JP2012208556A - Differential heat detector - Google Patents

Differential heat detector Download PDF

Info

Publication number
JP2012208556A
JP2012208556A JP2011071563A JP2011071563A JP2012208556A JP 2012208556 A JP2012208556 A JP 2012208556A JP 2011071563 A JP2011071563 A JP 2011071563A JP 2011071563 A JP2011071563 A JP 2011071563A JP 2012208556 A JP2012208556 A JP 2012208556A
Authority
JP
Japan
Prior art keywords
temperature
detection element
thermistor
cpu
temperature detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011071563A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Kawazoe
智由 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2011071563A priority Critical patent/JP2012208556A/en
Publication of JP2012208556A publication Critical patent/JP2012208556A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a differential heat detector that does not issue a fire alarm erroneously, even if a huge difference occurs between a temperature determined by a temperature measurement section when a temperature detection element is disconnected and a temperature determined by the temperature measurement section when the temperature detection element is normally connected.SOLUTION: A differential heat detector comprises: a temperature measurement section for measuring a temperature of a monitoring area based on a temperature detection element temperature of a temperature detection element whose state changes according to an ambient temperature; a CPU inner temperature measurement section for measuring a CPU inner temperature; a storage section for storing the temperature detection element temperature detected by the temperature detection element and the CPU inner temperature measured by the CPU inner temperature measurement section; and a control section that, when the temperature detection element temperature detected by the temperature measurement section is lower than the CPU inner temperature measured by the CPU inner temperature measurement section by a predetermined value or more, makes the storage section store the CPU inner temperature instead of the temperature detection element temperature, and determines a fire based on the temperature stored by the storage section.

Description

本発明は、差動式熱感知器において、サーミスタ等の温度検出素子が断線した後に、上記温度検出素子が正常に接続されたときにおける誤報を防止することができる差動式熱感知器に関する。   The present invention relates to a differential heat sensor that can prevent a false alarm when the temperature detection element is normally connected after the temperature detection element such as a thermistor is disconnected.

従来、所定の周期で、火災感知器の周囲温度を測定し、所定期間内に測定した温度の最大値と最小値との差に基づいて、温度勾配を算出し、その温度勾配が閾値を超えている場合には、温度が急激に上昇したと判定して火災警報を行う差動式熱感知器が知られている(例えば、特許文献1参照)。   Conventionally, the ambient temperature of a fire detector is measured at a predetermined cycle, and a temperature gradient is calculated based on the difference between the maximum and minimum temperatures measured within a predetermined period, and the temperature gradient exceeds the threshold value. In such a case, there is known a differential heat sensor that determines that the temperature has rapidly increased and issues a fire alarm (see, for example, Patent Document 1).

特開平07−092032号公報Japanese Patent Application Laid-Open No. 07-092032

しかし、従来の差動式熱感知器では、温度検出素子が断線すると、温度測定部は、温度検出素子が検出できる最低温度を測定していると判断し、その後に、温度検出素子が正常に接続されると、温度測定部は、温度検出素子が検出する監視領域の温度を測定する。そして、温度検出素子が断線しているときに測定した温度と、その後に正常に接続された状態で測定した温度との差に基づいて、実際には発生していない温度勾配が発生していると、温度測定部が判断する。   However, in the conventional differential heat detector, when the temperature detection element is disconnected, the temperature measurement unit determines that the minimum temperature that can be detected by the temperature detection element is being measured, and then the temperature detection element is properly operated. When connected, the temperature measurement unit measures the temperature of the monitoring region detected by the temperature detection element. And, based on the difference between the temperature measured when the temperature detecting element is disconnected and the temperature measured in the normal connection state after that, a temperature gradient that does not actually occur is generated. The temperature measurement unit determines.

上記従来例では、上記のように、温度検出素子が断線したときに温度測定部が判断した温度と、温度検出素子が正常に接続されたときに温度測定部が判断した温度とに大きな差が生じることがあり、この場合には、火災であると判断され、誤って火災警報を発することがあるという問題がある。   In the conventional example, as described above, there is a large difference between the temperature determined by the temperature measurement unit when the temperature detection element is disconnected and the temperature determined by the temperature measurement unit when the temperature detection element is normally connected. In this case, there is a problem that it is determined that there is a fire and a fire alarm may be erroneously issued.

本発明は、温度検出素子が断線したときに温度測定部が判断した温度と、温度検出素子が正常に接続されたときに温度測定部が判断した温度とに大きな差が生じたとしても、誤って火災警報を発することがない差動式熱感知器を提供することを目的とする。   Even if there is a large difference between the temperature determined by the temperature measurement unit when the temperature detection element is disconnected and the temperature determined by the temperature measurement unit when the temperature detection element is normally connected, It is an object of the present invention to provide a differential heat sensor that does not emit a fire alarm.

本発明は、周囲温度によって状態が変化する温度検出素子の温度検出素子温度に基づき監視領域の温度を測定する温度測定部と、CPU内の温度を測定するCPU内温度測定部と、上記温度検出素子が検出した温度検出素子温度と上記CPU内温度測定部が測定したCPU内温度とを記憶する記憶部と、上記温度測定部で検出した温度検出素子温度が上記CPU内温度測定部で測定したCPU内温度よりも所定値以上低いときに、上記温度検出素子温度の代わりに上記CPU内温度を上記記憶部に記憶させ、上記記憶部に記憶された温度に基づいて火災を判定する制御部とを有する。   The present invention includes a temperature measurement unit that measures the temperature of a monitoring area based on the temperature detection element temperature of a temperature detection element whose state changes depending on the ambient temperature, a CPU internal temperature measurement unit that measures the temperature in the CPU, and the temperature detection described above. A temperature detecting element temperature detected by the element and a CPU internal temperature measured by the CPU internal temperature measuring unit, and a temperature detecting element temperature detected by the temperature measuring unit were measured by the CPU internal temperature measuring unit. A control unit that stores the CPU internal temperature in the storage unit instead of the temperature detection element temperature when the temperature is lower than the CPU internal temperature by a predetermined value or more, and determines a fire based on the temperature stored in the storage unit; Have

本発明によれば、温度検出素子が断線したとき等に、温度検出素子に基づき監視領域の温度を測定する温度測定部が検出する温度を記憶する代わりに、CPU内温度を記憶部に記憶するので、非火災時には、温度検出素子が断線したとき等に記憶部に記憶された温度データと、上記温度検出素子が正常に接続された後に上記温度測定部が検出した温度データとに大きな温度差がなく、したがって、誤って火災警報を発することがないという効果を奏する。   According to the present invention, when the temperature detection element is disconnected, the temperature in the CPU is stored in the storage unit instead of storing the temperature detected by the temperature measurement unit that measures the temperature of the monitoring region based on the temperature detection element. Therefore, during a non-fire, there is a large temperature difference between the temperature data stored in the storage unit when the temperature detection element is disconnected and the temperature data detected by the temperature measurement unit after the temperature detection element is normally connected. Therefore, there is an effect that a fire alarm is not erroneously issued.

本発明の実施例1である差動式熱感知器100の概要を示す回路図である。It is a circuit diagram which shows the outline | summary of the differential thermal sensor 100 which is Example 1 of this invention. 差動式熱感知器100の動作を示すフローチャートである。3 is a flowchart showing the operation of the differential heat sensor 100.

発明を実施するための形態は、以下の実施例である。   The modes for carrying out the invention are the following examples.

図1は、本発明の実施例1である差動式熱感知器100の概要を示す回路図である。   FIG. 1 is a circuit diagram showing an outline of a differential heat detector 100 according to a first embodiment of the present invention.

差動式熱感知器100は、サーミスタ10と抵抗11との直列回路と、CPU20と、伝送回路30と、表示灯40とを有する。   The differential heat sensor 100 includes a series circuit of a thermistor 10 and a resistor 11, a CPU 20, a transmission circuit 30, and an indicator lamp 40.

サーミスタ10は、温度検出素子であり、差動式熱感知器100の外部に突出するように設けられ、差動式熱感知器100の周囲の温度に応じてその抵抗値が変化し、つまり、差動式熱感知器100の周囲の温度を検出し、その一端が+B電源に接続され、抵抗11の一端が接地され、サーミスタ10の他端と抵抗11の他端とが接続されている。   The thermistor 10 is a temperature detection element and is provided so as to protrude outside the differential heat sensor 100, and its resistance value changes according to the ambient temperature of the differential heat sensor 100. The temperature around the differential heat sensor 100 is detected, one end of which is connected to the + B power source, one end of the resistor 11 is grounded, and the other end of the thermistor 10 and the other end of the resistor 11 are connected.

ここで、サーミスタ10は、温度の上昇に対して抵抗値が減少する所謂NTCサーミスタである。仮にサーミスタ10を温度の上昇に対して抵抗値が増加する所謂PTCサーミスタにした場合は、サーミスタ10の断線状態は、サーミスタ10を経由して電流が流れない状態であるため、あたかもサーミスタ10の抵抗値が増加した、つまりサーミスタ10が正常である場合に温度が上昇したときと同じ状態であるため、サーミスタ10が断線したときに火災が発生したと判断して誤って火災警報を発することになる。   Here, the thermistor 10 is a so-called NTC thermistor whose resistance value decreases with increasing temperature. If the thermistor 10 is a so-called PTC thermistor whose resistance value increases as the temperature rises, the disconnection state of the thermistor 10 is a state in which no current flows through the thermistor 10. Since the value is increased, that is, when the thermistor 10 is normal, the temperature is the same as when the temperature is increased. Therefore, when the thermistor 10 is disconnected, it is determined that a fire has occurred and a fire alarm is erroneously issued. .

CPU20は、いわゆるマイクロコンピュータであり、制御部21と、A/Dコンバータ22と、記憶部23と、CPU内温度測定部24とを有する。   The CPU 20 is a so-called microcomputer, and includes a control unit 21, an A / D converter 22, a storage unit 23, and a CPU internal temperature measurement unit 24.

制御部21は、CPU20の全体を制御する。そして、制御部21は、サーミスタ温度(サーミスタ10と抵抗11との接続点に発生する電圧に対応する温度、つまりサーミスタ10が検出した温度である温度検出素子温度)が、CPU内温度(CPU内温度測定部24が測定したCPU内の温度)よりも、所定値以上低いときに、サーミスタ温度の代わりにCPU内温度を検出温度として採用する。また、制御部21は、サーミスタ温度がCPU内温度よりも所定値以上低い状態が所定の時間継続したときに、サーミスタ10が断線していると判定する。   The control unit 21 controls the entire CPU 20. The control unit 21 determines that the thermistor temperature (the temperature corresponding to the voltage generated at the connection point between the thermistor 10 and the resistor 11, that is, the temperature detection element temperature that is the temperature detected by the thermistor 10) is the CPU internal temperature (CPU internal When the temperature is lower than a predetermined value by a temperature measurement unit 24, the CPU temperature is used as the detected temperature instead of the thermistor temperature. The control unit 21 determines that the thermistor 10 is disconnected when the thermistor temperature is lower than the CPU internal temperature by a predetermined value or more for a predetermined time.

A/Dコンバータ22は、サーミスタ10と抵抗11との接続点に発生する+B電源をサーミスタ10の抵抗値と抵抗11の抵抗値とで分圧した電圧(サーミスタ電圧)を入力し、デジタル信号に変換する。   The A / D converter 22 inputs a voltage (thermistor voltage) obtained by dividing the + B power source generated at the connection point between the thermistor 10 and the resistor 11 by the resistance value of the thermistor 10 and the resistance value of the resistor 11 into the digital signal. Convert.

記憶部23は、サーミスタ電圧をたとえば3秒毎にサンプリングした電圧の値を、4分間半の間記憶する。つまり、記憶部23は、サーミスタ10が検出したサーミスタ温度を記憶する。また、CPU内温度測定部24が測定したCPU内温度よりも、上記サーミスタ温度が所定値以上低いときに、制御部21の制御によって、上記サーミスタ温度の代わりに上記CPU内温度を記憶する。   The memory | storage part 23 memorize | stores the value of the voltage which sampled the thermistor voltage, for example for every 3 second for 4 minutes and a half. That is, the storage unit 23 stores the thermistor temperature detected by the thermistor 10. When the thermistor temperature is lower than the CPU temperature measured by the CPU temperature measuring unit 24 by a predetermined value or more, the CPU temperature is stored instead of the thermistor temperature under the control of the control unit 21.

CPU内温度測定部24は、CPU20が有する温度測定機能に対応し、CPU20を構成する半導体の温度特性に応じた値を出力し、つまり、CPU20の内部の温度(CPU内温度)を測定する。   The CPU internal temperature measurement unit 24 corresponds to the temperature measurement function of the CPU 20 and outputs a value corresponding to the temperature characteristics of the semiconductor constituting the CPU 20, that is, measures the internal temperature of the CPU 20 (CPU internal temperature).

温度測定部25は、サーミスタ10と抵抗11とA/Dコンバータ22とによって構成されている。   The temperature measurement unit 25 includes the thermistor 10, the resistor 11, and the A / D converter 22.

次に、差動式熱感知器100の動作について説明する。   Next, the operation of the differential heat sensor 100 will be described.

図2は、差動式熱感知器100の動作を示すフローチャートである。   FIG. 2 is a flowchart showing the operation of the differential heat sensor 100.

S1で、サーミスタ温度(サーミスタ10が検出した温度)、CPU内温度(CPU20が測定した温度)を、制御部21が取得し、S2で、サーミスタ温度がたとえば−30°C以下であるかどうかを判断する。サーミスタ温度が−30°Cよりも高いと判断されると、サーミスタ10が故障していないと判断する。このときに、サーミスタ10が断線故障していることを示すサーミスタ断線故障フラグが立っていれば、S3で、このサーミスタ断線故障フラグを下げ、サーミスタ10が正常に接続されていることを記憶する。   In S1, the thermistor temperature (the temperature detected by the thermistor 10) and the CPU internal temperature (the temperature measured by the CPU 20) are acquired by the control unit 21, and in S2, whether the thermistor temperature is, for example, −30 ° C. or less. to decide. If it is determined that the thermistor temperature is higher than −30 ° C., it is determined that the thermistor 10 has not failed. At this time, if the thermistor disconnection failure flag indicating that the thermistor 10 has a disconnection failure is set, in S3, the thermistor disconnection failure flag is lowered to store that the thermistor 10 is normally connected.

そして、S4で、サーミスタ温度がCPU内温度よりも、たとえば20°C以上低いかどうかを判断する。サーミスタ温度がCPU温度よりも20°C以上低くなければ、サーミスタ温度が信頼できる温度である(サーミスタ10が断線していない)と判断し、S5で、サーミスタ温度を、記憶部23に記憶する。   In S4, it is determined whether the thermistor temperature is lower than the CPU internal temperature by, for example, 20 ° C. or more. If the thermistor temperature is not lower than the CPU temperature by 20 ° C. or more, it is determined that the thermistor temperature is reliable (the thermistor 10 is not disconnected), and the thermistor temperature is stored in the storage unit 23 in S5.

そして、S6で、サーミスタ断線故障フラグが立っているか否かを調べ、サーミスタ断線故障フラグが立っていないと判断されると、S7で、記憶部23が記憶している温度(過去4分間半の間にサンプリングした温度)のうちで、その最高値とその最高値よりも前の時間のその最低値との差が、所定の閾値以上であるかどうかを判断する。記憶部23が記憶している温度の最高値と最高値よりも前の時間の最低値との差が所定の閾値以上であると判断されれば、つまり、温度が閾値以上、すなわち過去4分間半の間に温度が閾値以上上昇したと判断されれば、S8で、火災警報を発生する。   Then, in S6, it is checked whether or not the thermistor disconnection failure flag is set. If it is determined that the thermistor disconnection failure flag is not set, the temperature stored in the storage unit 23 (in the past four and a half minutes) is determined in S7. Whether the difference between the highest value and the lowest value before the highest value is equal to or greater than a predetermined threshold value. If it is determined that the difference between the maximum value of the temperature stored in the storage unit 23 and the minimum value of the time before the maximum value is equal to or greater than a predetermined threshold, that is, the temperature is equal to or greater than the threshold, that is, the past 4 minutes. If it is determined that the temperature has risen above the threshold value in half, a fire alarm is generated in S8.

なお、S6でサーミスタ断線故障フラグが立っていると判断されれば、S1に戻る。   If it is determined in S6 that the thermistor disconnection failure flag is set, the process returns to S1.

一方、S2で、サーミスタ温度が−30°C以下であると判断されると、S11で、この状態が所定時間、継続したかどうかを判断する。S11で、サーミスタ温度が−30°C以下である状態が所定時間継続していなければ、とりあえず、サーミスタ10が正常に接続されていると判断し、S4に進む。つまり、サーミスタ10の検出温度(A/Dコンバータ22の入力端子に入力された電圧に対応する温度)が−30°Cよりも低い状態があっても、それが所定時間継続していなければ、S4に進む。   On the other hand, if it is determined in S2 that the thermistor temperature is −30 ° C. or lower, it is determined in S11 whether this state has continued for a predetermined time. If it is determined in S11 that the thermistor temperature is −30 ° C. or lower for a predetermined time, it is determined that the thermistor 10 is normally connected, and the process proceeds to S4. That is, even if the detected temperature of the thermistor 10 (temperature corresponding to the voltage input to the input terminal of the A / D converter 22) is lower than −30 ° C., if it does not continue for a predetermined time, Proceed to S4.

S11で、サーミスタ温度が−30°C以下である状態が所定時間継続したと判断されると、サーミスタ10が確実に断線していると判断し、S12で、サーミスタ10が断線故障していることを示すサーミスタ断線故障フラグを立て、S4に進む。   If it is determined in S11 that the thermistor temperature is −30 ° C. or lower for a predetermined time, it is determined that the thermistor 10 is surely disconnected, and the thermistor 10 is disconnected in S12. The thermistor disconnection failure flag indicating is set, and the process proceeds to S4.

また、S4で、サーミスタ温度がCPU内温度よりも20°C以上低いと判断されると、サーミスタ温度を記憶する代わりに、CPU内温度を記憶部23に記憶する。つまり、サーミスタ10が設置されている位置とCPU20が設置されている位置とがそれ程離れていないのに、20°C以上もの温度差があることは現実的には極めて少ないので、この場合には、サーミスタ10が断線故障していると判断し、したがって、A/Dコンバータ22の入力電圧に対応する温度が異常であると判断し、サーミスタ温度を記憶する代わりに、CPU内温度を記憶部23に記憶し、後で、記憶部23に記憶したCPU内温度を、サーミスタ温度の代わりに使用する場合に備える。   If it is determined in S4 that the thermistor temperature is 20 ° C. or more lower than the CPU internal temperature, the CPU internal temperature is stored in the storage unit 23 instead of storing the thermistor temperature. That is, in reality, there is very little temperature difference of 20 ° C. or more even though the position where the thermistor 10 is installed is not so far from the position where the CPU 20 is installed. Therefore, it is determined that the thermistor 10 has a disconnection failure. Therefore, it is determined that the temperature corresponding to the input voltage of the A / D converter 22 is abnormal, and instead of storing the thermistor temperature, the CPU internal temperature is stored in the storage unit 23. The CPU internal temperature stored later in the storage unit 23 is prepared for use in place of the thermistor temperature.

このようにすることによって、差動式熱感知器100の一部を構成するサーミスタ10が断線故障した場合に、火災が発生していないのに火災警報を発するという誤報の発生を防止することができる。つまり、温度検出素子が断線したときに、A/Dコンバータ22が抵抗11を介して接地され、あたかも、サーミスタ10の抵抗値が増加してサーミスタ電圧が低下し、温度検出素子が検出できる最低温度を測定しているのと同じ状態を温度測定部25が測定した温度の代わりに、CPU内温度測定部24が測定したCPU内温度を記憶部23に格納するので、上記温度検出素子が正常に接続された後に上記温度検出素子が検出した温度データとに大きな差がなく、したがって、誤って火災警報を発することがない。   By doing in this way, when the thermistor 10 which constitutes a part of the differential heat sensor 100 breaks down, it is possible to prevent the occurrence of a false alarm that a fire alarm is issued even if no fire has occurred. it can. That is, when the temperature detection element is disconnected, the A / D converter 22 is grounded via the resistor 11, as if the resistance value of the thermistor 10 is increased and the thermistor voltage is decreased, and the lowest temperature that can be detected by the temperature detection element. Since the CPU internal temperature measured by the CPU internal temperature measurement unit 24 is stored in the storage unit 23 in place of the temperature measured by the temperature measurement unit 25 in the same state as when measuring the temperature, the temperature detecting element is normally operated. There is no significant difference between the temperature data detected by the temperature detection element after being connected, and therefore a fire alarm is not erroneously issued.

なお、家屋等の玄関内に差動式熱感知器100が設置されている場合、特に冬季等において、玄関扉を開けたときに、一瞬、極く低温の外気が玄関内に進入し、差動式熱感知器100に設けられているサーミスタ10が低温を検出し、その後、玄関扉を閉め、玄関内の温度が、室温に向けて急上昇した場合、通常は、火災発生と判断される。しかし、上記実施例によれば、誤報の発生を防止することができる。   In addition, when the differential heat sensor 100 is installed in the entrance of a house or the like, especially in winter, when the entrance door is opened, extremely low temperature outside air enters the entrance, When the thermistor 10 provided in the dynamic heat sensor 100 detects a low temperature and then closes the entrance door and the temperature inside the entrance rises rapidly toward room temperature, it is usually determined that a fire has occurred. However, according to the above embodiment, it is possible to prevent the occurrence of false alarms.

また、大型冷蔵庫の近傍に差動式熱感知器100が設置されている場合、大型冷蔵庫の扉を開けることによって冷気が上記差動式熱感知器100に達し、サーミスタ温度が急激に低下し、その後に、冷蔵庫の扉を閉じると、室温に向かって急上昇することがあり、この場合も、上記と同様に、誤報の発生を防止することができる。   In addition, when the differential heat sensor 100 is installed in the vicinity of the large refrigerator, the cold air reaches the differential heat sensor 100 by opening the door of the large refrigerator, and the thermistor temperature rapidly decreases, Thereafter, when the refrigerator door is closed, the temperature may rise rapidly toward the room temperature. In this case as well, the occurrence of false alarms can be prevented.

上記実施例において、サーミスタ10の代わりに、他の温度検出素子を使用するようにしてもよい。この場合、上記サーミスタ温度は、温度検出素子温度である。   In the above embodiment, other temperature detection elements may be used instead of the thermistor 10. In this case, the thermistor temperature is the temperature detection element temperature.

また、上記実施例において、サーミスタ温度とCPU温度との両方を記憶部23に記憶すると共に、サーミスタ温度がCPU温度よりも所定値以上低いか否かを記憶させ、火災判断を行う際にサーミスタ温度とCPU温度のどちらを採用するかを決定するようにしてもよい。   In the above embodiment, both the thermistor temperature and the CPU temperature are stored in the storage unit 23, and whether or not the thermistor temperature is lower than the CPU temperature by a predetermined value or more is stored. It may be determined whether to use the CPU temperature or the CPU temperature.

また、上記実施例において、制御部21が、上記サーミスタ温度が上記CPU内温度よりも所定値以上低い状態が所定の時間継続したときに、サーミスタ10が断線していると判定するので、サーミスタ温度が極端な温度である場合に、サーミスタ10が断線していると判断し、したがって、サーミスタ10の断線を確実に検出することができる。   In the above embodiment, the controller 21 determines that the thermistor 10 is disconnected when the thermistor temperature is lower than the CPU internal temperature by a predetermined value or more for a predetermined time. Is the extreme temperature, it is determined that the thermistor 10 is disconnected, and therefore the disconnection of the thermistor 10 can be reliably detected.

さらに、CPU内温度測定部24として、制御部21の温度測定機能を用いるので、近年マイコン等に標準機能として備えられている温度測定機能を利用することができ、よって、CPU内温度を測定するための構成を別途設ける必要がないという利点がある。   Furthermore, since the temperature measurement function of the control unit 21 is used as the CPU temperature measurement unit 24, a temperature measurement function that has recently been provided as a standard function in microcomputers and the like can be used, and thus the CPU temperature is measured. Therefore, there is an advantage that it is not necessary to provide a separate configuration.

100…差動式熱感知器、 10…サーミスタ、 20…CPU、 21…制御部、
24…CPU内温度測定部、 25…温度測定部。
DESCRIPTION OF SYMBOLS 100 ... Differential heat sensor, 10 ... Thermistor, 20 ... CPU, 21 ... Control part,
24 ... Temperature measurement part in CPU, 25 ... Temperature measurement part.

Claims (3)

周囲温度によって状態が変化する温度検出素子の温度検出素子温度に基づき監視領域の温度を測定する温度測定部と;
CPU内の温度を測定するCPU内温度測定部と;
上記温度検出素子が検出した温度検出素子温度と上記CPU内温度測定部が測定したCPU内温度とを記憶する記憶部と;
上記温度測定部で検出した温度検出素子温度が上記CPU内温度測定部で測定したCPU内温度よりも所定値以上低いときに、上記温度検出素子温度の代わりに上記CPU内温度を上記記憶部に記憶させ、上記記憶部に記憶された温度に基づいて火災を判定する制御部と;
を有することを特徴とする差動式熱感知器。
A temperature measuring unit for measuring the temperature of the monitoring region based on the temperature detecting element temperature of the temperature detecting element whose state changes according to the ambient temperature;
A CPU temperature measuring unit for measuring the temperature in the CPU;
A storage unit for storing the temperature detection element temperature detected by the temperature detection element and the CPU internal temperature measured by the CPU internal temperature measurement unit;
When the temperature detection element temperature detected by the temperature measurement unit is lower than the CPU internal temperature measured by the CPU internal temperature measurement unit by a predetermined value or more, the CPU internal temperature is stored in the storage unit instead of the temperature detection element temperature. A control unit for storing and determining a fire based on the temperature stored in the storage unit;
A differential heat sensor.
請求項1において、
上記制御部は、上記温度検出素子温度がCPU内温度よりも所定値以上低い状態が所定の時間継続したときに、上記温度検出素子が断線していると判定する手段であることを特徴とする差動式熱感知器。
In claim 1,
The control unit is means for determining that the temperature detection element is disconnected when a state where the temperature detection element temperature is lower than a CPU internal temperature by a predetermined value or more continues for a predetermined time. Differential heat sensor.
請求項1または請求項2において、
上記CPU内温度測定部は、上記制御部の温度測定機能を用いることを特徴とする差動式熱感知器。
In claim 1 or claim 2,
The CPU internal temperature measurement unit uses a temperature measurement function of the control unit.
JP2011071563A 2011-03-29 2011-03-29 Differential heat detector Pending JP2012208556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071563A JP2012208556A (en) 2011-03-29 2011-03-29 Differential heat detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071563A JP2012208556A (en) 2011-03-29 2011-03-29 Differential heat detector

Publications (1)

Publication Number Publication Date
JP2012208556A true JP2012208556A (en) 2012-10-25

Family

ID=47188267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071563A Pending JP2012208556A (en) 2011-03-29 2011-03-29 Differential heat detector

Country Status (1)

Country Link
JP (1) JP2012208556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160779A (en) * 2019-03-26 2020-10-01 能美防災株式会社 Heat detector and fire determination method with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222095A (en) * 1989-02-23 1990-09-04 Matsushita Electric Works Ltd Heat sensor
JPH06290370A (en) * 1993-03-31 1994-10-18 Nohmi Bosai Ltd Heat sensor
JP2002109648A (en) * 2000-09-27 2002-04-12 Hochiki Corp Fire alarm, fire alarm processing method, and recording medium recorded with the fire alarm processing program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222095A (en) * 1989-02-23 1990-09-04 Matsushita Electric Works Ltd Heat sensor
JPH06290370A (en) * 1993-03-31 1994-10-18 Nohmi Bosai Ltd Heat sensor
JP2002109648A (en) * 2000-09-27 2002-04-12 Hochiki Corp Fire alarm, fire alarm processing method, and recording medium recorded with the fire alarm processing program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160779A (en) * 2019-03-26 2020-10-01 能美防災株式会社 Heat detector and fire determination method with the same
JP7412085B2 (en) 2019-03-26 2024-01-12 能美防災株式会社 Heat detector and fire detection method using it

Similar Documents

Publication Publication Date Title
US9812879B2 (en) Battery thermal monitoring system
AU2006332047B8 (en) Linear fire-detector alarming system based on data fusion and the method
CN101192329A (en) Linetype fire disaster detector temperature-differential alarming threshold calibration method for following temperature rising
JP2012208556A (en) Differential heat detector
JP3859360B2 (en) Differential fire alarm
CN111023404A (en) Pipeline temperature sensor failure detection method, readable storage medium and air conditioner
JP2008083923A (en) Fire alarm
CA2957777C (en) Pneumatic fire detectors
US11867569B2 (en) Temperature abnormality detection system, temperature abnormality detection method, and computer-readable recording medium
JP4547312B2 (en) Temperature sensor and fire detector
KR101676290B1 (en) Temperature sensor and fire detection system using the same
JP6412390B2 (en) Fire alarm
CN112629709A (en) Temperature sensor fault detection method and device and electric vehicle controller
CN110500711B (en) Temperature limiting protection control method, device and system
US9070274B2 (en) Method for early detection of cooling-loss events
KR101774229B1 (en) Gas alarm appratus using semiconductor gas sensor
RU2626716C1 (en) Method for fire or overheat detection, and device for its implementation
CN201387657Y (en) Line type heat fire detector with terminal capacitor
CN101515399B (en) Line-type heat detector based on thermoelectric couple principle
CN117780677A (en) Fault judging method for air fryer fan
JP2007292392A (en) Root ice detector, root ice detecting program and root ice detecting method for unit cooler, and refrigeration system equipped with root ice detector
JP2010224854A (en) Alarm
CN115931176A (en) Method for improving reliability of intelligent fault detection of temperature sensor
CN101515398B (en) Line-type heat sensing fire detector with terminal capacitor
JP2004208905A (en) Automatic fire extinguishing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141205