JP2012209131A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2012209131A
JP2012209131A JP2011073892A JP2011073892A JP2012209131A JP 2012209131 A JP2012209131 A JP 2012209131A JP 2011073892 A JP2011073892 A JP 2011073892A JP 2011073892 A JP2011073892 A JP 2011073892A JP 2012209131 A JP2012209131 A JP 2012209131A
Authority
JP
Japan
Prior art keywords
battery
electrode body
laminated
electrode plate
auxiliary sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011073892A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Kurahashi
智佳 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011073892A priority Critical patent/JP2012209131A/en
Publication of JP2012209131A publication Critical patent/JP2012209131A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery in which removal of air bubbles generated in a stacked electrode body is promoted to improve battery performance with a simple configuration.SOLUTION: A battery 1 includes a stacked electrode body 6 in which a first electrode plate and a second electrode plate are stacked with a separator 5 in between, an electrolytic solution or electrolyte, a first electrode terminal connected electrically to the first electrode plate, and a second electrode terminal connected electrically to the second electrode plate. It further includes a battery can in which the electrolytic solution or electrolyte and the stacked electrode body 6 are stored in a sealed manner, and a throttling part which is formed between the stacked electrode body and the battery can in such manner as integral with or separate from the battery can, with its thickness gradually decreasing as advances in throttling direction.

Description

本発明は、電池、特に電池性能を向上した電池に関する。   The present invention relates to a battery, particularly a battery with improved battery performance.

電池には、放電のみ行う一次電池や充放電が可能な二次電池が存在する。これらは一般的に、電極板、すなわち正極板および負極板がセパレータを介して積層された積層電極体を電解液等とともに電池容器に密閉した構成をしている。
そして、電池の充電または放電の際には、正極活物質、負極活物質、または電解液等の反応により、一般的に電池容器の内部に気泡が発生する。
当該気泡が積層電極体の内部に滞留すると、積層電極体の電極板のうち当該気泡に接触している部分は電極板間のイオン伝導への寄与が困難となるため、電池性能が劣化する恐れがある。
このため、電池容器の内部に当該気泡の流路を形成して、電池性能の劣化を防止する電池(特許文献1及び特許文献2参照)が開発されている。
There are primary batteries that perform only discharge and secondary batteries that can be charged and discharged. These generally have a structure in which an electrode plate, that is, a laminated electrode body in which a positive electrode plate and a negative electrode plate are laminated via a separator is sealed together with an electrolytic solution or the like in a battery container.
When the battery is charged or discharged, bubbles are generally generated inside the battery container due to a reaction of the positive electrode active material, the negative electrode active material, the electrolytic solution, or the like.
If the bubbles stay inside the laminated electrode body, the portion of the electrode plate of the laminated electrode body that is in contact with the bubbles is difficult to contribute to ionic conduction between the electrode plates, which may deteriorate the battery performance. There is.
For this reason, a battery (see Patent Document 1 and Patent Document 2) has been developed in which the bubble channel is formed inside the battery container to prevent deterioration of battery performance.

特開2003−282143号公報JP 2003-282143 A 特開2003−151635号公報JP 2003-151635 A

しかしながら、特許文献1の電池は、電池容器の壁面と積層電極体との間に気泡の流路を形成したスペーサを配置するものであるため、積層電極体の内部で発生した気泡の除去を十分に行うことは困難であった。
一方、特許文献2の電池は、積層電極体内部に気泡の流路を形成した部材であるガラス繊維を配置しているので、積層電極体の内部で発生した気泡の除去も可能である。しかし、積層電極体の内部に電極板とセパレータ以外の当該部材を配置する必要があるので、電池性能を同じくした場合の電池の寸法は、当該部材を配置しない電池の方が当該部材を配置する電池に比べ小型化が可能となる。すなわち、当該部材を配置することで、電池が大型化する恐れがある。また、当該部材を加える必要があるため、製造コストが上昇する恐れがある。
そこで、本発明は、積層電極体の内部に上記部材を配置しない簡易な構成で、積層電極体の内部で発生した気泡の除去を促進し、これにより電池性能を向上した電池を提供することを目的とする。
However, since the battery of Patent Document 1 is provided with a spacer in which a bubble channel is formed between the wall surface of the battery container and the laminated electrode body, it is sufficient to remove bubbles generated inside the laminated electrode body. It was difficult to do.
On the other hand, in the battery of Patent Document 2, since the glass fiber, which is a member in which a bubble channel is formed, is disposed inside the laminated electrode body, the bubbles generated inside the laminated electrode body can be removed. However, since it is necessary to arrange the members other than the electrode plate and the separator inside the laminated electrode body, the size of the battery when the battery performance is the same is arranged in the battery without arranging the member. The size can be reduced as compared with the battery. That is, the battery may be enlarged by arranging the member. Moreover, since it is necessary to add the said member, there exists a possibility that manufacturing cost may rise.
Accordingly, the present invention provides a battery with improved battery performance by facilitating the removal of bubbles generated inside the laminated electrode body with a simple configuration in which the above members are not arranged inside the laminated electrode body. Objective.

上記目的を達成するために、本発明の電池は、セパレータを介して第1電極板と第2電極板とが積層された積層電極体と、電解液又は電解質と、前記第1電極板に電気的に接続された第1電極端子と、前記第2電極板に電気的に接続された第2電極端子とを備え、前記電解液又は前記電解質と前記積層電極体とを密閉して収納した電池容器と、前記積層電極体と前記電池容器との間に前記電池容器と一体又は別体に形成され、且つ、絞り出し方向に進むに従って次第にその厚みを減少する絞り出し部とを有することを特徴とする。 In order to achieve the above object, a battery according to the present invention includes a laminated electrode body in which a first electrode plate and a second electrode plate are laminated via a separator, an electrolytic solution or an electrolyte, and an electric current connected to the first electrode plate. Battery comprising: a first electrode terminal connected to the second electrode terminal; and a second electrode terminal electrically connected to the second electrode plate, wherein the electrolyte solution or the electrolyte and the laminated electrode body are hermetically sealed. And a squeezing portion formed integrally or separately with the battery container between the stacked electrode body and the battery container and gradually reducing its thickness as it advances in the squeezing direction. .

すなわち、電池は充電又は放電の際に積層電極体が膨張するが、電池容器と積層電極体との間に絞り出し部を有することで、当該膨張に伴い、電池容器の内部で発生した気泡を絞り出し方向へ絞り出すとともに当該気泡を浮かび上がらせることができる。すなわち、当該気泡の浮上を促進して当該気泡が積層電極体の内部に滞留することを防止することができるので、優れた性能を示す電池を提供することが可能となる。   That is, when the battery is charged or discharged, the laminated electrode body expands, but by having a squeezed portion between the battery container and the laminated electrode body, bubbles generated inside the battery container with the expansion are squeezed out. The bubbles can be lifted up while squeezing in the direction. That is, since the bubbles can be promoted to be prevented from staying inside the laminated electrode body, a battery having excellent performance can be provided.

本発明の電池によれば、簡易な構成で、積層電極体の内部で発生した気泡の除去を促進し、これにより電池性能を向上した電池を提供することができる。   According to the battery of the present invention, it is possible to provide a battery with improved battery performance by promoting the removal of bubbles generated inside the laminated electrode body with a simple configuration.

本発明の実施形態の電池の概要図である。図1(a)は、電池の正面からの透視概要図であり、図1(b)は、図1(a)のA−A´線におけるYZ断面概要図である。It is a schematic diagram of the battery of an embodiment of the present invention. 1A is a schematic perspective view from the front of the battery, and FIG. 1B is a schematic YZ cross-sectional view taken along line AA ′ of FIG. 1A. 図1に示した第1補助シート12aの概要図である。図2(a)は、最も近接する電池容器の壁面側の面のXZ平面概要図であり、図2(b)は、YZ平面概要図であり(ただし、当該壁面から遠ざかる方向が+Y方向)である。また、図2(c)は、図2(a)のB−B´線におけるXY断面概要図であり、図2(d)は、図2(a)のC−C´線におけるXY断面概要図である。It is a schematic diagram of the 1st auxiliary sheet | seat 12a shown in FIG. FIG. 2A is an XZ plane schematic diagram of the surface on the wall surface side of the closest battery case, and FIG. 2B is a YZ plane schematic diagram (however, the direction away from the wall surface is the + Y direction). It is. 2C is a schematic cross-sectional view taken along line BB ′ of FIG. 2A, and FIG. 2D is a schematic cross-sectional view taken along line CC ′ of FIG. 2A. FIG. 図1の電池の変形例を示し且つ図1(b)に相当する断面概要図である。FIG. 2 is a schematic cross-sectional view illustrating a modification of the battery of FIG. 1 and corresponding to FIG.

本発明の実施形態に係る電池は、積層電極体と電池容器の間に、電池容器と一体又は別体に形成され、且つ、後述の「絞り出し方向」に進むに従って次第にその厚みを減少する後述の「絞り出し部」により、電池の充電または放電による積層電極体の体積変化を利用して積層電極体の各電極板付近で発生した気泡を当該絞り出し方向へ絞り出し、結果として当該気泡の浮力の働く方向(重力の働く方向と逆方向)へ当該気泡を浮かび上がらせ(以下、「絞り出し機能」という)、これら電極板への当該気泡の滞留を低減すること特徴の1つとしている。以下、図面を参照しながら、詳述する。
なお、実施形態及びその変形例の電池としては、一次電池または二次電池等のいずれの電池でも用いることが可能であるが、ここでは電池の一例として、充放電可能な電池、例えば蓄電池であるリチウムイオン二次電池を用いて説明する。
The battery according to the embodiment of the present invention is formed between the laminated electrode body and the battery container, or is formed integrally with or separately from the battery container, and gradually decreases in thickness as it proceeds in the “squeezing direction” described later. The “squeezing part” uses the volume change of the laminated electrode body due to charging or discharging of the battery to squeeze out bubbles generated near each electrode plate of the laminated electrode body in the squeezing direction, and as a result, the direction in which the buoyancy of the bubbles works One feature is to reduce the retention of the bubbles in these electrode plates by floating the bubbles in the direction opposite to the direction in which gravity acts (hereinafter referred to as “squeezing function”). Hereinafter, it will be described in detail with reference to the drawings.
In addition, as a battery of embodiment and its modification, although any battery, such as a primary battery or a secondary battery, can be used, it is a battery which can be charged / discharged as an example of a battery, for example, a storage battery. A description will be given using a lithium ion secondary battery.

以下、本実施形態の電池1につき図1を参照して説明する。まず、電池1の構成の概要を説明した後、上記「絞り出し機能」につき説明する。
図1(a)は、電池1の正面(XZ平面)からの透視概要図であり、図1(b)は、図1(a)のA−A´線のYZ平面における断面概要図である。なお、以下で使用する図1は、いずれも同一の直交座標系を用いている。また、図1(a)は理解促進のための概要図であるため、図1(b)に示した各構成が全て記載されているわけではない。
Hereinafter, the battery 1 of the present embodiment will be described with reference to FIG. First, the outline of the configuration of the battery 1 will be described, and then the “squeezing function” will be described.
FIG. 1A is a perspective schematic view from the front (XZ plane) of the battery 1, and FIG. 1B is a schematic cross-sectional view in the YZ plane of the AA ′ line of FIG. . Note that FIG. 1 used below uses the same orthogonal coordinate system. Moreover, since FIG. 1A is a schematic diagram for promoting understanding, not all the components shown in FIG. 1B are described.

まず、電池1は、XY平面上に略矩形の形状の底面をもち且つ当該略矩形の全ての辺からZ軸方向へ伸びる壁面をもつ角型の導電性(例えば、アルミニウム合金等の金属製)の容器本体2と、容器本体2に収納され且つ正極板3と負極板4とがセパレータ5を介して積層された積層電極体6と、積層電極体6を容器本体2に収納後に容器本体2を密閉する蓋7とを備えている(容器本体2と蓋7とがレーザー溶接等にて密閉されて「電池容器」となる)。なお、図示しないものの、電池容器には電解液又は電解質が蓄えられる。
ここで、蓋7は容器本体2と同一の材質である。そして、蓋7には、蓋7を貫通して配置される円柱状(XY平面における断面形状が実質的に直径rの円)の電極端子(正極端子8及び負極端子9)と、電極端子を蓋7に固定し且つ電極端子と蓋7との間を電気的に絶縁する絶縁性の樹脂10(例えば、プラスチック樹脂等)が形成されている。
上述のように本実施形態では一例として導電性の電池容器として説明するので、積層電極体6と電池容器との間を電気的に絶縁すべく、容器本体2の内側の底面に当該底面と実質的に同じ形状及び寸法の絶縁性の樹脂板11(例えば、プラスチック樹脂製のシート)を配置している。また、容器本体2の底面以外の他の壁面については、後述の絶縁性樹脂からなる一対の第1補助シート12(12a、12b)及び一対の第2補助シート13が配置される。
具体的には、積層電極体6を、−Y方向と+Y方向から一対の第1補助シート12(12a、12b)で挟み込み、また、−X方向と+X方向から一対の第2補助シート13で挟み込み、これら4つの補助シートを互いに絶縁テープで固定して1つのユニットとした上で、当該ユニットを容器本体2に挿入する。この際、これら補助シートは、積層電極体6が直接的に容器本体2に接触して損傷することを防止し且つ積層電極体を円滑に容器本体2に挿入するための挿入ガイドとして機能することができる。
First, the battery 1 has a rectangular conductivity (for example, made of a metal such as an aluminum alloy) having a substantially rectangular bottom surface on the XY plane and having wall surfaces extending in the Z-axis direction from all sides of the substantially rectangular shape. Container body 2, laminated electrode body 6 that is housed in container body 2, and positive electrode plate 3 and negative electrode plate 4 are laminated via separator 5, and container body 2 after housing laminated electrode body 6 in container body 2. (Container body 2 and lid 7 are sealed by laser welding or the like to form a “battery container”). Although not shown, an electrolytic solution or an electrolyte is stored in the battery container.
Here, the lid 7 is made of the same material as the container body 2. The lid 7 has a cylindrical electrode terminal (a positive terminal 8 and a negative terminal 9) having a cylindrical shape (a cross-sectional shape in the XY plane is substantially a diameter r) disposed through the lid 7, and an electrode terminal. An insulating resin 10 (for example, a plastic resin) that is fixed to the lid 7 and that electrically insulates between the electrode terminal and the lid 7 is formed.
As described above, in the present embodiment, the conductive battery container is described as an example. Therefore, in order to electrically insulate between the laminated electrode body 6 and the battery container, the bottom surface is substantially formed on the bottom surface inside the container body 2. Insulating resin plates 11 (for example, plastic resin sheets) having the same shape and dimensions are arranged. A pair of first auxiliary sheets 12 (12a, 12b) and a pair of second auxiliary sheets 13 made of an insulating resin, which will be described later, are arranged on the wall surface other than the bottom surface of the container body 2.
Specifically, the laminated electrode body 6 is sandwiched between the pair of first auxiliary sheets 12 (12a, 12b) from the −Y direction and the + Y direction, and is also paired with the pair of second auxiliary sheets 13 from the −X direction and the + X direction. The four auxiliary sheets are sandwiched and fixed with insulating tape to form one unit, and the unit is inserted into the container body 2. At this time, these auxiliary sheets function as an insertion guide for preventing the laminated electrode body 6 from coming into direct contact with the container body 2 and damaging it and smoothly inserting the laminated electrode body 2 into the container body 2. Can do.

積層電極体6は、一例として、複数の正極板3と複数の負極板4とがセパレータ5を介して順次積層された積層型の積層電極体であるとして、以下説明する。
正極板3は、アルミニウム等の正極用金属箔の両面にマンガン酸リチウム等の正極活物質が塗工された後、略矩形に打ち抜かれて形成される。この打ち抜きの際、正極活物質が塗工されていない正極用金属箔も正極板3と一体に打ち抜かれ、当該正極用金属箔は正極板3に接続した正極タブ14となる。
一方、負極板4は、銅等の負極用金属箔の両面にカーボン等の負極活物質が塗工された後、略矩形に打ち抜かれて形成される。この打ち抜きの際、負極活物質が塗工されていない負極用金属箔も負極板4と一体に打ち抜かれ、当該負極用金属箔は負極板4に接続した負極タブ15となる。負極板4のXZ平面における略矩形の寸法は、電池容器の内部に折れ曲がることなく収納される寸法であり、正極板3のXZ平面における略矩形の寸法は、負極板4のXZ平面における略矩形の寸法よりも小さい。従って、図1(a)に示すように、Y方向から見て、正極板3は負極板4の面内に配置される。また、負極タブ15は、正極板3と負極板4とを後述のようにY方向に積層した際に、XZ平面上で正極タブ14と重ならない位置に配置される。
セパレータ5は、樹脂製のセパレータであっても、セラミックセパレータであっても、いわゆる電池に用いることができるセパレータであればよい。ここでは、セパレータ5は袋状に形成され、当該袋の内部に正極板3の全面が収められ且つ当該袋の内部から外部へ正極タブ14が突出するように当該袋の寸法が設計される。
なお、袋状のセパレータの内部に電極板(正極板3または負極板4)の全面が収められ且つ当該袋の内部から外部へ電極タブ(正極タブ14または負極タブ15)が飛び出している状態を「内包」という。
As an example, the multilayer electrode body 6 will be described below as a multilayer electrode body in which a plurality of positive electrode plates 3 and a plurality of negative electrode plates 4 are sequentially laminated via separators 5.
The positive electrode plate 3 is formed by applying a positive electrode active material such as lithium manganate to both surfaces of a positive electrode metal foil such as aluminum and then punching it into a substantially rectangular shape. At the time of punching, the positive electrode metal foil not coated with the positive electrode active material is also punched integrally with the positive electrode plate 3, and the positive electrode metal foil becomes the positive electrode tab 14 connected to the positive electrode plate 3.
On the other hand, the negative electrode plate 4 is formed by coating a negative electrode active material such as carbon on both surfaces of a negative electrode metal foil such as copper and then punching it into a substantially rectangular shape. At the time of this punching, the negative electrode metal foil not coated with the negative electrode active material is also punched integrally with the negative electrode plate 4, and the negative electrode metal foil becomes the negative electrode tab 15 connected to the negative electrode plate 4. The dimension of the substantially rectangular shape in the XZ plane of the negative electrode plate 4 is a dimension that can be accommodated without bending inside the battery container, and the dimension of the substantially rectangular shape in the XZ plane of the positive electrode plate 3 is substantially rectangular in the XZ plane of the negative electrode plate 4. Is smaller than Therefore, as shown in FIG. 1A, the positive electrode plate 3 is disposed in the plane of the negative electrode plate 4 when viewed from the Y direction. The negative electrode tab 15 is disposed at a position that does not overlap the positive electrode tab 14 on the XZ plane when the positive electrode plate 3 and the negative electrode plate 4 are laminated in the Y direction as described later.
The separator 5 may be a resin separator or a ceramic separator as long as it can be used for a so-called battery. Here, the separator 5 is formed in a bag shape, and the size of the bag is designed so that the entire surface of the positive electrode plate 3 is accommodated in the bag and the positive electrode tab 14 protrudes from the inside of the bag to the outside.
Note that a state in which the entire surface of the electrode plate (positive electrode plate 3 or negative electrode plate 4) is accommodated in the bag-shaped separator and the electrode tab (positive electrode tab 14 or negative electrode tab 15) protrudes from the inside of the bag to the outside. This is called “inclusive”.

そして、正極板3より寸法の大きな負極板4から積層を始め、負極板4の上(+Y方向)に上記袋状のセパレータ5で包まれた正極板3を積層し、次に、当該セパレータ5で包まれた正極板3の上(+Y方向)に負極板4を積層する。この際、積層される複数の正極板3は、それぞれに接続された各々の正極タブ14のXZ平面における位置を揃えて積層される。また、積層される複数の負極板4は、それぞれに接続された各々の負極タブ15のXZ平面における位置を揃えて積層される。
これを順次繰り返し、最終的に複数の正極板3と複数の負極板4からなり且つYZ平面をX方向から見たY方向の両端に負極板4が配置される積層電極体6が形成される。
なお、Y方向から見て実質的に同じ位置に揃えられた全ての正極タブ14は、リベット打ち又は溶接等で、正極端子8に電気的に接続される。この際、正極タブ14を直接的に正極端子8に接続してもよいし、正極タブ14と正極端子8との間に金属製の正極用リードを介在させてもよい。また、Y方向から見て実質的に同じ位置に揃えられた全ての負極タブ15は、リベット打ち又は溶接等で、負極端子9に電気的に接続される。この際、負極タブ15を直接的に負極端子9に接続してもよいし、負極タブ15と負極端子9との間に金属製の負極用リードを介在させてもよい。
Then, lamination is started from the negative electrode plate 4 having a size larger than that of the positive electrode plate 3, the positive electrode plate 3 wrapped with the bag-like separator 5 is laminated on the negative electrode plate 4 (+ Y direction), and then the separator 5 The negative electrode plate 4 is laminated on the positive electrode plate 3 wrapped in (+ Y direction). At this time, the plurality of positive electrode plates 3 to be stacked are stacked such that the positions of the positive electrode tabs 14 connected thereto are aligned in the XZ plane. The plurality of negative electrode plates 4 to be stacked are stacked such that the positions of the negative electrode tabs 15 connected thereto are aligned in the XZ plane.
This is sequentially repeated, and finally, a laminated electrode body 6 is formed which includes a plurality of positive electrode plates 3 and a plurality of negative electrode plates 4 and in which the negative electrode plates 4 are disposed at both ends in the Y direction when the YZ plane is viewed from the X direction. .
Note that all the positive electrode tabs 14 aligned at substantially the same position as viewed from the Y direction are electrically connected to the positive electrode terminal 8 by riveting or welding. At this time, the positive electrode tab 14 may be directly connected to the positive electrode terminal 8, or a metal positive electrode lead may be interposed between the positive electrode tab 14 and the positive electrode terminal 8. Also, all the negative electrode tabs 15 aligned at substantially the same position as viewed from the Y direction are electrically connected to the negative electrode terminal 9 by riveting or welding. At this time, the negative electrode tab 15 may be directly connected to the negative electrode terminal 9, or a metal negative electrode lead may be interposed between the negative electrode tab 15 and the negative electrode terminal 9.

次に、第1補助シート12及び第2補助シート13につき、説明する。まず、図2を用いて、第1補助シート12の説明を行う。上述の「絞り出し部」である第1補助シート12aと12bはいずれも同じ形状であるので、図2では第1補助シート12aを代表的に示している。
図2(a)は、最も近接する電池容器の壁面側の第1補助シート12aの面(以下、第1面という)のXZ平面概要図である。同図に示すように、第1面は略矩形である。具体的には、電池容器2のXZ平面におけるX方向の内壁間の幅と、電池容器2の内壁のZ方向の長さよりも小さく且つ積層電極体6のZ方向の高さ以上の長さを実質的に備えた略矩形の形状である。
また、第1補助シート12aには、第1面の−Z側の端部から+Z側の端部までZ方向に延びる溝状の凹部16がX方向に複数本(ここでは9本)形成され、且つ、これらは互いに均等間隔で形成されている。ここでは、図2(c)に示す図2(a)のB−B´線断面図のように、凹部16の形状は略矩形の形状としているが、後述の気泡が電池容器の底面側(−Z方向)から蓋7側(+Z方向)へ浮力により上昇できる通路として機能を備えていればいかなる形状でもよいので、例えば半円形状としてもよい。
さらに、第1補助シート12aには、図2(d)に示す図2(a)のC−C´線断面図のように、第1面から裏面(以下、第2面という)へ貫通する貫通孔17が凹部16に複数形成されている。ここでは、XZ平面で円状の7つの貫通孔17が1つの凹部16に形成されているが、上記気泡及び電解液を円滑に通過させることができればよいので、貫通孔17の形状は円状でなくともよく、また、1つの凹部16に形成される貫通孔17の数も適宜変更可能である。
Next, the first auxiliary sheet 12 and the second auxiliary sheet 13 will be described. First, the first auxiliary sheet 12 will be described with reference to FIG. Since the first auxiliary sheets 12a and 12b, which are the above-described “squeezed portions”, have the same shape, the first auxiliary sheet 12a is representatively shown in FIG.
FIG. 2A is an XZ plane schematic diagram of the surface (hereinafter referred to as the first surface) of the first auxiliary sheet 12a on the wall surface side of the closest battery container. As shown in the figure, the first surface is substantially rectangular. Specifically, the width between the inner walls in the X direction on the XZ plane of the battery case 2 and the length of the inner wall of the battery case 2 smaller than the length in the Z direction and not less than the height in the Z direction of the laminated electrode body 6 are set. It is a substantially rectangular shape substantially provided.
Further, the first auxiliary sheet 12a is formed with a plurality of (9 in this case) groove-shaped recesses 16 extending in the Z direction from the −Z side end of the first surface to the + Z side end. These are formed at equal intervals. Here, as shown in the cross-sectional view along the line BB ′ of FIG. 2A shown in FIG. 2C, the shape of the recess 16 is a substantially rectangular shape. Since any shape may be used as long as it has a function as a passage that can be lifted by buoyancy from the −Z direction to the lid 7 side (+ Z direction), for example, a semicircular shape may be used.
Further, the first auxiliary sheet 12a penetrates from the first surface to the back surface (hereinafter referred to as the second surface) as shown in the cross-sectional view along the line CC 'in FIG. 2A shown in FIG. 2D. A plurality of through holes 17 are formed in the recess 16. Here, seven circular through-holes 17 in the XZ plane are formed in one concave portion 16, but the shape of the through-hole 17 is circular as long as the bubbles and the electrolyte can be passed smoothly. The number of through holes 17 formed in one recess 16 can be changed as appropriate.

第1補助シート12aの上記第2面は、後述の気泡の「絞り出し機能」を持たせるため、第1面の−Z側の端部から+Z側の端部まで+Z方向に進むにつれて、第2面が次第に第1面に近づく形状(以下、「絞り出し形状」という)に設計される。なお、絞り出し形状に沿って第2面が次第に第1面に近づいてゆく方向を「絞り出し方向」という。
言い換えれば、第1補助シート12aは、「絞り出し方向」に進むに従って次第にそのY方向の寸法(厚み)を減少するよう設計される。図2(b)のYZ断面図では、第2面の形状は、Z方向に配置された第1面に対し、第1面の−Z側の端部から所定距離L(例えば、3mm≦L≦5mm)だけ+Y方向へ離れた端部から、αの角度(例えば、45°<α<90°)で第1面へ向けて直線を引いた形状としている。上記絞り出し形状であれば必ずしも当該直線でなくともよいので、当該直線に対応する部分を例えば曲線としてもよい。ただし、第2面には、積層電極体6の電極板が接触するので、当該電極板に損傷を与えないよう、凹凸のない実質的に一様に滑らかな面とするのが望ましい。
The second surface of the first auxiliary sheet 12a has a “squeezing function” for bubbles, which will be described later. Therefore, as the first surface extends in the + Z direction from the −Z side end to the + Z side, The shape is designed so that the surface gradually approaches the first surface (hereinafter referred to as “squeezed shape”). The direction in which the second surface gradually approaches the first surface along the squeezed shape is referred to as “squeezing direction”.
In other words, the first auxiliary sheet 12a is designed to gradually reduce the dimension (thickness) in the Y direction as it proceeds in the “squeezing direction”. In the YZ sectional view of FIG. 2B, the shape of the second surface is a predetermined distance L (for example, 3 mm ≦ L) from the −Z side end of the first surface with respect to the first surface arranged in the Z direction. The shape is such that a straight line is drawn from the end portion separated in the + Y direction by ≦ 5 mm toward the first surface at an angle α (for example, 45 ° <α <90 °). Since the squeezed shape is not necessarily the straight line, the portion corresponding to the straight line may be a curved line, for example. However, since the electrode plate of the laminated electrode body 6 is in contact with the second surface, it is desirable to make the surface substantially uniform and smooth without any irregularities so as not to damage the electrode plate.

第2補助シート13は、図1のYZ平面上で略矩形の形状である。具体的には、電池容器2のYZ平面におけるY方向の内壁間の幅と、電池容器2の内壁のZ方向の長さよりも小さく且つ積層電極体6のZ方向の高さ以上の長さを備えた略矩形の形状である。
第2補助シート13は、第1補助シート12と異なり、絞り出し形状を備えていないが、その他(ただし、寸法を除く)は第1補助シート12と同様の構成である。具体的には、第2補助シート13は、図1のYZ平面と実質的に平行な2つの平面(表面と裏面)を備え、当該2つの平面のうち一方の平面(表面)には凹部16に相当する複数の溝が形成され、また、貫通孔17に相当する複数の貫通孔が当該溝に形成されている。当該表面は電池容器の壁面に、また、当該裏面は積層電極体に向けて配置されるので、当該2つの平面のうち他方の面(裏面)には積層電極体6の電極板が接触することになる。従って、当該裏面は、電極板に損傷を与えないよう、凹凸のない実質的に一様に滑らかな面とするのが望ましい。
The second auxiliary sheet 13 has a substantially rectangular shape on the YZ plane of FIG. Specifically, the width between the inner walls in the Y direction on the YZ plane of the battery container 2 and the length of the inner wall of the battery container 2 that is smaller than the length in the Z direction and greater than the height in the Z direction of the laminated electrode body 6 are set. It has a substantially rectangular shape.
Unlike the first auxiliary sheet 12, the second auxiliary sheet 13 does not have a squeezed shape, but the other (excluding dimensions) has the same configuration as the first auxiliary sheet 12. Specifically, the second auxiliary sheet 13 includes two planes (front surface and back surface) substantially parallel to the YZ plane of FIG. 1, and a concave portion 16 is formed on one of the two planes (front surface). And a plurality of through holes corresponding to the through holes 17 are formed in the grooves. Since the front surface is disposed on the wall surface of the battery container and the back surface is directed toward the laminated electrode body, the electrode plate of the laminated electrode body 6 is in contact with the other surface (back surface) of the two planes. become. Therefore, it is desirable that the back surface be a substantially uniformly smooth surface without irregularities so as not to damage the electrode plate.

では、「絞り出し機能」につき説明する。上述のように、一対の第1補助シート12と一対の第2補助シート13と積層電極体6は、1つのユニットとして、電池容器の内部に収納されている。ここで、2つの第1補助シート12(12a及び12b)は、積層電極体6の電極板の積層方向(Y方向)に存在する積層電極体6の2つの端面のうち、−Y側の端面に第1補助シート12aの第2面が接し、+Y側の端面に第1補助シート12bの第2面が接するように配置される。また、2つの第2補助シート13は、上記積層方向(Y方向)に垂直且つ電極タブが電極板から突出する方向(+Z方向)と垂直方向(X方向)に存在する積層電極体6の2つの端面のうち、−X側の端面に一方の第2補助シート13の裏面が接し、+X側の端面に他方の第2補助シート13の裏面が接するように配置される。
そして、電池1の充放電がなされると、電解液又は電解質が分解等することで気泡が発生し、このうち積層電極体6の内部で発生した微細な気泡は正極板3及び負極板4の表面、すなわち電極板表面に付着する。図1のように電池1が配置される場合には、当該気泡の浮力は電池容器の底から蓋7に向かって重力と反対方向である+Z方向に働くので、一定量の気泡は電池容器内の蓋7の周辺まで自然に上昇してここに溜まることになる。しかし、積層電極体6の内部で発生した一部の気泡は、例えば隣り合う電極板同士で圧迫されて、自然には浮力によって上昇できず、結果として電極板の表面に気泡が付着した状態が維持される場合がある。かように電極板の表面に気泡が滞留すると、気泡に接している電極板はイオンの移動に寄与できなくなるため、電池の能力が低減する恐れがある。
そこで、当該電池の能力の低減を防止するために、電池1は、絞り出し部による「絞り出し機能」を備えている。「絞り出し機能」は、電極板の表面に付着して、自然には又は放置しては浮力によって上昇困難な気泡をも絞り出し部の「絞り出し形状」によって「絞り出し方向」へ絞り出し、当該気泡を蓋7の周辺まで浮かび上がらせる機能であり、電池1の充放電により積層方向(Y方向)に膨張・収縮する積層電極体6の動きを積極的に利用するものである。これを以下、詳述する。
Now, the “squeezing function” will be described. As described above, the pair of first auxiliary sheets 12, the pair of second auxiliary sheets 13, and the laminated electrode body 6 are housed inside the battery container as one unit. Here, the two first auxiliary sheets 12 (12a and 12b) are the end surfaces on the −Y side, out of the two end surfaces of the stacked electrode body 6 existing in the stacking direction (Y direction) of the electrode plates of the stacked electrode body 6. The second surface of the first auxiliary sheet 12a is in contact with the end surface on the + Y side, and the second surface of the first auxiliary sheet 12b is in contact with the end surface on the + Y side. In addition, the two second auxiliary sheets 13 are two of the laminated electrode body 6 that is perpendicular to the laminating direction (Y direction) and in the direction in which the electrode tab protrudes from the electrode plate (+ Z direction) and the perpendicular direction (X direction). Of the two end surfaces, the rear surface of one second auxiliary sheet 13 is in contact with the end surface on the −X side, and the rear surface of the other second auxiliary sheet 13 is in contact with the end surface on the + X side.
When the battery 1 is charged and discharged, bubbles are generated due to decomposition or the like of the electrolytic solution or the electrolyte. Among these, fine bubbles generated in the laminated electrode body 6 are generated in the positive electrode plate 3 and the negative electrode plate 4. It adheres to the surface, that is, the electrode plate surface. When the battery 1 is arranged as shown in FIG. 1, the buoyancy of the bubbles acts in the + Z direction, which is the direction opposite to the gravity, from the bottom of the battery container toward the lid 7. It naturally rises up to the periphery of the lid 7 and accumulates here. However, some of the bubbles generated inside the laminated electrode body 6 are compressed by, for example, adjacent electrode plates and cannot naturally rise due to buoyancy, and as a result, the bubbles are attached to the surface of the electrode plate. May be maintained. Thus, if bubbles remain on the surface of the electrode plate, the electrode plate in contact with the bubbles cannot contribute to the movement of ions, which may reduce the battery performance.
Therefore, in order to prevent a reduction in the capacity of the battery, the battery 1 has a “squeezing function” by a squeezing unit. The “squeezing function” is a function that squeezes bubbles that adhere to the surface of the electrode plate, naturally or that cannot easily rise due to buoyancy, to the “squeezing direction” by the “squeezing shape” of the squeezing part, and the bubbles are covered. 7 is a function of floating up to the periphery of the battery 7, and positively utilizes the movement of the laminated electrode body 6 that expands and contracts in the lamination direction (Y direction) due to charging and discharging of the battery 1. This will be described in detail below.

上記ユニットとする際に使用された絶縁テープの糊は電解液等の中では変質するため、結果として、当該絶縁テープは電池容器内で緩んでいる。このため、正極活物質と負極活物質が上記の二次電池の場合、電池1の充電により、当該絶縁テープの影響を実質的に受けずに、積層電極体6の各負極板4の負極活物質はXZ平面上のいずれの位置でも実質的に同じ程度だけ積層方向(Y方向)に膨張する。
従って、充電が進むことで当該膨張の量が大きくなると、一対の第1補助シート12は、電池容器の底から蓋7に向かって、すなわち−Z側から+Z側へ、次第にそれぞれの第2面で積層電極体6に接してゆくことになる。このとき、一対の第1補助シート12のそれぞれの第1面が電池容器の壁面に接すると、第1補助シート12が積層電極体6の膨張に従ってY方向へ移動することがもはや困難となる。
このため、電池容器の壁面にそれぞれの第1補助シート12の第1面が接触した状態で積層電極体6がさらに膨張を続けると、積層電極体6が第1補助シート12の第2面を電池容器の底から蓋7に向かって(+Z方向に向かって)順次圧迫してゆくことになる。すなわち、2つの第1補助シート12の第2面同士の積層方向(Y方向)における間隔は、電池容器の底から蓋7に向かって次第に広く、言い換えれば、気泡の浮力の働く方向と垂直方向且つ当該積層方向の電池容器内部の「絞り出し部」間の距離は「絞り出し方向」へ向かって次第に広くなるため、積層電極体6の各負極板4の負極活物質がXZ平面上のいずれの位置でも同じ幅だけ積層方向(Y方向)に膨張しようとすると、積層電極体6は、自身の膨張力により電池容器の底の方から次第に加圧されてゆくことになる。
さらに言い換えれば、電池1は、「絞り出し部」である第1補助シート12の「絞り出し形状」により、積層電極体6の電極板間に加わる圧力が、電池容器の底から蓋7に向かう方向に次第に減少する構成、且つ、当該圧力の値が電極板の活物質が塗工されている箇所のいずれの箇所でも同量だけ次第に増加する構成となる。
このため、電極板に付着した気泡を、「絞り出し方向」へ効果的に絞り出し、当該気泡の浮力の働く方向へ当該気泡を浮かび上がらせることができる。
Since the glue of the insulating tape used in forming the unit is altered in the electrolytic solution or the like, as a result, the insulating tape is loose in the battery container. For this reason, when the positive electrode active material and the negative electrode active material are the above-described secondary batteries, the negative electrode active of each negative electrode plate 4 of the laminated electrode body 6 is not substantially affected by the insulating tape when the battery 1 is charged. The material expands in the stacking direction (Y direction) by substantially the same amount at any position on the XZ plane.
Accordingly, when the amount of expansion increases as charging progresses, the pair of first auxiliary sheets 12 gradually move from the bottom of the battery container toward the lid 7, that is, from the −Z side to the + Z side, gradually on the respective second surfaces. Thus, the laminated electrode body 6 is contacted. At this time, if the first surfaces of the pair of first auxiliary sheets 12 are in contact with the wall surface of the battery container, it is no longer difficult for the first auxiliary sheet 12 to move in the Y direction as the laminated electrode body 6 expands.
For this reason, when the laminated electrode body 6 further expands in a state where the first surface of each first auxiliary sheet 12 is in contact with the wall surface of the battery container, the laminated electrode body 6 causes the second surface of the first auxiliary sheet 12 to expand. The pressure is sequentially applied from the bottom of the battery container toward the lid 7 (in the + Z direction). That is, the distance between the second surfaces of the two first auxiliary sheets 12 in the stacking direction (Y direction) is gradually wider from the bottom of the battery container toward the lid 7, in other words, the direction perpendicular to the direction in which the buoyancy of the bubbles works. In addition, since the distance between the “squeezed portions” inside the battery container in the stacking direction gradually increases toward the “squeezing direction”, the negative electrode active material of each negative electrode plate 4 of the stacked electrode body 6 is located at any position on the XZ plane. However, if the same width is to be expanded in the stacking direction (Y direction), the stacked electrode body 6 is gradually pressurized from the bottom of the battery container by its expansion force.
In other words, in the battery 1, the “squeezed shape” of the first auxiliary sheet 12, which is the “squeezed portion”, causes the pressure applied between the electrode plates of the laminated electrode body 6 in the direction from the bottom of the battery container toward the lid 7. A configuration in which the pressure gradually decreases and a configuration in which the value of the pressure gradually increases by the same amount at any location where the active material of the electrode plate is applied.
For this reason, the bubbles adhering to the electrode plate can be effectively squeezed out in the “squeezing direction”, and the bubbles can be lifted in the direction in which the buoyancy of the bubbles works.

以上の簡易な構成によって、積層電極体の内部で発生した気泡を浮かび上がらせることで当該内部からの当該気泡の除去を促進し、これにより電池性能を向上した電池を提供することができる。
なお、上記の実施形態では、積層電極体6を1つだけ電池容器に収納していたが、図3の変形例のように複数の積層電極体6(ここでは、積層電極体6aと6b)のそれぞれを図1と同様にユニット化して、電池容器に収納する構成としてもよい。ただし、この場合には、各補助シートが電極タブ14、15と対応する電極端子8、9との電気的接続の障害とならないように、積層電極体6をユニット化するのが望ましい。このため、図3では、積層電極体6aは、第1補助シート12aと、図1の第1補助シート12bに対応して配置され且つ第1補助シート12bよりもZ方向の寸法が小さく且つそれ以外は第1補助シート12bと同様の構成の第1補助シート12cとで挟まれてユニット化されている。また、積層電極体6bは、第1補助シート12bと、図1の第1補助シート12aに対応して配置され且つ第1補助シート12aよりもZ方向の寸法が小さく且つそれ以外は第1補助シート12aと同様の構成の第1補助シート12dとで挟まれてユニット化されている。
With the above simple configuration, bubbles generated inside the laminated electrode body are lifted to promote removal of the bubbles from the inside, thereby providing a battery with improved battery performance.
In the above embodiment, only one laminated electrode body 6 is accommodated in the battery container. However, a plurality of laminated electrode bodies 6 (here, laminated electrode bodies 6a and 6b) are used as in the modification of FIG. Each of these may be unitized in the same manner as in FIG. 1 and stored in the battery container. However, in this case, it is desirable to unitize the laminated electrode body 6 so that each auxiliary sheet does not hinder the electrical connection between the electrode tabs 14 and 15 and the corresponding electrode terminals 8 and 9. For this reason, in FIG. 3, the laminated electrode body 6a is arranged corresponding to the first auxiliary sheet 12a and the first auxiliary sheet 12b of FIG. 1 and has a smaller dimension in the Z direction than the first auxiliary sheet 12b. Except for the above, the first auxiliary sheet 12b has the same configuration as the first auxiliary sheet 12b and is unitized. The laminated electrode body 6b is disposed corresponding to the first auxiliary sheet 12b and the first auxiliary sheet 12a in FIG. 1 and has a smaller dimension in the Z direction than the first auxiliary sheet 12a. It is united by being sandwiched between a first auxiliary sheet 12d having the same configuration as the sheet 12a.

また、図1又は図3の電池では-Z方向を重力方向としたため、重力方向の逆方向と絞り出し方向がほぼ同様の方向となった。しかし、例えば、当該電池を横向きに据える場合にも、積層電極体の内部で発生した気泡の除去を促進することができる。すなわち、図1又は図3の電池において、例えば+X方向が重力方向となる場合がありうる。この場合には、絞り出し方向と気泡の浮力の働く方向である重力方向の逆方向は必ずしも同様ではないが、絞り出し方向に絞り出された気泡はその後に自身の浮力により浮かび上がるので、積層電極体の内部への当該気泡の滞留を減少させることができる。 Further, in the battery of FIG. 1 or FIG. 3, since the −Z direction is the gravitational direction, the reverse direction of the gravitational direction and the squeezing direction are substantially the same. However, for example, when the battery is placed sideways, the removal of bubbles generated inside the laminated electrode body can be promoted. That is, in the battery of FIG. 1 or FIG. 3, for example, the + X direction may be the gravity direction. In this case, the squeezing direction and the reverse direction of the gravity direction, which is the direction in which the buoyancy of the bubbles works, are not necessarily the same. It is possible to reduce the residence of the bubbles in the interior of the.

本発明は上述した実施形態及びこれらの組み合わせに限定されず、本発明の趣旨を逸脱しない限りで種々の変形が可能である。例えば、電池容器の形状は角型として説明したが、円筒型であってもよい。同様に、上記積層電極体6は、複数の正極板と複数の負極板とがそれぞれセパレータを介して順次積層された積層電極体(積層型積層電極体)でもよいし、1つの正極板と1つの負極板とが1つのセパレータを介して積層され且つ巻かれた状態の積層電極体(捲回型積層電極体)でもよい。捲回型積層電極体の場合には、第1補助シート12で捲回型積層電極体の周囲を覆うよう構成すれば上記の実施形態と同様の効果が得られる。
また、電池容器は、導電性の材質として説明したが、プラスチック樹脂等の絶縁性の材質としてもよい。なお、電池容器が絶縁性の材質で形成された場合あっても、積層電極体6を損傷なく電池容器に収納するためには、挿入ガイドとして機能する第1補助シート12又は第2補助シート13等の補助シートは極めて有用である。
さらに、積層電極体6の寸法に比べ電池容器の寸法が大きい等のため挿入ガイドの機能が重視されない場合には、電池容器を形成する際に、絞り出し部である第1補助シート12の備えた「絞り出し形状」に相当する形状を、当該電池容器の内壁として型等により同一材料で一体に成形してもよい。この場合には、当該内壁自体が絞り出し部となる。もちろん、第1補助シート12のように電池容器と別体に形成してもよい。
その上、第1補助シート12と第2補助シート13は、それぞれ同一の材質であっても、異なる材質であってもよい。また、第1補助シートは、厚みと張りのある板状のシートであってもよい。
The present invention is not limited to the above-described embodiments and combinations thereof, and various modifications can be made without departing from the spirit of the present invention. For example, although the shape of the battery container has been described as a square shape, it may be a cylindrical shape. Similarly, the laminated electrode body 6 may be a laminated electrode body (stacked laminated electrode body) in which a plurality of positive electrode plates and a plurality of negative electrode plates are sequentially laminated via separators, or one positive electrode plate and 1 A laminated electrode body (rolled laminated electrode body) in which one negative electrode plate is laminated via one separator and wound may be used. In the case of a wound multilayer electrode body, the same effect as in the above embodiment can be obtained if the first auxiliary sheet 12 is configured to cover the periphery of the wound multilayer electrode body.
Further, although the battery container has been described as a conductive material, an insulating material such as a plastic resin may be used. Even when the battery container is formed of an insulating material, the first auxiliary sheet 12 or the second auxiliary sheet 13 functioning as an insertion guide is required to store the laminated electrode body 6 in the battery container without damage. Such auxiliary sheets are extremely useful.
Furthermore, when the function of the insertion guide is not important because the dimensions of the battery container are larger than the dimensions of the laminated electrode body 6, the first auxiliary sheet 12, which is a squeezing part, is provided when forming the battery container. A shape corresponding to the “squeezed shape” may be integrally formed with the same material using a mold or the like as the inner wall of the battery container. In this case, the inner wall itself becomes the squeezed portion. Of course, it may be formed separately from the battery container, like the first auxiliary sheet 12.
In addition, the first auxiliary sheet 12 and the second auxiliary sheet 13 may be made of the same material or different materials. Further, the first auxiliary sheet may be a plate-like sheet having a thickness and tension.

1…電池、2…収納容器、3…正極板、4…負極板、5…セパレータ、
6…積層電極体、7…蓋、8…正極端子、9…負極端子、
10…絶縁性樹脂、11…絶縁性樹脂板、
12(12a〜12d)…第1補助シート、13…第2補助シート、
14…正極タブ、15…負極タブ、
16…凹部(溝)、17…貫通孔、
DESCRIPTION OF SYMBOLS 1 ... Battery, 2 ... Storage container, 3 ... Positive electrode plate, 4 ... Negative electrode plate, 5 ... Separator,
6 ... laminated electrode body, 7 ... lid, 8 ... positive electrode terminal, 9 ... negative electrode terminal,
10 ... Insulating resin, 11 ... Insulating resin plate,
12 (12a-12d) ... 1st auxiliary sheet, 13 ... 2nd auxiliary sheet,
14 ... positive electrode tab, 15 ... negative electrode tab,
16 ... recess (groove), 17 ... through hole,

Claims (5)

セパレータを介して第1電極板と第2電極板とが積層された積層電極体と、
電解液又は電解質と、
前記第1電極板に電気的に接続された第1電極端子と、前記第2電極板に電気的に接続された第2電極端子とを備え、前記電解液又は前記電解質と前記積層電極体とを密閉して収納した電池容器と、
前記積層電極体と前記電池容器との間に前記電池容器と一体又は別体に形成され、且つ、絞り出し方向に進むに従って次第にその厚みを減少する絞り出し部と
を有することを特徴とする電池。
A laminated electrode body in which a first electrode plate and a second electrode plate are laminated via a separator;
An electrolyte or electrolyte;
A first electrode terminal electrically connected to the first electrode plate; and a second electrode terminal electrically connected to the second electrode plate; the electrolyte solution or the electrolyte and the laminated electrode body; A battery container that is hermetically sealed,
A battery having a squeezed portion formed integrally or separately with the battery container between the laminated electrode body and the battery container and gradually reducing its thickness as it advances in the squeezing direction.
前記絞り出し部は、前記電池容器とは別体として形成された絶縁性の補助シートであり、
前記電池の充電又は放電に伴う前記積層電極体の体積変化によって、前記積層電極体の内部に生じた気泡が前記絞り出し方向へ絞り出されて浮かび上がるのを促進することを特徴とする請求項1に記載の電池。
The squeezed portion is an insulating auxiliary sheet formed separately from the battery container,
2. It is promoted that bubbles generated inside the laminated electrode body are squeezed out in the squeezing direction and floated by a volume change of the laminated electrode body accompanying charging or discharging of the battery. The battery described in 1.
前記補助シートは、前記電池容器に接することができる面に、重力方向に沿って凹部を備えていることを特徴とする請求項2に記載の電池。 The battery according to claim 2, wherein the auxiliary sheet includes a recess along a direction of gravity on a surface that can contact the battery container. 前記補助シートは、前記凹部に、前記補助シートを貫通する貫通孔を備えていることを特徴とする請求項3に記載の電池。 The battery according to claim 3, wherein the auxiliary sheet includes a through-hole penetrating the auxiliary sheet in the recess. 前記絞り出し部は前記電池容器と一体に形成されており、前記電池の充電又は放電に伴う前記積層電極体の体積変化によって、前記積層電極体の内部に生じた気泡が前記絞り出し方向へ絞り出されて浮かび上がるのを促進することを特徴とする請求項1に記載の電池。 The squeezed portion is formed integrally with the battery container, and bubbles generated inside the laminated electrode body are squeezed out in the squeezing direction due to a volume change of the laminated electrode body accompanying charging or discharging of the battery. The battery according to claim 1, wherein the battery promotes floating.
JP2011073892A 2011-03-30 2011-03-30 Battery Pending JP2012209131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073892A JP2012209131A (en) 2011-03-30 2011-03-30 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011073892A JP2012209131A (en) 2011-03-30 2011-03-30 Battery

Publications (1)

Publication Number Publication Date
JP2012209131A true JP2012209131A (en) 2012-10-25

Family

ID=47188701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073892A Pending JP2012209131A (en) 2011-03-30 2011-03-30 Battery

Country Status (1)

Country Link
JP (1) JP2012209131A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150962A (en) * 1992-10-23 1994-05-31 Japan Storage Battery Co Ltd Sealed lead-acid battery
JPH09120841A (en) * 1995-10-24 1997-05-06 Sony Corp Nonaqueous electrolyte secondary battery
JP2001511592A (en) * 1997-07-25 2001-08-14 ミネソタ マイニング アンド マニュファクチュアリング カンパニー Pressure system and rechargeable thin film electrochemical cell
JP2011216239A (en) * 2010-03-31 2011-10-27 Furukawa Battery Co Ltd:The Lithium ion battery and manufacturing method of lithium ion battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150962A (en) * 1992-10-23 1994-05-31 Japan Storage Battery Co Ltd Sealed lead-acid battery
JPH09120841A (en) * 1995-10-24 1997-05-06 Sony Corp Nonaqueous electrolyte secondary battery
JP2001511592A (en) * 1997-07-25 2001-08-14 ミネソタ マイニング アンド マニュファクチュアリング カンパニー Pressure system and rechargeable thin film electrochemical cell
JP2011216239A (en) * 2010-03-31 2011-10-27 Furukawa Battery Co Ltd:The Lithium ion battery and manufacturing method of lithium ion battery

Similar Documents

Publication Publication Date Title
KR102253935B1 (en) Electric storage device and electric storage apparatus
JP7484992B2 (en) Energy storage element
KR100896133B1 (en) Secondary Battery of Improved Stability
JP2012084525A (en) Secondary battery
KR20140064418A (en) Secondary battery module
WO2018142809A1 (en) Power storage device
JP2013175407A (en) Power storage device, vehicle
JP2001256934A (en) Battery module case
EP2978061B1 (en) Pouch-type secondary battery and secondary battery module comprising same
JP2014225450A (en) Secondary battery
JP6520156B2 (en) Power storage device and power storage device module
CN114188673B (en) Battery cell and electronic equipment
JP5409696B2 (en) battery
EP2779296B1 (en) Secondary battery including multiple electrode assemblies
KR20130116807A (en) Battery
JP2014157803A (en) Power storage element
JP2012209131A (en) Battery
JP2020119898A (en) Power storage element
JP6519129B2 (en) Method of manufacturing power storage device
CN220672722U (en) Battery cell, battery and electricity utilization device
JP2019061880A (en) Power storage element
CN217114627U (en) Battery and electric device
KR102466867B1 (en) Pouch type battery module
JP2019061893A (en) Power storage element
KR20190005405A (en) Battery Module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105