JP2012207870A - Multistage organic matter drying system - Google Patents
Multistage organic matter drying system Download PDFInfo
- Publication number
- JP2012207870A JP2012207870A JP2011074516A JP2011074516A JP2012207870A JP 2012207870 A JP2012207870 A JP 2012207870A JP 2011074516 A JP2011074516 A JP 2011074516A JP 2011074516 A JP2011074516 A JP 2011074516A JP 2012207870 A JP2012207870 A JP 2012207870A
- Authority
- JP
- Japan
- Prior art keywords
- superheated steam
- organic matter
- drying system
- stage
- drying chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B17/00—Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
- F26B17/001—Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement the material moving down superimposed floors
- F26B17/003—Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement the material moving down superimposed floors with fixed floors provided with scrapers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/13—Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B2200/00—Drying processes and machines for solid materials characterised by the specific requirements of the drying good
- F26B2200/18—Sludges, e.g. sewage, waste, industrial processes, cooling towers
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Drying Of Solid Materials (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
本発明は、多段型有機物乾燥システムに関し、特に、汚泥等、水分を多く含む有機物を乾燥するために使用される多段型有機物乾燥システムに関する。 The present invention relates to a multi-stage organic matter drying system, and more particularly, to a multi-stage organic matter drying system used for drying organic matter containing a lot of moisture such as sludge.
汚泥等、水分を多く含む有機物を乾燥させるため、有機物を上段から下段に向けて多段階に搬送させると共に、過熱蒸気を送風して有機物を乾燥する多段型有機物乾燥システムが提案されている。 In order to dry organic matter containing a lot of moisture such as sludge, a multi-stage type organic matter drying system has been proposed in which the organic matter is transported in multiple stages from the upper stage toward the lower stage, and the organic substance is dried by blowing superheated steam.
特許文献1に示すように、有機物は、各段に配置されて回転する複数のレーキにより順次横方向に搬送され、各段の端部において一つ下の段に落下し、引き続き下段のレーキにより横方向に搬送されるよう構成されている。このように、有機物は上段から下段に向けて多段階に搬送される。そして、有機物の搬送方向と同じ方向に加熱ガスを流し(並流)、有機物を乾燥させるよう構成している。
As shown in
また、特許文献2には、有機物の搬送手段の最終工程(乾燥末期)において、風量の少ない蒸発蒸気を接触させ、乾燥不足を補うと共に、粉塵が蒸気に混入するのを抑制し、集塵装置が大型化するのを抑制することが開示されている。 Further, in Patent Document 2, in the final step (end of drying) of the organic substance conveying means, the vaporized vapor having a small air volume is brought into contact to compensate for insufficient drying, and dust is prevented from being mixed into the vapor, and the dust collector It is disclosed to suppress the increase in size.
有機物の搬送方向と過熱蒸気の流れ方向との関係は、両者が同方向に移動する「並流方式」だけでなく、両者が互いに逆方向に移動する「交流(向流)方式」がある。並流方式は、温度コントロールが安定するという利点があるが、特許文献1のように、末端における加熱不足の問題がある。交流方式は、熱効率が高く有機物を炭化させることも可能であるが、加熱が局所的となり易く、全体の温度コントロールが難しいという欠点がある。
The relationship between the organic material transport direction and the superheated steam flow direction is not only the “parallel flow method” in which both move in the same direction, but also the “alternating current (counter current) method” in which both move in opposite directions. The parallel flow method has an advantage that the temperature control is stable, but there is a problem of insufficient heating at the end as in
また、並流方式と交流方式の組み合わせとして、搬送経路の中間位置に過熱蒸気を供給し、有機物の搬送方向に対して上流側に交流で過熱蒸気を流し、下流側に並流で過熱蒸気を流す、所謂、「2分流方式」による乾燥方法もある。しかしながら、多段型有機物乾燥システムでは、上段では、高温が必要であり、下段では、低温での乾燥が必要となる。このため、2分流方式では、乾燥機入口の過熱蒸気温度は1つであるため、上流側の条件と下流側の条件とを同時に満足することは難しく、非効率かつ運転制御が困難であるという難点があった。 In addition, as a combination of the parallel flow method and the alternating current method, superheated steam is supplied to the intermediate position of the transport path, superheated steam is flowed in the upstream with respect to the organic material transport direction, and superheated steam is flowed in the downstream with parallel flow. There is also a drying method that uses a so-called “two-divided flow system”. However, in the multi-stage organic material drying system, high temperature is required in the upper stage, and drying at low temperature is required in the lower stage. For this reason, since the superheated steam temperature at the dryer inlet is one in the diversion method, it is difficult to satisfy the upstream condition and the downstream condition at the same time, and it is inefficient and operation control is difficult. There were difficulties.
また、並流方式や交流方式のみで通過流路を形成したり、2分流方式のみで通過流路を形成する場合には、通過流路が長くなり、過熱蒸気の温度応答性が悪く、過乾燥又乾燥不足が発生し易いという問題があった。しかも長い流路は内部圧力損失が増大し、循環ファンが大型化するという問題も生じていた。 In addition, when the passage channel is formed only by the parallel flow method or the alternating current method, or when the passage channel is formed only by the diversion method, the passage passage becomes longer and the temperature response of the superheated steam is poor. There was a problem that drying or under-drying was likely to occur. Moreover, the long flow path has a problem that the internal pressure loss increases and the circulation fan becomes large.
さらに、低温熱源(300℃台の排ガス)による乾燥を行う場合、伝熱面積が大きくなり、過熱蒸気循環型の乾燥機の場合、循環蒸気の流量が発生蒸気流量の12〜15倍程度となるため、乾燥機内部での流速が過多となり易く、ダストの飛散等の問題が発生する。 Furthermore, when drying with a low-temperature heat source (exhaust gas in the range of 300 ° C.), the heat transfer area increases, and in the case of a superheated steam circulation dryer, the flow rate of the circulating steam is about 12 to 15 times the generated steam flow rate. Therefore, the flow velocity inside the dryer tends to be excessive, and problems such as dust scattering occur.
本発明が解決しようとする課題は、上述の問題を解消し、全体の温度コントロールが容易であり、熱利用効率が高く、低温熱源を利用する場合でも過熱蒸気の流速が過多となるのを抑制可能な多段型有機物乾燥システムを提供することである。 The problem to be solved by the present invention is to solve the above problems, to easily control the entire temperature, to have high heat utilization efficiency, and to prevent the flow rate of superheated steam from becoming excessive even when using a low-temperature heat source. It is to provide a possible multi-stage organic matter drying system.
上記課題を解決するため、本発明の多段型有機物乾燥システムは以下のような技術的特徴を有する。
(1)有機物を上段から下段に向けて多段階に搬送する搬送手段と、該搬送手段を収容する乾燥室と、該乾燥室内に過熱蒸気を送風し、該有機物を乾燥する多段型有機物乾燥システムにおいて、過熱蒸気を該乾燥室に導入するN個(Nは2以上の自然数)の導入ポートと、過熱蒸気を該乾燥室から導出するN±1個の導出ポートとを有することを特徴とする。
In order to solve the above problems, the multistage organic matter drying system of the present invention has the following technical features.
(1) Transport means for transporting organic matter in multiple stages from the upper stage toward the lower stage, a drying chamber for housing the transport means, and a multistage organic matter drying system for blowing superheated steam into the drying chamber to dry the organic matter In which N superheated steam is introduced into the drying chamber (N is a natural number equal to or greater than 2) and N ± 1 deriving ports through which the superheated steam is led out from the drying chamber. .
(2)上記(1)に記載の多段型有機物乾燥システムにおいて、該導入ポートと該導出ポートとは、高さ方向に互いに互い違いに配置され、該導入ポートから導入された過熱蒸気が、該搬送手段の搬送方向と逆方向に流れる空気流と、該搬送手段の搬送方向と同方向に流れる空気流とを形成することを特徴とする。 (2) In the multi-stage organic matter drying system according to (1), the introduction port and the outlet port are alternately arranged in the height direction, and the superheated steam introduced from the introduction port is transferred to the transport port. An air flow that flows in a direction opposite to the conveying direction of the means and an air flow that flows in the same direction as the conveying direction of the conveying means are formed.
(3)上記(1)又は(2)に記載の多段型有機物乾燥システムにおいて、該N個の導入ポートには、互いに異なった温度の過熱蒸気が導入されることを特徴とする。 (3) The multistage organic matter drying system according to (1) or (2) is characterized in that superheated steam having different temperatures are introduced into the N introduction ports.
(4)上記(3)に記載の多段型有機物乾燥システムにおいて、該導入ポートから導入される過熱蒸気の温度は、該過熱蒸気で処理される有機物の含水率が45%以下の場合には、250℃以下とすることを特徴とする。 (4) In the multistage organic matter drying system according to (3) above, the temperature of the superheated steam introduced from the introduction port is, when the water content of the organic matter treated with the superheated steam is 45% or less, It is characterized by being 250 ° C. or less.
本発明の多段型有機物乾燥システムでは、過熱蒸気を乾燥室に導入するN個(Nは2以上の自然数)の導入ポートと、過熱蒸気を該乾燥室から導出するN±1個の導出ポートとを有するため、過熱蒸気の通過流路を短く設定でき、しかも、有機物の搬送路の途中に、並流方式や交流方式の部分を適宜設定できるため、温度コントロールがし易く、過熱蒸気の熱利用効率も高く設定できる。しかも、過熱蒸気の流速も抑制することが可能となる。さらに、導出ポートの数がN−1個の場合は、過熱蒸気が乾燥室内に滞留し易くなり、過熱蒸気の圧力を高め、過熱蒸気の熱容量を増加させることが可能となる。また、導出ポートの数がN+1個の場合には、過熱蒸気の流れを円滑化することが可能となり、過熱蒸気の循環を効率的に行うことが可能となる。 In the multistage organic matter drying system of the present invention, N (N is a natural number of 2 or more) inlet ports for introducing superheated steam into the drying chamber, and N ± 1 outlet ports for deriving superheated steam from the drying chamber, Therefore, the flow path of superheated steam can be set short, and the part of the parallel flow system and AC system can be set appropriately in the middle of the organic material transport path, making it easy to control the temperature and using the heat of superheated steam. High efficiency can be set. In addition, the flow rate of the superheated steam can be suppressed. Further, when the number of outlet ports is N−1, the superheated steam is likely to stay in the drying chamber, the pressure of the superheated steam can be increased, and the heat capacity of the superheated steam can be increased. Further, when the number of outlet ports is N + 1, it is possible to smooth the flow of superheated steam and to efficiently circulate the superheated steam.
さらに、導入ポートと導出ポートとは、高さ方向に互いに互い違いに配置され、該導入ポートから導入された過熱蒸気が、該搬送手段の搬送方向と逆方向に流れる空気流(交流方式)と、該搬送手段の搬送方向と同方向に流れる空気流(並流方式)とを形成するため、各段毎に交流方式と並流方式の使い分けが可能となり、熱利用効率を高くすることができる。しかも、導出ポートの数がN−1個の場合には、上段側では、並流方式から始まり、下段側では交流方式で終わるため、過熱蒸気が外部に出難く、特に、下段では交流方式であるため、乾燥した有機物からの粉塵が導出ポートに大量に導出されるのを抑制することも可能となる。また、導出ポートの数がN+1個の場合には、上段側で交流方式となり、有機物を効率的に乾燥させ、下段側で並流方式となり、温度コントロールを行い易くすることが可能となる。 Furthermore, the introduction port and the outlet port are alternately arranged in the height direction, and the superheated steam introduced from the introduction port flows in the direction opposite to the conveyance direction of the conveyance means (alternating current method), Since an air flow (parallel flow method) flowing in the same direction as the transfer direction of the transfer means is formed, the AC method and the parallel flow method can be selectively used for each stage, and heat utilization efficiency can be increased. In addition, when the number of outlet ports is N−1, the upper stage starts with a parallel flow system and the lower stage ends with an AC system, so it is difficult for the superheated steam to go outside. Therefore, it is also possible to suppress a large amount of dust from the dried organic matter being led out to the lead-out port. When the number of outlet ports is N + 1, the AC method is used on the upper side, the organic matter is efficiently dried, and the parallel current method is used on the lower side, so that temperature control can be easily performed.
また、N個の導入ポートには、互いに異なった温度の過熱蒸気が導入されるため、各段に応じた最適な温度の過熱蒸気を提供することができ、温度コントロールが容易になる。 Further, since the superheated steam having different temperatures is introduced into the N introduction ports, the superheated steam having the optimum temperature corresponding to each stage can be provided, and the temperature control becomes easy.
さらに、導入ポートから導入される過熱蒸気の温度は、該過熱蒸気で処理される有機物の含水率が45%以下の場合には、250℃以下とするため、有機物の過乾燥を抑制できる。 Furthermore, since the temperature of the superheated steam introduced from the introduction port is 250 ° C. or lower when the moisture content of the organic matter treated with the superheated steam is 45% or less, overdrying of the organic matter can be suppressed.
本発明を以下の好適例により説明するがこれらに限定されるものではない。
本発明の多段型有機物乾燥システムは、汚泥等の水分を含む有機物を上段から下段に向けて多段階に搬送する搬送手段(各段を符号4で示す)と、該搬送手段を収容する乾燥室1と、該乾燥室内に過熱蒸気(a〜c)を送風し、該有機物を乾燥する多段型有機物乾燥システムにおいて、過熱蒸気(a〜c)を該乾燥室1に導入するN個(Nは2以上の自然数)の導入ポート(21〜23)と、過熱蒸気(d,e)を該乾燥室1から導出するN±1個の導出ポート(31,32)とを有することを特徴とする。
The present invention is illustrated by the following preferred examples, but is not limited thereto.
The multi-stage organic matter drying system of the present invention comprises transport means for transporting organic matter containing water such as sludge from the upper stage to the lower stage in multiple stages (each stage is indicated by reference numeral 4), and a drying chamber that houses the transport means. 1 and N pieces of superheated steam (ac) introduced into the
本発明の多段型有機物乾燥システムに使用される搬送手段としては、図2に示すように、各段の搬送テーブル4の上にレーキ8を複数配置し、各レーキ8を各段を貫通して配置される回転軸9により回転させることにより構成されている。図2(a)は、各段に配置されるレーキの平面図であり、図2(b)は横方向から見た側面図である。各レーキが回転することにより、有機物は矢印A及びB方向に順次搬送される。搬送手段としては、図2に示すレーキに限らず、無端ベルトによる搬送手段も利用可能であるが、有機物と過熱蒸気との接触面積を増加させるため、レーキのような撹拌機能も付加した搬送手段を用いることが好ましい。
As shown in FIG. 2, a plurality of
図1に示すように、有機物は乾燥室内の上段から下段に順次搬送されながら、乾燥室内導入された過熱蒸気により乾燥され、最終的には、乾燥汚泥等の乾燥した有機物(乾燥有機物)として排出される。乾燥有機物は、燃焼炉で焼却されたり、セメント製造設備等の燃料として焼却される。 As shown in FIG. 1, the organic matter is dried by the superheated steam introduced into the drying chamber while being sequentially transported from the upper stage to the lower stage of the drying chamber, and finally discharged as dried organic matter (dry organic matter) such as dry sludge. Is done. The dried organic matter is incinerated in a combustion furnace or incinerated as a fuel for a cement manufacturing facility or the like.
本発明の多段型有機物乾燥システムでは、過熱蒸気を循環して使用するのが好ましい。これは、汚泥等の有機物を乾燥した際に発生する臭いを外部に放出することを抑制でき、しかも、過熱蒸気が保持する熱量を有効利用するためである。図1に示すように、乾燥室1には、過熱蒸気(a〜c)が導入ポート(21〜23)から導入され、導出ポート(31,32)から排出される、排出された過熱蒸気(循環蒸気。符号d,e)は、ファン(51,52)により送風(f,g)され、熱交換器(61,62)により加熱され、再度、過熱蒸気(a〜c)として乾燥室1に導入される。
In the multistage organic matter drying system of the present invention, it is preferable to circulate and use superheated steam. This is because the odor generated when drying organic matter such as sludge can be prevented from being released to the outside, and the amount of heat retained by the superheated steam is effectively utilized. As shown in FIG. 1, superheated steam (ac) is introduced into the
有機物を乾燥すると、蒸気が発生し過熱蒸気に混入することとなる。このため、過熱蒸気の圧力が高まるため、不要な蒸気は、余剰蒸気(有機物から蒸発した蒸気)として、外部に排出される。この際、余剰蒸気を焼却炉又はセメント製造設備に供給する空気の一部に使用することで、余剰蒸気を高温で処理することができ、蒸気に含まれる臭いも分解除去される。 When organic matter is dried, steam is generated and mixed with superheated steam. For this reason, since the pressure of superheated steam increases, unnecessary steam is discharged to the outside as surplus steam (steam evaporated from organic matter). At this time, the surplus steam can be treated at a high temperature by using the surplus steam as a part of the air supplied to the incinerator or the cement production facility, and the odor contained in the steam is also decomposed and removed.
熱交換器(61,62)には、燃焼炉やセメント製造設備で排出される燃焼ガス等の高温の排出ガスが導入される。本発明の多段型有機物乾燥システムでは、熱交換器に導入される燃焼ガス等の加熱用ガスの温度は、約300℃程度の低温熱源を利用する場合でも、乾燥室内部での過熱蒸気の流速が過多となることが無いよう構成されている。 A high-temperature exhaust gas such as a combustion gas exhausted from a combustion furnace or a cement manufacturing facility is introduced into the heat exchanger (61, 62). In the multistage organic matter drying system of the present invention, the temperature of the heating gas such as the combustion gas introduced into the heat exchanger is the flow rate of the superheated steam in the drying chamber even when a low-temperature heat source of about 300 ° C. is used. Is configured so as not to be excessive.
本発明の多段型有機物乾燥システムでは、過熱蒸気を乾燥室に導入するN個(Nは2以上の自然数)の導入ポートと、過熱蒸気を該乾燥室から導出するN±1個の導出ポートとを有している。過熱蒸気を導入する導入ポートを2つ以上配置することで、一つの導入ポートから導入された過熱蒸気の通過流路を短く設定することができる。しかも、導出ポートの数が、導入ポートの数より1つ少なくなるように構成されているため、有機物の搬送路の途中で、並流方式や交流方式の部分を適宜設定できるため、温度コントロールがし易く、過熱蒸気の熱利用効率も高く設定できる。 In the multistage organic matter drying system of the present invention, N (N is a natural number of 2 or more) inlet ports for introducing superheated steam into the drying chamber, and N ± 1 outlet ports for deriving superheated steam from the drying chamber, have. By disposing two or more introduction ports for introducing superheated steam, it is possible to set a short passage path for superheated steam introduced from one introduction port. In addition, since the number of outlet ports is configured to be one less than the number of introduction ports, it is possible to appropriately set the parallel current method and the alternating current method part in the middle of the organic material transport path. The heat utilization efficiency of superheated steam can be set high.
しかも、低温熱源を利用する場合に、過熱蒸気(循環蒸気)量が有機物から蒸発する蒸発蒸気量の12〜15倍となっても、各過熱蒸気が通過する流路が短くなることで蒸気通過面積を抑制できるため、過熱蒸気の流速が過多となることもない。 In addition, when using a low-temperature heat source, even if the amount of superheated steam (circulated steam) is 12 to 15 times the amount of evaporated steam evaporating from the organic matter, the passage of each superheated steam is shortened so that the steam passes. Since the area can be suppressed, the flow rate of superheated steam does not become excessive.
また、導出ポートの数がN−1個の場合は、導入ポート数より導出ポート数が少ないため、過熱蒸気が乾燥室内に滞留し易くなり、過熱蒸気の圧力を高め、過熱蒸気の熱容量を増加させた乾燥を行うことが可能となる。また、導出ポートの数がN+1個の場合には、導入ポート数より導出ポート数が多いため、過熱蒸気の流れを円滑化することが可能となり、過熱蒸気の循環を効率的に行うことが可能となる。 Also, when the number of outlet ports is N-1, the number of outlet ports is smaller than the number of inlet ports, so superheated steam tends to stay in the drying chamber, increasing the pressure of superheated steam and increasing the heat capacity of superheated steam. It is possible to perform drying. Also, when the number of outlet ports is N + 1, the number of outlet ports is larger than the number of inlet ports, so the flow of superheated steam can be smoothed and the superheated steam can be circulated efficiently. It becomes.
さらに、本発明の多段型有機物乾燥システムでは、導入ポート(21〜23)と導出ポート(31,32)とは、高さ方向に互いに互い違いに配置され、該導入ポートから導入された過熱蒸気が、該搬送手段の搬送方向と逆方向に流れる空気流(交流方式)と、該搬送手段の搬送方向と同方向に流れる空気流(並流方式)とを形成するため、各段毎に交流方式と並流方式の使い分けが可能となり、熱利用効率を一層高くすることができる。 Furthermore, in the multistage organic matter drying system of the present invention, the introduction ports (21 to 23) and the outlet ports (31, 32) are alternately arranged in the height direction, and the superheated steam introduced from the introduction port is In order to form an air flow (alternating current method) flowing in the direction opposite to the conveying direction of the conveying means and an air flow (parallel flow method) flowing in the same direction as the conveying direction of the conveying means, an alternating current method is provided for each stage. And the parallel flow method can be used separately, and the heat utilization efficiency can be further increased.
しかも、導出ポートの数がN−1個の場合には、上段側では、並流方式から始まり、下段側では交流方式で終わるため、過熱蒸気が有機物の投入口や排出口から外部に出ることが抑制される。特に、下段では交流方式であるため、乾燥した有機物からの粉塵が導出ポートに大量に導出されるのを抑制することも可能となる。当然、粉塵等が過熱蒸気に混入し易い場合には、過熱蒸気の循環経路(符号e又はd)の途中にサイクロン集塵器などの集塵器を配置することも可能である。 In addition, when the number of outlet ports is N−1, the upper stage starts with a parallel flow system and ends with an AC system on the lower stage, so that superheated steam exits from the organic material inlet and outlet. Is suppressed. In particular, since it is an alternating current system in the lower stage, it is possible to suppress a large amount of dust from the dried organic matter being led out to the outlet port. Of course, when dust or the like is likely to be mixed into the superheated steam, a dust collector such as a cyclone dust collector may be disposed in the middle of the superheated steam circulation path (symbol e or d).
また、導出ポートの数がN+1個の場合には、上段側で交流方式となり、有機物を効率的に乾燥させ、下段側で並流方式となり、温度コントロールを行い易くすることが可能となる。 When the number of outlet ports is N + 1, the AC method is used on the upper side, the organic matter is efficiently dried, and the parallel current method is used on the lower side, so that temperature control can be easily performed.
本発明の多段型有機物乾燥システムでは、N個の導入ポートには、互いに異なった温度の過熱蒸気が導入するよう構成される。低温熱源を使用する場合には、図1に示すように、上段の導入ポート21には、280℃以上又はそれ前後の高温の過熱蒸気が導入され、中段の導入ポート22には、260℃以上又はそれ前後の中温の過熱蒸気が導入され、下段の導入ポート23には、220℃以上又はそれ前後の低温の過熱蒸気が導入される。
In the multistage organic matter drying system of the present invention, superheated steam having different temperatures is introduced into the N introduction ports. When using a low-temperature heat source, as shown in FIG. 1, high-temperature superheated steam at 280 ° C. or higher or around it is introduced into the
このように上段から下段に向けて、導入される過熱蒸気の温度も低下させるのが好ましい。これは、有機物における水分の含有量が、下段に行くに従って低下しているためである。特に、導入ポートから導入される過熱蒸気の温度は、該過熱蒸気で処理される有機物の含水率が45%以下の場合には、250℃以下とすることが好ましい。これは、有機物に含まれる揮発成分まで蒸発させる乾溜が生じ、蒸気中にタールが発生する等、過乾燥を抑制するためである。 Thus, it is preferable to reduce the temperature of the superheated steam introduced from the upper stage toward the lower stage. This is because the water content in the organic matter decreases as it goes down. In particular, the temperature of the superheated steam introduced from the introduction port is preferably set to 250 ° C. or less when the moisture content of the organic substance treated with the superheated steam is 45% or less. This is to suppress overdrying, such as dry distillation that evaporates to volatile components contained in the organic matter and generation of tar in the vapor.
導出ポート(31,32)からは、有機物の乾燥で熱量を失った過熱蒸気(d,e)が排出される。この過熱蒸気の温度は、140℃以上又はそれ前後の温度であり、熱利用効率を高めるため、これらを循環蒸気として再加熱し、新たな過熱蒸気(a〜c)として供給する。 From the lead-out ports (31, 32), superheated steam (d, e) that has lost its amount of heat due to drying of the organic matter is discharged. The temperature of this superheated steam is a temperature of 140 ° C. or higher or around it, and in order to increase heat utilization efficiency, these are reheated as circulating steam and supplied as new superheated steam (ac).
乾燥室1内の温度を調整するには、乾燥室に入る過熱蒸気の流量及び温度を調整することが必要である。このため、熱交換器に導入する燃焼ガス等の加熱用ガスの温度を調整したり、熱交換器を通過する過熱蒸気の流速を調整する方法がある。また、ダンパー7を操作して、熱交換器に導入される過熱蒸気gの通過経路又は通過流量を変更し、高温の過熱蒸気aと低温の過熱蒸気cとの流量比を変化させることで、乾燥室の温度をコントロールすることも可能である。図1では、燃焼ガス等の加熱用ガスは、熱交換器61で使用したものを他の熱交換機62に導入しているが、これに限らず、熱交換器毎に異なる加熱用ガスを導入することも可能である。
In order to adjust the temperature in the drying
本発明の多段型有機物乾燥システムでは、工業的に利用価値の低い300℃以下の低温熱源を利用する場合でも、図1でも、4つの過熱蒸気の流路(導入ポート21→導出ポート31,同様に、22→31,22→32,23→32の4つの流路)が確保され、流路が短く、流量の増加も抑制できるため、乾燥機本体や熱交換機を小型化することが可能となる。
In the multi-stage organic matter drying system of the present invention, even when using a low-temperature heat source of 300 ° C. or less, which is industrially less useful, FIG. 1 also shows four superheated steam channels (
有機物の搬送経路を複数に分けて過熱蒸気と接触させる、所謂、分流処理を行うため、過熱蒸気の乾燥室への入口又は出口での温度制御が容易になり、安定した乾燥が可能となる。しかも、例えば、図1のように13段の多段型乾燥機(上段の1段目は、過熱蒸気を通さないため、有効段数は12段となる)では、4蒸気流路を形成すると、1蒸気流路当たり3段となるため、1蒸気流路当たり10数段程度を処理していた従来技術と比較し、温度応答性が改善し、内部流速も1流路方式に比べ1/4となるため、小型化可能であり、ダスト等の飛散も抑制できる。 Since the so-called diversion process is performed in which the organic material conveyance path is divided into a plurality of portions and brought into contact with the superheated steam, temperature control at the inlet or outlet of the superheated steam to the drying chamber is facilitated, and stable drying becomes possible. Moreover, for example, as shown in FIG. 1, in a 13-stage multi-stage dryer (the first stage in the upper stage does not allow superheated steam to pass, the number of effective stages is 12), and if four steam channels are formed, 1 Since there are three stages per steam flow path, the temperature responsiveness is improved and the internal flow rate is 1/4 compared to the single flow path system compared to the conventional technology that processed about 10 or more stages per steam flow path. Therefore, the size can be reduced and scattering of dust and the like can be suppressed.
以上のように、本発明により、全体の温度コントロールが容易であり、熱利用効率が高く、低温熱源を利用する場合でも過熱蒸気の流速が過多となるのを抑制可能な多段型有機物乾燥システムを提供することが可能となる。 As described above, according to the present invention, there is provided a multistage organic matter drying system that is easy to control the entire temperature, has high heat utilization efficiency, and can suppress an excessive flow rate of superheated steam even when using a low-temperature heat source. It becomes possible to provide.
1 乾燥室
21〜23 導入ポート
31,32 導出ポート
4 搬送テーブル
51,52 送風ファン
61,62 熱交換器
7 ダンパー
8 レーキ
9 回転軸
a〜e 過熱蒸気の流れ
DESCRIPTION OF
Claims (4)
過熱蒸気を該乾燥室に導入するN個(Nは2以上の自然数)の導入ポートと、
過熱蒸気を該乾燥室から導出するN±1個の導出ポートとを有することを特徴とする多段型有機乾燥システム。 In a multi-stage type organic matter drying system that transports organic matter in multiple stages from the upper stage to the lower stage, a drying chamber that houses the transportation means, and superheated steam is blown into the drying chamber to dry the organic matter.
N (N is a natural number of 2 or more) introduction ports for introducing superheated steam into the drying chamber;
A multistage organic drying system having N ± 1 outlet ports for leading superheated steam from the drying chamber.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011074516A JP5423711B2 (en) | 2011-03-30 | 2011-03-30 | Multi-stage organic drying system |
CN201120153365XU CN202092424U (en) | 2011-03-30 | 2011-05-12 | Multi-layer organic matter drying system |
PCT/JP2011/060900 WO2012132025A1 (en) | 2011-03-30 | 2011-05-12 | Multistage organic matter drying system |
CN201180069802.2A CN103459960B (en) | 2011-03-30 | 2011-05-12 | Multi-stag organic matter drying system |
TW100116664A TWI554736B (en) | 2011-03-30 | 2011-05-12 | Multi - stage organic drying system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011074516A JP5423711B2 (en) | 2011-03-30 | 2011-03-30 | Multi-stage organic drying system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012207870A true JP2012207870A (en) | 2012-10-25 |
JP5423711B2 JP5423711B2 (en) | 2014-02-19 |
Family
ID=45367489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011074516A Active JP5423711B2 (en) | 2011-03-30 | 2011-03-30 | Multi-stage organic drying system |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5423711B2 (en) |
CN (2) | CN202092424U (en) |
TW (1) | TWI554736B (en) |
WO (1) | WO2012132025A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190042364A (en) * | 2017-10-16 | 2019-04-24 | 한국전기연구원 | Belt type sludge dryer with air fluid control functions |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5423711B2 (en) * | 2011-03-30 | 2014-02-19 | 住友大阪セメント株式会社 | Multi-stage organic drying system |
CN103774486B (en) * | 2014-01-10 | 2017-02-22 | 广州华工环源绿色包装技术股份有限公司 | Normal-pressure superheated steam pulp-molding drying machine |
FI126756B (en) * | 2014-04-10 | 2017-05-15 | Sftec Oy | Apparatus and method for drying material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004174426A (en) * | 2002-11-28 | 2004-06-24 | Asia Plant Service Kk | Waste treatment apparatus |
JP2004190990A (en) * | 2002-12-13 | 2004-07-08 | Azu Kiyaria Kk | Gas contact type drying method and its device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3140359B2 (en) * | 1996-02-01 | 2001-03-05 | アズ・キャリア株式会社 | Method of eliminating bad smell when drying operation is stopped in steam contact dryer |
JP2002022362A (en) * | 2000-07-04 | 2002-01-23 | Susumu Kiyokawa | Method and system for drying grain |
CN101265009B (en) * | 2008-04-09 | 2011-05-18 | 浙江大学 | Clean energy-saving sludge drying method for reclaiming and utilizing tail gas residual heat |
JP5423711B2 (en) * | 2011-03-30 | 2014-02-19 | 住友大阪セメント株式会社 | Multi-stage organic drying system |
-
2011
- 2011-03-30 JP JP2011074516A patent/JP5423711B2/en active Active
- 2011-05-12 TW TW100116664A patent/TWI554736B/en active
- 2011-05-12 CN CN201120153365XU patent/CN202092424U/en not_active Expired - Fee Related
- 2011-05-12 WO PCT/JP2011/060900 patent/WO2012132025A1/en active Application Filing
- 2011-05-12 CN CN201180069802.2A patent/CN103459960B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004174426A (en) * | 2002-11-28 | 2004-06-24 | Asia Plant Service Kk | Waste treatment apparatus |
JP2004190990A (en) * | 2002-12-13 | 2004-07-08 | Azu Kiyaria Kk | Gas contact type drying method and its device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190042364A (en) * | 2017-10-16 | 2019-04-24 | 한국전기연구원 | Belt type sludge dryer with air fluid control functions |
KR102372159B1 (en) | 2017-10-16 | 2022-03-07 | 한국전기연구원 | Belt type sludge drying device with matching air flow path for sludge transfer section |
Also Published As
Publication number | Publication date |
---|---|
TW201239300A (en) | 2012-10-01 |
TWI554736B (en) | 2016-10-21 |
CN103459960A (en) | 2013-12-18 |
JP5423711B2 (en) | 2014-02-19 |
CN103459960B (en) | 2015-12-09 |
WO2012132025A1 (en) | 2012-10-04 |
CN202092424U (en) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5423712B2 (en) | Multi-stage organic drying system | |
JP5423711B2 (en) | Multi-stage organic drying system | |
KR20170072320A (en) | Method and apparatus for using excess heat from power plant flue gas to dry biomass fuel | |
WO2014024498A1 (en) | Sludge treatment facility and treatment method | |
JP5615020B2 (en) | Drying equipment with continuous box dryer | |
US9683187B2 (en) | Method and apparatus for torrefaction of biomass with a cyclonic bed reactor | |
CN111895727A (en) | Double-heat-source built-in hot low-rank lump coal drying furnace | |
KR20150141077A (en) | Radial Multi-pass Counter-Flow Dryer | |
KR20210145007A (en) | Drying and exhaust gas treatment system for graphitic coal using superheated steam | |
CN109485222B (en) | Heat pump type temperature division area drying system | |
CN107429970B (en) | Drying device with a drying zone | |
JP2004044874A (en) | Drying device | |
CN212618367U (en) | Energy-saving double-runner high-concentration cold side bypass over-temperature control system | |
EP2392879B1 (en) | Process and dryer for drying bulk material | |
CN113970109A (en) | Energy-saving double-rotating-wheel high-concentration cold-side bypass over-temperature control system and method thereof | |
JP2004190990A (en) | Gas contact type drying method and its device | |
RU165396U1 (en) | DRYING UNIT | |
CN116839311B (en) | Process method for drying biomass material by using flue gas waste heat | |
CN219494598U (en) | Titanium white powder flash evaporation drying system | |
CN103121786A (en) | Integrated condensation dehydration and waste heat utilization sludge treatment device and technological process | |
CN210861952U (en) | Double-layer fluidized bed dryer | |
JP2022178788A (en) | Solid liquid separation device, method of producing fuel raw material, and method of producing food material | |
CN113834313A (en) | Mechanical vapor recompression MVR heat pump drying system | |
JP2020159576A (en) | Indirect heating-type drying facility | |
CN118702388A (en) | Sludge drying carbonization treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5423711 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |