The rotation center of the small-diameter sprocket 74 coincides with the rotation axis of the rear wheel 63. The small-diameter sprocket 74 is fixed to the rear wheel 63. A chain 75 is wound around the large-diameter sprocket 73 and the small-diameter sprocket 74. Thus, the rotation of the large-diameter sprocket 73 is transmitted to the small-diameter sprocket 74 at a predetermined reduction ratio. The pedaling force of the pedal 71 is converted into the rotation of the rear wheel 63.

大径スプロケット73には電動アシストユニット77が連結される。図17に示されるように、電動アシストユニット77にはアキシャルギャップ型電動機11が組み込まれる。アキシャルギャップ型電動機11の出力軸15の軸心は駆動軸68の軸心に平行に延びる。出力軸15の回転は減速歯車機構78を介して駆動軸68に伝達される。こうしてアキシャルギャップ型電動機11は駆動軸68すなわち大径スプロケット73の回転力を補う。その結果、運転者が小さな踏力しかペダル71に作用しなくても、後輪63には十分な駆動力が伝達される。電動アシスト自転車61は快適に走行する。   An electric assist unit 77 is connected to the large-diameter sprocket 73. As shown in FIG. 17, the axial gap type electric motor 11 is incorporated in the electric assist unit 77. The axial center of the output shaft 15 of the axial gap type electric motor 11 extends parallel to the axial center of the drive shaft 68. The rotation of the output shaft 15 is transmitted to the drive shaft 68 via the reduction gear mechanism 78. Thus, the axial gap type motor 11 compensates for the rotational force of the drive shaft 68, that is, the large-diameter sprocket 73. As a result, a sufficient driving force is transmitted to the rear wheel 63 even if the driver only applies a small pedaling force to the pedal 71. The electric assist bicycle 61 travels comfortably.

アキシャルギャップ型電動機11では、図18に示されるように、第1極遷移側対向面18aの第2半径方向輪郭線48の傾斜に代えて、あるいは、そういった傾斜とともに、第1極固定側対向面27aや第2極固定側対向面28aで半径方向輪郭線47は出力軸15に同軸の半径線Aから大きく傾斜してもよい。好ましくは、第1遷移側対向面18aや第2遷移側対向面28bの半径方向輪郭線48とは半径線Aに対して反対向きに傾くことが望まれる。第1ロータ23の回転時にステータコア18の第1極遷移側対向面18aに対して第1磁石27の第1極固定側対向面27aがすれ違うと、第1極固定側対向面27aの半径方向輪郭線47は比較的に長い時間にわたって第1極遷移側対向面18aの半径方向輪郭線48に交差し続ける。すなわち、第1極固定側対向面27aの磁束の作用は徐々に第1極遷移側対向面18aの磁界から抜け出し隣接の第1極遷移側対向面18aの磁界に進入する。その結果、隣接する第1磁石27同士の間で第1極遷移側対向面18aに作用する磁束の変化は和らげられる。特に、第1極遷移側対向面18aの投影像42上で電気角β2が縮小されても、スムーズな回転が実現される。   In the axial gap type electric motor 11, as shown in FIG. 18, instead of or in addition to the inclination of the second radial contour 48 of the first pole transition side facing surface 18a, the first pole fixed side facing surface. The radial contour line 47 may be largely inclined from the radial line A coaxial with the output shaft 15 on the 27a or the second pole fixed side facing surface 28a. Preferably, the first transition side facing surface 18a and the second transition side facing surface 28b are desired to incline in the opposite direction to the radial line A with respect to the radial line A. When the first pole fixing side facing surface 27a of the first magnet 27 passes the first pole transition side facing surface 18a of the stator core 18 during rotation of the first rotor 23, the radial contour of the first pole fixing side facing surface 27a The line 47 continues to intersect the radial contour 48 of the first pole transition side facing surface 18a for a relatively long time. That is, the action of the magnetic flux on the first pole fixed side facing surface 27a gradually escapes from the magnetic field on the first pole transition side facing surface 18a and enters the magnetic field on the adjacent first pole transition side facing surface 18a. As a result, the change in magnetic flux acting on the first pole transition side facing surface 18a between the adjacent first magnets 27 is moderated. In particular, even if the electrical angle β2 is reduced on the projection image 42 of the first pole transition side facing surface 18a, smooth rotation is realized.

なお、極固定側対向面27a、28aや極遷移側対向面18a、18bの形状は本実施形態のものに限られない。電気角α1、α2、β1、β2の設定にあたってアキシャルギャップ型電動機11では第1ロータ23および第2ロータ24のいずれか一方のみが配置されてもよい。第1極遷移側対向面18aおよび第2極遷移側対向面18bでは出力軸15の半径方向に全範囲にわたって円周線上で電気角βnは電気角αnとの間に有効磁束の最大値を確立する角度値に設定されてもよい。また、アキシャルギャップ型電動機11は、電動アシスト自転車のほか、電気二輪車、電気自動車、ハイブリッド自動車、その他の乗り物一般に動力源として利用されることができる。   The shapes of the pole fixing side facing surfaces 27a and 28a and the pole transition side facing surfaces 18a and 18b are not limited to those of the present embodiment. In setting the electrical angles α1, α2, β1, and β2, in the axial gap type electric motor 11, only one of the first rotor 23 and the second rotor 24 may be arranged. On the first pole transition side facing surface 18a and the second pole transition side facing surface 18b, the maximum value of the effective magnetic flux is established between the electrical angle βn and the electrical angle αn on the circumference over the entire range in the radial direction of the output shaft 15. The angle value to be set may be set. The axial gap type electric motor 11 can be used as a power source for electric motorcycles, electric motorcycles, electric vehicles, hybrid vehicles, and other vehicles in general in addition to electric assist bicycles.

11 アキシャルギャップ型電動機、15 出力軸、18 極変遷側磁極片(ステータコア)、18a 第1極遷移側対向面、18b 第2極遷移側対向面、27 極固定側磁極片(第1磁石)、27a 第1極固定側対向面、28 極固定側磁極片(第2磁石)、28a 第2極固定側対向面、29 仮想平面、31 仮想平面、32 仮想平面、33 仮想平面、41 投影像、42 投影像、45 第1円周線、46 第2円周線、51 空気調和機、61 乗り物(電動アシスト自転車)、α1 電気角、α2 電気角、β1 電気角、β2 電気角。   11 Axial gap type motor, 15 output shaft, 18 pole transition side pole piece (stator core), 18a first pole transition side facing face, 18b second pole transition side facing face, 27 pole fixed side pole piece (first magnet), 27a First pole fixed side facing surface, 28 pole fixed side pole piece (second magnet), 28a Second pole fixed side facing surface, 29 virtual plane, 31 virtual plane, 32 virtual plane, 33 virtual plane, 41 projected image, 42 projected image, 45 1st circumferential line, 46 2nd circumferential line, 51 air conditioner, 61 vehicle (electrically assisted bicycle), α1 electrical angle, α2 electrical angle, β1 electrical angle, β2 electrical angle.

Claims (7)

出力軸と、
前記出力軸に同軸の円周方向に配列されて、前記出力軸の軸心に直交する第1仮想平面に沿って規定される極固定側対向面にN極またはS極を形成し、前記出力軸に同軸の円周方向に交互に前記N極および前記S極を配置する複数の極固定側磁極片と、
前記円周方向に配列されて、前記第1仮想平面に平行な第2仮想平面に沿って規定される極遷移側対向面で前記第1仮想平面に向き合わせられ前記第2対向面で磁極を変遷させる複数の極遷移側磁極片とを備え、
前記第1仮想平面に平行な第3仮想平面に投影される前記極固定側対向面の投影像に関して前記出力軸に同軸の円周線で横切られる前記投影像の電気角と、前記第3仮想平面に投影される前記極遷移側対向面の投影像に関して前記円周線で横切られる前記投影像の電気角とは、前記円周線上で有効磁束の最大値を確立する数値関係に設定される
ことを特徴とするアキシャルギャップ型電動機。
An output shaft;
An N-pole or an S-pole is formed on a pole-fixing-side facing surface that is arranged in a circumferential direction coaxial with the output shaft and is defined along a first virtual plane that is orthogonal to the axis of the output shaft. A plurality of pole-fixed side pole pieces that alternately arrange the N pole and the S pole in a circumferential direction coaxial with an axis;
Arranged in the circumferential direction, the pole transition side facing surface defined along a second virtual plane parallel to the first virtual plane faces the first virtual plane, and the magnetic pole is placed on the second facing surface. A plurality of pole transition side pole pieces to be changed,
An electrical angle of the projected image that is crossed by a circumferential line coaxial with the output axis with respect to a projected image of the opposed surface on the pole fixing side that is projected onto a third virtual plane parallel to the first virtual plane; The electrical angle of the projected image traversed by the circumferential line with respect to the projected image of the pole transition side facing surface projected onto a plane is set to a numerical relationship that establishes the maximum value of the effective magnetic flux on the circumferential line. An axial gap type electric motor characterized by that.
出力軸と、
前記出力軸に同軸の円周方向に配列されて、前記出力軸の軸心に直交する第1仮想平面に沿って規定される極固定側対向面にN極またはS極を形成し、前記出力軸に同軸の円周方向に交互に前記N極および前記S極を配置する複数の極固定側磁極片と、
前記円周方向に配列されて、前記第1仮想平面に平行な第2仮想平面に沿って規定される極遷移側対向面で前記第1仮想平面に向き合わせられ前記第2対向面で磁極を変遷させる複数の極遷移側磁極片とを備え、
前記第1仮想平面に平行な第3仮想平面内で、当該第3仮想平面に投影される前記極遷移側対向面の投影像に関して前記出力軸に同軸の第1円周線で横切られる前記投影像の電気角は、前記第3仮想平面に投影される前記極固定側対向面の投影像に関して同第1円周線で横切られる前記投影像の電気角との間に有効磁束の最大値を確立する角度値よりも小さく設定され、
前記第3仮想平面内で、当該第3仮想平面に投影される前記極遷移側対向面の投影像に関して前記出力軸に同軸で前記第1円周線よりも大きい第2円周線で横切られる前記投影像の電気角は、前記第3仮想平面に投影される前記極固定側対向面の投影像に関して同第2円周線で横切られる前記投影像の電気角との間に有効磁束の最大値を確立する角度値よりも大きく設定される
ことを特徴とするアキシャルギャップ型電動機。
An output shaft;
An N-pole or an S-pole is formed on a pole-fixing-side facing surface that is arranged in a circumferential direction coaxial with the output shaft and is defined along a first virtual plane that is orthogonal to the axis of the output shaft. A plurality of pole-fixed side pole pieces that alternately arrange the N pole and the S pole in a circumferential direction coaxial with an axis;
Arranged in the circumferential direction, the pole transition side facing surface defined along a second virtual plane parallel to the first virtual plane faces the first virtual plane, and the magnetic pole is placed on the second facing surface. A plurality of pole transition side pole pieces to be changed,
In the third virtual plane parallel to the first virtual plane, the projection traversed by a first circumferential line coaxial with the output axis with respect to the projection image of the pole transition side facing surface projected onto the third virtual plane. The electrical angle of the image is a maximum value of the effective magnetic flux between the electrical angle of the projected image traversed by the first circumferential line with respect to the projected image of the opposed surface on the pole fixing side projected onto the third virtual plane. Set to be smaller than the angle value to establish,
Within the third virtual plane, the projection image of the pole-transition-side facing surface projected onto the third virtual plane is crossed by a second circumferential line that is coaxial with the output axis and larger than the first circumferential line. The electrical angle of the projected image is the maximum effective magnetic flux between the electrical angle of the projected image traversed by the second circumferential line with respect to the projected image of the opposed surface on the pole fixing side projected onto the third virtual plane. An axial gap type electric motor characterized by being set to be larger than an angle value for establishing a value.
請求項2に記載のアキシャルギャップ型電動機において、隣接する前記極固定側磁極片同士は内径側から外径側にかけて等幅の隙間で仕切られることを特徴とするアキシャルギャップ型電動機。   3. The axial gap type electric motor according to claim 2, wherein the adjacent pole-fixed side magnetic pole pieces are partitioned by a uniform gap from the inner diameter side to the outer diameter side. 請求項3に記載のアキシャルギャップ型電動機において、前記極固定側対向面の半径方向輪郭線は前記出力軸に同軸の半径線から傾斜することを特徴とするアキシャルギャップ型電動機。   The axial gap type electric motor according to claim 3, wherein a radial contour line of the opposite surface of the pole fixing side is inclined from a radial line coaxial with the output shaft. 出力軸と、
前記出力軸に同軸の円周方向に配列されて、前記出力軸の軸心に直交する第1仮想平面に沿って規定される第1極固定側対向面にN極またはS極を形成し、前記出力軸に同軸の円周方向に交互に前記N極および前記S極を配置する複数の第1極固定側磁極片と、
前記第1仮想平面に平行な第2仮想平面に沿って規定される第2極固定側対向面で空間を挟んで前記第1磁極片に個々に向き合わせられ、向き合う前記第1極固定側対向面と反対の磁極を形成し、前記円周方向に交互にN極およびS極を配置する複数の第2極固定側磁極片と、
前記空間内で前記円周方向に配列されて、前記第1仮想平面に平行な第3仮想平面に沿って規定される第1極遷移側対向面で前記第1仮想平面に向き合わせられ前記第1極遷移側対向面で磁極を変遷させ、前記第2仮想平面に平行な第4仮想平面に沿って規定される第2極遷移側対向面で前記第2仮想平面に向き合わせられ前記第2極遷移側対向面で前記第1極遷移側対向面の磁極の変遷に応じて磁極を変遷させる複数の極遷移側磁極片とを備え、
前記第1仮想平面に平行な第5仮想平面に投影される前記第1極固定側対向面の投影像に関して前記出力軸に同軸の第1円周線で横切られる前記投影像の電気角と、前記第5仮想平面に投影される前記第1極遷移側対向面の投影像に関して前記第1円周線で横切られる前記投影像の電気角とは、前記第1円周線上で有効磁束の最大値を確立する数値関係に設定され、
前記第5仮想平面に投影される前記第2極固定側対向面の投影像に関して前記出力軸に同軸の第2円周線で横切られる前記投影像の電気角と、前記第5仮想平面に投影される前記第2極遷移側対向面の投影像に関して前記第2円周線で横切られる前記投影像の電気角とは、前記第2円周線上で有効磁束の最大値を確立する数値関係に設定される
ことを特徴とするアキシャルギャップ型電動機。
An output shaft;
Forming a north pole or a south pole on a first pole fixed side facing surface defined along a first virtual plane orthogonal to the axis of the output shaft, arranged in a circumferential direction coaxial with the output shaft; A plurality of first pole-fixed-side pole pieces that alternately arrange the N pole and the S pole in a circumferential direction coaxial with the output shaft;
The first pole fixed side facing each other facing each first pole piece with a space between the second pole fixed side facing surfaces defined along a second virtual plane parallel to the first virtual plane A plurality of second pole fixed side magnetic pole pieces that form a magnetic pole opposite to the surface, and alternately arrange N and S poles in the circumferential direction;
In the space, arranged in the circumferential direction, facing the first virtual plane at a first pole transition side facing surface defined along a third virtual plane parallel to the first virtual plane, and The magnetic pole is changed at the one-pole-transition-side facing surface, and the second-pole-facing-side facing surface defined along the fourth virtual plane parallel to the second imaginary plane is opposed to the second imaginary plane. A plurality of pole transition side pole pieces for changing the magnetic pole according to the transition of the magnetic pole of the first pole transition side facing surface at the pole transition side facing surface;
An electrical angle of the projected image crossed by a first circumferential line coaxial with the output axis with respect to the projected image of the first pole-fixed facing surface projected onto a fifth virtual plane parallel to the first virtual plane; The electrical angle of the projected image traversed by the first circumferential line with respect to the projected image of the first pole transition side facing surface projected onto the fifth virtual plane is the maximum effective magnetic flux on the first circumferential line. Set to a numeric relationship that establishes the value,
An electrical angle of the projected image that is crossed by a second circumferential line coaxial with the output axis with respect to a projected image of the second pole fixed side facing surface projected onto the fifth virtual plane, and projected onto the fifth virtual plane The electrical angle of the projected image traversed by the second circumferential line with respect to the projected image of the second pole transition side facing surface has a numerical relationship that establishes the maximum value of the effective magnetic flux on the second circumferential line. An axial gap type electric motor characterized by being set.
請求項1〜5のいずれか1項に記載のアキシャルギャップ型電動機を備えることを特徴とする空気調和機。   An air conditioner comprising the axial gap motor according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載のアキシャルギャップ型電動機を備えることを特徴とする乗り物。   A vehicle comprising the axial gap type electric motor according to any one of claims 1 to 5.
JP2011072549A 2011-03-29 2011-03-29 Axial gap type electric motor Active JP6020781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011072549A JP6020781B2 (en) 2011-03-29 2011-03-29 Axial gap type electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011072549A JP6020781B2 (en) 2011-03-29 2011-03-29 Axial gap type electric motor

Publications (2)

Publication Number Publication Date
JP2012210017A true JP2012210017A (en) 2012-10-25
JP6020781B2 JP6020781B2 (en) 2016-11-02

Family

ID=47189328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011072549A Active JP6020781B2 (en) 2011-03-29 2011-03-29 Axial gap type electric motor

Country Status (1)

Country Link
JP (1) JP6020781B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504607A (en) * 2016-02-03 2019-02-14 宇生自然能源科技股▲分▼有限公司 Disc motor
CN110739824A (en) * 2018-07-20 2020-01-31 黄思伦 Outer rotor generator with ox horn type iron core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214478A (en) * 1995-01-31 1996-08-20 Toshiba Corp Permanent-magnet field type dynamo electric machine
JPH10271782A (en) * 1997-03-28 1998-10-09 Matsushita Electric Ind Co Ltd Motor
JP2005130692A (en) * 2003-09-30 2005-05-19 Toyota Central Res & Dev Lab Inc Axial-type permanent-magnet motor
JP2008131682A (en) * 2006-11-16 2008-06-05 Fujitsu General Ltd Axial air gap type motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214478A (en) * 1995-01-31 1996-08-20 Toshiba Corp Permanent-magnet field type dynamo electric machine
JPH10271782A (en) * 1997-03-28 1998-10-09 Matsushita Electric Ind Co Ltd Motor
JP2005130692A (en) * 2003-09-30 2005-05-19 Toyota Central Res & Dev Lab Inc Axial-type permanent-magnet motor
JP2008131682A (en) * 2006-11-16 2008-06-05 Fujitsu General Ltd Axial air gap type motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504607A (en) * 2016-02-03 2019-02-14 宇生自然能源科技股▲分▼有限公司 Disc motor
EP3413444A4 (en) * 2016-02-03 2019-09-04 Yuzen Sustainable Energy Co., Ltd. Disc motor
CN110739824A (en) * 2018-07-20 2020-01-31 黄思伦 Outer rotor generator with ox horn type iron core

Also Published As

Publication number Publication date
JP6020781B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP5539191B2 (en) Magnetic inductor type rotating machine and fluid transfer device using the same
JP5635921B2 (en) Motor unit, rotating electric machine using the same, and rotating electric machine device
TWI303511B (en)
US20090278415A1 (en) Coreless motor having rotors arranged concentrically and driving apparatus having the motor
EP2188533A2 (en) Ipm motor and vacuum inhaling apparatus using the same
TWI356879B (en)
JP2009216014A (en) General-purpose engine
JP2009216017A (en) General purpose engine
TWI404595B (en) Improve the efficiency of the hand-held machine tool
TWM607141U (en) Disk type generator
JP6020781B2 (en) Axial gap type electric motor
JP3184318U (en) Power generator
KR100947509B1 (en) Motor having rotors arranged concentrically and driving apparatus having the motor
TW201317469A (en) Passive drive motor and passive fan
JP5596646B2 (en) Rotating electric machine
TWM335451U (en) Multilayer power-generation device
JP2009022146A (en) Axial motor
KR20140084494A (en) Cooling Apparatus for Axial Flux Permanent Magnet Motor
JP3208090U (en) Power generator
JP5381072B2 (en) Brushless electric machine
JP2011078255A (en) Electric motor and working machine
JP2010166703A (en) Permanent magnet rotating electrical machine
TW201519572A (en) Dual-rotor motor for bicycle
JP5481456B2 (en) Rotating electric machine
TWI808910B (en) Energy-saving drive generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R151 Written notification of patent or utility model registration

Ref document number: 6020781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151