JP2012207217A - Method of producing resin for resist composition - Google Patents

Method of producing resin for resist composition Download PDF

Info

Publication number
JP2012207217A
JP2012207217A JP2012056879A JP2012056879A JP2012207217A JP 2012207217 A JP2012207217 A JP 2012207217A JP 2012056879 A JP2012056879 A JP 2012056879A JP 2012056879 A JP2012056879 A JP 2012056879A JP 2012207217 A JP2012207217 A JP 2012207217A
Authority
JP
Japan
Prior art keywords
solvent
resin
monomer
formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012056879A
Other languages
Japanese (ja)
Other versions
JP5929349B2 (en
Inventor
Takashi Nishimura
崇 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2012056879A priority Critical patent/JP5929349B2/en
Publication of JP2012207217A publication Critical patent/JP2012207217A/en
Application granted granted Critical
Publication of JP5929349B2 publication Critical patent/JP5929349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method capable of obtaining a resin for a resist composition at a high yield.SOLUTION: The present invention discloses the method of producing the resin for the resist composition, capable of polymerizing a monomer in a mixed solvent mixed with a solvent (1) and a solvent (2), wherein the solvent (1) has a solubility parameter within a range of 11.4-13.0 [cal/mol], and a solvent (2) is tetrahydrofuran. The monomer is preferably polymerized by an action of a polymerization initiator, in the production method, and the monomer is preferably polymerized by dropping a mixture liquid containing the monomer, the polymerization initiator and the solvent (2), into the solvent (1).

Description

本発明は、レジスト組成物用樹脂の製造方法に関する。   The present invention relates to a method for producing a resin for a resist composition.

化学増幅型レジスト組成物には、酸不安定基を有する樹脂(レジスト組成物用樹脂)が含まれている。   The chemically amplified resist composition includes a resin having an acid labile group (resin for resist composition).

かかるレジスト組成物用樹脂の製造方法としては、例えば、当該樹脂の製造用のモノマー、重合開始剤及び乳酸エチルからなる混合液を調製し、当該混合液を乳酸エチル中に滴下することによりモノマーを重合するという方法が知られている(特許文献1参照)。   As a method for producing such a resin for a resist composition, for example, a monomer mixture is prepared by preparing a mixed solution comprising a monomer for producing the resin, a polymerization initiator and ethyl lactate, and dropping the mixed solution into ethyl lactate. A method of polymerizing is known (see Patent Document 1).

国際公開第2006/028071号International Publication No. 2006/028071

従来の製造方法では、得られるレジスト組成物用樹脂の収率が必ずしも十分に満足できない場合があった。   In the conventional manufacturing method, the yield of the resin for resist composition obtained may not necessarily be fully satisfied.

本発明は、以下の発明を含む。
〔1〕溶剤(1)及び溶剤(2)を含む混合溶剤中で、モノマーを重合する工程を有するレジスト組成物用樹脂の製造方法。
溶剤(1):溶解度パラメーターが11.4〜13.0[cal/mol]1/2
の範囲内である溶剤;
溶剤(2):テトラヒドロフラン
〔2〕前記工程が、
重合開始剤の作用により、前記モノマーを重合する工程である〔1〕記載のレジスト組成物用樹脂の製造方法。
〔3〕前記工程が、
前記モノマーの少なくとも一部と、前記溶剤(2)の少なくとも一部と、重合開始剤とを含む混合液を調製するステップと、
前記混合液を溶剤(1)中に滴下するステップとを有する〔1〕記載のレジスト組成物用樹脂の製造方法。
〔4〕前記混合溶剤が、実質的に前記溶剤(1)及び前記溶剤(2)からなる〔1〕〜〔3〕のいずれか記載のレジスト組成物用樹脂の製造方法。
〔5〕前記モノマーが、酸不安定基を有するモノマーを含む〔1〕〜〔4〕のいずれか記載のレジスト組成物用樹脂の製造方法。
〔6〕前記酸不安定基を有するモノマーが、式(a1−1)又は式(a1−2)で表されるモノマーである〔5〕記載のレジスト組成物用樹脂の製造方法。

Figure 2012207217
[式(a1−1)及び式(a1−2)中、
a1及びLa2は、それぞれ独立に、−O−又は−O−(CH2k1−CO−O−で表される基を表し、k1は1〜7の整数を表し、*は−CO−との結合手を表す。
a4及びRa5は、それぞれ独立に、水素原子又はメチル基を表す。
a6及びRa7は、それぞれ独立に、炭素数1〜8のアルキル基又は炭素数3〜10の脂環式炭化水素基を表す。
m1は0〜14の整数を表す。
n1は0〜10の整数を表す。
n2は0〜3の整数を表す。] The present invention includes the following inventions.
[1] A method for producing a resin for a resist composition, comprising a step of polymerizing monomers in a mixed solvent containing a solvent (1) and a solvent (2).
Solvent (1): Solubility parameter is 11.4 to 13.0 [cal / mol] 1/2
A solvent that is within the range of
Solvent (2): Tetrahydrofuran [2]
[1] The method for producing a resin for a resist composition according to [1], wherein the monomer is polymerized by the action of a polymerization initiator.
[3]
Preparing a mixed solution comprising at least a part of the monomer, at least a part of the solvent (2), and a polymerization initiator;
The method for producing a resin for a resist composition according to [1], further comprising a step of dropping the mixed solution into the solvent (1).
[4] The method for producing a resin for a resist composition according to any one of [1] to [3], wherein the mixed solvent substantially comprises the solvent (1) and the solvent (2).
[5] The method for producing a resin for a resist composition according to any one of [1] to [4], wherein the monomer includes a monomer having an acid labile group.
[6] The method for producing a resin for a resist composition according to [5], wherein the monomer having an acid labile group is a monomer represented by formula (a1-1) or formula (a1-2).
Figure 2012207217
[In Formula (a1-1) and Formula (a1-2),
L a1 and L a2 each independently represent a group represented by —O— or * —O— (CH 2 ) k1 —CO—O—, k1 represents an integer of 1 to 7, and * represents − Represents a bond with CO-.
R a4 and R a5 each independently represent a hydrogen atom or a methyl group.
R a6 and R a7 each independently represent an alkyl group having 1 to 8 carbon atoms or an alicyclic hydrocarbon group having 3 to 10 carbon atoms.
m1 represents the integer of 0-14.
n1 represents an integer of 0 to 10.
n2 represents an integer of 0 to 3. ]

本発明によれば、レジスト組成物用樹脂を高収率で得ることができる。   According to the present invention, a resin for a resist composition can be obtained in high yield.

本発明のレジスト組成物用樹脂(以下、場合により「樹脂」と略記する。)の製造方法(以下、場合により「本製造方法」という。)は上述のとおり、溶剤(1)及び溶剤(2)を含む混合溶剤中で、モノマーを重合する工程を有する。まず、これら溶剤(1)及び溶剤(2)について説明する。   As described above, the method for producing a resin for a resist composition of the present invention (hereinafter, abbreviated as “resin” in some cases) is the solvent (1) and the solvent (2) as described above. And a step of polymerizing the monomer in the mixed solvent. First, the solvent (1) and the solvent (2) will be described.

溶剤(1)は、その溶解度パラメーターが11.4〜13.0[cal/mol]1/2の範囲内のものであり、0℃〜本製造方法の反応温度の温度範囲で液状の形態を示すものである。
溶解度パラメーターとは、下記算出式により算出される数値であり、その数値は、例えば「IUPAC Gold Book - solubility parameter, δ」や溶剤ハンドブック(1963年、産業図書株式会社発行、松田種光、箱島勝、鎌刈藤行著)等に記載されている。
δ=(ΔH−RT/V)1/2
[式中、
δは溶解度パラメーターを表し、ΔHはモル蒸発熱を表し、Rは気体定数を表し、Tは温度を表し、Vはモル体積を表す。]
The solvent (1) has a solubility parameter in the range of 11.4 to 13.0 [cal / mol] 1/2 and has a liquid form in the temperature range of 0 ° C. to the reaction temperature of this production method. It is shown.
The solubility parameter is a numerical value calculated by the following calculation formula. The numerical value is, for example, “IUPAC Gold Book-solubility parameter, δ” or solvent handbook (1963, published by Sangyo Tosho Co., Ltd., Matsuda Tanemitsu, Hakoshima Masaru , Written by Tomoyuki Kamakari).
δ = (ΔH−RT / V) 1/2
[Where:
δ represents the solubility parameter, ΔH represents the heat of molar evaporation, R represents the gas constant, T represents the temperature, and V represents the molar volume. ]

溶剤(1)は、一般的に入手可能な溶剤の中から、前記算出式により溶解度パラメーターを求めたり、前記の刊行物記載の数値から溶解度パラメーターを求めたりすることで選択できるが、溶剤(1)は好ましくは、溶剤(2)であるテトラヒドロフランよりも、大気圧下における沸点が高いものである。このような溶剤(1)は例えば、アセトニトリル(12.11)、N,N−ジメチルホルムアミド(12.1)、ジメチルスルホキシド(12.0)、エタノール(12.8)、γ−ブチロラクトン(12.8)、乳酸エチル(11.6)及びシクロヘキサノール(11.4)等を挙げることができる。この溶剤(1)の具体例において、括弧内の数値は、溶解度パラメーター[cal/mol]1/2を示す数値である。 The solvent (1) can be selected from commonly available solvents by determining the solubility parameter by the above calculation formula or by determining the solubility parameter from the numerical values described in the above publications. ) Preferably has a higher boiling point under atmospheric pressure than tetrahydrofuran, which is the solvent (2). Examples of such a solvent (1) include acetonitrile (12.11), N, N-dimethylformamide (12.1), dimethyl sulfoxide (12.0), ethanol (12.8), γ-butyrolactone (12. 8), ethyl lactate (11.6), cyclohexanol (11.4) and the like. In the specific example of the solvent (1), the numerical value in parentheses is a numerical value indicating the solubility parameter [cal / mol] 1/2 .

溶剤(2)は、テトラヒドロフランであり、その溶解度パラメーターは、9.9[cal/mol]1/2である。 The solvent (2) is tetrahydrofuran, and its solubility parameter is 9.9 [cal / mol] 1/2 .

本製造方法に用いる混合溶剤は、溶剤(1)及び溶剤(2)を含むものであり、その混合比は任意であり、溶剤(1)及び溶剤(2)の混合重量比は、[溶剤(1)]:[溶剤(2)]で表して、例えば99:1〜1:99の範囲から選ぶことができるが、上述のように、溶剤(1)が溶剤(2)よりも高沸点である場合には、溶剤(1)の使用量が、溶剤(2)の使用量よりも多いと、より一層高収率で樹脂が得られるために好ましく、具体的に前記混合重量比で表せば、99:1〜70:30であるとより好ましく、95:5〜80:20であるとさらに好ましい。   The mixed solvent used in this production method includes the solvent (1) and the solvent (2), and the mixing ratio is arbitrary. The mixing weight ratio of the solvent (1) and the solvent (2) is [solvent ( 1)]: [Solvent (2)], for example, can be selected from a range of 99: 1 to 1:99. As described above, the solvent (1) has a higher boiling point than the solvent (2). In some cases, it is preferable that the amount of the solvent (1) used is larger than the amount of the solvent (2) because a resin can be obtained with a higher yield. 99: 1 to 70:30, more preferably 95: 5 to 80:20.

前記混合溶剤は、溶剤(1)及び溶剤(2)以外の溶剤を少量であれば含んでいてもよいが、実質的に溶剤(1)及び溶剤(2)からなると好ましい。ここでいう「実質的に溶剤(1)及び溶剤(2)からなる混合溶剤」とは例えば、企図せず含まれる水分等は、少量であれば含みうることを意味する。   The mixed solvent may contain a small amount of a solvent other than the solvent (1) and the solvent (2), but is preferably substantially composed of the solvent (1) and the solvent (2). The “mixed solvent substantially consisting of the solvent (1) and the solvent (2)” here means that, for example, water and the like that are unintentionally contained can be contained in a small amount.

前記混合溶剤の総使用量は、本製造方法に使用する全モノマーの合計重量を基準として例えば、30〜700重量%の範囲であり、50〜300重量%の範囲が好ましい。   The total amount of the mixed solvent is, for example, in the range of 30 to 700% by weight, and preferably in the range of 50 to 300% by weight, based on the total weight of all monomers used in the production method.

本製造方法は、前記混合溶剤中で、前記モノマーを重合する溶液重合であり、前記混合溶剤中で、前記モノマーを重合開始剤の作用により、重合するものであると好ましい。かかる重合は、商業的スケールで実施できる点でラジカル重合であるとさらに好ましい。当該重合がラジカル重合である場合、必要に応じて連鎖移動剤を用いることもできる。以下、本製造方法における重合が、溶液重合かつラジカル重合である場合を中心に説明する。   This production method is preferably solution polymerization in which the monomer is polymerized in the mixed solvent, and the monomer is polymerized in the mixed solvent by the action of a polymerization initiator. Such polymerization is more preferably radical polymerization in that it can be carried out on a commercial scale. When the polymerization is radical polymerization, a chain transfer agent can be used as necessary. Hereinafter, the case where the polymerization in this production method is solution polymerization and radical polymerization will be mainly described.

本製造方法における溶液重合は、
モノマーを溶剤に溶解して混合物とした後、得られた混合物を所定の重合温度に加熱する一括重合法;
モノマーを溶剤に溶解して混合物とした後、得られた混合物を所定の重合温度に保温し、所定の重合温度に到達した混合物に重合開始剤を添加する開始剤添加法;
モノマーの少なくも一部を所定の重合温度に保温された前記溶剤に滴下するか、又はモノマーの少なくも一部と、溶剤の少なくとも一部とを混合した混合液を、所定の重合温度に保温された前記溶剤の残部に、前記混合液を滴下する滴下重合法等のいずれかで実施できる。なお、ここに示した一括重合法、開始剤添加法又は滴下重合法に用いられる溶剤が、前記混合溶剤である。また、一括重合法においては、モノマーとともに、重合開始剤、必要に応じて用いる連鎖移動剤を溶剤に溶解することもある。一括重合法においては、重合開始剤等はモノマーとともに、所定の重合温度に保温された前記溶剤の残部に添加してもよく、予め、重合開始剤の少なくとも一部を、所定の重合温度に保温された前記溶剤の残部に溶解させておいてもよい。
The solution polymerization in this production method is
A batch polymerization method in which the monomer is dissolved in a solvent to form a mixture, and then the resulting mixture is heated to a predetermined polymerization temperature;
An initiator addition method in which the monomer is dissolved in a solvent to form a mixture, and the resulting mixture is kept at a predetermined polymerization temperature, and a polymerization initiator is added to the mixture that has reached the predetermined polymerization temperature;
At least a part of the monomer is dropped into the solvent kept at a predetermined polymerization temperature, or a mixed liquid obtained by mixing at least a part of the monomer and at least a part of the solvent is kept at a predetermined polymerization temperature. It can carry out by any of the dropping polymerization method etc. which dripped the said liquid mixture in the remainder of the said solvent. In addition, the solvent used for the batch polymerization method shown here, the initiator addition method, or the dropping polymerization method is the said mixed solvent. In the batch polymerization method, a polymerization initiator and a chain transfer agent used as necessary may be dissolved in a solvent together with monomers. In the batch polymerization method, a polymerization initiator or the like may be added together with the monomer to the remainder of the solvent kept at a predetermined polymerization temperature, and at least a part of the polymerization initiator is kept at a predetermined polymerization temperature in advance. You may make it melt | dissolve in the remainder of the said solvent.

なかでも、組成分布が狭い樹脂や分子量分布が狭い樹脂を簡便に得られる点から、滴下重合法が好ましい。上述のように、滴下重合法においては、所定の重合温度に保温された溶剤に、モノマーを滴下する形態であっても、モノマーを予め溶剤に溶解させた溶液を調製して溶液(以下、場合により「滴下溶液」という。)とした後、この滴下溶液を所定の重合温度に保温した前記溶剤の残部に滴下する形態であってもよいが、後者が好ましい。例えば、溶剤(以下、場合により「仕込み溶剤」という。)をあらかじめ重合容器に仕込み、所定の重合温度まで加熱した後、モノマー及び重合開始剤を、それぞれ独立、又は任意の組み合わせで調製した滴下溶液を、仕込み溶剤中に滴下してもよく、重合開始剤をモノマーに溶解させた溶液を仕込み溶剤中に滴下してもよく、重合開始剤及びモノマーを溶剤に溶解した溶液を仕込み溶剤中に滴下してもよい。   Of these, the drop polymerization method is preferred because a resin having a narrow composition distribution or a resin having a narrow molecular weight distribution can be easily obtained. As described above, in the dropping polymerization method, even if the monomer is dropped into a solvent kept at a predetermined polymerization temperature, a solution prepared by dissolving the monomer in the solvent in advance is prepared (hereinafter referred to as the case). (Hereinafter referred to as “dropping solution”), and then the dropping solution may be dropped into the remainder of the solvent kept at a predetermined polymerization temperature, but the latter is preferred. For example, after adding a solvent (hereinafter, referred to as “charged solvent” in some cases) to a polymerization vessel in advance and heating to a predetermined polymerization temperature, a monomer and a polymerization initiator are each prepared as a drop solution prepared independently or in any combination. May be dropped into the charged solvent, a solution in which the polymerization initiator is dissolved in the monomer may be dropped into the charged solvent, or a solution in which the polymerization initiator and the monomer are dissolved in the solvent is dropped into the charged solvent. May be.

滴下溶液調製に溶剤を用いる場合には、そのモノマー濃度は、該滴下溶液中でモノマーが相分離したり、モノマーが析出したりしないように、当該モノマーの種類に応じて、5〜70重量%の範囲から選ばれる。同様に、重合開始剤を含む滴下溶液中の重合開始剤濃度は、該滴下溶液中で重合開始剤が相分離したり、重合開始剤が析出したりしないように、当該重合開始剤の種類に応じて5〜60重量%の範囲から選ばれる。滴下溶液が、モノマーと、重合開始剤とを合わせて溶剤に溶解したものである場合も、それぞれ、ここに示す濃度範囲から選ばれる。なお、滴下溶液調製に溶剤を用いた場合、仕込み溶剤の量は、すでに説明した溶剤の総使用量から、滴下溶液調製に使用した溶剤の使用量を差し引いた残量であるが、この仕込み溶剤の量は、重合容器において撹拌が可能な量となるように、重合容器に備えられた攪拌機の種類に応じて選ばれる。   When a solvent is used for the preparation of the dropping solution, the monomer concentration is 5 to 70% by weight depending on the type of the monomer so that the monomer does not phase-separate or precipitate the monomer in the dropping solution. It is chosen from the range. Similarly, the concentration of the polymerization initiator in the dropping solution containing the polymerization initiator is determined depending on the type of the polymerization initiator so that the polymerization initiator does not phase-separate or precipitate in the dropping solution. Accordingly, it is selected from the range of 5 to 60% by weight. Even when the dropping solution is a monomer and a polymerization initiator combined and dissolved in a solvent, each is selected from the concentration range shown here. In addition, when a solvent is used for preparing the dropping solution, the amount of the charged solvent is the remaining amount obtained by subtracting the amount of the solvent used for preparing the dropping solution from the total amount of the solvent already described. The amount is selected according to the type of stirrer provided in the polymerization vessel so that the amount can be stirred in the polymerization vessel.

仕込み溶剤中に滴下溶液を滴下する滴下時間については特に限定はないが、滴下時間が短すぎる場合には、重合初期に生成する樹脂の組成分布が広くなりやすく、かつ最終的に得られる樹脂の分子量が大きくなりやすい傾向があるため、滴下時間は1時間以上が好ましい。また、滴下時間が長すぎると、樹脂の生産性を損なうため、滴下時間は5時間以下が好ましい。なお、モノマーを含む滴下溶液と、重合開始剤を含む滴下溶液とを別々に調製し、仕込み溶剤中に、これら滴下溶液を別々に滴下する場合、ここでいう滴下時間は、モノマーを含む滴下溶液の滴下開始から滴下終了までの時間とする。   There is no particular limitation on the dropping time for dropping the dropping solution in the charged solvent, but if the dropping time is too short, the composition distribution of the resin produced at the initial stage of polymerization tends to be widened, and the resin obtained finally Since the molecular weight tends to increase, the dropping time is preferably 1 hour or longer. Moreover, since the productivity of resin will be impaired when dripping time is too long, 5 hours or less are preferable for dripping time. In addition, when the dropping solution containing a monomer and the dropping solution containing a polymerization initiator are prepared separately and these dropping solutions are dropped separately in a charged solvent, the dropping time referred to here is a dropping solution containing a monomer. The time from the start of dropping to the end of dropping.

滴下重合法においては、仕込み溶剤中への滴下溶液の滴下が終了した後に、滴下後の混合物を撹拌しながら、さらに所定時間、好ましくは1〜10時間、より好ましくは2〜8時間、所定の重合温度に保温することにより、重合反応を完結させる。滴下後の混合物を所定の重合温度に保温する時間は例えば、反応途中の反応混合物を適宜、サンプリングし、生成した樹脂の分子量や用いたモノマーの消失度合いを追跡することにより定めることもできる。なお、滴下後の混合物を保温する際の重合温度は、所定の重合温度から±2℃程度の誤差は許容であり、この温度誤差を維持するようにして、重合容器の加熱手段等をコントロールすることが好ましい。   In the dropping polymerization method, after the dropping of the dropping solution into the charged solvent is completed, the mixture after dropping is further stirred for a predetermined time, preferably 1 to 10 hours, more preferably 2 to 8 hours. By maintaining the temperature at the polymerization temperature, the polymerization reaction is completed. The time for keeping the mixture after dropping at a predetermined polymerization temperature can be determined, for example, by appropriately sampling the reaction mixture during the reaction and tracking the molecular weight of the produced resin and the disappearance degree of the used monomer. The polymerization temperature when keeping the mixture after dropping is allowed to have an error of about ± 2 ° C. from the predetermined polymerization temperature, and the heating means of the polymerization vessel is controlled so as to maintain this temperature error. It is preferable.

本製造方法がラジカル重合により樹脂を製造する場合、上述のように重合開始剤を用いることが好ましい。重合開始剤としては、ラジカル発生剤として汎用のものの中から、本製造方法に用いるモノマーの種類に応じて選ばれるが、例えば、2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等のアゾ化合物;2,5−ジメチル−2,5−ビス(tert−ブチルパーオキシ)ヘキサン等の有機過酸化物を挙げることができる。なお、重合開始剤は単独で用いても、複数種を混合して用いてもよい。さらに、重合が適切な重合速度で進行しやすい点等を考慮すると、用いる重合開始剤は、10時間半減期温度が50℃以上のものが好ましい。   When the production method produces a resin by radical polymerization, it is preferable to use a polymerization initiator as described above. The polymerization initiator is selected from general-purpose radical generators according to the type of monomer used in the production method. For example, 2,2′-azobisisobutyronitrile, dimethyl-2,2 Azo compounds such as' -azobisisobutyrate, 2,2'-azobis [2- (2-imidazolin-2-yl) propane]; 2,5-dimethyl-2,5-bis (tert-butylperoxy) ) Organic peroxides such as hexane can be mentioned. In addition, a polymerization initiator may be used independently or may be used in mixture of multiple types. Furthermore, in consideration of the point where the polymerization is likely to proceed at an appropriate polymerization rate, the polymerization initiator used preferably has a 10-hour half-life temperature of 50 ° C. or higher.

重合開始剤の使用量は、その種類や、モノマー、及び必要に応じて用いられる連鎖移動剤の種類、重合温度等の製造条件により適宜最適な量が選ばれるが、例えば、全モノマーの総使用量に対して、0.3〜12.0モル%の範囲が好ましく、1.0〜10.0モル%の範囲がさらに好ましい。   The amount of polymerization initiator used is appropriately selected depending on the type, monomer, type of chain transfer agent used as needed, and production conditions such as polymerization temperature. For example, the total use of all monomers The range of 0.3-12.0 mol% is preferable with respect to the amount, and the range of 1.0-10.0 mol% is more preferable.

重合温度は、例えば50〜150℃の範囲、好ましくは60〜120℃の範囲である。重合温度が前記範囲となるように、用いる重合開始剤及び溶剤(1)の種類や等を選ぶことが好ましい。なお、前記滴下溶液を前記仕込み溶剤に滴下する際の温度と、滴下溶液滴下後の混合物を攪拌する温度とは同程度でも、異なってもよいが、どちらの温度も前記範囲から選ばれることが好ましい。   The polymerization temperature is, for example, in the range of 50 to 150 ° C, preferably in the range of 60 to 120 ° C. It is preferable to select the type and the like of the polymerization initiator used and the solvent (1) so that the polymerization temperature falls within the above range. In addition, although the temperature at the time of dripping the said dripping solution to the said preparation solvent and the temperature which stirs the mixture after dripping solution dripping may be comparable or different, both temperature may be chosen from the said range. preferable.

滴下重合における滴下溶液及び仕込み溶剤は、一方が前記混合溶液の一部であり、他方が前記混合溶液の残部であるが、前記混合溶剤のうち、溶剤(1)の少なくとも一部を仕込み溶剤として用い、溶剤(2)の少なくとも一部を滴下溶剤調製に用いることが好ましい。この場合、本製造方法の前記工程は、モノマー及び重合開始剤を溶剤(2)に溶解して滴下溶液を調製するステップと、該滴下溶液を仕込み溶剤[溶剤(1)]中に滴下するステップとを有する。
また、このように溶剤(2)の少なくとも一部を滴下溶液調製に用いた場合、本発明者は例えば、後掲の好ましいモノマーと溶剤(2)とを溶解させて当該滴下溶液を調製する際の調製時間が比較的短時間となるという知見も得ている。
One of the dropping solution and the charging solvent in the dropping polymerization is a part of the mixed solution, and the other is the rest of the mixed solution. Among the mixed solvents, at least a part of the solvent (1) is used as the charging solvent. It is preferable to use at least a part of the solvent (2) for preparing the dropping solvent. In this case, the process of the present production method comprises a step of preparing a dropping solution by dissolving the monomer and the polymerization initiator in the solvent (2), and a step of dropping the dropping solution into the solvent [solvent (1)]. And have.
Further, when at least a part of the solvent (2) is used for preparing the dropping solution in this way, the present inventor, for example, prepares the dropping solution by dissolving the preferable monomer and the solvent (2) described later. It has also been found that the preparation time is relatively short.

また、前記滴下溶液調製に用いる溶剤が溶剤(2)の少なくとも一部である場合においても、該滴下溶液調製に用いる溶剤にはさらに溶剤(1)を含んでいると好ましい。すなわち、モノマー及び/又は重合開始剤を溶剤(2)に溶解して調製された滴下溶液には、さらに溶剤(1)を含んでいると好ましい。すでに述べたように、本製造方法に用いる混合溶液は、溶剤(1)の方が溶剤(2)よりも、その使用量が多い方が好ましいので、滴下溶液調製においても、溶剤(2)に加えて溶剤(1)を用いることが望ましい。溶剤(1)及び溶剤(2)を合わせて、滴下溶液調製に用いる場合は、滴下溶液中の溶剤(2)に対する溶剤(1)の混合重量比は、[溶剤(1)]/[溶剤(2)]で表せば、60/40〜99/1が好ましく、75/15〜95/5が特に好ましい。   Moreover, even when the solvent used for the said dripping solution preparation is at least one part of the solvent (2), it is preferable that the solvent (1) is further included in the solvent used for this dripping solution preparation. That is, it is preferable that the dropping solution prepared by dissolving the monomer and / or the polymerization initiator in the solvent (2) further contains the solvent (1). As already described, since the mixed solution used in the present production method is preferably used in a larger amount of the solvent (1) than the solvent (2), the solvent (2) is also used in the preparation of the dropping solution. In addition, it is desirable to use a solvent (1). When the solvent (1) and the solvent (2) are combined and used for preparing the dropping solution, the mixing weight ratio of the solvent (1) to the solvent (2) in the dropping solution is [solvent (1)] / [solvent ( 2)], 60/40 to 99/1 are preferable, and 75/15 to 95/5 are particularly preferable.

滴下重合法に連鎖移動剤を用いる場合、当該連鎖移動剤は、仕込み溶剤に溶解させても、滴下溶液に溶解させてもよいが、滴下溶液に溶解させると好ましい。当該連鎖移動剤としては例えば、ドデシルメルカプタン、メルカプトエタノール、メルカプトプロパノール、メルカプト酢酸、メルカプトプロピオン酸及び4,4−ビス(トリフルオロメチル)−4−ヒドロキシ−1−メルカプトブタン等の既知のチオール化合物が挙げられる。当該連鎖移動剤は単独種若しくは複数種を混合して用いることができる。連鎖移動剤の使用量は、その種類や、用いるモノマーや重合開始剤の種類、重合温度等の製造条件により適宜最適なものを選ぶことができる。また、所望の分子量の樹脂が得られるようにして、連鎖移動剤の使用量を定めることもできる。   When a chain transfer agent is used in the dropping polymerization method, the chain transfer agent may be dissolved in a preparation solvent or a dropping solution, but is preferably dissolved in a dropping solution. Examples of the chain transfer agent include known thiol compounds such as dodecyl mercaptan, mercaptoethanol, mercaptopropanol, mercaptoacetic acid, mercaptopropionic acid, and 4,4-bis (trifluoromethyl) -4-hydroxy-1-mercaptobutane. Can be mentioned. The chain transfer agent can be used alone or in combination. The amount of chain transfer agent used can be appropriately selected depending on the type, the type of monomer and polymerization initiator used, the production conditions such as the polymerization temperature. Further, the amount of the chain transfer agent used can be determined so that a resin having a desired molecular weight can be obtained.

重合後の反応混合物は冷却又は適当な溶剤で希釈、あるいはこれらを組み合わせることで、その重合反応の進行を停止させることが好ましい。反応混合物を希釈するために用いる溶剤(以下、場合により「希釈溶剤」という。)は、好ましくは生成した樹脂を十分溶解できる「良溶剤」(良溶媒)から選ばれが、後掲の好ましいモノマーを用いて樹脂を得た場合の良溶剤としては例えば、1,4−ジオキサン、アセトン、テトラヒドロフラン、メチルエチルケトン、メチルイソブチルケトン、γ−ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート及びプロピレングリコールモノメチルエーテル等を挙げることができる。希釈溶剤の使用量は、希釈後の反応混合物が適当な溶液粘度になるように定めることが好ましい。冷却及び/又は希釈された反応混合物は好ましくは、生成した樹脂が不溶又は難溶である「貧溶剤」(貧溶媒)と混合し、生成した樹脂を固体状で反応混合物から析出させる。好ましくは、反応混合物を希釈溶剤で希釈した溶液を、多量の貧溶剤に滴下することで、生成した樹脂を固体状で析出させる。かかる良溶剤及び貧溶剤を用いる樹脂の析出法は、適当な組み合わせを選択することで、得られる樹脂から、重合に用いたモノマーや重合開始剤等の未反応物を十分除去することができる。   The reaction mixture after polymerization is preferably cooled, diluted with an appropriate solvent, or a combination thereof to stop the progress of the polymerization reaction. The solvent used for diluting the reaction mixture (hereinafter sometimes referred to as “diluting solvent”) is preferably selected from “good solvents” (good solvents) that can sufficiently dissolve the produced resin. Examples of good solvents in the case of obtaining a resin using 1,4-dioxane, acetone, tetrahydrofuran, methyl ethyl ketone, methyl isobutyl ketone, γ-butyrolactone, propylene glycol monomethyl ether acetate and propylene glycol monomethyl ether it can. The amount of the dilution solvent used is preferably determined so that the diluted reaction mixture has an appropriate solution viscosity. The cooled and / or diluted reaction mixture is preferably mixed with a “poor solvent” (poor solvent) in which the resulting resin is insoluble or sparingly soluble, and the resulting resin is precipitated from the reaction mixture in solid form. Preferably, a solution obtained by diluting the reaction mixture with a diluting solvent is dropped into a large amount of a poor solvent to precipitate the produced resin in a solid state. The resin precipitation method using such a good solvent and a poor solvent can sufficiently remove unreacted substances such as monomers and polymerization initiator used in the polymerization from the resulting resin by selecting an appropriate combination.

重合後の反応混合物を冷却することで、重合反応の進行を停止させる場合、その冷却温度は重合温度から35℃以上低い温度であると好ましく、0〜40℃の範囲であるとより好ましく、0〜30℃の範囲であるとさらに好ましい。この温度範囲内であると、重合反応の進行を十分抑制することができる。   When the progress of the polymerization reaction is stopped by cooling the reaction mixture after polymerization, the cooling temperature is preferably 35 ° C. or more lower than the polymerization temperature, more preferably in the range of 0 to 40 ° C., 0 More preferably, it is in the range of -30 ° C. Within this temperature range, the progress of the polymerization reaction can be sufficiently suppressed.

貧溶剤は、生成した樹脂の種類に応じて、当該樹脂が不溶又は難溶なものの中から適当なものが選択できるが、後掲の好ましいモノマーを用いて樹脂を得た場合の貧溶剤としては例えば、水;メタノール及びイソプロパノール等のアルコール類; ヘキサン及びヘプタン等の飽和炭化水素類並びにこれらの混合溶剤等が挙げられる。反応混合物から析出した樹脂は濾過等の汎用の固液分離操作により、反応混合物から分離される。分離した樹脂は必要に応じて、適当な洗浄溶剤(貧溶剤が好ましい)で洗浄した後、例えば十分乾燥させることで、当該樹脂を乾燥粉体として得ることもできるし、固液分離した樹脂を必要に応じて洗浄溶剤により洗浄した後、当該樹脂を溶解できる溶剤で溶解し、樹脂溶液として得ることもできる。本製造方法により得られる樹脂は、レジスト組成物用であるため、当該レジスト組成物を調製するために用いる溶剤により、前記樹脂溶液を調製すれば、この樹脂溶液はレジスト組成物調製に用いることがより容易となる。なお、この樹脂溶液には適当な保存安定剤等の添加剤を適宜添加してもよい。   As the poor solvent, an appropriate one can be selected from those insoluble or hardly soluble depending on the type of resin produced, but as a poor solvent when a resin is obtained using a preferable monomer described later, Examples thereof include water; alcohols such as methanol and isopropanol; saturated hydrocarbons such as hexane and heptane, and mixed solvents thereof. The resin precipitated from the reaction mixture is separated from the reaction mixture by a general solid-liquid separation operation such as filtration. If necessary, the separated resin can be washed with an appropriate washing solvent (preferably a poor solvent) and then sufficiently dried, for example, to obtain the resin as a dry powder. If necessary, after washing with a washing solvent, the resin can be dissolved in a solvent that can dissolve the resin to obtain a resin solution. Since the resin obtained by this production method is for a resist composition, if the resin solution is prepared with a solvent used for preparing the resist composition, the resin solution can be used for preparing the resist composition. It becomes easier. In addition, you may add suitably additives, such as a suitable storage stabilizer, to this resin solution.

以上、本製造方法を、溶液重合且つラジカル重合である好ましい態様を中心に説明してきたが、続いて、この本製造方法に用いる好ましいモノマーについて説明する。   As mentioned above, although this manufacturing method was demonstrated centering on the preferable aspect which is solution polymerization and radical polymerization, the preferable monomer used for this this manufacturing method is demonstrated continuously.

モノマーとしては、レジスト組成物用樹脂を構成する構造単位を与える公知のモノマーが挙げられるが、該レジスト組成物が化学増幅型レジスト組成物である場合には、酸不安定基を有するモノマーが用いられる。かかる酸不安定基を有するモノマーは例えば、式(a1−1)及び式(a1−2)でそれぞれ表されるモノマーが好ましい。   As the monomer, a known monomer that gives a structural unit constituting a resin for a resist composition can be mentioned. When the resist composition is a chemically amplified resist composition, a monomer having an acid labile group is used. It is done. As the monomer having such an acid labile group, for example, monomers represented by formula (a1-1) and formula (a1-2) are preferable.

Figure 2012207217
[式(a1−1)及び式(a1−2)中、
a1及びLa2は、それぞれ独立に、−O−又は−O−(CH2k1−CO−O−で表される基を表し、k1は1〜7の整数を表し、*は−CO−との結合手を表す。
a4及びRa5は、それぞれ独立に、水素原子又はメチル基を表す。
a6及びRa7は、それぞれ独立に、炭素数1〜8のアルキル基又は炭素数3〜10の脂環式炭化水素基を表す。
m1は0〜14の整数を表す。
n1は0〜10の整数を表す。
n2は0〜3の整数を表す。]
Figure 2012207217
[In Formula (a1-1) and Formula (a1-2),
L a1 and L a2 each independently represent a group represented by —O— or * —O— (CH 2 ) k1 —CO—O—, k1 represents an integer of 1 to 7, and * represents − Represents a bond with CO-.
R a4 and R a5 each independently represent a hydrogen atom or a methyl group.
R a6 and R a7 each independently represent an alkyl group having 1 to 8 carbon atoms or an alicyclic hydrocarbon group having 3 to 10 carbon atoms.
m1 represents the integer of 0-14.
n1 represents an integer of 0 to 10.
n2 represents an integer of 0 to 3. ]

a1及びLa2は、好ましくは、−O−又は、k1が1〜4の範囲である−O−(CH2k1−CO−O−で表される基であり、より好ましくは−O−又は−O−CH2−CO−O−であり、さらに好ましくは−O−である。
a4及びRa5は、好ましくはメチル基である。
a6及びRa7のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等が挙げられる。Ra6及びRa7のアルキル基は、好ましくは炭素数6以下である。脂環式炭化水素基は、好ましくは炭素数8以下、より好ましくは6以下である。
L a1 and L a2 are preferably —O— or a group represented by * —O— (CH 2 ) k1 —CO—O—, wherein k1 is in the range of 1 to 4, more preferably — O— or * —O—CH 2 —CO—O—, more preferably —O—.
R a4 and R a5 are preferably methyl groups.
Examples of the alkyl group for R a6 and R a7 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group. The alkyl group for R a6 and R a7 preferably has 6 or less carbon atoms. The alicyclic hydrocarbon group preferably has 8 or less carbon atoms, more preferably 6 or less.

a6及びRa7の脂環式炭化水素基としては、単環式又は多環式のいずれでもよく、単環式の脂環式炭化水素基としては、例えば、シクロペンチル基、シクロへキシル基、メチルシクロヘキシル基、ジメチルシクロへキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基が挙げられる。多環式の脂環式炭化水素基としては、デカヒドロナフチル基、アダマンチル基、ノルボルニル基、メチルノルボルニル基、下記のような基等が挙げられる。

Figure 2012207217
m1は、好ましくは0〜3の整数、より好ましくは0又は1である。
n1は、好ましくは0〜3の整数、より好ましくは0又は1である。 The alicyclic hydrocarbon group for R a6 and R a7 may be monocyclic or polycyclic, and examples of the monocyclic alicyclic hydrocarbon group include a cyclopentyl group, a cyclohexyl group, Examples thereof include cycloalkyl groups such as methylcyclohexyl group, dimethylcyclohexyl group, cycloheptyl group, and cyclooctyl group. Examples of the polycyclic alicyclic hydrocarbon group include decahydronaphthyl group, adamantyl group, norbornyl group, methylnorbornyl group, and the following groups.
Figure 2012207217
m1 is preferably an integer of 0 to 3, more preferably 0 or 1.
n1 is preferably an integer of 0 to 3, more preferably 0 or 1.

式(a1−1)又は式(a1−2)で表されるモノマーを用いて、本製造方法により樹脂を得れば、該樹脂の構造単位総量に対する、これらモノマー由来の構造単位の導入率を高くすることができる。なお、ここでいう導入率とは、式(a1−1)で表されるモノマー及び/又は式(a1−2)で表されるモノマーを用いて本製造方法を行った場合、これらモノマーのうち、本製造反応に用いた量(使用量)と、これらモノマーの樹脂形成に消費された消費量との比率である。本製造方法、特にラジカル重合を用いた本製造方法によれば、当該モノマーの使用量により、樹脂中のこれらモノマー由来の構造単位の組成比をコントロールすることが極めて容易となる。また、得られた樹脂中の、これらモノマー由来の構造単位の組成比は例えば、樹脂をH−NMR測定又は13C−NMR測定に供するか、重合終了時に残存する未反応モノマーの量をガスクロマトグラフィー分析や液体クロマトグラフィー分析により測定し、樹脂形成に消費されたモノマー量を算出することで求めることができる。式(a1−1)及び式(a1−2)でそれぞれ表されるモノマーは、樹脂中に嵩高い骨格を導入できるので、よりドライエッチング耐性に優れたレジストパターンを形成できる樹脂を製造できる反面、その立体障害のためか、ラジカル重合により樹脂を製造しようとすると、その導入率が低くなる傾向があった。本製造方法によれば、高い導入率で、式(a1−1)及び式(a1−2)でそれぞれ表されるモノマーから樹脂を製造できるという利点があり、本発明の効果をより一層享受できる。 If a resin is obtained by this production method using the monomer represented by formula (a1-1) or formula (a1-2), the introduction rate of structural units derived from these monomers with respect to the total amount of structural units of the resin is determined. Can be high. In addition, when this manufacturing method is performed using the monomer represented by Formula (a1-1) and / or the monomer represented by Formula (a1-2) with the introduction rate here, among these monomers The ratio of the amount used in this production reaction (the amount used) to the amount consumed for resin formation of these monomers. According to this production method, particularly this production method using radical polymerization, it becomes very easy to control the composition ratio of structural units derived from these monomers in the resin by the amount of the monomer used. The composition ratio of structural units derived from these monomers in the obtained resin is, for example, subjecting the resin to 1 H-NMR measurement or 13 C-NMR measurement, or the amount of unreacted monomer remaining at the end of polymerization as gas. It can be determined by calculating the amount of monomer consumed for resin formation, measured by chromatography analysis or liquid chromatography analysis. The monomers represented by the formula (a1-1) and the formula (a1-2) can introduce a bulky skeleton into the resin, and thus can produce a resin that can form a resist pattern with better dry etching resistance, Due to the steric hindrance, when the resin is produced by radical polymerization, the introduction rate tends to be low. According to this production method, there is an advantage that a resin can be produced from the monomers represented by formula (a1-1) and formula (a1-2) at a high introduction rate, and the effects of the present invention can be further enjoyed. .

樹脂中のモノマー由来の構造単位の組成比を、より一層コントロールしやすい点では、以下の式(a1−a)及び式(a1−b)でそれぞれ表されるモノマーは特に好ましいものである。

Figure 2012207217
[式(a1−a)及び式(a1−b)中、
a4〜Ra7、m1、n1及びn2は、式(a1−1)又は式(a1−2)と同じ意味を表す。] Monomers represented by the following formulas (a1-a) and (a1-b) are particularly preferable in that the composition ratio of structural units derived from monomers in the resin can be more easily controlled.
Figure 2012207217
[In the formulas (a1-a) and (a1-b),
R a4 to R a7 , m1, n1 and n2 represent the same meaning as in formula (a1-1) or formula (a1-2). ]

式(a1−1)で表されるモノマーとしては、例えば、特開2010−204646号公報に記載されたモノマーが挙げられる。中でも、式(a1−1−1)〜(a1−1−7)でそれぞれ表されるモノマーが好ましく、式(a1−1−1)〜(a1−1−3)でそれぞれ表されるモノマーがより好ましい。

Figure 2012207217
Examples of the monomer represented by the formula (a1-1) include monomers described in JP 2010-204646 A. Among these, monomers represented by formulas (a1-1-1) to (a1-1-7) are preferable, and monomers represented by formulas (a1-1-1) to (a1-1-3) are preferable. More preferred.
Figure 2012207217

式(a1−2)で表されるモノマーとしては、例えば、1−エチル−1−シクロペンチル(メタ)アクリレート、1−エチル−1−シクロヘキシル(メタ)アクリレート、1−エチル−1−シクロヘプチル(メタ)アクリレート、1−メチル−1−シクロペンチル(メタ)アクリレート、1−イソプロピル−1−シクロペンチル(メタ)アクリレート等が挙げられる。式(a1−2)で表されるモノマーとしては、式(a1−2−1)〜(a1−2−6)でそれぞれ表されるモノマーが好ましく、式(a1−2−3)〜(a1−2−4)でそれぞれ表されるモノマーがより好ましく、式(a1−2−3)で表されるモノマーがさらに好ましい。

Figure 2012207217
Examples of the monomer represented by the formula (a1-2) include 1-ethyl-1-cyclopentyl (meth) acrylate, 1-ethyl-1-cyclohexyl (meth) acrylate, 1-ethyl-1-cycloheptyl (meta ) Acrylate, 1-methyl-1-cyclopentyl (meth) acrylate, 1-isopropyl-1-cyclopentyl (meth) acrylate, and the like. As the monomer represented by the formula (a1-2), monomers represented by the formulas (a1-2-1) to (a1-2-6) are preferable, and the formulas (a1-2-3) to (a1) are preferable. The monomer represented by -2-4) is more preferable, and the monomer represented by the formula (a1-2-3) is more preferable.
Figure 2012207217

本製造方法において、式(a1−1)で表されるモノマー及び/又は式(a1−2)で表されるモノマーを用いる場合、これらモノマーの合計使用量は、モノマーの総使用量に対して、10〜95モル%の範囲が好ましく、15〜90モル%の範囲がより好ましく、20〜85モル%の範囲がさらに好ましい。前記範囲内であれば、得られる樹脂は、レジスト組成物用として好適なものが得られる。すでに述べたとおり、本製造方法は、これらモノマーの導入率を高くすることができるため、本製造方法に用いるモノマーの総使用量に対する式(a1−1)で表されるモノマー及び式(a1−2)で表されるモノマーの合計使用量をコントロールすることで、得られる樹脂中の式(a1−1)で表されるモノマー及び式(a1−2)で表されるモノマーにそれぞれ由来する構造単位の含有率を所望の範囲にすることができる。すなわち、当該樹脂の全構造単位に対して、式(a1−1)で表されるモノマー由来の構造単位、及び式(a1−2)で表されるモノマー由来の構造単位の合計含有率は、これらモノマーの合計使用量の全モノマー総使用量に対する比をコントロールすることで、容易に所望の含有率の樹脂を得ることが可能となる。   In this production method, when using the monomer represented by the formula (a1-1) and / or the monomer represented by the formula (a1-2), the total use amount of these monomers is based on the total use amount of the monomers. The range of 10 to 95 mol% is preferable, the range of 15 to 90 mol% is more preferable, and the range of 20 to 85 mol% is more preferable. If it is in the said range, the resin obtained for a resist composition will be obtained. As already described, since this production method can increase the introduction rate of these monomers, the monomer represented by the formula (a1-1) and the formula (a1- The structure derived from the monomer represented by the formula (a1-1) and the monomer represented by the formula (a1-2) in the obtained resin by controlling the total amount of the monomer represented by 2) The unit content can be set to a desired range. That is, the total content of the structural unit derived from the monomer represented by the formula (a1-1) and the structural unit derived from the monomer represented by the formula (a1-2) with respect to all the structural units of the resin, By controlling the ratio of the total use amount of these monomers to the total use amount of all monomers, it becomes possible to easily obtain a resin having a desired content.

本製造方法により得られる樹脂は、酸不安定基を有するモノマーに加え、酸不安定基を有さないモノマー(以下、場合により「酸安定モノマー」という。)を用いることもできる。   In addition to the monomer having an acid labile group, the resin obtained by this production method can also use a monomer having no acid labile group (hereinafter sometimes referred to as “acid-stable monomer”).

酸安定モノマーとしては例えば、式(a2−0)で表されるモノマーが挙げられる。

Figure 2012207217
[式(a2−0)中、
a30は、ハロゲン原子を有してもよい炭素数1〜6のアルキル基、水素原子又はハロゲン原子を表す。
a31は、ハロゲン原子、ヒドロキシ基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数2〜4のアシル基、炭素数2〜4のアシルオキシ基、アクリロイル基又はメタクリロイル基を表す。
maは0〜4の整数を表す。maが2以上の整数である場合、複数のRa31は同一であっても異なってもよい。] As an acid stable monomer, the monomer represented by a formula (a2-0) is mentioned, for example.
Figure 2012207217
[In the formula (a2-0),
R a30 represents a C 1-6 alkyl group which may have a halogen atom, a hydrogen atom or a halogen atom.
R a31 is a halogen atom, a hydroxy group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an acyl group having 2 to 4 carbon atoms, an acyloxy group having 2 to 4 carbon atoms, an acryloyl group, or methacryloyl. Represents a group.
ma represents an integer of 0 to 4. When ma is an integer of 2 or more, the plurality of R a31 may be the same or different. ]

a30におけるアルキル基の具体例は、炭素数6以下である限りにおいて、式(a1−1)のRa6で挙げたものと同じであり、これらアルキル基に含まれる水素原子の少なくとの一部がハロゲン原子に置換されたものが、ハロゲン原子を有するアルキル基に該当する。Ra30におけるアルキル基は好ましくは、炭素数1〜4のアルキル基であり、より好ましくは、メチル基及びエチル基であり、特に好ましくは、メチル基である。
a31におけるアルコキシ基としては、メトキシ基、エトキシ基、n−プロピポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基及びn−ヘキトキシ基等が挙げられ、好ましくは、炭素数1〜4のアルコキシ基であり、より好ましくは、メトキシ基及びエトキシ基であり、特に好ましくは、メトキシ基である。
a31におけるアシル基としては、アセチル基及びプロポキシ基等である。このアシル基にさらに−O−が結合したものがアシルオキシ基に該当する。
maは、好ましくは、0〜2であり、より好ましくは、0又は1であり、特に好ましくは、0である。
Specific examples of the alkyl group in R a30 are the same as those described for R a6 in formula (a1-1) as long as the number of carbon atoms is 6 or less, and at least one of the hydrogen atoms contained in these alkyl groups. A group in which a part is substituted with a halogen atom corresponds to an alkyl group having a halogen atom. The alkyl group for R a30 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
Examples of the alkoxy group in R a31 include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, an n-pentoxy group, and an n-hexoxy group. Preferably an alkoxy group having 1 to 4 carbon atoms, more preferably a methoxy group and an ethoxy group, and particularly preferably a methoxy group.
Examples of the acyl group in R a31 include an acetyl group and a propoxy group. A group in which —O— is further bonded to this acyl group corresponds to an acyloxy group.
ma is preferably 0 to 2, more preferably 0 or 1, and particularly preferably 0.

式(a2−0)で表されるモノマーとしては、例えば、特開2010−204634号公報に記載されたモノマーが挙げられ、式(a2−0−1)及び(a2−0−2)でそれぞれ表されるモノマーが好ましい。樹脂を製造する際には、これらにあるフェノール性水酸基が適当な保護基で保護したものを用いることもできる。

Figure 2012207217
Examples of the monomer represented by the formula (a2-0) include monomers described in JP 2010-204634 A, and each of the monomers represented by the formulas (a2-0-1) and (a2-0-2) The monomers represented are preferred. When the resin is produced, those obtained by protecting the phenolic hydroxyl group in these with an appropriate protecting group can also be used.
Figure 2012207217

式(a2−0)で表されるモノマーを本製造方法に用いた場合、得られる樹脂の全構造単位に対する式(a2−0)で表されるモノマーに由来する構造単位の含有率は、5〜90モル%の範囲が好ましく、10〜85モル%の範囲がより好ましく、15〜80モル%の範囲がさらに好ましい。本製造方法は、前記式(a1−1)及び式(a1−2)でそれぞれ表されるモノマー由来の構造単位の組成比、並びに、式(a1−1)及び式(a1−2)でそれぞれ表されるモノマーの導入率を高くできることを説明したが、この式(a2−0)で表されるモノマーに対しても同様の効果を奏する。   When the monomer represented by the formula (a2-0) is used in this production method, the content of the structural unit derived from the monomer represented by the formula (a2-0) with respect to all structural units of the obtained resin is 5 The range of -90 mol% is preferable, the range of 10-85 mol% is more preferable, and the range of 15-80 mol% is further more preferable. This production method includes the composition ratios of the structural units derived from the monomers represented by the formula (a1-1) and the formula (a1-2), respectively, and the formula (a1-1) and the formula (a1-2), respectively. Although it has been explained that the introduction ratio of the monomer represented can be increased, the same effect can be obtained for the monomer represented by the formula (a2-0).

酸安定モノマーとしては、式(a2−1)で表されるモノマーも用いることができる。

Figure 2012207217
[式(a2−1)中、
a3は、−O−又は−O−(CH2k2−CO−O−で表される基を表し、
k2は1〜7の整数を表す。*は−CO−との結合手を表す。
a14は、水素原子又はメチル基を表す。
a15及びRa16は、それぞれ独立に、水素原子、メチル基又はヒドロキシ基を表す。
o1は、0〜10の整数を表す。] As the acid stable monomer, a monomer represented by the formula (a2-1) can also be used.
Figure 2012207217
[In the formula (a2-1),
L a3 represents a group represented by —O— or * —O— (CH 2 ) k2 —CO—O—.
k2 represents an integer of 1 to 7. * Represents a bond with -CO-.
R a14 represents a hydrogen atom or a methyl group.
R a15 and R a16 each independently represent a hydrogen atom, a methyl group or a hydroxy group.
o1 represents an integer of 0 to 10. ]

式(a2−1)において、La3は、好ましくは、−O−又はk2が1〜4の範囲である−O−(CH2k2−CO−O−で表される基であり、より好ましくは−O−である。
a14は、好ましくはメチル基である。
a15は、好ましくは水素原子である。
a16は、好ましくは水素原子又はヒドロキシ基である。
o1は、好ましくは0〜3の整数、より好ましくは0又は1である。
In the formula (a2-1), L a3 is preferably, -O- -O- or k2 is in the range of 1~4 (CH 2) k2 -CO- O- , a group represented by the more -O- is preferable.
R a14 is preferably a methyl group.
R a15 is preferably a hydrogen atom.
R a16 is preferably a hydrogen atom or a hydroxy group.
o1 is preferably an integer of 0 to 3, more preferably 0 or 1.

式(a2−1)で表されるモノマーとしては、例えば、特開2010−204646号公報に記載されたモノマーが挙げられる。中でも、式(a2−1−1)〜式(a2−1−6)でそれぞれ表されるモノマーが好ましく、式(a2−1−1)〜式(a2−1−4)でそれぞれ表されるモノマーがより好ましく、式(a2−1−1)又は式(a2−1−3)で表されるモノマーがさらに好ましい。

Figure 2012207217
Examples of the monomer represented by the formula (a2-1) include monomers described in JP 2010-204646 A. Especially, the monomer respectively represented by Formula (a2-1-1)-Formula (a2-1-6) is preferable, and each is represented by Formula (a2-1-1)-Formula (a2-1-4). A monomer is more preferable, and a monomer represented by formula (a2-1-1) or formula (a2-1-3) is more preferable.
Figure 2012207217

式(a2−1)で表されるモノマーを本製造方法に用いた場合、得られる樹脂の全構造単位に対する式(a2−1)で表されるモノマーに由来する構造単位の含有率は、3〜40モル%の範囲が好ましく、5〜35モル%の範囲がより好ましく、5〜30モル%の範囲がさらに好ましい。   When the monomer represented by the formula (a2-1) is used in this production method, the content of the structural unit derived from the monomer represented by the formula (a2-1) with respect to all structural units of the obtained resin is 3 The range of -40 mol% is preferable, the range of 5-35 mol% is more preferable, and the range of 5-30 mol% is further more preferable.

酸安定モノマーとしては、式(a3−1)、式(a3−2)及び式(a3−3)でそれぞれ表されるモノマーも用いることができる。   As the acid stable monomer, monomers represented by the formula (a3-1), the formula (a3-2), and the formula (a3-3) can also be used.

Figure 2012207217
[式(a3−1)〜式(a3−3)中、
a4〜La6は、それぞれ独立に、−O−又は−O−(CH2k3−CO−O−で表される基を表し、k3は1〜7の整数を表す。*は−CO−との結合手を表す。
a18〜Ra20は、それぞれ独立に、水素原子又はメチル基を表す。
a21は、炭素数1〜4のアルキル基を表す。
p1は0〜5の整数を表す。
a22及びRa23は、それぞれ独立に、カルボキシ基、シアノ基又は炭素数1〜4のアルキル基を表す。
q1及びr1は、それぞれ独立に0〜3の整数を表す。p1が2以上のとき、複数のRa21は、互いに同一でも異なってもよく、q1が2以上のとき、複数のRa23は、互いに同一でも異なってもよく、r1が2以上のとき、複数のRa23は、互いに同一でも異なってもよい。]
Figure 2012207217
[In Formula (a3-1)-Formula (a3-3),
L a4 to L a6 each independently represent a group represented by —O— or * —O— (CH 2 ) k3 —CO—O—, and k3 represents an integer of 1 to 7. * Represents a bond with -CO-.
R a18 to R a20 each independently represents a hydrogen atom or a methyl group.
R a21 represents an alkyl group having 1 to 4 carbon atoms.
p1 represents an integer of 0 to 5.
R a22 and R a23 each independently represent a carboxy group, a cyano group, or an alkyl group having 1 to 4 carbon atoms.
q1 and r1 each independently represents an integer of 0 to 3. When p1 is 2 or more, a plurality of R a21 may be the same or different from each other. When q1 is 2 or more, a plurality of R a23 may be the same or different from each other. R a23 may be the same as or different from each other. ]

a4〜La6としては、La3で説明したものが挙げられる。
a4〜La6は、それぞれ独立に、−O−又は、k3が1〜4の範囲である−O−(CH2k3−CO−O−表される基であると好ましく、−O−又は、−O−CH2−CO−O−であるとより好ましく、−O−であるとさらに好ましい。
a18〜Ra21は、好ましくはメチル基である。
a22及びRa23は、それぞれ独立に、好ましくはカルボキシ基、シアノ基又はメチル基である。
p1〜r1は、それぞれ独立に、好ましくは0〜2、より好ましくは0又は1である。
Examples of L a4 to L a6 include those described for L a3 .
L a4 to L a6 are each independently preferably —O— or a group represented by * —O— (CH 2 ) k3 —CO—O— in which k3 is in the range of 1 to 4; -Or * -O-CH 2 -CO-O- is more preferable, and -O- is more preferable.
R a18 to R a21 are preferably methyl groups.
R a22 and R a23 are each independently preferably a carboxy group, a cyano group or a methyl group.
p1 to r1 are each independently preferably 0 to 2, more preferably 0 or 1.

式(a3−1)、式(a3−2)及び式(a3−3)でそれぞれ表されるモノマーとしては、特開2010−204646号公報に記載されたモノマーが挙げられる。中でも、式(a3−1−1)〜式(a3−1−4)、式(a3−2−1)〜式(a3−2−4)、式(a3−3−1)〜式(a3−3−4)でそれぞれ表されるモノマーが好ましく、式(a3−1−1)〜式(a3−1−2)、式(a3−2−3)〜(a3−2−4)でそれぞれ表されるモノマーがより好ましく、式(a3−1−1)又は(a3−2−3)で表されるモノマーがさらに好ましい。

Figure 2012207217
Examples of the monomer represented by each of the formula (a3-1), the formula (a3-2), and the formula (a3-3) include monomers described in JP 2010-204646 A. Among them, formula (a3-1-1) to formula (a3-1-4), formula (a3-2-1) to formula (a3-2-4), formula (a3-3-1) to formula (a3) -3-4) is preferable, and each of the monomers represented by formulas (a3-1-1) to (a3-1-2) and (a3-2-3) to (a3-2-4) is preferable. The monomer represented is more preferable, and the monomer represented by the formula (a3-1-1) or (a3-2-3) is more preferable.
Figure 2012207217

式(a3−1)、式(a3−2)又は式(a3−3)のいずれかで表されるモノマーを本製造方法に用いた場合、得られる樹脂の全構造単位に対する、これらモノマー由来の構造単位の合計含有率は、5〜50モル%の範囲が好ましく、10〜45モル%の範囲がより好ましく、15〜40モル%の範囲がさらに好ましい。   When a monomer represented by any one of formula (a3-1), formula (a3-2) or formula (a3-3) is used in this production method, it is derived from these monomers with respect to all structural units of the resulting resin. The total content of the structural units is preferably in the range of 5 to 50 mol%, more preferably in the range of 10 to 45 mol%, and still more preferably in the range of 15 to 40 mol%.

本製造方法により得られる樹脂の重量平均分子量は、好ましくは1,000以上100,000以下であり、より好ましくは2,000以上50,000以下であり、さらに好ましくは2,500以上30,000以下である。樹脂の重量平均分子量が前記範囲内であると、レジスト組成物調製用の溶剤に対する当該樹脂の溶解性が十分であることから、レジスト組成物を容易に調製することができる。なお、重量平均分子量は、例えば、GPC法により、標準ポリスチレンの分子量換算で求めることができる。   The weight average molecular weight of the resin obtained by this production method is preferably 1,000 or more and 100,000 or less, more preferably 2,000 or more and 50,000 or less, and further preferably 2,500 or more and 30,000. It is as follows. When the weight average molecular weight of the resin is within the above range, the resin composition is sufficiently soluble in the solvent for preparing the resist composition, so that the resist composition can be easily prepared. In addition, a weight average molecular weight can be calculated | required in conversion of the molecular weight of a standard polystyrene by GPC method, for example.

以上例示した酸不安定基を有するモノマー及び酸安定モノマーを用いることで、本製造方法は、一層高収率で樹脂を製造することができる。この収率としては、例えば、50%以上であり、好ましくは60%以上であり、さらに好ましくは70%以上である。なお、ここでいう収率とは、全モノマーの総使用重量に対する、得られた樹脂の重量の比率により求めたものである。   By using the monomer having an acid labile group and the acid stable monomer exemplified above, this production method can produce a resin with higher yield. The yield is, for example, 50% or more, preferably 60% or more, and more preferably 70% or more. In addition, the yield here is calculated | required by the ratio of the weight of the obtained resin with respect to the total use weight of all the monomers.

例えば、前記の式(a1−1)又は式(a1−2)で表されるモノマーを用い、本製造方法より得られる樹脂は、その分散度(前記GPC分析で求められる重量平均分子量と、数平均分子量とから算出される分子量分散度)が極めて狭いものであり、レジスト組成物用の樹脂として好ましいものである。
当該樹脂の分散度は、1.0〜5.0の範囲、好ましくは1.0〜3.0の範囲、より好ましくは1.2〜2.5の範囲であり、これら分散度の樹脂を容易に製造することを本製造方法は可能とする。
For example, the resin obtained from this production method using the monomer represented by the formula (a1-1) or the formula (a1-2) has a degree of dispersion (weight average molecular weight determined by the GPC analysis and a number The molecular weight dispersity calculated from the average molecular weight is extremely narrow, and is preferable as a resin for resist compositions.
The degree of dispersion of the resin is in the range of 1.0 to 5.0, preferably in the range of 1.0 to 3.0, more preferably in the range of 1.2 to 2.5. This manufacturing method enables easy manufacturing.

また、本製造方法により得られる樹脂は例えば、従来よりも単位重合時間当たりの収率を高くできるため、例えば、所望の得量を得るために重合時間が、従来の製造方法よりも短時間ですむという効果がある。そのため、本製造方法はレジスト組成物用樹脂の商業生産における生産性が高いということができる。換言すれば、所定の重合時間であれば、本製造方法は従来の製造方法よりも、レジスト組成物用樹脂の得量が多くなるともいえる。   In addition, since the resin obtained by this production method can increase the yield per unit polymerization time compared to the conventional method, for example, the polymerization time is shorter than the conventional production method to obtain the desired yield. There is an effect that. Therefore, it can be said that this production method has high productivity in the commercial production of the resin for resist compositions. In other words, if the polymerization time is a predetermined value, it can be said that the present production method yields a larger amount of the resin for the resist composition than the conventional production method.

本製造方法により得られた樹脂はレジスト組成物に好ましく用いられる。当該レジスト組成物は、本製造方法により得られた樹脂に加え、酸発生剤及び溶剤を含むものであり、通常、本製造方法により得られた樹脂と、酸発生剤と、溶剤とを混合することで調製される。また、これらの樹脂、酸発生剤及び溶剤に加え、必要に応じて、塩基性化合物を混合することもある。かかる調製において、樹脂等の混合順は任意であり、特に限定されるものではない。混合する際の温度は、10〜40℃の範囲から、樹脂の種類等に応じて適切な温度範囲を選ぶことができる。混合時間は、混合温度に応じて、0.5〜24時間の中から適切な時間を選ぶことができる。なお、混合手段も特に制限はなく、攪拌混合等を用いることができる。また、すでに述べたとおり、本製造方法では、生成した樹脂をレジスト組成物調製用の溶剤に溶解した樹脂溶液の形態で得ることもできるので、この樹脂溶液を用いれば、より一層簡便にレジスト組成物を調製できる。   The resin obtained by this production method is preferably used for a resist composition. The resist composition contains an acid generator and a solvent in addition to the resin obtained by this production method, and usually a resin obtained by this production method, an acid generator, and a solvent are mixed. It is prepared by. In addition to these resins, acid generators and solvents, basic compounds may be mixed as necessary. In such preparation, the mixing order of the resins and the like is arbitrary and is not particularly limited. The temperature at the time of mixing can select a suitable temperature range from the range of 10-40 degreeC according to the kind etc. of resin. An appropriate mixing time can be selected from 0.5 to 24 hours depending on the mixing temperature. The mixing means is not particularly limited, and stirring and mixing can be used. Further, as already described, in this production method, the produced resin can also be obtained in the form of a resin solution in which a resist composition preparation solvent is dissolved. Can be prepared.

かくして得られるレジスト組成物は、レジスト分野で周知のレジストパターン製造に用いられる。かかるレジストパターン製造は例えば、
(1)レジスト組成物を基板上に塗布し、
(2)塗布後の組成物を乾燥させて組成物層を形成し、
(3)組成物層を露光し、
(4)露光後の組成物層を加熱し、
(5)加熱後の組成物層を現像する、
という操作からなる。
The resist composition thus obtained is used for producing a resist pattern well known in the resist field. Such resist pattern manufacturing is, for example,
(1) A resist composition is applied on a substrate,
(2) The composition after coating is dried to form a composition layer,
(3) exposing the composition layer;
(4) heating the composition layer after exposure;
(5) developing the composition layer after heating;
It consists of the operation.

本製造方法により得られた樹脂を含むレジスト組成物は、KrFエキシマレーザ露光用、ArFエキシマレーザ露光用、EB用又はEUV露光用のレジスト組成物として好適である。   The resist composition containing a resin obtained by this production method is suitable as a resist composition for KrF excimer laser exposure, ArF excimer laser exposure, EB, or EUV exposure.

以下、実施例により本発明をさらに具体的に説明する。例中、含有量ないし使用量を表す%及び部は、特記ないかぎり重量基準である。また重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、ポリスチレンを標準品として、テトラヒドロフラン溶剤を用いたゲルパーミュエーションクロマトグラフィー(東ソー製HLC−8120GPC、カラム:東ソー製MultiporeHXL−M)により求めた。
樹脂の構造単位組成の測定は13C−NMR(バリアンテクノロジーズ(株)製MR−400型FT−NMR、測定溶剤:重水素化クロロホルム、測定温度:35℃)より求めた。モノマーに由来する構造単位の導入率は、高速液体クロマトグラフィー(装置:島津社製LC−2010HT、カラム:YMC社製 YMC Pack C4(商品名))により、重合後の未反応量をモノマーごとに求め、樹脂製造に使用したモノマー量から引くことで、樹脂形成用に消費されたモノマー量を計算し、それらの比率から算出した。
Hereinafter, the present invention will be described more specifically with reference to examples. In the examples, “%” and “part” representing the content or amount used are based on weight unless otherwise specified. The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) were determined by gel permeation chromatography using polystyrene as a standard product (HLC-8120GPC manufactured by Tosoh, column: Multipore HXL-M manufactured by Tosoh). Asked.
The structural unit composition of the resin was determined from 13 C-NMR (MR-400 FT-NMR manufactured by Varian Technologies, Inc., measurement solvent: deuterated chloroform, measurement temperature: 35 ° C.). The introduction rate of the structural unit derived from the monomer is determined by high-performance liquid chromatography (apparatus: LC-2010HT manufactured by Shimadzu Corporation, column: YMC Pack C4 (trade name) manufactured by YMC) for each monomer. The amount of monomer consumed for resin formation was calculated by subtracting from the amount of monomer used for resin production and calculated from the ratio thereof.

実施例で用いたモノマーを下記に示す。

Figure 2012207217

なお、以下の実施例等において、モノマーA由来の構造単位等を、そのモノマー符号に合わせて、「A」等という。 The monomers used in the examples are shown below.
Figure 2012207217

In the following examples and the like, the structural unit derived from the monomer A is referred to as “A” or the like in accordance with the monomer code.

実施例1(本製造方法の滴下重合による樹脂A1の製造)
モノマーA 25.00部、モノマーB 2.95部、モノマーC 2.73部、モノマーD 7.69部、アゾビスイソブチロニトリル 0.24部、アゾビス−2,4−ジメチルバレロニトリル 1.08部、γ-ブチロラクトン 25.78部、及びテトラヒドロフラン 3.00部を混合して溶液(滴下溶液)を調製した。かかる滴下溶液の調製では、用いたモノマーや重合開始剤が溶剤に完全溶解する(目視確認)まで攪拌した。溶解にかかった時間(調製時間)は51分であった。
滴下装置、温度計及び還流管を備えた4つ口フラスコ中に、窒素雰囲気下で、γ-ブチロラクトン(仕込み溶剤)9.59部を仕込み、攪拌しながら73℃程度まで昇温した。続いて、4つ口フラスコ中の反応混合物が73℃程度を保つようにして、前記滴下装置により前記滴下溶液を、4つ口フラスコ内に一定速度で滴下した。滴下時間は1時間であった。滴下終了後の反応混合物を、その温度が73℃程度を保持したまま、5時間保温した。
反応混合物を室温程度まで冷却後、テトラヒドロフラン61.39部で希釈した。希釈後の反応混合物を、水及びメタノールの混合溶剤(水:メタノール(重量比)=2:8)536部中へ攪拌しながら注ぎ、析出した析出物を濾取した。濾取した析出物(樹脂)を、メタノール249部と混合して攪拌し、さらに樹脂を濾取することにより当該樹脂を洗浄した。この洗浄操作をさらに2回繰り返した。その後、減圧下40℃で12時間乾燥を行い28.9部の樹脂A1を得た。
収率:75.2%、
Mw:7.8×10、Mw/Mn:1.79、
樹脂A1中の構造単位組成比:A/B/C/D=60/8/10/22
Example 1 (Production of Resin A1 by Drop Polymerization of this Production Method)
Monomer A 25.00 parts, Monomer B 2.95 parts, Monomer C 2.73 parts, Monomer D 7.69 parts, Azobisisobutyronitrile 0.24 parts, Azobis-2,4-dimethylvaleronitrile 08 parts, 25.78 parts of γ-butyrolactone, and 3.00 parts of tetrahydrofuran were mixed to prepare a solution (drop solution). In the preparation of such a dropping solution, the solution was stirred until the monomers and polymerization initiator used were completely dissolved in the solvent (visual confirmation). The time taken for dissolution (preparation time) was 51 minutes.
In a four-necked flask equipped with a dropping device, a thermometer and a reflux tube, 9.59 parts of γ-butyrolactone (prepared solvent) was charged in a nitrogen atmosphere, and the temperature was raised to about 73 ° C. while stirring. Subsequently, the dropping solution was dropped into the four-necked flask at a constant rate by the dropping device so that the reaction mixture in the four-necked flask kept about 73 ° C. The dropping time was 1 hour. The reaction mixture after completion of the dropwise addition was kept warm for 5 hours while maintaining the temperature at about 73 ° C.
The reaction mixture was cooled to about room temperature and diluted with 61.39 parts of tetrahydrofuran. The diluted reaction mixture was poured into 536 parts of a mixed solvent of water and methanol (water: methanol (weight ratio) = 2: 8) with stirring, and the deposited precipitate was collected by filtration. The precipitate (resin) collected by filtration was mixed with 249 parts of methanol and stirred, and the resin was further filtered to wash the resin. This washing operation was repeated two more times. Then, it dried at 40 degreeC under pressure reduction for 12 hours, and obtained 28.9 parts resin A1.
Yield: 75.2%
Mw: 7.8 × 10 3 , Mw / Mn: 1.79,
Structural unit composition ratio in resin A1: A / B / C / D = 60/8/10/22

実施例2(本製造方法の滴下重合による樹脂A2の製造)
モノマーA 25.00部、モノマーB 2.95部、モノマーC 2.73部、モノマーD 7.69部、アゾビスイソブチロニトリル0.24部、アゾビス−2,4−ジメチルバレロニトリル1.08部、シクロヘキサノール28.78部、及びテトラヒドロフラン10.00部を混合して溶液(滴下溶液)を調製した。かかる滴下溶液の調製では、用いたモノマーや重合開始剤が溶剤に完全溶解する(目視確認)まで攪拌した。溶解にかかった時間(調製時間)は45分であった。
滴下装置、温度計及び還流管を備えた4つ口フラスコ中に、シクロヘキサノール(仕込み溶剤)9.59部を仕込み、窒素ガスで30分間バブリングを行った。この仕込み溶剤を、窒素シール下で、73℃程度まで昇温した。続いて、4つ口フラスコ中の反応混合物が73℃程度を保つようにして、前記滴下装置により前記滴下溶液を、4つ口フラスコ内に一定速度で滴下した。滴下時間は1時間であった。滴下終了後の反応混合物を、その温度が73℃程度を保持したまま、5時間保温した。
反応混合物を室温程度まで冷却後、テトラヒドロフラン61.39部で希釈した。希釈後の反応混合物を、水及びメタノールの混合溶剤(水:メタノール(重量比)=2:8)536部中へ攪拌しながら注ぎ、析出した析出物を濾取した。濾取した析出物(樹脂)を、メタノール249部と混合して攪拌し、さらに樹脂を濾取することにより当該樹脂を洗浄した。この洗浄操作をさらに2回繰り返した。その後、減圧下40℃で12時間乾燥を行い26.6部の樹脂A2を得た。
収率:69.3%
Mw:12.2×10、Mw/Mn:2.09
樹脂A2中の構造単位組成比:A/B/C/D=56/10/11/24
Example 2 (Production of Resin A2 by Drop Polymerization of this Production Method)
Monomer A 25.00 parts, Monomer B 2.95 parts, Monomer C 2.73 parts, Monomer D 7.69 parts, Azobisisobutyronitrile 0.24 parts, Azobis-2,4-dimethylvaleronitrile 1. 08 parts, 28.78 parts of cyclohexanol, and 10.00 parts of tetrahydrofuran were mixed to prepare a solution (drop solution). In the preparation of such a dropping solution, the solution was stirred until the monomers and polymerization initiator used were completely dissolved in the solvent (visual confirmation). The time taken for dissolution (preparation time) was 45 minutes.
In a four-necked flask equipped with a dropping device, a thermometer, and a reflux tube, 9.59 parts of cyclohexanol (prepared solvent) was charged and bubbled with nitrogen gas for 30 minutes. This charged solvent was heated to about 73 ° C. under a nitrogen seal. Subsequently, the dropping solution was dropped into the four-necked flask at a constant rate by the dropping device so that the reaction mixture in the four-necked flask kept about 73 ° C. The dropping time was 1 hour. The reaction mixture after completion of the dropwise addition was kept warm for 5 hours while maintaining the temperature at about 73 ° C.
The reaction mixture was cooled to about room temperature and diluted with 61.39 parts of tetrahydrofuran. The diluted reaction mixture was poured into 536 parts of a mixed solvent of water and methanol (water: methanol (weight ratio) = 2: 8) with stirring, and the deposited precipitate was collected by filtration. The precipitate (resin) collected by filtration was mixed with 249 parts of methanol and stirred, and the resin was further filtered to wash the resin. This washing operation was repeated two more times. Then, it dried at 40 degreeC under pressure reduction for 12 hours, and obtained 26.6 parts of resin A2.
Yield: 69.3%
Mw: 12.2 × 10 3 , Mw / Mn: 2.09
Structural unit composition ratio in resin A2: A / B / C / D = 56/10/11/24

実施例3(本製造方法の滴下重合による樹脂A3の製造)
仕込み溶剤をγ−ブチロラクトンの代わりに、アセトニトリルを用いた以外は、実施例1と同様の実験を行い、26.9部の樹脂A3を得た(ただし、滴下溶液の調製において、モノマー等の完全溶解までの時間(調製時間)は47分であった)。
収率:70.2%
Mw:5.8×10、Mw/Mn:1.72
樹脂A3中の構造単位組成比:A/B/C/D=58/9/9/24
Example 3 (Production of Resin A3 by Drop Polymerization of this Production Method)
The same experiment as in Example 1 was performed except that acetonitrile was used instead of γ-butyrolactone as a charging solvent to obtain 26.9 parts of resin A3 (however, in the preparation of the dropping solution, the monomers and the like were completely removed). The time until dissolution (preparation time) was 47 minutes).
Yield: 70.2%
Mw: 5.8 × 10 3 , Mw / Mn: 1.72
Structural unit composition ratio in resin A3: A / B / C / D = 58/9/9/24

実施例4(本製造方法の滴下重合による樹脂A4の製造)
モノマーA 25.00部、モノマーB 2.95部、モノマーC 2.73部、モノマーD 7.69部、アゾビスイソブチロニトリル0.24部、アゾビス−2,4−ジメチルバレロニトリル1.08部、乳酸エチル25.21部、及びテトラヒドロフラン3.68部を混合して溶液(滴下溶液)を調製した。かかる滴下溶液の調製では、用いたモノマーや重合開始剤が溶剤に完全溶解する(目視確認)まで攪拌した。溶解にかかった時間(調製時間)は36分であった。
滴下装置、温度計及び還流管を備えた4つ口フラスコ中に、乳酸エチル(仕込み溶剤)9.59部を仕込み、窒素ガスで30分間バブリングを行った。この仕込み溶剤を、窒素シール下で、73℃程度まで昇温した。続いて、4つ口フラスコ中の反応混合物が73℃程度を保つようにして、前記滴下装置により前記滴下溶液を、4つ口フラスコ内に一定速度で滴下した。滴下時間は1時間であった。滴下終了後の反応混合物を、その温度が73℃程度を保持したまま、5時間保温した。
反応混合物を室温程度まで冷却後、テトラヒドロフラン61.52部で希釈した。希釈後の反応混合物を、水及びメタノールの混合溶剤(水:メタノール(重量比)=2:8)536部中へ攪拌しながら注ぎ、析出した析出物を濾取した。濾取した析出物(樹脂)を、メタノール249部と混合して攪拌し、さらに樹脂を濾取することにより当該樹脂を洗浄した。この洗浄操作をさらに2回繰り返した。その後、減圧下40℃で12時間乾燥を行い26.3部の樹脂A4を得た。
収率:68.4%
Mw:7.7×10、Mw/Mn:1.73
樹脂A4中の構造単位組成比:A/B/C/D=57/10/11/22
Example 4 (Production of Resin A4 by Drop Polymerization in this Production Method)
Monomer A 25.00 parts, Monomer B 2.95 parts, Monomer C 2.73 parts, Monomer D 7.69 parts, Azobisisobutyronitrile 0.24 parts, Azobis-2,4-dimethylvaleronitrile 1. 08 parts, ethyl lactate 25.21 parts, and tetrahydrofuran 3.68 parts were mixed to prepare a solution (drop solution). In the preparation of such a dropping solution, the solution was stirred until the monomers and polymerization initiator used were completely dissolved in the solvent (visual confirmation). The time required for dissolution (preparation time) was 36 minutes.
In a four-necked flask equipped with a dropping device, a thermometer, and a reflux tube, 9.59 parts of ethyl lactate (prepared solvent) was charged and bubbled with nitrogen gas for 30 minutes. This charged solvent was heated to about 73 ° C. under a nitrogen seal. Subsequently, the dropping solution was dropped into the four-necked flask at a constant rate by the dropping device so that the reaction mixture in the four-necked flask kept about 73 ° C. The dropping time was 1 hour. The reaction mixture after completion of the dropwise addition was kept warm for 5 hours while maintaining the temperature at about 73 ° C.
The reaction mixture was cooled to about room temperature and diluted with 61.52 parts of tetrahydrofuran. The diluted reaction mixture was poured into 536 parts of a mixed solvent of water and methanol (water: methanol (weight ratio) = 2: 8) with stirring, and the deposited precipitate was collected by filtration. The precipitate (resin) collected by filtration was mixed with 249 parts of methanol and stirred, and the resin was further filtered to wash the resin. This washing operation was repeated two more times. Then, it dried at 40 degreeC under pressure reduction for 12 hours, and obtained 26.3 parts of resin A4.
Yield: 68.4%
Mw: 7.7 × 10 3 , Mw / Mn: 1.73
Structural unit composition ratio in resin A4: A / B / C / D = 57/10/11/22

比較例1(従来の製造方法(滴下重合)による樹脂B1の製造)
モノマーA 25.00部、モノマーB 2.95部、モノマーC 2.73部、モノマーD 7.69部、アゾビスイソブチロニトリル0.24部、アゾビス−2,4−ジメチルバレロニトリル1.08部、及び乳酸エチル28.74部を混合して溶液(滴下溶液)を調製した。用いたモノマーや重合開始剤が溶剤に完全溶解する(目視確認)まで攪拌した。溶解にかかった時間(調製時間)は61分であった。
滴下装置、温度計及び還流管を備えた4つ口フラスコ中に、窒素雰囲気下で、乳酸エチル(仕込み溶剤)9.59部を仕込み、窒素雰囲気下で、73℃程度まで昇温した。続いて、4つ口フラスコ中の反応混合物が73℃程度を保つようにして、前記滴下装置により前記滴下溶液を、4つ口フラスコ内に一定速度で滴下した。滴下時間は1時間であった。滴下終了後の反応混合物を、その温度が73℃程度を保持したまま、5時間保温した。
反応混合物を室温程度まで冷却後、テトラヒドロフラン61.39部で希釈した。希釈後の反応混合物を、水及びメタノールの混合溶剤(水:メタノール(重量比)=2:8)536部中へ攪拌しながら注ぎ、析出した析出物を濾取した。濾取した析出物(樹脂)を、メタノール249部と混合して攪拌し、さらに樹脂を濾取することにより当該樹脂を洗浄した。この洗浄操作をさらに2回繰り返した。その後、減圧下40℃で12時間乾燥を行い25.9部の樹脂B1を得た。
収率:67.4%
Mw:6.7×10、Mw/Mn:1.74
樹脂B1中の構造単位組成比:A/B/C/D=56/9/10/25
Comparative Example 1 (Production of Resin B1 by Conventional Production Method (Drip Polymerization))
Monomer A 25.00 parts, Monomer B 2.95 parts, Monomer C 2.73 parts, Monomer D 7.69 parts, Azobisisobutyronitrile 0.24 parts, Azobis-2,4-dimethylvaleronitrile 1. 08 parts and 28.74 parts of ethyl lactate were mixed to prepare a solution (drop solution). The mixture was stirred until the monomers and polymerization initiator used were completely dissolved in the solvent (visual confirmation). The time required for dissolution (preparation time) was 61 minutes.
In a four-necked flask equipped with a dropping device, a thermometer, and a reflux tube, 9.59 parts of ethyl lactate (prepared solvent) was charged under a nitrogen atmosphere, and the temperature was raised to about 73 ° C. under a nitrogen atmosphere. Subsequently, the dropping solution was dropped into the four-necked flask at a constant rate by the dropping device so that the reaction mixture in the four-necked flask kept about 73 ° C. The dropping time was 1 hour. The reaction mixture after completion of the dropwise addition was kept warm for 5 hours while maintaining the temperature at about 73 ° C.
The reaction mixture was cooled to about room temperature and diluted with 61.39 parts of tetrahydrofuran. The diluted reaction mixture was poured into 536 parts of a mixed solvent of water and methanol (water: methanol (weight ratio) = 2: 8) with stirring, and the deposited precipitate was collected by filtration. The precipitate (resin) collected by filtration was mixed with 249 parts of methanol and stirred, and the resin was further filtered to wash the resin. This washing operation was repeated two more times. Then, it dried at 40 degreeC under pressure reduction for 12 hours, and obtained 25.9 parts of resin B1.
Yield: 67.4%
Mw: 6.7 × 10 3 , Mw / Mn: 1.74
Structural unit composition ratio in resin B1: A / B / C / D = 56/9/10/25

実施例1〜4と、比較例1との対比結果を表1にまとめる。   Table 1 summarizes the comparison results between Examples 1 to 4 and Comparative Example 1.

Figure 2012207217

GBL:γ−ブチロラクトン(12.8)
CHN:シクロヘキサノール(11.4)
ATN:アセトニトリル(12.11)
EL:乳酸エチル(11.6)
(括弧内の数値は、溶解度パラメーターの数値[cal/mol]1/2を表す。)
Figure 2012207217

GBL: γ-butyrolactone (12.8)
CHN: cyclohexanol (11.4)
ATN: acetonitrile (12.11)
EL: ethyl lactate (11.6)
(The numerical value in parentheses represents the numerical value [cal / mol] 1/2 of the solubility parameter.)

実施例5(本製造方法の滴下重合による樹脂A5の製造)
モノマーE 12.75g、モノマーF 5.19g、モノマーD 7.41g、モノマーG 12.85g、アゾビスイソブチロニトリル0.248g、アゾビス−2,4−ジメチルバレロニトリル1.13g、γ-ブチロラクトン32.59g、テトラヒドロフラン3.80gを混合して溶液(滴下溶液)を調製した。用いたモノマーや重合開始剤が溶剤に完全溶解する(目視確認)まで攪拌した。溶解にかかった時間(調製時間)は24分であった。
滴下装置、温度計及び還流管を備えた4つ口フラスコ中に、窒素雰囲気下で、γ-ブチロラクトン(仕込み溶剤)24.26部及びモノマーE 2.25gを仕込み、窒素雰囲気下で、70℃程度まで昇温した。続いて、4つ口フラスコ中の反応混合物が70℃程度を保つようにして、前記滴下装置により前記滴下溶液を、4つ口フラスコ内に一定速度で滴下した。滴下時間は1時間であった。滴下終了後の反応混合物を、その温度が70℃程度を保持したまま、5時間保温した。
反応混合物を冷却後、テトラヒドロフラン44.48gで希釈した。希釈後の反応混合物を、40℃程度に保温したメタノール526部中へ攪拌しながら注ぎ、40℃程度を保持したまま、1時間攪拌した後、析出した析出物を濾取した。濾取した析出物(樹脂)を、メタノール263部と混合して攪拌し、さらに樹脂を濾取することにより当該樹脂を洗浄した。この洗浄操作をさらに2回繰り返した。その後、減圧下40℃で12時間乾燥を行い33.4部の樹脂A5を得た。
収率:82.6%
Mw:1.3×10、Mw/Mn:1.62
樹脂A5中の構造単位組成比:
E/F/D/G=29.7/13.8/14.5/41.9
Example 5 (Production of Resin A5 by Drop Polymerization of this Production Method)
Monomer E 12.75 g, Monomer F 5.19 g, Monomer D 7.41 g, Monomer G 12.85 g, Azobisisobutyronitrile 0.248 g, Azobis-2,4-dimethylvaleronitrile 1.13 g, γ-butyrolactone A solution (drop solution) was prepared by mixing 32.59 g and 3.80 g of tetrahydrofuran. The mixture was stirred until the monomers and polymerization initiator used were completely dissolved in the solvent (visual confirmation). The time required for dissolution (preparation time) was 24 minutes.
In a four-necked flask equipped with a dropping device, a thermometer and a reflux tube, 24.26 parts of γ-butyrolactone (charged solvent) and 2.25 g of monomer E were charged in a nitrogen atmosphere, and 70 ° C. in a nitrogen atmosphere. The temperature was raised to the extent. Subsequently, the dropping solution was dropped into the four-necked flask at a constant rate by the dropping device so that the reaction mixture in the four-necked flask kept about 70 ° C. The dropping time was 1 hour. The reaction mixture after completion of the dropwise addition was kept warm for 5 hours while maintaining the temperature at about 70 ° C.
The reaction mixture was cooled and diluted with 44.48 g of tetrahydrofuran. The diluted reaction mixture was poured into 526 parts of methanol kept at about 40 ° C. while stirring, and stirred for 1 hour while maintaining about 40 ° C., and the deposited precipitate was collected by filtration. The precipitate (resin) collected by filtration was mixed with 263 parts of methanol and stirred, and the resin was further filtered to wash the resin. This washing operation was repeated two more times. Then, it dried at 40 degreeC under pressure reduction for 12 hours, and obtained 33.4 parts of resin A5.
Yield: 82.6%
Mw: 1.3 × 10 4 , Mw / Mn: 1.62
Structural unit composition ratio in resin A5:
E / F / D / G = 29.7 / 13.8 / 14.5 / 41.9

比較例2(従来の製造方法(滴下重合)による樹脂B2の製造)
モノマーE 12.75g、モノマーF 5.19g、モノマーD 7.41g、モノマーG 12.85g、アゾビスイソブチロニトリル0.248g、アゾビス−2,4−ジメチルバレロニトリル1.13g、乳酸エチル36.39gを混合して溶液(滴下溶液)を調製した。用いたモノマーや重合開始剤が溶剤に完全溶解する(目視確認)まで攪拌した。溶解にかかった時間(調製時間)は27分であった。
滴下装置、温度計及び還流管を備えた4つ口フラスコ中に、窒素雰囲気下で、乳酸エチル(仕込み溶剤)24.26部及びモノマーE 2.25gを仕込み、窒素雰囲気下で、70℃程度まで昇温した。続いて、4つ口フラスコ中の反応混合物が70℃程度を保つようにして、前記滴下装置により前記滴下溶液を、4つ口フラスコ内に一定速度で滴下した。滴下時間は1時間であった。滴下終了後の反応混合物を、その温度が70℃程度を保持したまま、5時間保温した。
反応混合物を冷却後、テトラヒドロフラン44.48gで希釈した。希釈後の反応混合物を、40℃程度に保温したメタノール526部中へ攪拌しながら注ぎ、40℃程度を保持したまま、1時間攪拌した後、析出した析出物を濾取した。濾取した析出物(樹脂)を、メタノール263部と混合して攪拌し、さらに樹脂を濾取することにより当該樹脂を洗浄した。この洗浄操作をさらに2回繰り返した。その後、減圧下40℃で12時間乾燥を行い32.3部の樹脂B2を得た。
収率:79.8%
Mw:1.2×10、Mw/Mn:1.68
樹脂B2中の構造単位組成比:
E/F/D/G=28.7/13.6/14.9/42.9
Comparative Example 2 (Production of Resin B2 by Conventional Production Method (Drip Polymerization))
Monomer E 12.75 g, Monomer F 5.19 g, Monomer D 7.41 g, Monomer G 12.85 g, Azobisisobutyronitrile 0.248 g, Azobis-2,4-dimethylvaleronitrile 1.13 g, Ethyl lactate 36 .39 g was mixed to prepare a solution (drip solution). The mixture was stirred until the monomers and polymerization initiator used were completely dissolved in the solvent (visual confirmation). The time required for dissolution (preparation time) was 27 minutes.
In a four-necked flask equipped with a dropping device, a thermometer and a reflux tube, 24.26 parts of ethyl lactate (prepared solvent) and 2.25 g of monomer E were charged in a nitrogen atmosphere, and about 70 ° C. in a nitrogen atmosphere. The temperature was raised to. Subsequently, the dropping solution was dropped into the four-necked flask at a constant rate by the dropping device so that the reaction mixture in the four-necked flask kept about 70 ° C. The dropping time was 1 hour. The reaction mixture after completion of the dropwise addition was kept warm for 5 hours while maintaining the temperature at about 70 ° C.
The reaction mixture was cooled and diluted with 44.48 g of tetrahydrofuran. The diluted reaction mixture was poured into 526 parts of methanol kept at about 40 ° C. while stirring, and stirred for 1 hour while maintaining about 40 ° C., and the deposited precipitate was collected by filtration. The precipitate (resin) collected by filtration was mixed with 263 parts of methanol and stirred, and the resin was further filtered to wash the resin. This washing operation was repeated two more times. Then, it dried at 40 degreeC under pressure reduction for 12 hours, and obtained 32.3 parts of resin B2.
Yield: 79.8%
Mw: 1.2 × 10 4 , Mw / Mn: 1.68
Structural unit composition ratio in resin B2:
E / F / D / G = 28.7 / 13.6 / 14.9 / 42.9

実施例5と、比較例2との対比結果を表2にまとめる。   The comparison results of Example 5 and Comparative Example 2 are summarized in Table 2.

Figure 2012207217
Figure 2012207217

本発明は、レジスト組成物用樹脂の製造に有用である。   The present invention is useful for producing a resin for a resist composition.

Claims (6)

溶剤(1)及び溶剤(2)を含む混合溶剤中で、モノマーを重合する工程を有するレジスト組成物用樹脂の製造方法。
溶剤(1):溶解度パラメーターが11.4〜13.0[cal/mol]1/2
の範囲内である溶剤;
溶剤(2):テトラヒドロフラン
The manufacturing method of resin for resist compositions which has the process of superposing | polymerizing a monomer in the mixed solvent containing a solvent (1) and a solvent (2).
Solvent (1): Solubility parameter is 11.4 to 13.0 [cal / mol] 1/2
A solvent that is within the range of
Solvent (2): Tetrahydrofuran
前記工程が、
重合開始剤の作用により、前記モノマーを重合する工程である請求項1記載のレジスト組成物用樹脂の製造方法。
The step
The method for producing a resin for a resist composition according to claim 1, wherein the monomer is polymerized by the action of a polymerization initiator.
前記工程が、
前記モノマーの少なくとも一部と、前記溶剤(2)の少なくとも一部と、重合開始剤とを含む混合液を調製するステップと、
前記混合液を溶剤(1)中に滴下するステップとを有する請求項1記載のレジスト組成物用樹脂の製造方法。
The step
Preparing a mixed solution comprising at least a part of the monomer, at least a part of the solvent (2), and a polymerization initiator;
The method for producing a resin for a resist composition according to claim 1, further comprising a step of dripping the mixed solution into the solvent (1).
前記混合溶剤が、実質的に前記溶剤(1)及び前記溶剤(2)からなる請求項1〜3のいずれか記載のレジスト組成物用樹脂の製造方法。   The method for producing a resin for a resist composition according to any one of claims 1 to 3, wherein the mixed solvent substantially comprises the solvent (1) and the solvent (2). 前記モノマーが、酸不安定基を有するモノマーを含む請求項1〜4のいずれか記載のレジスト組成物用樹脂の製造方法。   The method for producing a resin for a resist composition according to claim 1, wherein the monomer contains a monomer having an acid labile group. 前記酸不安定基を有するモノマーが、式(a1−1)又は式(a1−2)で表されるモノマーである請求項5記載のレジスト組成物用樹脂の製造方法。
Figure 2012207217
[式(a1−1)及び式(a1−2)中、
a1及びLa2は、それぞれ独立に、−O−又は−O−(CH2k1−CO−O−で表される基を表し、k1は1〜7の整数を表し、*は−CO−との結合手を表す。
a4及びRa5は、それぞれ独立に、水素原子又はメチル基を表す。
a6及びRa7は、それぞれ独立に、炭素数1〜8のアルキル基又は炭素数3〜10の脂環式炭化水素基を表す。
m1は0〜14の整数を表す。
n1は0〜10の整数を表す。
n2は0〜3の整数を表す。]
The method for producing a resin for a resist composition according to claim 5, wherein the monomer having an acid labile group is a monomer represented by formula (a1-1) or formula (a1-2).
Figure 2012207217
[In Formula (a1-1) and Formula (a1-2),
L a1 and L a2 each independently represent a group represented by —O— or * —O— (CH 2 ) k1 —CO—O—, k1 represents an integer of 1 to 7, and * represents − Represents a bond with CO-.
R a4 and R a5 each independently represent a hydrogen atom or a methyl group.
R a6 and R a7 each independently represent an alkyl group having 1 to 8 carbon atoms or an alicyclic hydrocarbon group having 3 to 10 carbon atoms.
m1 represents the integer of 0-14.
n1 represents an integer of 0 to 10.
n2 represents an integer of 0 to 3. ]
JP2012056879A 2011-03-16 2012-03-14 Process for producing resin for resist composition Active JP5929349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012056879A JP5929349B2 (en) 2011-03-16 2012-03-14 Process for producing resin for resist composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011057606 2011-03-16
JP2011057606 2011-03-16
JP2012056879A JP5929349B2 (en) 2011-03-16 2012-03-14 Process for producing resin for resist composition

Publications (2)

Publication Number Publication Date
JP2012207217A true JP2012207217A (en) 2012-10-25
JP5929349B2 JP5929349B2 (en) 2016-06-01

Family

ID=47187227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056879A Active JP5929349B2 (en) 2011-03-16 2012-03-14 Process for producing resin for resist composition

Country Status (1)

Country Link
JP (1) JP5929349B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218570A (en) * 2013-05-08 2014-11-20 三菱レイヨン株式会社 Method for producing polymer for semiconductor lithography
JP2014240480A (en) * 2013-05-17 2014-12-25 三菱レイヨン株式会社 Production method of polymer for lithography, production method of resist composition, and production method of patterned substrate
WO2015151759A1 (en) * 2014-03-31 2015-10-08 富士フイルム株式会社 Method for producing active light sensitive or radiation sensitive resin composition, active light sensitive or radiation sensitive resin composition, active light sensitive or radiation sensitive film, mask blank provided with active light sensitive or radiation sensitive film, photomask, pattern forming method, method for manufacturing electronic device, and electronic device
US20160004156A1 (en) * 2013-03-15 2016-01-07 Fujifilm Corporation Pattern forming method, actinic ray-sensitive or radiation-sensitive resin composition for organic solvent development used therefor and method of manufacturing the same, method of manufacturing electronic device, and electronic device
JP2018066010A (en) * 2017-11-24 2018-04-26 三菱ケミカル株式会社 Method for producing polymer for semiconductor lithography

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109253A (en) * 1999-10-12 2001-04-20 Tokai Rubber Ind Ltd Toner feeding roll
JP2005060638A (en) * 2003-08-20 2005-03-10 Mitsubishi Rayon Co Ltd Polymer, production method, resist composition and method for forming pattern
WO2006028071A1 (en) * 2004-09-10 2006-03-16 Mitsubishi Rayon Co., Ltd. Resist polymer, process for production thereof, resist composition, and process for production of substrates with patterns thereon
JP2008050422A (en) * 2006-08-23 2008-03-06 Daicel Chem Ind Ltd Resin for protecting film of semiconductor resist and method for producing semiconductor
JP2011026372A (en) * 2009-07-21 2011-02-10 Maruzen Petrochem Co Ltd Method of manufacturing copolymer for organic antireflection film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109253A (en) * 1999-10-12 2001-04-20 Tokai Rubber Ind Ltd Toner feeding roll
JP2005060638A (en) * 2003-08-20 2005-03-10 Mitsubishi Rayon Co Ltd Polymer, production method, resist composition and method for forming pattern
WO2006028071A1 (en) * 2004-09-10 2006-03-16 Mitsubishi Rayon Co., Ltd. Resist polymer, process for production thereof, resist composition, and process for production of substrates with patterns thereon
JP2008050422A (en) * 2006-08-23 2008-03-06 Daicel Chem Ind Ltd Resin for protecting film of semiconductor resist and method for producing semiconductor
JP2011026372A (en) * 2009-07-21 2011-02-10 Maruzen Petrochem Co Ltd Method of manufacturing copolymer for organic antireflection film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160004156A1 (en) * 2013-03-15 2016-01-07 Fujifilm Corporation Pattern forming method, actinic ray-sensitive or radiation-sensitive resin composition for organic solvent development used therefor and method of manufacturing the same, method of manufacturing electronic device, and electronic device
JP2014218570A (en) * 2013-05-08 2014-11-20 三菱レイヨン株式会社 Method for producing polymer for semiconductor lithography
JP2014240480A (en) * 2013-05-17 2014-12-25 三菱レイヨン株式会社 Production method of polymer for lithography, production method of resist composition, and production method of patterned substrate
WO2015151759A1 (en) * 2014-03-31 2015-10-08 富士フイルム株式会社 Method for producing active light sensitive or radiation sensitive resin composition, active light sensitive or radiation sensitive resin composition, active light sensitive or radiation sensitive film, mask blank provided with active light sensitive or radiation sensitive film, photomask, pattern forming method, method for manufacturing electronic device, and electronic device
JP2015197482A (en) * 2014-03-31 2015-11-09 富士フイルム株式会社 Manufacturing method of active light-sensitive or radiation-sensitive resin composition, the active light-sensitive or radiation-sensitive resin composition, active light-sensitive or radiation-sensitive film, mask blank including the active light-sensitive or radiation-sensitive film, photomask, pattern formation method, manufacturing method of electronic device, and the electronic device
KR101858967B1 (en) * 2014-03-31 2018-05-17 후지필름 가부시키가이샤 Method for producing active light sensitive or radiation sensitive resin composition, active light sensitive or radiation sensitive resin composition, active light sensitive or radiation sensitive film, mask blank provided with active light sensitive or radiation sensitive film, photomask, pattern forming method, method for manufacturing electronic device, and electronic device
JP2018066010A (en) * 2017-11-24 2018-04-26 三菱ケミカル株式会社 Method for producing polymer for semiconductor lithography

Also Published As

Publication number Publication date
JP5929349B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP5929349B2 (en) Process for producing resin for resist composition
CN102911094B (en) Sulfonium compound, photo-acid generator and anti-corrosion agent composition
TW201221527A (en) Polymerizable fluorine-containing sulfonate, fluorine-containing sulfonate resin, resist composition and pattern-forming method using same
TWI344966B (en) Novel thiol compound, copolymer and method for producing the copolymer
TWI722101B (en) Polymer, positive photoresist composition and photoresist pattern forming method
CN102167676A (en) Salt and photoresist composition comprising the same
CN103172518A (en) Novel acryl monomer, polymer and resist composition comprising same
CN107108797A (en) New brominated polymer and its manufacture method
JP2012207218A (en) Method of producing resin for resist composition
TWI258058B (en) Radiation-sensitive resin composition
WO2006028071A1 (en) Resist polymer, process for production thereof, resist composition, and process for production of substrates with patterns thereon
CN116027633A (en) Fluoropolymer, coating composition containing fluoropolymer and application thereof
CN111499550A (en) Fluorine-containing surfactant and preparation method and application thereof
EP2906526B1 (en) Method for the high-yield production of giant p-(r)calixarenes
CA2721435A1 (en) Novel catalytic systems for the ring-opening (co)polymerization of lactones
TW201331241A (en) Additive for resist, resist composition comprising the same and method for forming resist pattern
TWI525067B (en) Photoacid generator compound, polymer comprising end groups containing the photoacid generator compound, and method of making
JP2013167706A (en) Resist composition for liquid immersion exposure
BE1028011A1 (en) CARBOXYLATE, GENERATOR OF CARBOXYLIC ACID, COMPOSITION OF RESIST AND PROCESS FOR THE PRODUCTION OF PATTERN OF RESIST
TW201540699A (en) Manufacturing method for fluorine-containing hydroxyaldehyde, fluorine-containing propylene glycol, and fluorine-containing alcohol monomer
US7312294B2 (en) Norbornane lactone (meth)acrylate and polymer thereof
KR101914792B1 (en) Method for Producing Resist Copolymer Having Low Molecular Weight
JP2020532567A (en) Sulfonium salt photoinitiator, its production method, photocurable composition containing it and its application
TW201920303A (en) Method for producing oxyethylene chain-containing vinyl ether polymer by radical polymerization
TWI614235B (en) Novel alicyclic ester compound, (meth)acrylic acid copolymer and photosensitive resin composition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R151 Written notification of patent or utility model registration

Ref document number: 5929349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350