JP2012208007A - Method for measuring water content - Google Patents

Method for measuring water content Download PDF

Info

Publication number
JP2012208007A
JP2012208007A JP2011073743A JP2011073743A JP2012208007A JP 2012208007 A JP2012208007 A JP 2012208007A JP 2011073743 A JP2011073743 A JP 2011073743A JP 2011073743 A JP2011073743 A JP 2011073743A JP 2012208007 A JP2012208007 A JP 2012208007A
Authority
JP
Japan
Prior art keywords
solution
frequency
film
piezoelectric element
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011073743A
Other languages
Japanese (ja)
Other versions
JP5591167B2 (en
Inventor
Atsushi Ito
敦 伊藤
Motoko Ichihashi
素子 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011073743A priority Critical patent/JP5591167B2/en
Publication of JP2012208007A publication Critical patent/JP2012208007A/en
Application granted granted Critical
Publication of JP5591167B2 publication Critical patent/JP5591167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring water content for calculating mass of water contained in a film of an absorption film and mass of only an adsorbed material, and water content ratio of the absorption film in real time in solution even without measuring dry weight of the adsorbed material.SOLUTION: In a system that a material is adsorbed to the surface of a piezoelectric element of which the both sides or one side are immersed in solution, or a film fixed on the piezoelectric element in the solution, and the film is formed by a sensor using the piezoelectric element, any two of variations (ΔF, ΔF, ΔF) of a resonance frequency F, half-value frequencies Fand F(F>F) having conductance values of a half of a conductance value of the resonance frequency is measured, on the basis of frequency variation (Δ(F-F)/2)/ΔFs in the maximum adsorption of a reference material to the sensor, compared with frequency variation (Δ(F-F)/2)/ΔFs of a measuring object, and mass of water which the measuring object contains is calculated.

Description

本発明は、化学・物理・生化学・材料などの分野における粘弾性を備えた薄膜の評価する方法に関し、詳細には、圧電素子をセンサとして使用した場合の吸着物質に対する水分の質量を含水比として捉え、吸着物質が含有する含水量を測定する方法に関するものである。   The present invention relates to a method for evaluating a thin film having viscoelasticity in the fields of chemistry, physics, biochemistry, materials, and the like, and more specifically, the moisture content relative to the adsorbed material when a piezoelectric element is used as a sensor. And relates to a method for measuring the water content of the adsorbed material.

QCMの周波数変化と質量負荷の関係は以下のSauerbreyの式が用いられる。
The following Sauerbrey equation is used for the relationship between the frequency change of the QCM and the mass load.

溶液中での吸着による周波数変化は、大気中で測定した時と違い溶液を吸着物資内に含むため、その分大きめの周波数変化を示すことが報告されている。実際溶液中での吸着による周波数変化量は、タンパク質の場合、タンパク質のみの質量による周波数変化の約2倍、DNAの場合は、DNAのみの質量による周波数変化の約6倍と大きく見積もられていた。   It has been reported that the frequency change due to adsorption in the solution shows a larger frequency change because the solution is included in the adsorbate material, unlike when measured in the atmosphere. In fact, the amount of frequency change due to adsorption in solution is estimated to be about twice as large as the frequency change due to the mass of protein alone, and about 6 times the frequency change due to the mass of DNA alone in the case of DNA. It was.

水を含まない吸着物質のみの吸着量を正確に知る為には、溶液中で吸着後に溶液を除去し大気に戻し周波数を測定し、予め吸着前に測定していた大気での周波数を差し引くことで、吸着した物質の質量を求める方法がある(乾燥重量測定法)。しかし、操作が煩雑であること、乾燥時に吸着したものが剥がれ正確な測定ができない物質もあること、乾燥後に活性を無くす物質もあること等が問題となっていた。また物質の吸着を繰り返すことで膜が何層にもなる場合もあり、全ての測定にこの方法が有効なわけではなかった。   In order to know exactly the amount of adsorbed material that does not contain water, remove the solution after adsorption in the solution, return it to the atmosphere, measure the frequency, and subtract the frequency in the atmosphere that was measured before the adsorption in advance. There is a method for obtaining the mass of the adsorbed substance (dry weight measurement method). However, there are problems such as complicated operations, some substances that are adsorbed during drying and cannot be measured accurately, and some substances that lose activity after drying. In addition, the film may have several layers due to repeated adsorption of substances, and this method is not effective for all measurements.

吸着物の乾燥重量を測定しなくとも溶液中でリアルタイムで、吸着した膜の膜中に含まれる水の質量とその吸着物質のみの質量、またその吸着膜の含水比を求めることが可能な含水量の測定方法を提供する。   It is possible to determine the mass of water contained in the membrane of the adsorbed membrane, the mass of the adsorbed material alone, and the moisture content of the adsorbed membrane in real time without measuring the dry weight of the adsorbate. Provide a method for measuring the amount of water.

本発明の含水量の測定方法は、請求項1に記載の通り、溶液に両側又は片側が浸される圧電素子を用いたセンサーにより、前記溶液中で前記圧電素子表面、或いは、前記圧電素子上に固定化された膜に物質が吸着されて膜が形成される系において、共振周波数Fs、共振周波数のコンダクタンス値の半分のコンダクタンス値を持つ半値周波数F1,F2(F2>F1)のうちの何れか2つの変化量(ΔFs, ΔF1, ΔF2)を測定し、基準となる物質の前記センサーへの最大吸着時の周波数変化量(Δ(F1−F2)/2)/ΔFsを基準として、測定対象物の周波数変化量(Δ(F1−F2)/2)/ΔFsと比較して、前記測定対象物が含有する水の質量を求めることを特徴とする。
請求項2記載の本発明は、請求項1に記載の含水量の測定方法において、前記基準となる物質の前記センサーへの最大吸着時の周波数変化量を(G'/|G|2)として算出することを特徴とする。
請求項3記載の本発明は、請求項1又は2に記載の含水量の測定方法において、前記測定時に使用する周波数は、基本波及びオーバートーン(3倍波、5倍波、7倍波・・・)のいずれかであることを特徴とする。
請求項4記載の本発明は、請求項1乃至3の何れか1項に記載の物質の質量負荷及び粘弾性の測定方法において、前記圧電素子は、水晶振動子、APM(ACOUSTIC PLATE MODE SENSOR)、FPW(FLEXURAL PLATE-WAVE SENSOR)又はSAW(SOURFACE ACOUSTIC-WAVE SENSOR)であることを特徴とする。
The water content measuring method of the present invention is the method of claim 1, wherein a sensor using a piezoelectric element immersed on both sides or one side in a solution is used to measure the surface of the piezoelectric element in the solution or on the piezoelectric element. In a system in which a film is formed by adsorbing a substance to a film fixed to the resonance frequency F s , the half-value frequencies F 1 and F 2 (F 2 > F 1 having a conductance value that is half the conductance value of the resonance frequency) ) Is measured (ΔF s , ΔF 1 , ΔF 2 ) and the frequency change amount (Δ (F 1 −F 2 ) / at the time of maximum adsorption of the reference substance to the sensor is measured. 2) By using / ΔFs as a reference, the mass change amount of the measurement object (Δ (F 1 −F 2 ) / 2) / ΔFs is compared with the amount of water contained in the measurement object. To do.
According to a second aspect of the present invention, in the method for measuring water content according to the first aspect, the amount of frequency change at the time of maximum adsorption of the reference substance to the sensor is defined as (G ′ / | G | 2 ) It is characterized by calculating.
According to a third aspect of the present invention, in the method for measuring moisture content according to the first or second aspect, the frequencies used during the measurement are fundamental wave and overtone (third harmonic, fifth harmonic, seventh harmonic ·・ ・) Is one of the above.
According to a fourth aspect of the present invention, there is provided the method for measuring mass load and viscoelasticity of a substance according to any one of the first to third aspects, wherein the piezoelectric element is a crystal resonator, an APM (ACOUSTIC PLATE MODE SENSOR). , FPW (FLEXURAL PLATE-WAVE SENSOR) or SAW (SOURFACE ACOUSTIC-WAVE SENSOR).

QCMを使用した従来の方式では溶液中での吸着量(質量負荷)は、水を含むため、正しい値を求めるには乾燥重量を測る必要があった。しかし乾燥重量の測定は煩雑で、また物質によっては剥がれて測定できないものもあった。また溶液中でリアルタイムでの反応を追いながら吸着膜の含水比を求めることはできなかった。本発明によれば、乾燥重量測定法を用いずとも溶液中でリアルタイムに物質の吸着量(質量)を求めることが可能となる。   In the conventional method using QCM, the amount of adsorption (mass load) in the solution includes water, so it was necessary to measure the dry weight to obtain the correct value. However, the measurement of dry weight is complicated, and some substances cannot be measured due to peeling. In addition, the moisture content of the adsorption membrane could not be determined while following the reaction in real time in the solution. According to the present invention, the adsorption amount (mass) of a substance in a solution can be obtained in real time without using a dry weight measurement method.

本発明の測定方法を実施するための装置構成の説明図Explanatory drawing of the apparatus structure for enforcing the measuring method of this invention 本発明の一実施の形態における説明の本発明と従来の乾燥重量法の測定結果を示すグラフThe graph which shows the measurement result of this invention and the conventional dry weight method of description in one embodiment of this invention 本発明の一実施例のQCMの測定結果を示すグラフThe graph which shows the measurement result of QCM of one example of the present invention 同実施例における周波数変化から算出した含水比を示すグラフThe graph which shows the water content ratio computed from the frequency change in the Example 同実施例の測定対象物の質量と水の質量の関係を示すグラフThe graph which shows the relationship between the mass of the measuring object of the same Example, and the mass of water 本発明の一実施の形態のN倍波等の測定周波数の説明図Explanatory drawing of measurement frequencies, such as N harmonic of one embodiment of the present invention

溶液中でのQCMセンサーはでは薄膜がセンサー上に吸着したときの周波数の変化は薄膜でフォークトモデルを適用した場合に、以下の数2及び数3で表されることが一般的に知られている。
ここで、G:複素弾性率(MPa)、G’:貯蔵弾性率(動的弾性率)(MPa)、G”:損失弾性率(動的損失)(MPa)、ω:角周波数、ρ:溶液の密度(g/cm3)、η:溶液の粘度(Pa・S)、hf:形成された前期膜の厚み(nm)、ρ:形成された前期膜の密度(g/cm3)、η:形成された前期膜の粘度(Pa・S)、f:基本周波数(Hz)であり、zq:水晶のせん断モード音響インピーダンス(gm/sec/cm2)である。
In QCM sensors in solution, it is generally known that the change in frequency when a thin film is adsorbed on the sensor is expressed by the following equations 2 and 3 when the Forked model is applied to the thin film. Yes.
Where G: complex elastic modulus (MPa), G ′: storage elastic modulus (dynamic elastic modulus) (MPa), G ″: loss elastic modulus (dynamic loss) (MPa), ω: angular frequency, ρ 2 : Density of solution (g / cm 3 ), η 2 : Viscosity of solution (Pa · S), h f : Thickness (nm) of formed pre-film, ρ 1 : Density of pre-formed film (g / cm 3 ), η 1 : Viscosity (Pa · S) of the formed membrane, f 0 : Fundamental frequency (Hz), z q : Shear mode acoustic impedance (gm / sec / cm 2 ) of quartz .

この時ΔFsは共振周波数Fsの周波数変化値、ΔFwはΔ(F1-F2)/2式の周波数変化値である。また、ΔFsはΔ(F1+F2)/2からも求められる。 At this time, ΔFs is a frequency change value of the resonance frequency Fs, and ΔFw is a frequency change value of Δ (F 1 -F 2 ) / 2. ΔFs can also be obtained from Δ (F 1 + F 2 ) / 2.

更に溶液の粘性変化がない場合は、粘性負荷項が消去され、数2においては質量負荷項より粘弾性項1が十分小さいとし、また一般的に生体分子膜は溶液中では水を多く含む場合が多いことから膜の密度は溶液の密度とほぼ同じとして近似できる。この近似を元に数3を数2で除することにより、ΔFw/ΔFsは、次の数4にまとめられる。
Further, when there is no change in the viscosity of the solution, the viscous load term is eliminated, and in Equation 2, the viscoelastic term 1 is sufficiently smaller than the mass load term, and generally, the biomolecule film contains a lot of water in the solution. Therefore, the density of the film can be approximated as almost the same as the density of the solution. By dividing Equation 3 by Equation 2 based on this approximation, ΔF w / ΔF s can be summarized as Equation 4 below.

我々は、数4が吸着物質の含水比と関連があることを実験結果から見出した。
例として、50nmのラテックスビーズの溶液中での金電極への吸着を実験すると、27MHzの水晶振動子を用いたセンサーでは最大吸着時の代表値は表1のようになる。
We found from the experimental results that the number 4 is related to the moisture content of the adsorbed material.
As an example, when the adsorption to a gold electrode in a solution of 50 nm latex beads is tested, the typical values at the maximum adsorption are as shown in Table 1 for a sensor using a 27 MHz crystal resonator.

このときの乾燥重量測定法によるはFsの周波数変化は-2514Hzであり、これを溶液中でのFsの周波数変化−5020Hzから差し引くことで、膜中に含まれていた水の質量分-2506Hzが求められ、ラテックスビーズは溶液中でラテックスビーズ自体と同量の水を含む吸着膜を形成していたことがわかる。   According to the dry weight measurement method at this time, the frequency change of Fs is −2514 Hz, and by subtracting this from the frequency change of Fs in the solution −5020 Hz, the mass of water contained in the film −2506 Hz is obtained. It can be seen that the latex beads formed an adsorption film containing the same amount of water in the solution as the latex beads themselves.

つまりラテックスビーズが溶液中で吸着膜を形成した際の含水比は1(又は100%)となる。含水比とは物質中に含まれる水の質量をその物質(固体)の質量で割った値を示し、その物質に含まれる水の割合を示すものである。   That is, the moisture content when latex beads form an adsorption film in a solution is 1 (or 100%). The water content ratio indicates a value obtained by dividing the mass of water contained in a substance by the mass of the substance (solid), and indicates the ratio of water contained in the substance.

27MHzの水晶振動子の感度は-1Hzあたり0.62ng/cm2であるので-2514Hz×0.62ng/cm2が単位面積当たりの質量となる。これに吸着面積をかけるとセンサー表面についたビーズの質量が算出できる。 Since the sensitivity of the 27 MHz crystal resonator is 0.62 ng / cm 2 per −1 Hz, the mass per unit area is −2514 Hz × 0.62 ng / cm 2 . When the adsorption area is multiplied by this, the mass of the beads attached to the sensor surface can be calculated.

このラテックスビーズの溶液中でのΔfw/Δfs=0.069の値は、吸着膜の含水比が1であるときの値であることから、この0.069を基準とし、吸着膜の含水比を周波数変化から求める方法を、(ΔFw/ΔFs)/0.069で定義する。 Since the value of Δfw / Δfs = 0.069 in the latex bead solution is a value when the water content ratio of the adsorption film is 1, the water content ratio of the adsorption film is obtained from the frequency change based on 0.069. The method is defined as (ΔF w / ΔF s ) /0.069.

溶液中で吸着した各物質の含水比を乾燥重量測定法から元に求めたものと、上記定義で求めた含水比((ΔFw/ΔFs)/0.069)を下記表2及び図2に示す。含水比が良く一致することが実験データから得られた。
Table 2 and Fig. 2 show the water content ratio of each substance adsorbed in the solution based on the dry weight measurement method and the water content ratio ((ΔF w / ΔF s ) /0.069) determined by the above definition. . It was obtained from the experimental data that the water content agreed well.

尚、基準となる物質は、ラテックスビーズに限定されるものではない。構造が簡単で27MHzの溶液中での浸入深度約100nmより小さくかつ再現良く乾燥重量が求められるものであればよい。
また、「浸入深度」とは、水晶振動子の厚みすべり振動が、接している溶液へ伝わり減衰する距離をいい、下記の数5から導き出すことができる。
The reference substance is not limited to latex beads. Any structure can be used as long as it has a simple structure, a depth of penetration of less than about 100 nm in a 27 MHz solution, and a dry weight that is reproducible.
The “penetration depth” refers to the distance at which the thickness shear vibration of the crystal resonator is transmitted to the solution in contact and attenuates, and can be derived from the following equation (5).

次に粘弾性係数G’、G” 値から吸着した膜中に含まれる水の質量とその吸着物質のみの質量、またその吸着膜の含水比を算出する方法を述べる。   Next, a method for calculating the mass of water contained in the adsorbed film, the mass of only the adsorbed substance, and the water content ratio of the adsorbed film from the viscoelastic coefficients G ′ and G ″ values will be described.

膜の粘弾性項係数G’、G”については、下記方法1及び方法2で詳細に説明した方法により求めるものとする。
得られたG’、G”値からG’/|G|値を算出する。G’/|G|値は数4の右項に含まれる定数だが、数4の右項と違い、角周波数ω、溶液の粘性η1を含まない為、吸着膜の情報のみで表される値になる。そのため、この値を使ってより正確な吸着した膜中に含まれる水の質量とその吸着膜のみの質量、またその吸着膜の含水比を算出することが可能になる。
The viscoelastic term coefficients G ′ and G ″ of the film are obtained by the method described in detail in Method 1 and Method 2 below.
The resulting G ', G "G from value' / | G | .G calculates a binary '/ | G | 2 values but constants in the right term of Equation 4, the difference to the number 4 of the right term, Since it does not include the angular frequency ω and the viscosity η 1 of the solution, it becomes a value represented only by the information of the adsorbed film.Therefore, using this value, the mass of water contained in the adsorbed film more accurately and its adsorption It becomes possible to calculate the mass of only the membrane and the moisture content of the adsorbed membrane.

(膜の粘弾性項係数G’、G”の算出方法1)
Martin らの伝送理論(V.E.Granstaff,S.J..Martin,J.Appl.Phys. 1994,75,1319)により粘弾性膜が溶液中で水晶振動子に吸着した場合のインピーダンスZの変化は、以下の数6で表される。
数6から、共振周波数Fsの変化は数7で表され、半値周波数の半分の(F1 - F2)/2(=Fw)の変化量は数8で表される。
また、数7及び数8から、数9で示されるように周波数F2の変化量を求めることができる。
ここで、G:複素弾性率(MPa)、G’:貯蔵弾性率(動的弾性率)(MPa)、G”:損失弾性率(動的損失)(MPa)、ω:角周波数、ρ:溶液の密度(g/cm3)、η:溶液の粘度(Pa・S)、hf:形成された前期膜の厚み(nm)、ρ:形成された前期膜の密度(g/cm3)、η:形成された前期膜の粘度(Pa・S)、f:基本周波数(Hz)であり、zq:水晶のせん断モード音響インピーダンス(gm/sec/cm2)である。
(Method 1 of calculating viscoelastic term coefficients G ′ and G ″ of the film)
According to Martin et al.'S transmission theory (VEGranstaff, SJ. Martin, J. Appl. Phys. 1994, 75, 1319), the change in impedance Z when the viscoelastic film is adsorbed to a quartz crystal resonator in solution is It is represented by
From Equation 6, the change in resonance frequency F s is expressed by Equation 7, and the change amount of (F 1 −F 2 ) / 2 (= F w ), which is half the half-value frequency, is expressed by Equation 8.
Further, from Equation 7 and Equation 8, the change amount of the frequency F2 can be obtained as shown in Equation 9.
Where G: complex elastic modulus (MPa), G ′: storage elastic modulus (dynamic elastic modulus) (MPa), G ″: loss elastic modulus (dynamic loss) (MPa), ω: angular frequency, ρ 2 : Density of solution (g / cm 3 ), η 2 : Viscosity of solution (Pa · S), h f : Thickness (nm) of formed pre-film, ρ 1 : Density of pre-formed film (g / cm 3 ), η 1 : Viscosity (Pa · S) of the formed membrane, f 0 : Fundamental frequency (Hz), z q : Shear mode acoustic impedance (gm / sec / cm 2 ) of quartz .

また、ここで膜の粘弾性のモデルとしてよく使用されるVoigt モデルをG’、G”に適用する。
弾性要素のばねGとダッシュポットηを並列に接続したモデルは、以下の式で表される。
ここで、ωη=Cμとおくと(C:定数、μ:剛性率(MPa))、数7は、以下のように変形することができる。
そして、N倍波の場合は以下の式になる。
2つの周波数のそれぞれのΔFwの値を除算することで、定数Cを含む近似式になる。
Here, the Voigt model often used as a model of the viscoelasticity of the film is applied to G ′ and G ″.
A model in which the spring G of the elastic element and the dashpot η are connected in parallel is expressed by the following equation.
Here, if ωη = Cμ (C: constant, μ: rigidity (MPa)), Equation 7 can be modified as follows.
In the case of the Nth harmonic wave, the following equation is obtained.
By dividing the value of ΔF w of each of the two frequencies, an approximate expression including a constant C is obtained.

上記の式は、基本波(N=1)と3倍波(N=3)の周波数変化量Fwを使用した場合の式である。
測定によって得られた周波数変化量Fw3をFw1により除算することにより得られる値をAとし、その値Aを上記式の左辺に代入することで、以下の定数Cを算出することができる。
The above equation is an equation in the case of using the frequency variation F w of the fundamental wave (N = 1) and third harmonic (N = 3).
The following constant C can be calculated by substituting A for the value obtained by dividing the frequency variation F w3 obtained by measurement by F w1 and substituting that value A into the left side of the above equation.

算出した値Cと、測定した基本波の周波数変化量ΔF2、ΔFw、ΔFs値から、以下の数15〜数17で示される各項の周波数変化を求める。この時、溶液の粘性負荷は生じない測定を条件とする。
From the calculated value C and the measured frequency changes ΔF 2 , ΔF w , ΔF s of the fundamental wave, the frequency change of each term represented by the following equations 15 to 17 is obtained. At this time, the measurement is performed under the condition that no viscous load of the solution occurs.

まず、ΔFwが粘弾性項(2)のみで成立しているため、
粘弾性項(2)=ΔFw
となる。
First, since ΔF w is established only by the viscoelastic term (2),
Viscoelastic term (2) = ΔF w
It becomes.

次に、粘弾性項(1)は次式で求められる。定数CはG"/G’で表すことができるので、C=G"/G’を代入し、粘弾性項(2)と乗算すると粘弾性項(1)が算出できる。
粘弾性項(1)=−(1+C)*粘弾性項(2)
質量負荷項は、ΔF2の式に上記で得られた粘弾性項(1)の値を代入することで得られる。
質量負荷項=ΔF2−粘弾性項(1)
最後に粘弾性項(3)は、ΔFsの式に上記で得られた質量負荷項の値を代入することで得られる。
粘弾性項(3)=ΔFs−質量負荷項
Next, the viscoelastic term (1) is obtained by the following equation. Since the constant C can be expressed by G ″ / G ′, the viscoelastic term (1) can be calculated by substituting C = G ″ / G ′ and multiplying by the viscoelastic term (2).
Viscoelastic term (1) =-(1 + C) * Viscoelastic term (2)
Mass load term is obtained by substituting the values of viscoelasticity term obtained above in equation ΔF 2 (1).
Mass load term = ΔF 2 -Viscoelastic term (1)
Finally, the viscoelastic term (3) is obtained by substituting the value of the mass load term obtained above into the equation for ΔF s .
Viscoelastic term (3) = ΔF s -Mass load term

さらに上記で得られた質量負荷項と粘弾性項(2)の周波数変化量を使用し、粘弾性係数G’、G”を下記式より算出する。式中において、ω:角周波数、ρ:溶液の密度(g/cm3)、η:溶液の粘度(Pa・S)、ρ:膜の密度(g/cm3)とする。
G’’=C*G’
Further, the viscoelastic coefficients G ′ and G ″ are calculated from the following formula using the mass load term and the frequency change amount of the viscoelastic term (2) obtained above. In the formula, ω: angular frequency, ρ 2 : Solution density (g / cm 3 ), η 2 : Solution viscosity (Pa · S), ρ 1 : Film density (g / cm 3 ).
G ″ = C * G ′

(膜の粘弾性項係数G’、G”の算出方法2)
溶液中で、タンパク質、DNAや糖鎖等の物質が水と合成され、圧電素子の電極上に前記物質が薄膜状に吸着された際に、基本波とオーバートーン(3倍波、5倍波、7倍波・・・)のいずれか2つを使って、特許文献1に記載されるように、数2、数3のそれぞれの項(質量負荷項、粘性負荷項、粘弾性項1、粘弾性項2)をVoigtモデルによって求め、その値と吸着物の密度から粘弾性係数 G’、G’’の値を算出した結果を下記表1に示す。
(Method 2 for calculating the viscoelastic term coefficients G ′ and G ″ of the film)
When a substance such as protein, DNA or sugar chain is synthesized with water in a solution, and the substance is adsorbed in the form of a thin film on the electrode of the piezoelectric element, the fundamental wave and overtone (3rd harmonic, 5th harmonic) , 7th harmonic, etc., as described in Patent Document 1, each term of Equations 2 and 3 (mass load term, viscous load term, viscoelastic term 1, Table 1 below shows the viscoelasticity term 2) obtained by the Voigt model, and the viscoelastic coefficients G ′ and G ″ calculated from the value and the density of the adsorbate.

この結果から、G’’=G’/2の直線上に収束していることがわかるので、溶液の粘性負荷がない場合に、G’’=G’/2の関係を用いて、基本波、オーバートーン(3倍波、5倍波、7倍波・・・)のいずれか1つの周波数変化量を測定して、質量負荷と粘性負荷と粘弾性のいずれかを残りの負荷から分離して測定する。
溶液の粘性変化がない場合、数19は下式になる。
Δ(F1−F2)/2の変化量から粘弾性項(2)の値が求まる。
また溶液の粘性変化がない場合、下式が成立する。
G’’=G’/2から、数22の粘弾性項(3)が求まり、更に、ΔFsに現実の変化量を代入することで質量負荷項を求めることができる。
From this result, it can be seen that the beam converges on a straight line of G ″ = G ′ / 2. Therefore, when there is no viscous load of the solution, the fundamental wave is used by using the relationship of G ″ = G ′ / 2. , Measure the frequency variation of any one of the overtones (3rd harmonic, 5th harmonic, 7th harmonic ...) and separate any one of mass load, viscous load and viscoelasticity from the remaining load To measure.
When there is no change in the viscosity of the solution, Equation 19 becomes the following equation.
The value of the viscoelastic term (2) is obtained from the amount of change of Δ (F 1 −F 2 ) / 2.
When there is no change in the viscosity of the solution, the following equation is established.
From G ″ = G ′ / 2, the viscoelastic term (3) of Equation 22 is obtained, and further, the mass load term can be obtained by substituting the actual change amount into ΔF s .

以上のことから、系の粘弾性項(2)を、Δ(F1−F2)/2とし、前記系の粘弾性項(3)を、Δ(F1−F2)/4とし、前記系の質量負荷を、Δ(F1−F2)/4−ΔFsとして、それぞれ独立して求めることができる。
以上は27MHzの水晶振動子の基本波を用いた場合で、G’’=CG’なる関係のCはほぼ1/2となるが、オーバートーン(N=3,5、7・・・)を用いた場合は、G’は周波数依存性がなく、G’’=ωη(ω:角周波数、η:溶液の粘度)の関係があることにより、CはほぼN/2となる。このことから、G'及びG''を求めることができる。
From the above, the viscoelastic term (2) of the system is Δ (F 1 −F 2 ) / 2, the viscoelastic term (3) of the system is Δ (F 1 −F 2 ) / 4, The mass load of the system can be determined independently as Δ (F 1 −F 2 ) / 4−ΔF s .
The above is the case where the fundamental wave of a 27 MHz crystal resonator is used, and C in the relationship of G ″ = CG ′ is almost ½, but the overtone (N = 3, 5, 7,...) When used, G ′ has no frequency dependence, and C is approximately N / 2 due to the relationship of G ″ = ωη (ω: angular frequency, η: viscosity of the solution). From this, G ′ and G ″ can be obtained.

上記の方法を用い、27MHzの水晶振動子の基本波と3倍波で各膜のG’、G”を求めたものである。50nmラテックスビーズが溶液中で吸着膜を形成した際の含水比は1となることが実験で解かっているので、含水比が1の時のG’/|G|=0.350を基準とし、吸着膜の含水比を粘弾性係数から求める方法を、(G’/|G|)/0.350で定義する。
Using the above method, G 'and G "of each film were obtained with the fundamental wave and 3rd harmonic of a 27 MHz crystal resonator. Water content ratio when 50nm latex beads formed an adsorbed film in solution Since it has been experimentally determined that the ratio is 1 as G ′ / | G | 2 = 0.350 when the water content ratio is 1, a method for obtaining the water content ratio of the adsorbed film from the viscoelastic coefficient (G ′ / | G | 2 ) /0.350.

尚、上記の測定方法で使用されるFs,F1,F2の周波数の測定は、発振回路による方法やインピーダンスアナライザーやネットワークアナライザーなど外部機器からの周波数掃引によって得られる方法など、共振周波数Fs、共振周波数のコンダクタンス値の半分のコンダクタンス値を持つ半値周波数F1,F2(F2>F1)であれば、その測定方法を制限するものではない。
測定方法に使用する装置についての例を挙げると、図1に示されるように、圧電素子を備えたセル1をネットワークアナライザー2を介して、ネットワークアナライザー2の制御、測定及び演算を行うパソコン等の制御手段3に接続して構成する。尚、図示した例では、セル1の温度調整を行うために、ペルチェ素子等の温度制御手段4をセル1の下面に備え、温度制御手段4を調整するための温度調整手段5を、同様に制御手段3により制御する構成としている。
また、上記説明したものでは、基本波と3倍波とを使用したが、図6に示すような、基本波を含むオーバートーンの周波数のうちの少なくとも2つの周波数であれば、本発明を使用することができる。
The frequency of F s , F 1 , F 2 used in the above measurement method is measured by the resonance frequency F, such as a method using an oscillation circuit or a method obtained by frequency sweep from an external device such as an impedance analyzer or a network analyzer. If s is a half-value frequency F 1 , F 2 (F 2 > F 1 ) having a conductance value that is half the conductance value of the resonance frequency, the measurement method is not limited.
As an example of an apparatus used in the measurement method, as shown in FIG. 1, a cell 1 equipped with a piezoelectric element is connected to a network analyzer 2 via a network analyzer 2 to control, measure and calculate a personal computer or the like. It is configured by connecting to the control means 3. In the illustrated example, in order to adjust the temperature of the cell 1, the temperature control means 4 such as a Peltier element is provided on the lower surface of the cell 1, and the temperature adjustment means 5 for adjusting the temperature control means 4 is similarly provided. Control is performed by the control means 3.
In the above description, the fundamental wave and the third harmonic wave are used. However, the present invention is used if the frequency is at least two of the overtone frequencies including the fundamental wave as shown in FIG. can do.

また、本発明において使用される圧電素子は、上記対象となる周波数を測定できるものであれば制限はなく、水晶振動子、APM(ACOUSTIC PLATE MODE SENSOR)、FPW(FLEXURAL PLATE-WAVE SENSOR)又はSAW(SOURFACE ACOUSTIC-WAVE SENSOR)も使用することができる。   In addition, the piezoelectric element used in the present invention is not limited as long as it can measure the target frequency, and is a crystal resonator, APM (ACOUSTIC PLATE MODE SENSOR), FPW (FLEXURAL PLATE-WAVE SENSOR) or SAW. (SOURFACE ACOUSTIC-WAVE SENSOR) can also be used.

上記実施の形態で説明した装置を使用し、圧電素子として水晶振動子を使用し、金電極表面にNeutravidin(たんぱく質)を吸着させる実験を行った。
図3は通常のQCM測定で得られる共振周波数変化(ΔFs)の経時変化である。
Using the apparatus described in the above embodiment, a crystal resonator was used as the piezoelectric element, and an experiment was performed in which Neutravidin (protein) was adsorbed on the gold electrode surface.
FIG. 3 is a time-dependent change in resonance frequency change (ΔFs) obtained by normal QCM measurement.

図3の測定データを本発明の方法で解析することで、リアルタイムでNeutravidin 膜の含水比を算出した結果(図4)、Neutravidin膜に含まれる水の質量とNeutravidin自体の質量を算出した結果(図5)することが可能である。
溶液中でのNeutravidin膜は吸着量が小さい時は含水比が小さく、最大吸着量(飽和吸着量)に近づくにつれ含水比が大きくなることがわかった。
As a result of analyzing the measurement data of FIG. 3 by the method of the present invention, the water content ratio of the Neutravidin membrane was calculated in real time (FIG. 4), and the mass of water contained in the Neutravidin membrane and the mass of Neutravidin itself ( FIG. 5) is possible.
It was found that the Neutravidin membrane in solution had a low water content when the amount of adsorption was small, and the water content increased as it approached the maximum amount of adsorption (saturated adsorption amount).

1 セル
2 ネットワークアナライザー
3 制御手段
4 温度制御手段
5 温調調整手段
1 cell 2 network analyzer 3 control means 4 temperature control means 5 temperature adjustment means

Claims (4)

溶液に両側又は片側が浸される圧電素子を用いたセンサーにより、前記溶液中で前記圧電素子表面、或いは、前記圧電素子上に固定化された膜に物質が吸着されて膜が形成される系において、
共振周波数Fs、共振周波数のコンダクタンス値の半分のコンダクタンス値を持つ半値周波数F1,F2(F2>F1)のうちの何れか2つの変化量(ΔFs, ΔF1, ΔF2)を測定し、
基準となる物質の前記センサーへの最大吸着時の周波数変化量(Δ(F1−F2)/2)/ΔFsを基準として、測定対象物の周波数変化量(Δ(F1−F2)/2)/ΔFsと比較して、前記測定対象物が含有する水の質量を求めることを特徴とする含水量の測定方法。
A system in which a film is formed by adsorbing a substance on a surface of the piezoelectric element in the solution or a film fixed on the piezoelectric element in the solution by a sensor using a piezoelectric element immersed on both sides or one side in the solution. In
The amount of change (ΔF s , ΔF 1 , ΔF 2 ) of any one of the resonance frequency F s and the half-value frequencies F 1 , F 2 (F 2 > F 1 ) having a conductance value that is half the conductance value of the resonance frequency Measure and
Frequency change amount of measurement object (Δ (F 1 -F 2 ) with reference to frequency change amount (Δ (F 1 −F 2 ) / 2) / ΔFs at maximum adsorption of the reference substance to the sensor / 2) A method for measuring water content, wherein the mass of water contained in the object to be measured is obtained in comparison with / ΔFs.
前記基準となる物質の前記センサーへの最大吸着時の周波数変化量を(G'/|G|2)として算出することを特徴とする請求項1に記載の含水量の測定方法。 The method for measuring water content according to claim 1, wherein the amount of change in frequency at the time of maximum adsorption of the reference substance to the sensor is calculated as (G '/ | G | 2 ). 前記測定時に使用する周波数は、基本波及びオーバートーン(3倍波、5倍波、7倍波・・・)のいずれかであることを特徴とする請求項1又は2に記載の含水量の測定方法。   The frequency used in the measurement is any one of a fundamental wave and an overtone (third harmonic, fifth harmonic, seventh harmonic, ...). Measuring method. 前記圧電素子は、水晶振動子、APM(ACOUSTIC PLATE MODE SENSOR)、FPW(FLEXURAL PLATE-WAVE SENSOR)又はSAW(SOURFACE ACOUSTIC-WAVE SENSOR)であることを特徴とする請求項1乃至3の何れか1項に記載の物質の質量負荷及び粘弾性の測定方法。   4. The piezoelectric element according to claim 1, wherein the piezoelectric element is a crystal resonator, an APM (ACOUSTIC PLATE MODE SENSOR), an FPW (FLEXURAL PLATE-WAVE SENSOR), or a SAW (SOURFACE ACOUSTIC-WAVE SENSOR). A method for measuring a mass load and viscoelasticity of the substance according to the item.
JP2011073743A 2011-03-29 2011-03-29 Measuring method of water content Active JP5591167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073743A JP5591167B2 (en) 2011-03-29 2011-03-29 Measuring method of water content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011073743A JP5591167B2 (en) 2011-03-29 2011-03-29 Measuring method of water content

Publications (2)

Publication Number Publication Date
JP2012208007A true JP2012208007A (en) 2012-10-25
JP5591167B2 JP5591167B2 (en) 2014-09-17

Family

ID=47187879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073743A Active JP5591167B2 (en) 2011-03-29 2011-03-29 Measuring method of water content

Country Status (1)

Country Link
JP (1) JP5591167B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071365A (en) * 2017-10-10 2019-05-09 花王株式会社 Final polishing liquid composition for silicon wafer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884134A (en) * 2019-04-03 2019-06-14 哈尔滨理工大学 A kind of electric pole type crude oil water content real-time detector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315235A (en) * 2002-04-26 2003-11-06 Ulvac Japan Ltd Analytical method
JP2004251873A (en) * 2002-12-26 2004-09-09 Ulvac Japan Ltd Analytical method using oscillator
JP2004325257A (en) * 2003-04-24 2004-11-18 Ulvac Japan Ltd Analysis method using oscillator
JP2005098866A (en) * 2003-09-25 2005-04-14 Ulvac Japan Ltd Measurement method using vibrator, and biosensor device
JP2007010519A (en) * 2005-06-30 2007-01-18 Ulvac Japan Ltd Measuring method using quartz vibrator, and measuring instrument
JP2007271545A (en) * 2006-03-31 2007-10-18 Nippon Paper Industries Co Ltd Method for measuring deposition degree of foreign substance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315235A (en) * 2002-04-26 2003-11-06 Ulvac Japan Ltd Analytical method
JP2004251873A (en) * 2002-12-26 2004-09-09 Ulvac Japan Ltd Analytical method using oscillator
JP2004325257A (en) * 2003-04-24 2004-11-18 Ulvac Japan Ltd Analysis method using oscillator
JP2005098866A (en) * 2003-09-25 2005-04-14 Ulvac Japan Ltd Measurement method using vibrator, and biosensor device
JP2007010519A (en) * 2005-06-30 2007-01-18 Ulvac Japan Ltd Measuring method using quartz vibrator, and measuring instrument
JP2007271545A (en) * 2006-03-31 2007-10-18 Nippon Paper Industries Co Ltd Method for measuring deposition degree of foreign substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071365A (en) * 2017-10-10 2019-05-09 花王株式会社 Final polishing liquid composition for silicon wafer

Also Published As

Publication number Publication date
JP5591167B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5372263B2 (en) Method for measuring viscoelastic coefficient of substance and measuring device for viscoelastic coefficient of substance
Johannsmann Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance
Lucklum et al. The quartz crystal microbalance: mass sensitivity, viscoelasticity and acoustic amplification
Stadler et al. Protein adsorption on surfaces: dynamic contact-angle (DCA) and quartz-crystal microbalance (QCM) measurements
JP4669749B2 (en) Measuring method and measuring apparatus using crystal resonator
JP2007010519A5 (en)
Cassiède et al. Impedance analysis for characterizing the influence of hydrostatic pressure on piezoelectric quartz crystal sensors
Itoh et al. Separate measurement of the density and viscosity of a liquid using a quartz crystal microbalance based on admittance analysis (QCM-A)
JP5379909B2 (en) Viscoelasticity measuring method and viscoelasticity measuring device
JP5591167B2 (en) Measuring method of water content
Hu et al. QCM mass sensitivity analysis based on finite element method
Kao et al. Fabrication and performance characteristics of high-frequency micromachined bulk acoustic wave quartz resonator arrays
Itoh et al. A frequency of the quartz crystal microbalance (QCM) that is not affected by the viscosity of a liquid
Hempel et al. Advanced application of the impedance spectrum of a lateral field excited sensor
Kim et al. Impedance characterization of a piezoelectric immunosensor: Part I: Antibody coating and buffer solution
Zainuddin et al. Verification of quartz crystal microbalance array using vector network analyzer and OpenQCM
JP4646813B2 (en) Biosensor measurement system, viscosity measurement method, and trace mass measurement method
JP6016644B2 (en) Method for measuring the viscoelastic coefficient of a substance
Dultsev et al. Treatment of the resonance curve recorded during measurement of the signal of particle rupture from the QCM surface
Dultsev et al. Identifying a single biological nano-sized particle using a quartz crystal microbalance. A mathematical model
Ralib et al. AN AN INVESTIGATION OF THE SENSITIVITY OF POLYMER-COATED SURFACE ACOUSTIC WAVE-BASED GAS SENSORS IN THE DETECTION OF VOLATILE ORGANIC COMPOUNDS
Zaitsev et al. The meter of microdisplacements based on piezoelectric lateral electric field excited resonator
French et al. An equivalent circuit model for a liquid loaded lateral-field excited acoustic wave sensor
Huang et al. Impedance analysis of an electrode-separated piezoelectric sensor as a surface monitoring technique for surfactant adsorption on quartz surface
Mirea et al. Influence of the acoustic energy distribution on the in-liquid sensitivity of thin film electroacoustic resonators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140729

R150 Certificate of patent or registration of utility model

Ref document number: 5591167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250