JP2012209178A - Coin-shaped battery - Google Patents

Coin-shaped battery Download PDF

Info

Publication number
JP2012209178A
JP2012209178A JP2011075058A JP2011075058A JP2012209178A JP 2012209178 A JP2012209178 A JP 2012209178A JP 2011075058 A JP2011075058 A JP 2011075058A JP 2011075058 A JP2011075058 A JP 2011075058A JP 2012209178 A JP2012209178 A JP 2012209178A
Authority
JP
Japan
Prior art keywords
positive electrode
case
coin
electrode case
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011075058A
Other languages
Japanese (ja)
Inventor
Yukihiro Gotanda
幸宏 五反田
Shinji Fujii
慎二 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011075058A priority Critical patent/JP2012209178A/en
Publication of JP2012209178A publication Critical patent/JP2012209178A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that, under such case as exposed to a high temperature environment, a positive electrode case is expanded when the internal pressure of a battery rises to exceed an estimated level, discouraging contact between a positive electrode and the positive electrode case, resulting in rising of an internal resistance.SOLUTION: In a coin-shaped battery, a positive electrode 10 is arranged on the inner surface of a positive electrode case 13 which works as an external terminal as well. The positive electrode 10 faces a negative electrode 11 arranged on the inner surface of a negative electrode sealing plate 14 which works as an external terminal as well through a separator 12. The peripheral edges of the positive electrode case 13 and the negative electrode sealing plate 14 are sealed with a gasket 15 to hold an electrolyte inside it. At a position corresponding to the outer peripheral part of the positive electrode 10 on the inner bottom surface of the positive electrode case 13, a plurality of projections 13a are provided which more strongly contact to the peripheral surface of the positive electrode 10 because the positive electrode case 13 is expanded because of rising of internal pressure.

Description

本発明は各種携帯用電子機器などに用いられるコイン形電池に関するものである。   The present invention relates to a coin-type battery used for various portable electronic devices and the like.

コイン形電池はボタン形電池、偏平形電池とも称され、小型薄型である特徴を活かして腕時計やキーレスエントリーなど小型化が要求される場合や、OA機器やFA機器などのメモリーバックアップなど長期間の使用が要求される場合に広く用いられている。さらに各種のメータや測定機用電源にも採用され、その用途は拡大の一途にある。近年では自動車、産業機器などのより厳しい環境下で使用することが要望され、それと共に、さらなる高性能化のための改良が進められている。   Coin-type batteries are also called button-type batteries and flat-type batteries, and when small size is required such as wristwatches and keyless entry by taking advantage of their small and thin characteristics, or long-term backup such as memory backup for OA equipment and FA equipment. Widely used when required. It is also used for various meters and power supplies for measuring machines, and its use is expanding. In recent years, there has been a demand for use in more severe environments such as automobiles and industrial equipment, and at the same time, improvements for further higher performance are being promoted.

コイン形電池は、電池ケース内に正極と負極とをセパレータを介して対向配置し、電解液を充填した後、ガスケットを介して正極ケースの開口部を負極封口板でカシメ封口して形成されている。電気導通的には正極と負極がセパレータを介して積層され、それぞれ外部端子を兼ねる正極ケースと負極封口板と接触で導通を取る構成となっている。このようなコイン形電池では高温環境下に曝された場合など、電池内圧が上昇すると外装ケースが膨れ、正極と正極ケースとの接触が取りにくくなり、内部抵抗の上昇を起こす場合がある。   A coin-type battery is formed by placing a positive electrode and a negative electrode facing each other through a separator in a battery case, filling the electrolyte, and then caulking and sealing the opening of the positive electrode case with a negative electrode sealing plate via a gasket. Yes. In terms of electrical continuity, the positive electrode and the negative electrode are stacked via a separator, and are electrically connected to each other by contact with a positive electrode case that also serves as an external terminal and a negative electrode sealing plate. In such a coin-type battery, when the internal pressure of the battery rises, such as when exposed to a high temperature environment, the outer case swells, making it difficult to make contact between the positive electrode and the positive electrode case, which may increase the internal resistance.

そのため正極と正極ケースの内面との接触性を高めて、内部抵抗の上昇を抑制する工夫がなされている。例えば、特許文献1のコイン形電池では、正極ケースの内底面にばね等を配置して、そのばね等の反発力により正極と正極ケースとの接触性を確保することが開示されている。   Therefore, the device which raises the contact property of the positive electrode and the inner surface of a positive electrode case, and suppresses a raise of internal resistance is made | formed. For example, in the coin-type battery of Patent Document 1, it is disclosed that a spring or the like is disposed on the inner bottom surface of the positive electrode case, and the contact between the positive electrode and the positive electrode case is ensured by the repulsive force of the spring or the like.

特開平03−022346号公報Japanese Patent Laid-Open No. 03-022346

しかしながら特許文献1に示されている電池でも、縦方向のみの接触を導通のよりどころとしているため、想定を超えて電池内圧が上昇し外装ケースが膨れると、正極と正極ケースとの接触が取りにくくなり、内部抵抗の上昇を起こす場合があった。   However, even in the battery shown in Patent Document 1, since contact in the vertical direction is the basis for conduction, if the battery internal pressure rises beyond the assumption and the outer case swells, the contact between the positive electrode and the positive electrode case is removed. In some cases, the internal resistance increased.

本発明は、想定を超えて電池内圧が上昇し外装ケースが膨れた場合でも、正極と正極ケースとの接触抵抗の上昇を抑えられる高信頼性のコイン形電池を提供することを目的とする。   An object of the present invention is to provide a highly reliable coin-type battery that can suppress an increase in contact resistance between a positive electrode and a positive electrode case even when the internal pressure of the battery increases beyond the assumption and the outer case swells.

上記課題を解決するために本発明のコイン形電池は、外部端子を兼ねる正極ケースの内面に正極を配置し、この正極にセパレータを介して外部端子を兼ねる負極封口板の内面に配置した負極を対向させ、これらの正極ケースと封口板を内部に電解液を保持するように周縁部をガスケットを介して封口してなるコイン形電池において、前記正極ケースの内底面の正極の外周部に対応する位置に、正極ケースが内圧の上昇により膨れることにより正極の周面により強く接触する複数の突起を設けたことを特徴とするものである。   In order to solve the above problems, the coin-type battery of the present invention has a positive electrode disposed on the inner surface of a positive electrode case that also serves as an external terminal, and a negative electrode disposed on the inner surface of a negative electrode sealing plate that also serves as an external terminal via a separator. In the coin-type battery in which the positive electrode case and the sealing plate are opposed to each other and the peripheral edge thereof is sealed with a gasket so as to hold the electrolyte solution therein, it corresponds to the outer peripheral portion of the positive electrode on the inner bottom surface of the positive electrode case. A plurality of protrusions are provided at a position that come into stronger contact with the peripheral surface of the positive electrode when the positive electrode case swells due to an increase in internal pressure.

本発明によれば、外部端子を兼ねる正極ケースの内面に正極を配置し、この正極にセパレータを介して外部端子を兼ねる負極封口板の内面に配置した負極を対向させ、これらの正極ケースと負極封口板を内部に電解液を保持するように周縁部をガスケットを介して封口してなるコイン形電池において、想定を超えて電池内圧が上昇し外装ケースが膨れた場合でも、正極と正極ケースとの接触抵抗の上昇を抑えられる高信頼性のコイン形電池を提供することができる。   According to the present invention, the positive electrode is disposed on the inner surface of the positive electrode case also serving as the external terminal, and the negative electrode disposed on the inner surface of the negative electrode sealing plate also serving as the external terminal is opposed to the positive electrode via the separator. In a coin-type battery in which the peripheral part is sealed with a gasket so as to hold the electrolyte solution inside the sealing plate, even if the battery internal pressure rises beyond expectation and the outer case swells, the positive electrode and the positive electrode case It is possible to provide a highly reliable coin-type battery that can suppress an increase in contact resistance.

本発明の一実施の形態であるコイン形電池の構成を模式的に示す断面図Sectional drawing which shows typically the structure of the coin-type battery which is one embodiment of this invention 本発明の一実施の形態である円弧状の突起を形成した正極ケース底面の平面図The top view of the bottom face of the positive electrode case which formed the circular-arc-shaped protrusion which is one embodiment of this invention 本発明の一実施の形態である点状の突起を形成した正極ケース底面の平面図The top view of the bottom face of the positive electrode case which formed the dotted | punctate protrusion which is one embodiment of this invention 本発明の他の実施の形態であるコイン形電池の構成を模式的に示す断面図Sectional drawing which shows typically the structure of the coin-type battery which is other embodiment of this invention. 本発明の他の実施の形態であるコイン形電池の構成を模式的に示す断面図Sectional drawing which shows typically the structure of the coin-type battery which is other embodiment of this invention. 比較例のコイン形電池の構成を模式的に示す断面図Sectional drawing which shows the structure of the coin-type battery of a comparative example typically

本発明における第1の発明は、外部端子を兼ねる正極ケースの内面に正極を配置し、この正極にセパレータを介して外部端子を兼ねる負極封口板の内面に配置した負極を対向させ、これらの正極ケースと封口板を内部に電解液を保持するように周縁部をガスケットを介して封口してなるコイン形電池において、前記正極ケースの内底面の正極の外周部に対応する位置に、正極ケースが内圧の上昇により膨れることにより正極の周面により強く接触する複数の突起を設けたことを特徴とするコイン形電池である。   According to a first aspect of the present invention, a positive electrode is disposed on the inner surface of a positive electrode case that also serves as an external terminal, and the negative electrode disposed on the inner surface of a negative electrode sealing plate that also serves as an external terminal is opposed to the positive electrode via a separator. In a coin-type battery in which a peripheral portion is sealed with a gasket so as to hold an electrolyte solution inside the case and a sealing plate, the positive electrode case is located at a position corresponding to the outer peripheral portion of the positive electrode on the inner bottom surface of the positive electrode case. A coin-type battery comprising a plurality of protrusions that come into contact with the peripheral surface of the positive electrode by swelling due to an increase in internal pressure.

この構成により、外装ケースが膨れると弱くなる縦方向の接触だけでなく、外装ケースが膨れるほど強くなる横方向の接触を得られることから、想定を超えて電池内圧が上昇し外装ケースが膨れた場合でも、正極と正極ケースとの接触抵抗の上昇を抑えられる高信頼性のコイン形電池を提供することができる。   With this configuration, not only the vertical contact that weakens when the exterior case swells but also the lateral contact that becomes stronger as the exterior case swells, the battery internal pressure rises beyond the assumption and the exterior case swells. Even in this case, it is possible to provide a highly reliable coin-type battery that can suppress an increase in contact resistance between the positive electrode and the positive electrode case.

本発明における第2の発明は、第1の発明において、上記突起の先端が正極の中心側を向いた形状としたことを特徴とする。   According to a second aspect of the present invention, in the first aspect, the tip of the protrusion is shaped to face the center side of the positive electrode.

この構成により、少しの膨張でもより確実に正極と正極ケースとの接触を確保でき、高信頼性のコイン形電池を提供することができる。   With this configuration, contact between the positive electrode and the positive electrode case can be more reliably ensured even with a slight expansion, and a highly reliable coin-type battery can be provided.

本発明における第3の発明は、第1の発明において、前記突起が強く接触する正極の外周部に金属製のリングを配し、前記突起の内側への倒れを規制することにより正極ケースの膨れを抑える構成としたものである。   According to a third aspect of the present invention, in the first aspect of the present invention, a metal ring is disposed on the outer periphery of the positive electrode with which the protrusion is in strong contact, and the positive case swells by restricting the protrusion to the inside. It is set as the structure which suppresses.

この構成により、内圧が上昇し、正極ケースが膨れようとした場合、突起が金属製のリングによって正極の中心側に傾斜することが妨げられるため正極ケースの膨れも抑えられて高頼性のコイン形電池を提供することができる。   With this configuration, when the internal pressure rises and the positive electrode case is about to expand, the metal ring prevents the protrusion from inclining toward the center side of the positive electrode, so that the positive electrode case is prevented from expanding and the highly reliable coin A battery can be provided.

以下、本発明の実施の形態について説明する。なお、以下に示す実施の形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.

図1は、本発明の一実施の形態であるコイン形電池1の構成を模式的に示す半断面図である。コイン形電池1は、正極10、負極11、セパレータ12、正極側となる正極ケース13、負極側となる負極封口板14、ガスケット15および図示しない非水電解液を含むコイン形電池である。本実施の形態においてはコイン形リチウム一次電池を例に説明す
る。
FIG. 1 is a half sectional view schematically showing a configuration of a coin-type battery 1 according to an embodiment of the present invention. The coin-type battery 1 is a coin-type battery including a positive electrode 10, a negative electrode 11, a separator 12, a positive electrode case 13 on the positive electrode side, a negative electrode sealing plate 14 on the negative electrode side, a gasket 15, and a non-aqueous electrolyte (not shown). In this embodiment, a coin-type lithium primary battery will be described as an example.

正極10は、正極活物質、導電材および結着剤を含み、セパレータ12を介して負極11に対向するように設けられる。   The positive electrode 10 includes a positive electrode active material, a conductive material, and a binder, and is provided to face the negative electrode 11 with a separator 12 interposed therebetween.

正極活物質としてはリチウム一次電池の分野で常用されるものを使用でき、その中でも、フッ化黒鉛、金属酸化物などが好ましい。フッ化黒鉛としては、化学式CF(0.8≦x≦1.1)で表されるものが好ましい。フッ化黒鉛は、長期信頼性、安全性、高温安定性などの点で優れている。フッ化黒鉛は、石油コークス、人造黒鉛などをフッ素化して得られる。金属酸化物としては、二酸化マンガン、酸化銅などが挙げられる。正極活物質は1種を単独でまたは2種以上を組み合わせて使用できる。   As the positive electrode active material, those commonly used in the field of lithium primary batteries can be used, and among them, fluorinated graphite, metal oxides and the like are preferable. As the fluorinated graphite, those represented by the chemical formula CF (0.8 ≦ x ≦ 1.1) are preferable. Fluorinated graphite is excellent in terms of long-term reliability, safety, and high-temperature stability. Fluorinated graphite is obtained by fluorinating petroleum coke, artificial graphite and the like. Examples of the metal oxide include manganese dioxide and copper oxide. A positive electrode active material can be used individually by 1 type or in combination of 2 or more types.

導電材としてもリチウム一次電池の分野で常用されるものを使用でき、たとえば、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、人造黒鉛などの黒鉛類などを使用できる。導電材は1種を単独でまたは2種以上を組み合わせて使用できる。結着剤としてもリチウム一次電池の分野で常用されるものを使用でき、たとえば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、PVDFの変性体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体などのフッ素樹脂、スチレンブタジエンゴム(SBR)、変性アクリロニトリルゴム、エチレン−アクリル酸共重合体などが挙げられる。   As the conductive material, those commonly used in the field of lithium primary batteries can be used. For example, carbon black such as acetylene black and ketjen black, and graphite such as artificial graphite can be used. A conductive material can be used individually by 1 type or in combination of 2 or more types. As the binder, those commonly used in the field of lithium primary batteries can be used. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), modified PVDF, tetrafluoroethylene-hexafluoropropylene copolymer Copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer Polymer (ETFE resin), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene Pyrene - fluororesin such as tetrafluoroethylene copolymer, styrene-butadiene rubber (SBR), modified acrylonitrile rubber, ethylene - like acrylic acid copolymer.

結着剤は1種を単独でまたは2種以上を組み合わせて使用できる。   A binder can be used individually by 1 type or in combination of 2 or more types.

負極11は、リチウムまたはリチウム合金を含有し、セパレータ12を介して正極10に対向するように設けられる。リチウム合金としては、リチウム一次電池の分野で常用されるものを使用でき、たとえば、Li−Al、Li−Sn、Li−NiSi、Li−Pbなどが挙げられる。   The negative electrode 11 contains lithium or a lithium alloy, and is provided so as to face the positive electrode 10 with the separator 12 interposed therebetween. As the lithium alloy, those commonly used in the field of lithium primary batteries can be used, and examples thereof include Li—Al, Li—Sn, Li—NiSi, and Li—Pb.

セパレータ12としては、コイン形電池の分野で常用されるものを使用でき、正極10と負極11とが短絡することを防止できるのであれば特に制限される訳ではなく、さらに非水電解液の浸透性に優れ、イオンの移動抵抗とならないことが望ましい。代表的な素材としてはポリオレフィン、ポリエステル、ポリカーボネート、ポリアクリレート、ポリメタクリレート、ポリアミド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリスルホン、ポリエーテルスルホン、ポリベンズイミダゾール、ポリエーテルエーテルケトン、ポリフェニレンなどが挙げられ、形状としては不織布、微多孔フィルムなどが挙げられる。   The separator 12 is not particularly limited as long as it can prevent the short-circuit between the positive electrode 10 and the negative electrode 11 as long as it can be used in the coin-type battery field. It is desirable that it has excellent properties and does not become an ion migration resistance. Typical materials include polyolefin, polyester, polycarbonate, polyacrylate, polymethacrylate, polyamide, polytetrafluoroethylene, polyvinylidene fluoride, polysulfone, polyethersulfone, polybenzimidazole, polyetheretherketone, polyphenylene, etc. Examples of the shape include a nonwoven fabric and a microporous film.

非水電解液は、溶質および非水溶媒を含有する。   The nonaqueous electrolytic solution contains a solute and a nonaqueous solvent.

溶質としては、リチウム一次電池の分野で常用されるものを使用でき、たとえば、六フッ化リン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、リチウム・ビスペンタフルオロエチルスルホン酸イミド(LiN(SO)、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(CFSO)、リチウムトリス(トリフルオロメチ
ルスルホニル)メチド(LiC(CFSO)、過塩素酸リチウム(LiClO)などが挙げられる。溶質は1種を単独でまたは2種以上を組み合わせて使用できる。
As the solute, those commonly used in the field of lithium primary batteries can be used. For example, lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) , Lithium-bispentafluoroethylsulfonic acid imide (LiN (SO 2 C 2 F 5 ) 2 ), lithium bis (trifluoromethylsulfonyl) imide (LiN (CF 3 SO 2 ) 2 ), lithium tris (trifluoromethylsulfonyl) ) Methide (LiC (CF 3 SO 2 ) 3 ), lithium perchlorate (LiClO 4 ) and the like. Solutes can be used alone or in combination of two or more.

非水溶媒としても、リチウム一次電池の分野で常用されるものを使用でき、たとえば、γ−ブチロラクトン(γ−BL)、γ−バレロラクトン(γ−VL)、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状炭酸エステル、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、1,3−ジオキソラン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、N,N−ジメチルホルムアミド、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体などが挙げられる。非水溶媒は1種を単独でまたは2種以上を組み合わせて使用できる。   As the non-aqueous solvent, those commonly used in the field of lithium primary batteries can be used. For example, γ-butyrolactone (γ-BL), γ-valerolactone (γ-VL), propylene carbonate (PC), ethylene carbonate ( EC), cyclic carbonates such as 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), 1,3-dioxolane, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), N, N-dimethylformamide, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, trimethoxyme Emissions, dioxolane derivatives, sulfolane, methyl sulfolane, propylene carbonate derivatives, tetrahydrofuran derivatives. A non-aqueous solvent can be used individually by 1 type or in combination of 2 or more types.

非水電解液における溶質濃度は特に制限されないが、好ましくは0.5〜1.5mol/Lである。溶質濃度が0.5mol/L未満では、室温での放電特性または長期保存後の放電特性が低下するおそれがある。溶質濃度が1.5mol/Lを超えると、−40℃程度の低温環境下では、非水電解液の粘度上昇およびイオン伝導度の低下が顕著になるおそれがある。   The solute concentration in the nonaqueous electrolytic solution is not particularly limited, but is preferably 0.5 to 1.5 mol / L. If the solute concentration is less than 0.5 mol / L, the discharge characteristics at room temperature or the discharge characteristics after long-term storage may be deteriorated. If the solute concentration exceeds 1.5 mol / L, the increase in viscosity and decrease in ionic conductivity of the nonaqueous electrolyte solution may become prominent under a low temperature environment of about −40 ° C.

正極ケース13は、正極集電体および正極端子を兼ねる。正極ケース13の内底面には、正極10の外周部に対応する位置に正極ケース13が内圧の上昇により膨れることにより正極10の周面により強く接触する、正極10の外周部に点在する複数の突起13aが設けられている。突起13aの形態は全周がつながった一つの円でなければ、図2に示すように、円弧状のものでも、図3に示すように点状のものでも構わない。また、正極ケース13の内底面を加工したものでも、正極ケース13の内底面に溶接等で固定したものでも構わない。   The positive electrode case 13 serves as a positive electrode current collector and a positive electrode terminal. On the inner bottom surface of the positive electrode case 13, the positive electrode case 13 comes into contact with the peripheral surface of the positive electrode 10 more strongly as the positive pressure case 13 swells due to an increase in internal pressure at positions corresponding to the outer peripheral portion of the positive electrode 10. The protrusion 13a is provided. As long as the shape of the protrusion 13a is not a single circle with the whole circumference connected, it may be an arc shape as shown in FIG. 2 or a dot shape as shown in FIG. Moreover, what processed the inner bottom face of the positive electrode case 13 and what was fixed to the inner bottom face of the positive electrode case 13 by welding etc. may be sufficient.

また、突起13aの先端が正極の中心側を向いた形状であることが好ましい。この構成により、少しの膨張でもより確実に正極と正極ケースとの接触を確保でき、高信頼性のコイン形電池を提供することができる。   Moreover, it is preferable that the tip of the protrusion 13a has a shape facing the center side of the positive electrode. With this configuration, contact between the positive electrode and the positive electrode case can be more reliably ensured even with a slight expansion, and a highly reliable coin-type battery can be provided.

さらに、突起13aが接触する正極の外周部に金属製のリングを配しているとより好ましい。この構成により、内圧が上昇し、正極ケースが膨れようとした場合、突起が金属製のリングによって正極の中心側に傾斜することが妨げられるため正極ケースの膨れも抑えられて高頼性のコイン形電池を提供することができる。   Furthermore, it is more preferable that a metal ring is disposed on the outer peripheral portion of the positive electrode with which the protrusion 13a contacts. With this configuration, when the internal pressure rises and the positive electrode case is about to expand, the metal ring prevents the protrusion from inclining toward the center side of the positive electrode, so that the positive electrode case is prevented from expanding and the highly reliable coin A battery can be provided.

負極封口板14は、負極集電体および負極端子を兼ねる。ガスケット15はリング状で、その断面はL字状に形成されており、主に、正極ケース13と負極封口板14とを絶縁する。正極ケース13、負極封口板14およびガスケット15は、リチウム一次電池の分野で常用されるものを使用できる。正極ケース13および負極封口板14には、たとえば、ステンレス鋼製のものを使用できる。ガスケット15には、たとえば、ポリプロピレンなどの合成樹脂製のものを使用できる。   The negative electrode sealing plate 14 also serves as a negative electrode current collector and a negative electrode terminal. The gasket 15 is ring-shaped and has a L-shaped cross section, and mainly insulates the positive electrode case 13 and the negative electrode sealing plate 14. As the positive electrode case 13, the negative electrode sealing plate 14, and the gasket 15, those commonly used in the field of lithium primary batteries can be used. For the positive electrode case 13 and the negative electrode sealing plate 14, for example, those made of stainless steel can be used. For the gasket 15, for example, a synthetic resin such as polypropylene can be used.

そして、上記正極ケース13と、負極封口板14は内部に電解液を保持するように周縁部をガスケット15を介してカシメ封口される。   The positive electrode case 13 and the negative electrode sealing plate 14 are caulked and sealed at the peripheral edge via a gasket 15 so as to hold the electrolytic solution therein.

以下に実施例および比較例を挙げ、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
図1に示すコイン形電池を作製した。
Example 1
A coin-type battery shown in FIG. 1 was produced.

1)正極の作製
450℃で熱処理した二酸化マンガン(正極活物質)100質量部および黒鉛(導電材)10質量部を乾式混合し、得られた乾式混合物にポリテトラフルオロエチレン(結着剤)5質量部を添加してさらに混練し、得られた混練物を乾燥および粉砕して、粉末状の正極合剤を調製した。この正極合剤を、直径14.0mmの円柱状金型に充填し、加圧成形してディスク状の正極10を作製した。
1) Production of positive electrode 100 parts by mass of manganese dioxide (positive electrode active material) heat-treated at 450 ° C. and 10 parts by mass of graphite (conductive material) were dry-mixed, and polytetrafluoroethylene (binder) 5 was added to the obtained dry-type mixture. Mass parts were added and further kneaded, and the obtained kneaded product was dried and pulverized to prepare a powdered positive electrode mixture. This positive electrode mixture was filled in a cylindrical mold having a diameter of 14.0 mm and pressure-molded to produce a disk-shaped positive electrode 10.

2)負極の作製
負極活物質には、リチウム金属を用いた。リチウム金属の箔を打ち抜いてディスク状の負極11とし、ガスケット15を装着した負極封口板14の内面に圧着した。
2) Production of negative electrode Lithium metal was used for the negative electrode active material. A lithium metal foil was punched out to form a disc-shaped negative electrode 11, which was pressure-bonded to the inner surface of the negative electrode sealing plate 14 equipped with a gasket 15.

3)セパレータ
厚さ100μmのポリプロピレン製不織布を円形に打ち抜き、カップ状に成型してセパレータ12を作製した。
3) Separator A polypropylene nonwoven fabric having a thickness of 100 μm was punched out into a circular shape and molded into a cup shape to produce a separator 12.

4)非水電解液の調製
プロピレンカーボネートと1,2−ジメトキシエタンの混合溶媒に、過塩素酸リチウムを1mol/Lの比率で溶解させたものを用いた。
4) Preparation of non-aqueous electrolyte A solution obtained by dissolving lithium perchlorate at a ratio of 1 mol / L in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane was used.

5)電池の組み立て
正極ケース13の内側面に封止剤を塗布し、図2に示すような内底面上の円弧状の突起13aの内側に正極10を載置してその上にセパレータ12を被せた後、非水電解液1.0gを正極ケース13内に注液し、正極10とセパレータ12に電解液を含浸させた。次に、負極11が圧着された負極封口板14を、負極11と正極10とが対向するように正極ケース13に装着し、正極ケース13の周縁端部を負極封口板14に装着されたガスケット15を介してカシメ封口し、実施例1のコイン形電池(直径20mm、厚さ3.2mm)を作製した。上記組立工程は、露点−40℃以下のドライエア中で行った。
5) Battery assembly A sealant is applied to the inner surface of the positive electrode case 13, the positive electrode 10 is placed inside the arc-shaped protrusion 13a on the inner bottom surface as shown in FIG. After covering, 1.0 g of non-aqueous electrolyte was poured into the positive electrode case 13, and the positive electrode 10 and the separator 12 were impregnated with the electrolyte. Next, the negative electrode sealing plate 14 to which the negative electrode 11 is crimped is attached to the positive electrode case 13 so that the negative electrode 11 and the positive electrode 10 face each other, and the peripheral edge of the positive electrode case 13 is attached to the negative electrode sealing plate 14. The coin-type battery of Example 1 (diameter 20 mm, thickness 3.2 mm) was produced. The assembly process was performed in dry air with a dew point of −40 ° C. or lower.

(実施例2)
図4に示すように、正極ケース13の内底面の突起13aの先端が中心側を向いたものを用いた以外は、実施例1と同様にして実施例2のコイン形電池を作製した。
(Example 2)
As shown in FIG. 4, a coin-type battery of Example 2 was fabricated in the same manner as Example 1 except that the tip of the protrusion 13a on the inner bottom surface of the positive electrode case 13 faced the center side.

(実施例3)
図5に示すように、正極10の外周部に金属製のリング16を配した以外は、実施例1と同様にして実施例3のコイン形電池を作製した。
(Example 3)
As shown in FIG. 5, a coin-type battery of Example 3 was fabricated in the same manner as in Example 1 except that a metal ring 16 was provided on the outer peripheral portion of the positive electrode 10.

(比較例1)
図6に示すように、正極ケース13に内底面の突起13aの無いものを用いた以外は、実施例1と同様にして比較例1のコイン形電池を作製した。
(Comparative Example 1)
As shown in FIG. 6, a coin-type battery of Comparative Example 1 was fabricated in the same manner as in Example 1 except that the positive electrode case 13 without the inner bottom protrusion 13a was used.

実施例1、2、3および比較例1で得られたコイン形電池を20個作製し、85℃で30日間高温保存試験を行った。高温保存試験での内部抵抗および電池厚みの比較を表1に示す。   Twenty coin-type batteries obtained in Examples 1, 2, 3 and Comparative Example 1 were produced and subjected to a high temperature storage test at 85 ° C. for 30 days. Table 1 shows a comparison of internal resistance and battery thickness in the high temperature storage test.

表1から分かるように、本発明の実施例1〜3のコイン形電池においては高温保存試験で内部抵抗の上昇が抑えられている。一方、比較例1では内部抵抗のばらつきが大きく、上昇するものがあった。   As can be seen from Table 1, in the coin batteries of Examples 1 to 3 of the present invention, the increase in internal resistance was suppressed in the high temperature storage test. On the other hand, in Comparative Example 1, there was a large increase in the internal resistance variation.

これは本発明の実施例1〜3においては、高温保存時の温度上昇による内圧の上昇に伴なう外装ケースの膨れにより、正極ケースの内底面と正極との縦方向の接触が弱くなった場合でも、正極ケースの内底面に設けられた突起と正極の外周部とがケースが膨れるほどより強く接触する横方向の接触が得られることにより、内部抵抗の上昇を抑制したのに対し、比較例1では正極ケースの内底面と正極との縦方向の接触のみであり、想定を超えてケースが膨れると接触が不十分となり、内部抵抗の上昇する場合があるものと考えられる。   In Examples 1 to 3 of the present invention, the longitudinal contact between the inner bottom surface of the positive electrode case and the positive electrode was weakened due to the swelling of the outer case accompanying the increase in internal pressure due to the temperature increase during high temperature storage. Even in this case, the increase in internal resistance was suppressed by obtaining a lateral contact in which the protrusion provided on the inner bottom surface of the positive electrode case and the outer peripheral portion of the positive electrode contacted more strongly as the case expanded. In Example 1, only the contact between the inner bottom surface of the positive electrode case and the positive electrode is only in the vertical direction. If the case swells beyond the assumption, the contact may be insufficient, and the internal resistance may increase.

また、同じく表1から分かるように、本発明の実施例3のコイン形電池においては高温保存試験での電池厚みの上昇が抑えられている。一方、比較例1では電池厚みが上昇するものがあり、実施例1、2の電池でも比較例と比べての抑制効果はわずかである。これは本発明の実施例3においては、高温保存時の温度上昇による内圧の上昇時に、正極ケースの内底面に設けられた突起と正極外周部の金属製のリングが作用し前記突起の内側への倒れを規制することによりケースの膨れを抑えたのに対し、比較例1では膨れを規制するものがなく、また実施例1、2でも突起の正極への食い込みが起こるため膨れの抑制効果がわずかであったものと考えられる。   Similarly, as can be seen from Table 1, in the coin battery of Example 3 of the present invention, the increase in battery thickness in the high temperature storage test is suppressed. On the other hand, in Comparative Example 1, the battery thickness increases, and even the batteries of Examples 1 and 2 have a slight suppression effect compared to the comparative example. In Embodiment 3 of the present invention, when the internal pressure increases due to temperature increase during high temperature storage, the protrusion provided on the inner bottom surface of the positive electrode case and the metal ring on the outer periphery of the positive electrode act to move the inside of the protrusion. In contrast to the fact that the swelling of the case was suppressed by restricting the collapse of the case, in Comparative Example 1, there was no restriction on the swelling, and in Examples 1 and 2, the protrusions bite into the positive electrode, so that the swelling was suppressed. It is thought that it was slight.

なお、本実施例においては、コイン形リチウム一次電池を用いた例を示したが、コイン形リチウム一次電池に限らず、コイン形リチウム二次電池など、コイン形の形状を有する電池に適用されることは言うまでもない。   In the present embodiment, an example using a coin-type lithium primary battery has been shown. However, the present invention is not limited to a coin-type lithium primary battery, but can be applied to a coin-shaped battery such as a coin-type lithium secondary battery. Needless to say.

本発明によれば、外部端子を兼ねる正極ケースの内面に正極を配置し、この正極にセパレータを介して外部端子を兼ねる負極封口板の内面に配置した負極を対向させ、これらの正極ケースと負極封口板を内部に電解液を保持するように周縁部をガスケットを介して封口してなるコイン形電池において、想定を超えて電池内圧が上昇し外装ケースが膨れた場合でも、正極と正極ケースとの接触抵抗の上昇を抑えられる高信頼性のコイン形電池を提供することができ、産業上有用である。   According to the present invention, the positive electrode is disposed on the inner surface of the positive electrode case also serving as the external terminal, and the negative electrode disposed on the inner surface of the negative electrode sealing plate also serving as the external terminal is opposed to the positive electrode via the separator. In a coin-type battery in which the peripheral part is sealed with a gasket so as to hold the electrolyte solution inside the sealing plate, even if the battery internal pressure rises beyond expectation and the outer case swells, the positive electrode and the positive electrode case It is possible to provide a highly reliable coin-type battery that can suppress an increase in the contact resistance, and is industrially useful.

1 コイン形電池
10 正極
11 負極
12 セパレータ
13 正極ケース
13a 突起
14 負極封口板
15 ガスケット
16 リング
DESCRIPTION OF SYMBOLS 1 Coin type battery 10 Positive electrode 11 Negative electrode 12 Separator 13 Positive electrode case 13a Protrusion 14 Negative electrode sealing plate 15 Gasket 16 Ring

Claims (3)

外部端子を兼ねる正極ケースの内面に正極を配置し、この正極にセパレータを介して外部端子を兼ねる負極封口板の内面に配置した負極を対向させ、これらの正極ケースと封口板を内部に電解液を保持するように周縁部をガスケットを介して封口してなるコイン形電池において、前記正極ケースの内底面の正極の外周部に対応する位置に、正極ケースが内圧の上昇により膨れることにより正極の周面により強く接触する複数の突起を設けたことを特徴とするコイン形電池。 The positive electrode is disposed on the inner surface of the positive electrode case also serving as the external terminal, and the negative electrode disposed on the inner surface of the negative electrode sealing plate also serving as the external terminal is opposed to the positive electrode via the separator, and the positive electrode case and the sealing plate are disposed inside the electrolyte solution. In the coin-type battery in which the peripheral edge is sealed with a gasket so as to hold the positive electrode case, the positive electrode case swells due to an increase in internal pressure at a position corresponding to the outer peripheral portion of the positive electrode on the inner bottom surface of the positive electrode case. A coin-type battery comprising a plurality of protrusions that come into stronger contact with a peripheral surface. 前記突起の先端が正極の中心側を向いた形状とした請求項1記載のコイン形電池。 The coin-type battery according to claim 1, wherein the tip of the protrusion is shaped to face the center side of the positive electrode. 前記突起が強く接触する正極の外周部に金属製のリングを配し、前記突起の内側への倒れを規制することにより正極ケースの膨れを抑える構成とした請求項1記載のコイン形電池。 The coin-type battery according to claim 1, wherein a metal ring is disposed on an outer peripheral portion of the positive electrode with which the protrusion is in strong contact, and the expansion of the positive electrode case is suppressed by restricting the inward tilt of the protrusion.
JP2011075058A 2011-03-30 2011-03-30 Coin-shaped battery Withdrawn JP2012209178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011075058A JP2012209178A (en) 2011-03-30 2011-03-30 Coin-shaped battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011075058A JP2012209178A (en) 2011-03-30 2011-03-30 Coin-shaped battery

Publications (1)

Publication Number Publication Date
JP2012209178A true JP2012209178A (en) 2012-10-25

Family

ID=47188742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011075058A Withdrawn JP2012209178A (en) 2011-03-30 2011-03-30 Coin-shaped battery

Country Status (1)

Country Link
JP (1) JP2012209178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208982A1 (en) 2021-03-30 2022-10-06 日本碍子株式会社 Coin-type lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208982A1 (en) 2021-03-30 2022-10-06 日本碍子株式会社 Coin-type lithium ion secondary battery
KR20230151544A (en) 2021-03-30 2023-11-01 엔지케이 인슐레이터 엘티디 Coin type lithium ion secondary battery

Similar Documents

Publication Publication Date Title
CN105977403B (en) Nonaqueous electrolyte secondary battery
KR101954557B1 (en) Non-aqueous electrolyte secondary battery
TWI644466B (en) Nonaqueous electrolyte secondary battery
KR20150126820A (en) Lithium ion secondary battery
TWI641170B (en) Nonaqueous electrolyte secondary battery
JP2011198530A (en) Nonaqueous electrolyte secondary battery
WO2015046492A1 (en) Electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2008041504A (en) Nonaqueous electrolyte battery
JP2005209411A (en) Nonaqueous electrolyte secondary battery
CN107078312B (en) Non-aqueous electrolyte primary battery and method for manufacturing same
TWI673901B (en) Nonaqueous electrolyte secondary battery
JP2016062872A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2012155957A (en) Cylindrical lithium-ion battery
JP2003243036A (en) Cylindrical lithium secondary battery
JP2007257958A (en) Battery
US20240178522A1 (en) Cylindrical battery
JP2011159413A (en) Coin-shaped battery
JP5407347B2 (en) Lithium primary battery
US9577238B2 (en) Flat-shaped battery
JP2012209178A (en) Coin-shaped battery
JP7182108B2 (en) Cylindrical secondary battery
CN114902455A (en) Lithium primary battery and nonaqueous electrolyte for lithium primary battery
JP2011076856A (en) Coin-shaped battery
JP6648202B2 (en) Non-aqueous electrolyte secondary battery
JP2013134842A (en) Coin type lithium cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603