JP2012209376A - Iron oxide particle dispersion liquid and nanocomposite magnet - Google Patents

Iron oxide particle dispersion liquid and nanocomposite magnet Download PDF

Info

Publication number
JP2012209376A
JP2012209376A JP2011072862A JP2011072862A JP2012209376A JP 2012209376 A JP2012209376 A JP 2012209376A JP 2011072862 A JP2011072862 A JP 2011072862A JP 2011072862 A JP2011072862 A JP 2011072862A JP 2012209376 A JP2012209376 A JP 2012209376A
Authority
JP
Japan
Prior art keywords
iron oxide
particle dispersion
oxide particle
nanoparticles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011072862A
Other languages
Japanese (ja)
Inventor
Toshiya Takarazumi
敏也 寳角
Takashi Watanabe
貴志 渡邉
Kiyoyuki Masuzawa
清幸 増澤
Raitaro Masaoka
雷太郎 政岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2011072862A priority Critical patent/JP2012209376A/en
Publication of JP2012209376A publication Critical patent/JP2012209376A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an iron oxide nanoparticle dispersion liquid which can suppress oxidization of a material which is likely to be oxidized when brought into contact with the material which is likely to be oxidized, such as metal.SOLUTION: The iron oxide particle dispersion liquid contains an iron oxide particle of which the primary particle diameter is 100 nm or less and the secondary particle diameter is 500 nm or less, and a dispersion liquid which disperses the iron oxide particle using a polar solvent having at least one of an ester group and a sulfoxide group. The iron oxide particle is preferable to be selected form ε-FeO, γ-FeO, α-FeO, and FeO.

Description

本発明は、酸化鉄粒子を分散させた酸化鉄粒子分散液及びこの酸化鉄粒子分散液を用いて作製されたナノコンポジット磁石に関する。   The present invention relates to an iron oxide particle dispersion in which iron oxide particles are dispersed and a nanocomposite magnet produced using the iron oxide particle dispersion.

酸化鉄は、結晶構造に由来した特有の磁気特性、光学特性、触媒特性を有しており、磁気記録媒体、電磁波吸収体、顔料、酸化還元触媒などとして広く用いられている。近年では、より高特性の酸化鉄が求められており、解決策の一つとして粒径のナノサイズ化が盛んに研究されている。また、酸化鉄を用いたデバイスの小型化の観点からも粒径のナノサイズ化が求められている。   Iron oxide has unique magnetic properties, optical properties, and catalytic properties derived from the crystal structure, and is widely used as a magnetic recording medium, an electromagnetic wave absorber, a pigment, a redox catalyst, and the like. In recent years, iron oxide with higher properties has been demanded, and as one of the solutions, nano-size particle size has been actively studied. Further, from the viewpoint of miniaturization of a device using iron oxide, it is required to make the particle size nanosize.

粒子のナノサイズ化により比表面積が増大するため、粒子表面が活性化され粒子同士の凝集が激しくなる。その結果、ナノ粒子を単一粒子に分散することが困難となる問題が知られている。例えば、特許文献1には、ε−Feの分散性を向上させた磁性材スラリーが記載されている。 Since the specific surface area is increased by nano-sizing the particles, the particle surface is activated and the particles are agglomerated. As a result, there is a known problem that it is difficult to disperse nanoparticles into single particles. For example, Patent Document 1 describes a magnetic material slurry with improved dispersibility of ε-Fe 2 O 3 .

特開2009−206476号公報JP 2009-206476 A

ナノ粒子の分散液が水を含む場合、このようなナノ粒子の分散液を金属等の酸化しやすい物質と混合させたような場合には、金属等の酸化が促進されてしまうおそれがある。本発明は、金属等の酸化しやすい物質と接触させた場合に、前記酸化しやすい物質の酸化を抑制できる酸化鉄ナノ粒子分散液を提供することを目的とする。   In the case where the nanoparticle dispersion contains water, if such a nanoparticle dispersion is mixed with an easily oxidizable substance such as a metal, the oxidation of the metal or the like may be promoted. An object of this invention is to provide the iron oxide nanoparticle dispersion liquid which can suppress the oxidation of the said oxidizable substance when it contacts with the oxidizable substance, such as a metal.

本発明は、1次粒子径が100nm以下で、2次粒子径が500nm以下である酸化鉄粒子と、エステル基と、スルホキシド基との少なくとも一方を有する極性溶媒を用いて前記酸化鉄粒子を分散させる分散液と、を含むことを特徴とする酸化鉄粒子分散液である。   In the present invention, the iron oxide particles are dispersed using a polar solvent having an iron oxide particle having a primary particle diameter of 100 nm or less and a secondary particle diameter of 500 nm or less, and an ester group and a sulfoxide group. An iron oxide particle dispersion liquid.

1次粒子径が100nm以下の酸化鉄粒子を、エステル基と、スルホキシド基との少なくとも一方を有し、実質的に水を含まない極性溶媒に分散させることにより、金属等の酸化しやすい物質と接触させた場合であっても、酸化しやすい物質の酸化を抑制できる。また、極性溶媒に、エステル基と、スルホキシド基との少なくとも一方を有するものを用いるので、1次粒子径が100nm以下の酸化鉄粒子であっても良好な液中分散性が得られる。   By dispersing iron oxide particles having a primary particle size of 100 nm or less in a polar solvent having at least one of an ester group and a sulfoxide group and substantially not containing water, Even in the case of contact, oxidation of a substance that is easily oxidized can be suppressed. Moreover, since what has at least one of an ester group and a sulfoxide group is used for a polar solvent, even if it is an iron oxide particle whose primary particle diameter is 100 nm or less, favorable dispersibility in a liquid is obtained.

本発明において、前記酸化鉄粒子は、ε−Feと、γ−Feと、α−Feと、Feとから選択される1種又は2種以上であることが好ましい。エステル基と、スルホキシド基との少なくとも一方を有する極性溶媒は、このような酸化鉄を分散させやすいので、このような酸化鉄を用いれば、良好な液中分散性が得られる。 In the present invention, the iron oxide particles may be one or more selected from ε-Fe 2 O 3 , γ-Fe 2 O 3 , α-Fe 2 O 3 , and Fe 3 O 4. Preferably there is. Since a polar solvent having at least one of an ester group and a sulfoxide group easily disperses such iron oxide, good dispersibility in liquid can be obtained by using such iron oxide.

本発明は、エステル基と、スルホキシド基との少なくとも一方を有する極性溶媒を用いて、1次粒子径が100nm以下かつ2次粒子径が500nm以下の酸化鉄粒子を分散させた酸化鉄粒子分散液を用いて作製されることを特徴とするナノコンポジット磁石である。   The present invention relates to an iron oxide particle dispersion in which iron oxide particles having a primary particle diameter of 100 nm or less and a secondary particle diameter of 500 nm or less are dispersed using a polar solvent having at least one of an ester group and a sulfoxide group. It is a nanocomposite magnet characterized by being manufactured using.

このナノコンポジット磁石は、1次粒子径が100nm以下の酸化鉄粒子を、エステル基と、スルホキシド基との少なくとも一方を有し、実質的に水を含まない極性溶媒に分散させた酸化鉄粒子分散液から作製される。このため、ナノコンポジット磁石の材料として酸化鉄に加えて金属を用いる場合であっても、前記金属の酸化を抑制できる。その結果、得られたナノコンポジット磁石の磁気特性の低下が抑制される。また、酸化鉄粒子分散液の極性溶媒に、エステル基と、スルホキシド基との少なくとも一方を有するものを用いるので、酸化鉄粒子の分散性に優れている。このため、このような酸化鉄粒子分散液から作製されたナノコンポジット磁石は、高い磁気特性が得られる。   This nanocomposite magnet has an iron oxide particle dispersion in which iron oxide particles having a primary particle diameter of 100 nm or less are dispersed in a polar solvent having at least one of an ester group and a sulfoxide group and substantially free of water. Made from liquid. For this reason, even if it is a case where a metal is used in addition to iron oxide as a material of a nanocomposite magnet, the oxidation of the metal can be suppressed. As a result, a decrease in magnetic properties of the obtained nanocomposite magnet is suppressed. Moreover, since the thing which has at least one of an ester group and a sulfoxide group is used for the polar solvent of an iron oxide particle dispersion liquid, it is excellent in the dispersibility of an iron oxide particle. For this reason, the nanocomposite magnet produced from such an iron oxide particle dispersion can obtain high magnetic properties.

本発明において、前記酸化鉄粒子は、ε−Feと、γ−Feと、α−Feと、Feとから選択される1種又は2種以上であることが好ましい。エステル基と、スルホキシド基との少なくとも一方を有する極性溶媒は、このような酸化鉄を分散させやすいので、このような酸化鉄を用いれば、良好な液中分散性が得られる。その結果、このような酸化鉄を分散させた酸化鉄粒子分散液を用いれば、高い磁気特性を有するナノコンポジット磁石を得ることができる。 In the present invention, the iron oxide particles may be one or more selected from ε-Fe 2 O 3 , γ-Fe 2 O 3 , α-Fe 2 O 3 , and Fe 3 O 4. Preferably there is. Since a polar solvent having at least one of an ester group and a sulfoxide group easily disperses such iron oxide, good dispersibility in liquid can be obtained by using such iron oxide. As a result, a nanocomposite magnet having high magnetic properties can be obtained by using such an iron oxide particle dispersion in which iron oxide is dispersed.

本発明は、金属等の酸化しやすい物質と接触させた場合に、前記酸化しやすい物質の酸化を抑制できる酸化鉄ナノ粒子分散液を提供することができる。   This invention can provide the iron oxide nanoparticle dispersion liquid which can suppress the oxidation of the said oxidizable substance when it contacts with the oxidizable substance, such as a metal.

図1は、本実施形態に係る酸化鉄粒子分散液の製造方法の工程を示すフローチャートである。FIG. 1 is a flowchart showing the steps of a method for producing an iron oxide particle dispersion according to this embodiment. 図2は、ナノコンポジット磁石を示す模式図である。FIG. 2 is a schematic diagram showing a nanocomposite magnet.

本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、均等の範囲のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。   DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are equivalent. Furthermore, the constituent elements described below can be appropriately combined. In addition, various omissions, substitutions, or changes of components can be made without departing from the scope of the present invention.

本実施形態に係る酸化鉄粒子分散液は、1次粒子径が100nm以下であり、2次粒子径が500nm以下である酸化鉄粒子と、エステル基と、スルホキシド基との少なくとも一方を有する極性溶媒を用いて酸化鉄粒子を分散させたものである。この酸化鉄粒子分散液は、分散液にエステル基と、スルホキシド基との少なくとも一方を有する極性溶媒を用いるので、ナノサイズ(1次粒子径が100nm程度以下)の酸化鉄粒子を分散させた場合でも、2次粒子径が500nm以下に抑えられており、ナノサイズの酸化鉄粒子の分散性に優れている。また、この酸化鉄粒子分液は、極性溶媒を用い、水を用いないで酸化鉄粒子を分散させるので、酸化鉄粒子分散液には空気中等から混入する不可避の水(質量比で数十ppmオーダー)以外は含まれない。すなわち、この酸化鉄粒子分散液は、実質的に水を含まない。このため、本実施形態に係る酸化鉄粒子分散液は、金属等の酸化しやすい物質と接触させた場合に、前記酸化しやすい物質の酸化を抑制できる。さらに、この酸化鉄粒子分散液は、有機質バインダ(例えば、分散剤、界面活性剤又は高分子等)を含まないので、この酸化鉄粒子分散液から磁石、磁気記録媒体又は電磁波遮蔽体等のデバイスを製造した場合には、有機質バインダに由来する残留不純物による特性低下を最小限に抑えることができる。   The iron oxide particle dispersion according to this embodiment is a polar solvent having at least one of iron oxide particles having a primary particle size of 100 nm or less and a secondary particle size of 500 nm or less, an ester group, and a sulfoxide group. In which iron oxide particles are dispersed. Since this iron oxide particle dispersion uses a polar solvent having at least one of an ester group and a sulfoxide group in the dispersion, nano-sized iron oxide particles (primary particle diameter of about 100 nm or less) are dispersed. However, the secondary particle diameter is suppressed to 500 nm or less, and the dispersibility of the nano-sized iron oxide particles is excellent. In addition, this iron oxide particle separation uses a polar solvent and disperses iron oxide particles without using water. Therefore, inevitable water (mass ratio of several tens of ppm) mixed into the iron oxide particle dispersion from the air or the like. Except order) is not included. That is, this iron oxide particle dispersion does not substantially contain water. For this reason, the iron oxide particle dispersion according to the present embodiment can suppress oxidation of the easily oxidizable substance when brought into contact with an easily oxidizable substance such as metal. Further, since this iron oxide particle dispersion does not contain an organic binder (for example, a dispersant, a surfactant, or a polymer), a device such as a magnet, a magnetic recording medium, or an electromagnetic wave shield is formed from this iron oxide particle dispersion. When the is manufactured, the characteristic deterioration due to the residual impurities derived from the organic binder can be minimized.

本実施形態に係る酸化鉄粒子分散液が含む酸化鉄としては、γ−Fe(マグヘマイト)、α−Fe(ヘマタイト)、ε−Fe、Fe(マグネタイト)、FeO(ウスタイト)等が挙げられる。本実施形態に係る酸化鉄粒子分散液は、これらの酸化鉄のうち少なくとも1つを含んでいればよい。酸化鉄ナノ粒子の粒子径は、その1次粒子の粒子径が100nm以下である。本実施形態において、酸化鉄粒子の粒子径(1次粒子径、2次粒子径の両方、以下同様)は、D50(メジアン径)を用いる。酸化鉄粒子の粒子径は、例えば動的光散乱法又は透過型電子顕微鏡を用いた観察によって測定される粒径分布から計算される。 Examples of the iron oxide included in the iron oxide particle dispersion according to the present embodiment include γ-Fe 2 O 3 (maghemite), α-Fe 2 O 3 (hematite), ε-Fe 2 O 3 , Fe 3 O 4 (magnetite). ), FeO (wustite) and the like. The iron oxide particle dispersion according to this embodiment may contain at least one of these iron oxides. As for the particle diameter of the iron oxide nanoparticles, the particle diameter of the primary particles is 100 nm or less. In this embodiment, D50 (median diameter) is used as the particle diameter of the iron oxide particles (both primary particle diameter and secondary particle diameter, the same applies hereinafter). The particle diameter of the iron oxide particles is calculated from a particle size distribution measured by observation using, for example, a dynamic light scattering method or a transmission electron microscope.

本実施形態に係る酸化鉄粒子分散液が含む極性溶媒は、エステル基と、スルホキシド基との少なくとも一方を有している。エステル基を有する極性溶媒として、有機溶媒では、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、乳酸メチル、乳酸エチル、乳酸ブチル、安息香酸メチル、安息香酸エチル、炭酸ジメチル、炭酸ジエチル・炭酸エチレン、炭酸プロピレン、γ−ブチロラクトン等が挙げられる。   The polar solvent contained in the iron oxide particle dispersion according to this embodiment has at least one of an ester group and a sulfoxide group. As a polar solvent having an ester group, in an organic solvent, methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl lactate, ethyl lactate, Examples include butyl lactate, methyl benzoate, ethyl benzoate, dimethyl carbonate, diethyl carbonate / ethylene carbonate, propylene carbonate, and γ-butyrolactone.

スルホキシド基を有する極性溶媒として、有機溶媒では、ジメチルスルホキシド、ジエチルスルホキシド、メチルフェニルスルホキシド、ジフェニルスルホキシド等が挙げられる。   Examples of the polar solvent having a sulfoxide group include dimethyl sulfoxide, diethyl sulfoxide, methylphenyl sulfoxide, diphenyl sulfoxide and the like as organic solvents.

本実施形態に係る酸化鉄粒子分散液は、1次粒子径が100nm以下の酸化鉄粒子を分散させたものであり、分散後において、酸化鉄粒子分散液中における酸化鉄粒子の2次粒子径は500nm以下となる。1次粒子は、酸化鉄粒子そのものであり、外見上の幾何学的形態から判断して、単位粒子(ultimate particle)と考えられるものである。2次粒子は、酸化鉄粒子を極性溶媒に分散させたときにおける粒子であり、極性溶媒中において1次粒子が複数個集合した粒子である。次に、本実施形態に係る酸化鉄粒子分散液の製造方法を説明する。   The iron oxide particle dispersion according to the present embodiment is obtained by dispersing iron oxide particles having a primary particle diameter of 100 nm or less. After dispersion, the secondary particle diameter of the iron oxide particles in the iron oxide particle dispersion is dispersed. Becomes 500 nm or less. The primary particles are iron oxide particles themselves and are considered to be unit particles (judged particles) as judged from the geometrical appearance. The secondary particles are particles when iron oxide particles are dispersed in a polar solvent, and are particles in which a plurality of primary particles are aggregated in the polar solvent. Next, the manufacturing method of the iron oxide particle dispersion according to this embodiment will be described.

図1は、本実施形態に係る酸化鉄粒子分散液の製造方法の工程を示すフローチャートである。本実施形態に係る酸化鉄粒子分散液が含む酸化鉄粒子を製造するにあたり、まず、水酸化鉄化合物ナノ粒子を作製する(ステップS1:前駆体製造工程)。本実施形態において、ナノ粒子とは、1次粒子径が100nm程度以下の粒子をいう。水酸化鉄化合物ナノ粒子の作製方法は特に限定されるものではないが、例えば、硝酸鉄(III)九水和物(Fe(NO・9HO)とアンモニア水とから、逆ミセル法等を用いて作製される。 FIG. 1 is a flowchart showing the steps of a method for producing an iron oxide particle dispersion according to this embodiment. In producing the iron oxide particles included in the iron oxide particle dispersion according to the present embodiment, first, iron hydroxide compound nanoparticles are produced (step S1: precursor production process). In this embodiment, a nanoparticle means a particle | grain with a primary particle diameter of about 100 nm or less. Although not particularly limited manufacturing method of iron hydroxide compound nanoparticles, for example, from an ammonia aqueous iron (III) nitrate nonahydrate (Fe (NO 3) 3 · 9H 2 O), reverse micelles It is produced using a method or the like.

水酸化鉄化合物ナノ粒子が作製されたら、前記水酸化鉄化合物ナノ粒子の表面を焼結防止剤で被覆する(ステップS2:焼結防止剤の被覆工程)。このようにすることで、水酸化鉄化合物ナノ粒子を熱処理したときに、前記水酸化鉄化合物ナノ粒子の凝集を抑制する。焼結防止剤としては、Si酸化物、Y酸化物等が使用できる。水酸化鉄化合物ナノ粒子を含む溶液中で、ゾルゲル法等を用いてSi酸化物又はY酸化物で前記水酸化鉄化合物ナノ粒子を被覆する。   When the iron hydroxide compound nanoparticles are produced, the surface of the iron hydroxide compound nanoparticles is coated with a sintering inhibitor (step S2: coating process of sintering inhibitor). By doing in this way, when the iron hydroxide compound nanoparticle is heat-processed, aggregation of the said iron hydroxide compound nanoparticle is suppressed. As the sintering inhibitor, Si oxide, Y oxide or the like can be used. In a solution containing iron hydroxide compound nanoparticles, the iron hydroxide compound nanoparticles are coated with Si oxide or Y oxide using a sol-gel method or the like.

次いで、焼結防止剤で被覆された水酸化鉄化合物ナノ粒子を溶液から分離し、所定の温度で熱処理を行う(ステップS3:熱処理工程)。大気雰囲気下において約600℃〜1000℃で水酸化鉄化合物ナノ粒子を焼成することにより、酸化鉄粒子としてγ−Fe粒子を作製することができる。また、大気雰囲気下において約1000℃〜1100℃で水酸化鉄化合物ナノ粒子を焼成することにより、酸化鉄粒子としてε−Fe粒子を作製することができる。さらに、大気雰囲気下において約1100℃以上で水酸化鉄化合物ナノ粒子を焼成することにより、酸化鉄粒子としてα−Fe粒子を作製することができる。焼結防止剤で被覆されていることにより、水酸化鉄化合物ナノ粒子は、熱処理において粒子間焼結による粗大化が抑制されて、ナノ粒子の状態が維持される。また、熱処理時の雰囲気を還元雰囲気にすることにより、酸化鉄粒子としてFe粒子又はFeO粒子を作製することができる。 Next, the iron hydroxide compound nanoparticles coated with the sintering inhibitor are separated from the solution, and heat treatment is performed at a predetermined temperature (step S3: heat treatment step). By firing the iron hydroxide compound nanoparticles at about 600 ° C. to 1000 ° C. in an air atmosphere, γ-Fe 2 O 3 particles can be produced as iron oxide particles. Further, by baking the hydroxide iron compound nanoparticles at about 1000 ° C. C. to 1100 ° C. in an air atmosphere can be produced ε-Fe 2 O 3 particles as the iron oxide particles. Further, by baking the hydroxide iron compound nanoparticles at about 1100 ° C. or higher in the atmosphere, can be prepared α-Fe 2 O 3 particles as the iron oxide particles. By being coated with the sintering inhibitor, the iron hydroxide compound nanoparticles are suppressed from coarsening due to inter-particle sintering during heat treatment, and the state of the nanoparticles is maintained. In addition, by making the atmosphere during the heat treatment a reducing atmosphere, Fe 3 O 4 particles or FeO particles can be produced as iron oxide particles.

次いで、焼結防止剤で被覆された酸化鉄粒子を含む熱処理粉体をNaOH水溶液に投入して、熱処理粉体とNaOH水溶液との混合溶液を作製する。そして、前記混合溶液を所定温度で所定時間撹拌して、焼結防止剤を分解する(ステップS4:焼結防止剤の分解工程)。焼結防止剤が分解されたら、熱処理粉体とNaOH水溶液との混合溶液に遠心分離処理を施し、焼結防止剤を除去する(ステップS5:遠心分離工程)。次に、遠心分離後の粉体を純水中に添加し、超音波を照射することにより前記粉体を前記純水に分散させる(ステップS6:超音波分散工程)。ステップS5(遠心分離工程)とステップS6(超音波分散工程)とを複数回繰り返すことで、焼結防止剤の分解物と水酸化ナトリウムとを取り除き、酸化鉄粒子が得られる。   Next, the heat-treated powder containing iron oxide particles coated with the sintering inhibitor is put into a NaOH aqueous solution to prepare a mixed solution of the heat-treated powder and the NaOH aqueous solution. Then, the mixed solution is stirred at a predetermined temperature for a predetermined time to decompose the sintering inhibitor (step S4: decomposition process of the sintering inhibitor). When the sintering inhibitor is decomposed, the mixed solution of the heat treated powder and the NaOH aqueous solution is subjected to a centrifugal separation process to remove the sintering inhibitor (step S5: centrifugation step). Next, the powder after centrifugation is added to pure water, and the powder is dispersed in the pure water by irradiating with ultrasonic waves (step S6: ultrasonic dispersion step). By repeating step S5 (centrifugation step) and step S6 (ultrasonic dispersion step) a plurality of times, the decomposition product of the sintering inhibitor and sodium hydroxide are removed, and iron oxide particles are obtained.

次いで、遠心分離により酸化鉄粒子から水分を取り除く(ステップS7:水分除去工程)。水分除去工程は、例えば、ステップS5とステップS6とを繰り返すことによって得られた酸化鉄粒子に極性溶媒を添加する工程と、得られた混合液に超音波分散処理をする工程と、超音波分散処理の混合液に遠心分離処理を施して固体と液体とを分離して液体を除去する工程とを繰り返す。極性溶媒は、水との親和性が比較的高いので、極性溶媒に水分を溶解させ、極性溶媒とともに酸化鉄粒子から取り除く。このようにすることで、酸化鉄粒子が乾燥することによる凝集を回避しつつ、酸化鉄粒子から確実に水分を取り除くことができる。その結果、酸化鉄粒子には、不可避の水分以外は残らない。   Next, water is removed from the iron oxide particles by centrifugation (step S7: water removal step). The water removal step includes, for example, a step of adding a polar solvent to the iron oxide particles obtained by repeating Step S5 and Step S6, a step of subjecting the obtained mixture to ultrasonic dispersion, and an ultrasonic dispersion The step of subjecting the mixed liquid of the treatment to centrifugal separation to separate the solid and the liquid and remove the liquid is repeated. Since the polar solvent has a relatively high affinity with water, water is dissolved in the polar solvent and removed from the iron oxide particles together with the polar solvent. By doing in this way, a water | moisture content can be reliably removed from an iron oxide particle, avoiding the aggregation by iron oxide particle drying. As a result, no other than inevitable moisture remains in the iron oxide particles.

酸化鉄粒子から水分が取り除かれたら、極性溶媒を添加する(ステップS8:溶媒添加工程)。次いで、極性溶媒を添加した溶液を超音波処理することで(ステップS9:超音波処理工程)、本実施形態に係る酸化鉄粒子分散液が作製される(ステップS10)。   When moisture is removed from the iron oxide particles, a polar solvent is added (step S8: solvent addition step). Next, the solution to which the polar solvent is added is subjected to ultrasonic treatment (step S9: ultrasonic treatment step), thereby producing the iron oxide particle dispersion according to the present embodiment (step S10).

<ナノコンポジット磁石>
図2は、ナノコンポジット磁石を示す模式図である。本実施形態に係る酸化鉄粒子分散液を用いて、例えば、ナノコンポジット磁石を作製することができる。ナノコンポジット磁石1は、nm(ナノメートル)オーダーの微細な保磁力の大きい硬磁性相11と磁化の高い軟磁性相12との2相の複合組織で構成され、これらの両相の間に磁気的な交換結合作用が働いて、あたかも均一で一様な磁石のように振る舞う磁石である。硬磁性相11と軟磁性相12とが磁性のスプリングで結合されているような磁化挙動を示すことから、交換スプリング磁石とも呼ばれる。
<Nanocomposite magnet>
FIG. 2 is a schematic diagram showing a nanocomposite magnet. For example, a nanocomposite magnet can be produced using the iron oxide particle dispersion according to this embodiment. The nanocomposite magnet 1 is composed of a two-phase composite structure of a hard magnetic phase 11 having a fine coercive force on the order of nm (nanometers) and a soft magnetic phase 12 having high magnetization. It is a magnet that acts as if it were a uniform and uniform magnet, with a typical exchange coupling action. Since the magnetic behavior is such that the hard magnetic phase 11 and the soft magnetic phase 12 are coupled by a magnetic spring, it is also called an exchange spring magnet.

ナノコンポジット磁石は、硬磁性相11と軟磁性相12との複合組織をnmオーダーにまで微細化すると、軟磁性相12と硬磁性相11との間に交換結合作用が働いて、反転磁場を与えても軟磁性相12の磁化反転が硬磁性相11との間の交換結合作用で阻止される。このとき磁化曲線は、交換結合作用により軟磁性相12と硬磁性相11とがあたかも単相磁石であるかのように振る舞う。その結果、軟磁性相12からは高い磁化を、硬磁性相11からは保磁力を得た磁化曲線が実現されるようになり、結果としてエネルギ積(BH)maxの高い磁性材料が得られるようになる。 When the composite structure of the hard magnetic phase 11 and the soft magnetic phase 12 is refined to the nanometer order, the nanocomposite magnet has an exchange coupling action between the soft magnetic phase 12 and the hard magnetic phase 11 so that an inverted magnetic field is generated. Even if applied, the magnetization reversal of the soft magnetic phase 12 is prevented by the exchange coupling action with the hard magnetic phase 11. At this time, the magnetization curve behaves as if the soft magnetic phase 12 and the hard magnetic phase 11 are single-phase magnets due to the exchange coupling action. As a result, a magnetization curve having a high magnetization from the soft magnetic phase 12 and a coercive force from the hard magnetic phase 11 is realized. As a result, a magnetic material having a high energy product (BH) max is obtained. become.

例えば、硬磁性相11としてε−Feを、軟磁性相12としてFe(例えば、α−Fe)を用いたナノコンポジット磁石がある。このようなナノコンポジット磁石を製造する場合、本実施形態に係る酸化鉄粒子分散液の製造方法によってε−Feの粒子(ナノ粒子)を分散させた酸化鉄粒子分散液(ε酸化鉄粒子分散液)を作製する。また、Feの粒子(ナノ粒子)を分散させた鉄粒子分散液を作製する。鉄粒子分散液は、例えば、酸化鉄粒子分散液の製造方法において、酸化鉄粒子の代わりに鉄粒子を用いることにより作製できる。 For example, there is a nanocomposite magnet using ε-Fe 2 O 3 as the hard magnetic phase 11 and Fe (eg, α-Fe) as the soft magnetic phase 12. When manufacturing such a nanocomposite magnet, an iron oxide particle dispersion (ε iron oxide) in which particles (nanoparticles) of ε-Fe 2 O 3 are dispersed by the method for manufacturing an iron oxide particle dispersion according to this embodiment. Particle dispersion). Also, an iron particle dispersion in which Fe particles (nanoparticles) are dispersed is prepared. The iron particle dispersion can be produced, for example, by using iron particles instead of iron oxide particles in the method for producing an iron oxide particle dispersion.

次に、ε酸化鉄粒子分散液と、鉄粒子分散液とを混合した後、超音波処理によって分散させることにより、ε−Feのナノ粒子とFeのナノ粒子とが分散した原料液が得られる。この原料液から遠心分離等によって液体を取り除き、ε−Feのナノ粒子とFeのナノ粒子との混合粉末(原料混合粉末)を得る。 Next, a raw material liquid in which ε-Fe 2 O 3 nanoparticles and Fe nanoparticles are dispersed by mixing the ε iron oxide particle dispersion and the iron particle dispersion and then dispersing by sonication. Is obtained. The liquid is removed from the raw material liquid by centrifugation or the like to obtain a mixed powder (raw material mixed powder) of ε-Fe 2 O 3 nanoparticles and Fe nanoparticles.

原料混合粉末を所望の形状に成形し、得られた成形体を不活性雰囲気又は真空中で熱処理することで、ナノコンポジット焼結磁石が得られる。また、プラズマ活性化焼結(PAS:Plasma Activated Sintering)又は放電プラズマ焼結(SPS:Spark Plasma Sintering)で成形体を焼結することによっても、ナノコンポジット焼結磁石を得ることができる。また、磁場中で成形することで、ナノコンポジット異方性焼結磁石が得られる。   A nanocomposite sintered magnet can be obtained by forming the raw material mixed powder into a desired shape and heat-treating the obtained molded body in an inert atmosphere or vacuum. Moreover, a nanocomposite sintered magnet can be obtained also by sintering a molded object by plasma activated sintering (PAS: Plasma Activated Sintering) or discharge plasma sintering (SPS: Spark Plasma Sintering). Moreover, a nanocomposite anisotropic sintered magnet can be obtained by molding in a magnetic field.

また、原料混合粉末と結合剤(バインダ)とを配合し、成形することによってナノコンポジットボンド磁石が得られる。結合剤としては、熱可塑性樹脂、熱硬化性樹脂等の樹脂材料又はAl、Pb、Sn、Zn、Mg等の低融点金属若しくはこれらの低融点金属からなる合金等を用いることができる。原料混合粉末と結合剤との混合物を圧縮成形したり射出成形したりすることによって、原料混合粉末を所望の形状に成形できる。また、原料混合粉末を磁場中で成形することで、ナノコンポジット異方性ボンド磁石が得られる。   Moreover, a nanocomposite bonded magnet can be obtained by blending and molding the raw material mixed powder and a binder (binder). As the binder, a resin material such as a thermoplastic resin or a thermosetting resin, a low melting point metal such as Al, Pb, Sn, Zn, or Mg, or an alloy made of these low melting point metals can be used. The raw material mixed powder can be formed into a desired shape by compression molding or injection molding the mixture of the raw material mixed powder and the binder. Moreover, a nanocomposite anisotropic bonded magnet can be obtained by forming the raw material mixed powder in a magnetic field.

上述したε酸化鉄粒子分散液は、エステル基と、スルホキシド基との少なくとも一方を有する極性溶媒に酸化鉄粒子が分散しており、不可避の水分以外は含まれていない。このため、原料混合粉末を作製する際に、ε酸化鉄粒子分散液と鉄粒子分散液とを混合した場合には、金属であるFeの酸化が抑制されるので、ナノコンポジット磁石の磁気特性の低下が抑制される。また、ε酸化鉄粒子分散液は、有機質バインダを含まないので、ε酸化鉄粒子分散液と鉄粒子分散液とから製造されたナノコンポジット磁石は、有機質バインダに由来する残留不純物による磁気特性の低下が最小限に抑えられる。また、ε酸化鉄粒子分散液は、ε−Feの分散性に優れているので、このε酸化鉄粒子分散液から作製されたナノコンポジット磁石は、高い磁気特性が得られる。 In the above-described ε-iron oxide particle dispersion, iron oxide particles are dispersed in a polar solvent having at least one of an ester group and a sulfoxide group, and contains no inevitable moisture. For this reason, when preparing the raw material mixed powder, if the ε iron oxide particle dispersion and the iron particle dispersion are mixed, the oxidation of Fe, which is a metal, is suppressed. Reduction is suppressed. In addition, since the ε-iron oxide particle dispersion does not contain an organic binder, the nanocomposite magnet manufactured from the ε-iron oxide particle dispersion and the iron particle dispersion has reduced magnetic properties due to residual impurities derived from the organic binder. Is minimized. In addition, since the ε-iron oxide particle dispersion is excellent in dispersibility of ε-Fe 2 O 3 , a nanocomposite magnet made from this ε-iron oxide particle dispersion has high magnetic properties.

本実施形態に係る酸化鉄粒子分散液を用いたナノコンポジット磁石は、上述したものに限定されない。例えば、硬磁性相としてε−Feのナノ粒子を用い、軟磁性相としてFe(マグネタイト)又はγ−Fe(マグヘマイト)のナノ粒子を用いてもよい。この場合、ε−Feのナノ粒子を、エステル基とスルホキシド基との少なくとも一方を有する極性溶媒に分散させたε酸化鉄粒子分散液と、Fe(マグネタイト)のナノ粒子を、エステル基とスルホキシド基との少なくとも一方を有する極性溶媒に分散させた酸化鉄粒子分散液と、を混合する。そして、得られた混合液に超音波処理を施すことによって、ε−Feのナノ粒子とFeのナノ粒子とが分散した原料液が得られる。この原料液から遠心分離等によって液体を取り除き、ε−Feのナノ粒子とFeのナノ粒子との混合粉末(原料混合粉末)を作製し、これを用いてナノコンポジット焼結磁石又はナノコンポジットボンド磁石を作製する。 The nanocomposite magnet using the iron oxide particle dispersion according to the present embodiment is not limited to the one described above. For example, ε-Fe 2 O 3 nanoparticles may be used as the hard magnetic phase, and Fe 3 O 4 (magnetite) or γ-Fe 2 O 3 (maghemite) nanoparticles may be used as the soft magnetic phase. In this case, ε-Fe 2 O 3 nanoparticles are dispersed in a polar solvent having at least one of an ester group and a sulfoxide group, and an iron oxide particle dispersion liquid and Fe 3 O 4 (magnetite) nanoparticles are used. And an iron oxide particle dispersion dispersed in a polar solvent having at least one of an ester group and a sulfoxide group. And, by applying the sonication to the mixture obtained, the raw material liquid and nanoparticles dispersed nanoparticles of ε-Fe 2 O 3 and Fe 3 O 4 is obtained. The liquid is removed from this raw material liquid by centrifugation, etc., and a mixed powder (raw material mixed powder) of ε-Fe 2 O 3 nanoparticles and Fe 3 O 4 nanoparticles is prepared, and nanocomposite sintering is performed using this powder. A magnet or a nanocomposite bonded magnet is produced.

また、ε−Feのナノ粒子とFe(マグネタイト)又はγ−Fe(マグヘマイト)のナノ粒子とを、エステル基と、スルホキシド基との少なくとも一方を有する極性溶媒に分散させた酸化鉄粒子分散液を作製し、これを用いてナノコンポジット磁石を作製してもよい。すなわち、複数種類の酸化鉄が分散した酸化鉄粒子分散液を用いて、ナノコンポジット磁石を作製してもよい。 Further, ε-Fe 2 O 3 nanoparticles and Fe 3 O 4 (magnetite) or γ-Fe 2 O 3 (maghemite) nanoparticles are used as a polar solvent having at least one of an ester group and a sulfoxide group. A dispersed iron oxide particle dispersion may be produced, and a nanocomposite magnet may be produced using the dispersion. That is, you may produce a nanocomposite magnet using the iron oxide particle dispersion liquid in which multiple types of iron oxide were disperse | distributed.

<電磁波遮蔽体>
ε−Feは、電磁波を吸収する性質を有している。この性質を利用して、ε−Feを電磁波遮蔽体に適用することもできる。例えば、本実施形態に係る酸化鉄粒子の製造方法によってε−Feのナノ粒子を分散させた酸化鉄粒子分散液を作製する。そして、得られた酸化鉄粒子分散液を、例えば、Fe等の金属の部材の表面に塗布した後、乾燥等によって極性溶媒を除去する。このようにして、金属の部材の表面をε−Feのナノ粒子が被覆した電磁波遮蔽体を得ることができる。本実施形態に係る酸化鉄粒子の製造方法によって作製された酸化鉄粒子分散液は、不可避の水分以外は含まないので、金属の表面に塗布した場合でも、前記金属の酸化を抑制できるので、得られた電磁波遮蔽体の特性低下を抑制できる。また、前記酸化鉄粒子分散液は、有機質バインダを含まないので、得られた電磁波遮蔽体は、有機質バインダに由来する残留不純物による性能の低下が最小限に抑えられる。
<Electromagnetic wave shield>
ε-Fe 2 O 3 has a property of absorbing electromagnetic waves. Using this property, ε-Fe 2 O 3 can also be applied to the electromagnetic wave shield. For example, an iron oxide particle dispersion in which ε-Fe 2 O 3 nanoparticles are dispersed is produced by the method for producing iron oxide particles according to the present embodiment. And after apply | coating the obtained iron oxide particle dispersion liquid to the surface of metal members, such as Fe, a polar solvent is removed by drying etc., for example. In this manner, an electromagnetic wave shielding body in which the surface of the metal member is coated with the ε-Fe 2 O 3 nanoparticles can be obtained. Since the iron oxide particle dispersion produced by the method for producing iron oxide particles according to the present embodiment does not contain anything other than inevitable moisture, the metal oxidation can be suppressed even when applied to the surface of the metal. It is possible to suppress deterioration of the characteristics of the electromagnetic wave shielding body. In addition, since the iron oxide particle dispersion does not contain an organic binder, the obtained electromagnetic wave shielding body can minimize performance degradation due to residual impurities derived from the organic binder.

[評価例]
上述した実施形態に係る酸化鉄粒子分散液を作製し、評価した。この評価において、酸化鉄はε−酸化鉄(ε−Fe)を用いた。
[Evaluation example]
An iron oxide particle dispersion according to the above-described embodiment was prepared and evaluated. In this evaluation, ε-iron oxide (ε-Fe 2 O 3 ) was used as the iron oxide.

[ε−酸化鉄ナノ粒子の作製例]
ε−酸化鉄は、次の手順で作製した。
(1)2種類のミセル溶液(ミセル溶液A及びミセル溶液B)を調整した。
(1−1)ミセル溶液Aは、次のように調整された。イオン交換水54ml、n−オクタン164.7ml及び1−ブタノール33.3mlを混合する。そこに、硝酸鉄(III)九水和物を0.0135mol添加し、室温でよく撹拌しながら溶解させる。さらに、界面活性剤として臭化セチルトリメチルアンモニウムを、イオン交換水と界面活性剤とのモル比が30となるような量で添加し、撹拌により溶解させる。これによって、ミセル溶液Aを得た。
(1−2)ミセル溶液Bは、次のように調整された。28%のアンモニア水16.2mlをイオン交換水36mlに混合させて撹拌し、その後に、さらにn−オクタン164.7mlと1−ブタノール33.3mlを加えてよく撹拌する。その溶液に、界面活性剤として臭化セチルトリメチルアンモニウムを、(イオン交換水+アンモニア水中の水分)と界面活性剤とのモル比が30となるような量で添加し、溶解させる。これによって、ミセル溶液Bを得た。
(2)ミセル溶液A及びミセル溶液Bが調整されたら、ミセル溶液Aをよく撹拌しながらミセル溶液Aに対してミセル溶液Bを滴下する。滴下が終了した後、ミセル溶液Aとミセル溶液Bとの混合液を60分間撹拌し続ける。
(3)得られた前記混合液を撹拌しながら、前記混合液にテトラエトキシシラン(TEOS)15mlを加える。そのまま、約1日撹拌を継続する。この工程により、水酸化鉄化合物の粉末の表面にSiOの層が形成される。
(4)得られた溶液を遠心分離機によって遠心分離処理をする。この処理で得られた沈殿物を回収する。回収された沈殿物は、エタノールによって複数回洗浄される。
(5)得られた沈殿物を乾燥させた後、大気雰囲気中の炉内で熱処理する。熱処理の条件は、1050℃で4時間である。熱処理後の粉末を10mol/L(リットル)のNaOH水溶液中で24時間撹拌し、粉末の表面に存在するSiOを除去する。
(6)SiOを除去した粉末を遠心分離機で回収する水洗浄を4回行い、ε−酸化鉄ナノ粒子が得られた。
[Example of preparation of ε-iron oxide nanoparticles]
ε-iron oxide was prepared by the following procedure.
(1) Two kinds of micelle solutions (micelle solution A and micelle solution B) were prepared.
(1-1) The micelle solution A was prepared as follows. Mix 54 ml of ion-exchanged water, 164.7 ml of n-octane and 33.3 ml of 1-butanol. Thereto, 0.0135 mol of iron (III) nitrate nonahydrate is added and dissolved with good stirring at room temperature. Furthermore, cetyltrimethylammonium bromide as a surfactant is added in such an amount that the molar ratio of ion-exchanged water to the surfactant is 30, and dissolved by stirring. Thereby, micelle solution A was obtained.
(1-2) The micelle solution B was prepared as follows. Mix 16.2 ml of 28% ammonia water in 36 ml of ion-exchanged water and stir. Then, add 164.7 ml of n-octane and 33.3 ml of 1-butanol and stir well. To the solution, cetyltrimethylammonium bromide as a surfactant is added and dissolved in such an amount that the molar ratio of (ion exchange water + water in ammonia water) to the surfactant is 30. Thereby, the micelle solution B was obtained.
(2) When the micelle solution A and the micelle solution B are prepared, the micelle solution B is added dropwise to the micelle solution A while stirring the micelle solution A well. After the dropping is completed, the mixed solution of the micelle solution A and the micelle solution B is continuously stirred for 60 minutes.
(3) While stirring the obtained mixture, 15 ml of tetraethoxysilane (TEOS) is added to the mixture. The stirring is continued for about 1 day. By this step, a layer of SiO 2 is formed on the surface of the iron hydroxide compound powder.
(4) The obtained solution is centrifuged by a centrifuge. The precipitate obtained by this treatment is recovered. The collected precipitate is washed several times with ethanol.
(5) After drying the obtained precipitate, it heat-processes in the furnace in an atmospheric condition. The heat treatment condition is 1050 ° C. for 4 hours. The heat-treated powder is stirred for 24 hours in a 10 mol / L (liter) NaOH aqueous solution to remove SiO 2 present on the surface of the powder.
(6) Water washing in which the powder from which SiO 2 had been removed was collected with a centrifuge was performed four times to obtain ε-iron oxide nanoparticles.

このε−酸化鉄ナノ粒子を各種溶媒に分散させて、後述する評価例1、2及び比較例1、2、3の酸化鉄粒子分散液を作製して、2次粒子径を評価した。2次粒子径は、溶媒中におけるε−酸化鉄ナノ粒子の分散の程度を示す尺度であり、小さい方がε−酸化鉄ナノ粒子の液中分散性が優れている。   The ε-iron oxide nanoparticles were dispersed in various solvents to prepare iron oxide particle dispersions of Evaluation Examples 1 and 2 and Comparative Examples 1, 2, and 3 described later, and the secondary particle diameter was evaluated. The secondary particle diameter is a scale indicating the degree of dispersion of the ε-iron oxide nanoparticles in the solvent, and the smaller the particle size, the better the dispersibility of the ε-iron oxide nanoparticles in the liquid.

Figure 2012209376
Figure 2012209376

[評価例1]
上記工程により得られたε−酸化鉄ナノ粒子を炭酸プロピレンに分散させ、超音波分散することで、エステル基を有する極性溶媒にε−酸化鉄ナノ粒子が分散した酸化鉄粒子分散液を得た。
[Evaluation Example 1]
The ε-iron oxide nanoparticles obtained by the above steps were dispersed in propylene carbonate and ultrasonically dispersed to obtain an iron oxide particle dispersion in which ε-iron oxide nanoparticles were dispersed in a polar solvent having an ester group. .

評価例1の酸化鉄粒子分散液の2次粒子径を、動的光散乱型粒度分布測定装置を用いて測定した結果を表1に示す。この結果、エステル基を有する極性溶媒にε−酸化鉄ナノ粒子を分散させることで粒子の凝集が低減し、高い液中分散性を持つナノ粒子分散液が得られることを確認した。   Table 1 shows the results obtained by measuring the secondary particle size of the iron oxide particle dispersion of Evaluation Example 1 using a dynamic light scattering particle size distribution analyzer. As a result, it was confirmed that by dispersing ε-iron oxide nanoparticles in a polar solvent having an ester group, the aggregation of the particles was reduced and a nanoparticle dispersion having high dispersibility in liquid was obtained.

[評価例2]
上述した作製例により得られたε−酸化鉄ナノ粒子をジメチルスルホキシドに分散させ、超音波分散することで、スルホキシド基を有する極性溶媒にε−酸化鉄ナノ粒子が分散した酸化鉄粒子分散液を得た。
[Evaluation Example 2]
By dispersing the ε-iron oxide nanoparticles obtained in the above-described production example in dimethyl sulfoxide and ultrasonically dispersing, an iron oxide particle dispersion liquid in which ε-iron oxide nanoparticles are dispersed in a polar solvent having a sulfoxide group is obtained. Obtained.

評価例2の酸化鉄粒子分散液の2次粒子径を、動的光散乱型粒度分布測定装置を用いて測定した結果を表1に示す。この結果、スルホキシド基を有する極性溶媒に分散させることで粒子の凝集が低減し、高い液中分散性を持つナノ粒子分散液が得られることを確認した。   Table 1 shows the results of measuring the secondary particle size of the iron oxide particle dispersion of Evaluation Example 2 using a dynamic light scattering particle size distribution analyzer. As a result, it was confirmed that by dispersing in a polar solvent having a sulfoxide group, aggregation of particles was reduced, and a nanoparticle dispersion having high dispersibility in liquid was obtained.

[比較例1]
上述した作製例により得られたε−酸化鉄ナノ粒子をホルムアミドに分散させ、超音波分散することで、アミド基を有する極性溶媒にε−酸化鉄ナノ粒子が分散した酸化鉄粒子分散液を得た。
[Comparative Example 1]
By dispersing the ε-iron oxide nanoparticles obtained by the above-described production example in formamide and ultrasonically dispersing, an iron oxide particle dispersion liquid in which ε-iron oxide nanoparticles are dispersed in a polar solvent having an amide group is obtained. It was.

比較例1の酸化鉄粒子分散液の2次粒子径を、動的光散乱型粒度分布測定装置を用いて測定した結果を表1に示す。この結果、アミド基を有する極性溶媒にε−酸化鉄ナノ粒子を分散させた場合には、粒子の激しい凝集が生じることを確認した。   Table 1 shows the results of measuring the secondary particle size of the iron oxide particle dispersion of Comparative Example 1 using a dynamic light scattering particle size distribution analyzer. As a result, it was confirmed that when the ε-iron oxide nanoparticles were dispersed in a polar solvent having an amide group, intense aggregation of the particles occurred.

[比較例2]
上記作製例により得られたε−酸化鉄ナノ粒子をジメチルホルムアミドに分散させ、超音波分散することで、アミド基を有する極性溶媒にε−酸化鉄ナノ粒子が分散した分散液を得た。
[Comparative Example 2]
The dispersion liquid in which ε-iron oxide nanoparticles were dispersed in a polar solvent having an amide group was obtained by dispersing the ε-iron oxide nanoparticles obtained in the above production example in dimethylformamide and ultrasonically dispersing.

比較例2の酸化鉄粒子分散液の2次粒子径を、動的光散乱型粒度分布測定装置を用いて測定した結果を表1に示す。この結果、アミド基を有する極性溶媒に分散させると、ε−酸化鉄ナノ粒子の激しい凝集が生じることを確認した。   Table 1 shows the results of measuring the secondary particle size of the iron oxide particle dispersion of Comparative Example 2 using a dynamic light scattering particle size distribution analyzer. As a result, it was confirmed that the ε-iron oxide nanoparticles were vigorously aggregated when dispersed in a polar solvent having an amide group.

[比較例3]
上記作製例により得られたε−酸化鉄ナノ粒子を非極性溶媒であるケロシンに分散させ、超音波分散することで、非極性溶媒にε−酸化鉄ナノ粒子が分散した分散液を得た。
[Comparative Example 3]
The dispersion liquid in which ε-iron oxide nanoparticles were dispersed in the nonpolar solvent was obtained by dispersing the ε-iron oxide nanoparticles obtained in the above production example in kerosene, which is a nonpolar solvent, and ultrasonically dispersing.

比較例3の酸化鉄粒子分散液の2次粒子径を、動的光散乱型粒度分布測定装置を用いて測定した結果を表1に示す。この結果、非極性溶媒にε−酸化鉄ナノ粒子を分散させると、ε−酸化鉄ナノ粒子の激しい凝集が生じることを確認した。   Table 1 shows the results of measuring the secondary particle size of the iron oxide particle dispersion of Comparative Example 3 using a dynamic light scattering particle size distribution analyzer. As a result, it was confirmed that when ε-iron oxide nanoparticles were dispersed in a nonpolar solvent, intense aggregation of ε-iron oxide nanoparticles occurred.

1 ナノコンポジット磁石
11 硬磁性相
12 軟磁性相
1 Nanocomposite magnet 11 Hard magnetic phase 12 Soft magnetic phase

Claims (4)

1次粒子径が100nm以下で、2次粒子径が500nm以下である酸化鉄粒子と、
エステル基と、スルホキシド基との少なくとも一方を有する極性溶媒を用いて前記酸化鉄粒子を分散させる分散液と、
を含むことを特徴とする酸化鉄粒子分散液。
Iron oxide particles having a primary particle diameter of 100 nm or less and a secondary particle diameter of 500 nm or less;
A dispersion in which the iron oxide particles are dispersed using a polar solvent having at least one of an ester group and a sulfoxide group;
An iron oxide particle dispersion characterized by containing.
前記酸化鉄粒子は、ε−Feと、γ−Feと、α−Feと、Feとから選択される1種又は2種以上である請求項1に記載の酸化鉄粒子分散液。 The iron oxide particles are one or more selected from ε-Fe 2 O 3 , γ-Fe 2 O 3 , α-Fe 2 O 3 , and Fe 3 O 4. The iron oxide particle dispersion described in 1. エステル基と、スルホキシド基との少なくとも一方を有する極性溶媒を用いて、1次粒子径が100nm以下かつ2次粒子径が500nm以下の酸化鉄粒子を分散させた酸化鉄粒子分散液を用いて作製されることを特徴とするナノコンポジット磁石。   Using a polar solvent having at least one of an ester group and a sulfoxide group, produced using an iron oxide particle dispersion in which iron oxide particles having a primary particle size of 100 nm or less and a secondary particle size of 500 nm or less are dispersed. Nanocomposite magnet characterized by being made. 前記酸化鉄粒子は、ε−Feと、γ−Feと、α−Feと、Feとから選択される1種又は2種以上である請求項3に記載のナノコンポジット磁石。 The iron oxide particles are one or more selected from ε-Fe 2 O 3 , γ-Fe 2 O 3 , α-Fe 2 O 3 , and Fe 3 O 4. The nanocomposite magnet according to 1.
JP2011072862A 2011-03-29 2011-03-29 Iron oxide particle dispersion liquid and nanocomposite magnet Withdrawn JP2012209376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011072862A JP2012209376A (en) 2011-03-29 2011-03-29 Iron oxide particle dispersion liquid and nanocomposite magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011072862A JP2012209376A (en) 2011-03-29 2011-03-29 Iron oxide particle dispersion liquid and nanocomposite magnet

Publications (1)

Publication Number Publication Date
JP2012209376A true JP2012209376A (en) 2012-10-25

Family

ID=47188889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011072862A Withdrawn JP2012209376A (en) 2011-03-29 2011-03-29 Iron oxide particle dispersion liquid and nanocomposite magnet

Country Status (1)

Country Link
JP (1) JP2012209376A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148502A1 (en) * 2013-03-18 2014-09-25 日立化成株式会社 Magnetic material, method for producing same, and coating liquid used to produce magnetic material
CN104347219A (en) * 2013-08-06 2015-02-11 日立化成株式会社 Composite magnetic material, method for manufacturing same and raw material components of composite magnetic material
WO2018193900A1 (en) * 2017-04-17 2018-10-25 キヤノン株式会社 Composite magnetic material, motor and method for producing composite magnetic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148502A1 (en) * 2013-03-18 2014-09-25 日立化成株式会社 Magnetic material, method for producing same, and coating liquid used to produce magnetic material
CN104347219A (en) * 2013-08-06 2015-02-11 日立化成株式会社 Composite magnetic material, method for manufacturing same and raw material components of composite magnetic material
WO2018193900A1 (en) * 2017-04-17 2018-10-25 キヤノン株式会社 Composite magnetic material, motor and method for producing composite magnetic material

Similar Documents

Publication Publication Date Title
Mishra et al. Conducting ferrofluid: a high-performance microwave shielding material
Liu et al. Controllable synthesis and enhanced microwave absorption properties of silane-modified Ni 0.4 Zn 0.4 Co 0.2 Fe 2 O 4 nanocomposites covered with reduced graphene oxide
US11264155B2 (en) Epsilon-type iron oxide magnetic particles and method for producing the same, magnetic powder, magnetic coating material and magnetic recording medium containing magnetic particles
JP5858419B2 (en) Method for producing ferromagnetic particle powder, anisotropic magnet, bonded magnet, and dust magnet
JP5347146B2 (en) Magnetic material, magnet, and method of manufacturing magnetic material
WO2015194647A1 (en) Magnetic iron oxide nanopowder and process for producing same
Hosseini et al. Nanocomposite based on epoxy and MWCNTs modified with NiFe2O4 nanoparticles as efficient microwave absorbing material
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
KR100520697B1 (en) Magnetic fluid and process for the production thereof
JP2014029024A (en) Iron cobalt ternary alloy nanoparticles with silica shells
JP2013069926A (en) Method for manufacturing ferromagnetic iron nitride grain powder, anisotropic magnet, bond magnet and powder-compact magnet
Aridi et al. Synthesis and characterization of ZnFe 2 O 4/Mn 2 O 3 nanocomposites
JP6461828B2 (en) Method for producing magnetic particles
JP6632702B2 (en) Method for producing Fe-Co alloy powder
WO2012101752A1 (en) Magnetic material, magnet and method of producing magnetic material
JP6718162B2 (en) Composite magnetic particle, radio wave absorber, and method for producing composite magnetic particle
JP2017201672A (en) Method for producing magnetic powder
JP2012209376A (en) Iron oxide particle dispersion liquid and nanocomposite magnet
Tago et al. Effect of silica-coating on crystal structure and magnetic properties of metallic nickel particles
KR102151390B1 (en) Method of nano particle-graphene composite and the nano particle-graphene composite manufactured by the same
US9431159B2 (en) Iron cobalt ternary alloy nanoparticles with silica shells and metal silicate interface
KR101601468B1 (en) Nanofluid having improved cooling efficiency
JP2017063156A (en) Iron-cobalt alloy powder, manufacturing method thereof, antenna, inductor and emi filter
KR20200038254A (en) Noise suppression sheet for near field
CN114906877A (en) Preparation method of cobalt ferrite capable of being compounded with LDPE (Low-Density polyethylene) to prepare magnetic nano dielectric medium

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130614

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603