JP2012207058A - Process for producing polymeric compound for semiconductor lithography - Google Patents

Process for producing polymeric compound for semiconductor lithography Download PDF

Info

Publication number
JP2012207058A
JP2012207058A JP2011071518A JP2011071518A JP2012207058A JP 2012207058 A JP2012207058 A JP 2012207058A JP 2011071518 A JP2011071518 A JP 2011071518A JP 2011071518 A JP2011071518 A JP 2011071518A JP 2012207058 A JP2012207058 A JP 2012207058A
Authority
JP
Japan
Prior art keywords
polymer compound
metal ion
exchange resin
anion exchange
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011071518A
Other languages
Japanese (ja)
Other versions
JP5854253B2 (en
Inventor
Seiji Tsuchiya
征司 土屋
Shinichi Maeda
晋一 前田
Takeo Santo
丈夫 山東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011071518A priority Critical patent/JP5854253B2/en
Publication of JP2012207058A publication Critical patent/JP2012207058A/en
Application granted granted Critical
Publication of JP5854253B2 publication Critical patent/JP5854253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a polymeric compound for semiconductor lithography, in which the metal ion content becomes ≤100 ppb, and the acid impurity concentration becomes ≤100 ppm.SOLUTION: The process for producing a polymeric compound for semiconductor lithography, in which the metal ion content becomes ≤100 ppb, and the acid impurity concentration becomes ≤100 ppm, includes: (a) a step of obtaining a polymeric compound in the presence of an acid catalyst; (b) a step of bringing the polymeric compound solution obtained in the step (a) or a solution which is prepared by dissolving again a polymeric compound obtained by subjecting the polymeric compound solution to precipitation refinement again in a poor solvent into contact with an anion-exchange resin having an every metal ion impurity concentration of ≤2.0 ppb; and (c) a step of producing the polymeric compound by precipitating again the polymeric compound solution contacted with the anion-exchange resin in a poor solvent.

Description

本発明は、半導体リソグラフィー用組成物、例えば、フォトレジストもしくは反射防止膜組成物として使用するのに好適な高分子化合物の製造方法に関する。   The present invention relates to a method for producing a polymer compound suitable for use as a composition for semiconductor lithography, for example, a photoresist or an antireflection film composition.

従来から半導体デバイス製造工程において、フォトリソグラフィーによる微細加工が用いられており、例えば、シリコンウエハ等の半導体基板上にフォトレジストや反射防止膜等の半導体リソグラフィー用組成物の薄膜を形成し、次いで、半導体デバイスのパターンが描かれたマスクパターンを介して紫外線等の活性光線を照射し、現像して得られたフォトレジストパターンを保護膜として基板をエッチング処理することにより、基板表面に該パターンに対応する微細凹凸が形成されている。   Conventionally, fine processing by photolithography has been used in a semiconductor device manufacturing process, for example, forming a thin film of a composition for semiconductor lithography such as a photoresist or an antireflection film on a semiconductor substrate such as a silicon wafer, Corresponding to the pattern on the substrate surface by irradiating actinic rays such as ultraviolet rays through the mask pattern on which the pattern of the semiconductor device is drawn and etching the substrate using the photoresist pattern obtained by development as a protective film Fine irregularities are formed.

金属イオン汚染は、高密度集積回路、コンピュータチップおよびコンピュータハードドライブの製造において、しばしば欠陥の増加や収量損失を招き、性能低下を引き起こす大きな要因となっている。例えば、プラズマプロセスでは、ナトリウムおよび鉄等の金属イオンが、半導体リソグラフィー用組成物中に存在すると、プラズマ剥離の際に汚染を生じる恐れがある。しかし、これらの問題は、高温アニールサイクルの間に汚染物のHClゲッタリングを利用することにより、製造プロセスにおいて実質的な程度に問題を抑制することが可能である。   Metal ion contamination is a major factor in the production of high density integrated circuits, computer chips and computer hard drives, often leading to increased defects and loss of yield, resulting in reduced performance. For example, in a plasma process, if metal ions such as sodium and iron are present in a composition for semiconductor lithography, contamination may occur during plasma stripping. However, these problems can be mitigated to a substantial extent in the manufacturing process by utilizing contaminant HCl gettering during the high temperature anneal cycle.

一方、半導体リソグラフィー用組成物である半導体レジストおよび反射防止膜等の高分子化合物を製造する際は、高分子化合物または高分子化合物溶液中には遊離酸やゲル粒子が残存または発生することがある。これらの因子は、半導体レジストや反射防止膜、その他の電子材料、例えば、ハードマスクコーティング、層間コーティングおよびフィルレイヤーコーティングの不良要因となり得る。   On the other hand, when producing a polymer compound such as a semiconductor resist or an antireflection film, which is a composition for semiconductor lithography, free acid or gel particles may remain or be generated in the polymer compound or polymer compound solution. . These factors can cause defects in semiconductor resists, antireflective coatings, and other electronic materials such as hard mask coatings, interlayer coatings, and fill layer coatings.

半導体リソグラフィー等の微細加工技術の発展により電子デバイスがより精巧なものとなっており、これらの諸問題は、完全な解決が困難となっている。非常に低レベルの金属イオン不純物の存在により、半導体デバイスの性能および安定性が低下することが、しばしば観察されており、これらの主要因は、特に半導体リソグラフィー用組成物中に含まれるナトリウムイオンおよび/または鉄イオンであることが確認されている。   Advances in microfabrication technology such as semiconductor lithography have made electronic devices more sophisticated, and these problems are difficult to completely solve. It has often been observed that the presence of very low levels of metal ion impurities reduces the performance and stability of semiconductor devices, and these main factors are in particular the sodium ions contained in the composition for semiconductor lithography and And / or confirmed to be iron ions.

更には、半導体リソグラフィー用組成物中の100ppb未満の金属イオン不純物濃度が、このような電子デバイスの性能および安定性に悪影響を及ぼすことも明らかになっている。従来、半導体リソグラフィー用組成物中の金属イオン不純物濃度は、厳しい不純物濃度規格を満たす材料を選択することや半導体リソグラフィー用組成物の調整段階で金属イオン不純物が混入しないように徹底したプロセス管理を行うことで、管理されている。   Furthermore, it has also been found that metal ion impurity concentrations of less than 100 ppb in compositions for semiconductor lithography adversely affect the performance and stability of such electronic devices. Conventionally, the metal ion impurity concentration in a composition for semiconductor lithography is selected from materials that satisfy strict impurity concentration standards, and thorough process management is performed so that metal ion impurities are not mixed in the adjustment stage of the composition for semiconductor lithography. It is managed by that.

特許文献1および2には、脱イオン水であらかじめ洗浄したイオン交換樹脂を使用して、金属イオン不純物を最小限にしながら、安定した分子量のノボラック樹脂の製造方法が開示されている。   Patent Documents 1 and 2 disclose a method for producing a novolak resin having a stable molecular weight while minimizing metal ion impurities by using an ion exchange resin that has been previously washed with deionized water.

特開平9−143237号公報JP-A-9-143237 特表2002−519192号公報JP-T-2002-519192

しかしながら、近年の半導体集積回路の微細化に伴い、金属イオン等の不純物の除去工程だけでなく、半導体リソグラフィー用組成物の物性においてリソグラフィー特性の高い再現性が要求されており、特に、半導体リソグラフィー用組成物中に含まれる組成物である半導体レジスト組成物または反射防止膜組成物中の高分子化合物の物性、例えば、分子量・分散度・光学定数・残存酸量等、に高い再現性が要求されている。   However, with recent miniaturization of semiconductor integrated circuits, not only the process of removing impurities such as metal ions but also the physical properties of the composition for semiconductor lithography require high reproducibility of lithography characteristics, especially for semiconductor lithography. High reproducibility is required for the physical properties of the polymer compound in the semiconductor resist composition or antireflective coating composition which is a composition contained in the composition, such as molecular weight, dispersity, optical constant, residual acid amount, etc. ing.

つまり、半導体リソグラフィー用組成物に含まれる金属イオン不純物の低減と、そこで用いられる高分子化合物の高い再現性を非常に精密な領域で制御することが必要である。
特に、光学定数である屈折率および消衰係数は、高分子化合物に大きく影響されることから、高分子化合物の化学構造変化を極力抑えつつ、金属イオン不純物の除去をすることが要求されている。
一方、特許文献1および2においては、いずれも陰イオンのみならず、陽イオン交換性樹脂を含むフィルターを用いて濾過処理を行っている。しかしながら、このような従来の金属イオン不純物を除去するために用いられてきた手法では、これらのイオン交換性基との化学反応によりフォトレジスト組成物中の保護基の脱離またはポリマー側鎖に架橋剤が付加した高分子化合物を含む反射防止膜組成物の架橋反応が進行するといった問題があった。
That is, it is necessary to control the reduction of metal ion impurities contained in the composition for semiconductor lithography and the high reproducibility of the polymer compound used therein in a very precise region.
In particular, since the refractive index and extinction coefficient, which are optical constants, are greatly affected by the polymer compound, it is required to remove metal ion impurities while suppressing the chemical structure change of the polymer compound as much as possible. .
On the other hand, in Patent Documents 1 and 2, filtration treatment is performed using a filter containing not only anions but also cation exchange resins. However, the techniques that have been used to remove such conventional metal ion impurities are the elimination of protecting groups in the photoresist composition or cross-linking to the polymer side chains by chemical reaction with these ion exchange groups. There has been a problem that the crosslinking reaction of the antireflection film composition containing the polymer compound to which the agent has been added proceeds.

本発明は前記事情に鑑みてなされたもので、各金属イオン不純物濃度が100ppb以下、かつ酸不純物濃度が100ppm以下となる、半導体リソグラフィー用高分子化合物、および該高分子化合物の製造方法を提供することを目的とする。  The present invention has been made in view of the above circumstances, and provides a polymer compound for semiconductor lithography in which each metal ion impurity concentration is 100 ppb or less and an acid impurity concentration is 100 ppm or less, and a method for producing the polymer compound. For the purpose.

本発明者らは、鋭意検討の結果、あらかじめ金属イオン不純物濃度が規定値内になるように脱イオン水で洗浄した陰イオン交換樹脂を酸触媒の脱酸処理工程に用いることで、金属イオン不純物濃度が100ppb以下、かつ酸不純物濃度が100ppm以下である半導体リソグラフィー用高分子化合物を得ることができることを見出し、本発明に至った。   As a result of intensive studies, the present inventors have used an anion exchange resin that has been washed with deionized water in advance so that the metal ion impurity concentration is within a specified value in the deoxidation treatment step of the acid catalyst. The present inventors have found that a polymer compound for semiconductor lithography having a concentration of 100 ppb or less and an acid impurity concentration of 100 ppm or less can be obtained.

すなわち、本発明の第一の要旨は、下記工程(a)〜(c)を含む各金属イオン不純物濃度が100ppb以下かつ酸不純物濃度が100ppm以下となる半導体リソグラフィー用高分子化合物の製造方法である。
(a)酸触媒の存在下で、高分子化合物を得る工程、
(b)前記工程(a)で得られた高分子化合物溶液、または、前記高分子化合物溶液を貧溶媒中で再沈澱精製した高分子化合物を再溶解した溶液を、各金属イオン不純物濃度2.0ppb以下の陰イオン交換樹脂に接触させる工程、
(c)前記陰イオン交換樹脂に接触させた高分子化合物溶液を、貧溶媒中で再沈澱し、高分子化合物を製造する工程
That is, the first gist of the present invention is a method for producing a polymer compound for semiconductor lithography in which each metal ion impurity concentration including the following steps (a) to (c) is 100 ppb or less and the acid impurity concentration is 100 ppm or less. .
(A) obtaining a polymer compound in the presence of an acid catalyst;
(B) The polymer compound solution obtained in the step (a) or a solution obtained by re-dissolving the polymer compound obtained by reprecipitation and purification of the polymer compound solution in a poor solvent is used for each metal ion impurity concentration. Contacting with an anion exchange resin of 0 ppb or less,
(C) A step of producing a polymer compound by reprecipitation of the polymer compound solution brought into contact with the anion exchange resin in a poor solvent.

また、本発明の第二の要旨は、前記陰イオン交換樹脂に接触させる高分子化合物溶液の各金属イオン不純物濃度が50ppb以下である前記製造方法である。   Moreover, the 2nd summary of this invention is the said manufacturing method whose each metal ion impurity density | concentration of the polymer compound solution made to contact the said anion exchange resin is 50 ppb or less.

さらに、本発明の第三の要旨は、前記方法で得られた半導体リソグラフィー用高分子化合物にある。   Furthermore, the third gist of the present invention resides in a polymer compound for semiconductor lithography obtained by the above method.

本発明の方法によれば、フォトリソグラフィー工程に使用されるのに好適な高分子化合物または該高分子化合物を含む溶液中に含まれる金属イオン不純物は低濃度であり、かつ、該溶液中に含まれる酸不純物を非常に低い濃度まで除去することができる。   According to the method of the present invention, the polymer compound suitable for use in the photolithography process or the metal ion impurity contained in the solution containing the polymer compound has a low concentration and is contained in the solution. Acid impurities can be removed to very low concentrations.

また、本発明によれば、フォトレジスト用組成物または反射防止膜用組成物に使用されるのに好適な高分子化合物を、金属イオン不純物を除去するための陽イオン交換性基を用いることなく、また、該陽イオン交換樹脂との反応による化学構造等の変化を生じることなく、効率的に酸不純物を除去することができる。   In addition, according to the present invention, a polymer compound suitable for use in a photoresist composition or an antireflection film composition can be obtained without using a cation exchange group for removing metal ion impurities. In addition, acid impurities can be efficiently removed without causing a change in chemical structure or the like due to the reaction with the cation exchange resin.

<半導体リソグラフィー用高分子化合物の製造方法>
<(a)高分子化合物を得る工程>
本発明において、半導体リソグラフィー用高分子化合物は、半導体リソグラフィー工程で使用される活性光線を吸収する部位を有する高分子化合物であって、酸触媒の存在下で製造されるものであればよい。
<Method for producing polymer compound for semiconductor lithography>
<(A) Step of obtaining a polymer compound>
In the present invention, the polymer compound for semiconductor lithography may be a polymer compound having a site that absorbs actinic rays used in the semiconductor lithography process and can be produced in the presence of an acid catalyst.

前記高分子化合物としては、例えば、芳香環および/またはイソシアヌル酸等を含むものであって、典型的には、(メタ)アクリレートモノマー、または官能基としてカルボン酸とヒドロキシル基を含む少なくとも二種のモノマーを重合することによって製造される(メタ)アクリル系高分子化合物、またはポリエステル系高分子化合物、ポリエーテル系高分子化合物、ポリアミド系高分子化合物等を挙げることができる。
特に制限されないが、エッチング速度等の観点から、ポリエステル系高分子化合物であることが好ましい。
The polymer compound includes, for example, an aromatic ring and / or isocyanuric acid, and typically includes a (meth) acrylate monomer, or at least two kinds including a carboxylic acid and a hydroxyl group as functional groups. Examples thereof include (meth) acrylic polymer compounds produced by polymerizing monomers, polyester polymer compounds, polyether polymer compounds, and polyamide polymer compounds.
Although not particularly limited, polyester polymer compounds are preferable from the viewpoint of etching rate and the like.

前記ポリエステル系高分子化合物は、例えば、酸触媒存在下、官能基としてカルボン酸とヒドロキシル基を含む少なくとも二種のモノマーを重合溶媒に溶解させ、重合反応に適当な温度まで加熱して縮重合反応により得ることができる。特に制限されないが、目的分子量に達するまでの反応時間の短縮および分子量の精密な制御の観点から、前記縮合重合反応は、100〜150℃が好ましく、120〜145℃が更に好ましい。   The polyester-based polymer compound is, for example, a polycondensation reaction by dissolving at least two monomers containing a carboxylic acid and a hydroxyl group as functional groups in a polymerization solvent in the presence of an acid catalyst and heating to a temperature suitable for the polymerization reaction. Can be obtained. Although not particularly limited, the condensation polymerization reaction is preferably 100 to 150 ° C, more preferably 120 to 145 ° C, from the viewpoint of shortening the reaction time until the target molecular weight is reached and precise control of the molecular weight.

前記ポリエステル系高分子化合物の重合に用いられる重合溶媒としては、特に制限されないが、モノマー、酸触媒、および重合体のいずれをも溶解できる溶媒が好ましい。このような有機溶媒としては、例えば、アニソール、ベンゼン、トルエン、キシレン、1,4-ジオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン、メチルイソブチルケトン、γ-ブチロラクトン、ヘキサン、ヘプタン、または、これらの混合溶媒等が挙げられる。   The polymerization solvent used for the polymerization of the polyester-based polymer compound is not particularly limited, but a solvent that can dissolve any of the monomer, the acid catalyst, and the polymer is preferable. Examples of the organic solvent include anisole, benzene, toluene, xylene, 1,4-dioxane, tetrahydrofuran, acetone, methyl ethyl ketone, methyl isobutyl ketone, γ-butyrolactone, hexane, heptane, or a mixed solvent thereof. Can be mentioned.

前記ポリエステル系高分子化合物の重合に用いられる酸触媒としては、特に制限されないが、例えば、シュウ酸、無水マレイン酸、マレイン酸、p−トルエンスルホン酸、メタンスルホン酸、ナフタレンスルホン酸、硫酸、塩酸、硝酸等が挙げられる。工業性の観点から、p−トルエンスルホン酸が好ましい。   The acid catalyst used for the polymerization of the polyester-based polymer compound is not particularly limited. For example, oxalic acid, maleic anhydride, maleic acid, p-toluenesulfonic acid, methanesulfonic acid, naphthalenesulfonic acid, sulfuric acid, hydrochloric acid And nitric acid. From the industrial viewpoint, p-toluenesulfonic acid is preferred.

本発明において、側鎖に架橋剤が付加された高分子化合物としては、フォトリソグラフィー工程で使用される活性光線を吸収する部位を有する高分子化合物の側鎖に架橋剤が付加されたものであってもよい。   In the present invention, the polymer compound in which a crosslinking agent is added to the side chain is a compound in which a crosslinking agent is added to the side chain of the polymer compound having a site that absorbs actinic rays used in the photolithography process. May be.

官能基であるカルボン酸とヒドロキシル基の縮合重合反応によって得られた前記ポリエステル系高分子化合物を含む反応溶液に酸触媒(例えば、p-トルエンスルホン酸)、架橋剤(例えば、グリコールウリルやメラミン)等を添加し反応させることで、ポリエステル系高分子化合物に含まれる官能基に架橋剤を付加させることができ、高分子化合物の側鎖に架橋剤が付加された高分子化合物を合成することができる。
この架橋剤付加反応は、50℃以下、好ましくは15〜30℃、更に好ましくは18〜22℃の範囲が望ましい。架橋剤付加反応の効率的な進行と分子量の精密な制御の両方の観点から、前記範囲での架橋剤付加反応を行うことが好ましい。
An acid catalyst (eg, p-toluenesulfonic acid) and a crosslinking agent (eg, glycoluril or melamine) are added to the reaction solution containing the polyester polymer compound obtained by the condensation polymerization reaction of the functional group carboxylic acid and hydroxyl group. Can be added to the functional group contained in the polyester polymer compound, and a polymer compound in which a crosslinking agent is added to the side chain of the polymer compound can be synthesized. it can.
This crosslinking agent addition reaction is desirably 50 ° C. or less, preferably 15 to 30 ° C., and more preferably 18 to 22 ° C. From the viewpoint of both efficient progress of the crosslinking agent addition reaction and precise control of the molecular weight, it is preferable to carry out the crosslinking agent addition reaction within the above range.

前記架橋剤付加工程において、側鎖に付加される架橋剤としては、例えば、グリコールウリル、メチル化グリコールウリル、ブチル化グリコールウリル、テトラメトキシグリコールウリル、メチル化メラミン樹脂、N−メトキシメチル-メラミン、ウレタンウレア、アミノ基またはビニルエーテルを含む群から選択される。
特に、反射防止膜性能に優れる観点から、グリコールウリル系が好ましい。更に、非芳香族の特徴を併せ持つことにより、エッチングレートを向上させることができる。
Examples of the crosslinking agent added to the side chain in the crosslinking agent addition step include glycoluril, methylated glycoluril, butylated glycoluril, tetramethoxyglycoluril, methylated melamine resin, N-methoxymethyl-melamine, Selected from the group comprising urethane urea, amino group or vinyl ether.
In particular, glycoluril is preferred from the viewpoint of excellent antireflection film performance. Furthermore, the etching rate can be improved by combining non-aromatic characteristics.

前記の通り得られた高分子化合物を含む溶液は、原料由来あるいは製造工程で酸不純物や金属イオン不純物を含むことが多く、この酸や金属イオン不純物が電子デバイスの性能および安定性に悪影響を及ぼすことも明らかになっているため、原料管理や再沈殿処理、イオン交換樹脂処理等により、前記の酸、金属イオン等の不純物を低濃度まで除去する必要がある。   The solution containing the polymer compound obtained as described above often contains an acid impurity or a metal ion impurity from the raw material or in the manufacturing process, and this acid or metal ion impurity adversely affects the performance and stability of the electronic device. Since it has also been clarified, it is necessary to remove impurities such as acids and metal ions to a low concentration by raw material management, reprecipitation treatment, ion exchange resin treatment, or the like.

<(b)陰イオン交換樹脂に接触させる工程>
本発明において、前記溶液中の酸不純物を除去するために、前記溶液を、陰イオン交換樹脂に接触させることにより処理される。
これにより、酸不純物等を除去することができ、前記高分子化合物を酸との反応による化学構造等の変化を抑えることができる。
なお、本発明において、「接触」とは、カラム中またはバッチプロセスにおいて、前記陰イオン交換樹脂に、前記高分子化合物中の残存酸触媒をイオン交換反応によって吸着させる工程である。
また、前記陰イオン交換樹脂の量は、残存酸触媒の除去効率や金属溶出量の観点から、前記高分子化合物溶液に対して0.05〜0.5倍量(質量比)が好ましく、さらに0.〜0.2倍量(質量比)が好ましい。
また、前記接触時間は、残存酸触媒の除去効率や工業的観点から、0.1〜10時が好ましく、さらに0.5〜7時間が好ましい。
<(B) Step of contacting with anion exchange resin>
In the present invention, in order to remove acid impurities in the solution, the solution is treated by contacting with an anion exchange resin.
Thereby, an acid impurity etc. can be removed and the change of the chemical structure etc. by reaction of the said high molecular compound with an acid can be suppressed.
In the present invention, “contact” is a step of adsorbing the residual acid catalyst in the polymer compound to the anion exchange resin by an ion exchange reaction in a column or in a batch process.
Further, the amount of the anion exchange resin is preferably 0.05 to 0.5 times (mass ratio) with respect to the polymer compound solution from the viewpoint of the removal efficiency of the residual acid catalyst and the amount of metal elution. 0. The amount is preferably 0.2 times (mass ratio).
The contact time is preferably from 0.1 to 10 hours, and more preferably from 0.5 to 7 hours, from the viewpoint of the removal efficiency of the residual acid catalyst and an industrial viewpoint.

前記陰イオン交換基としては、例えば、第四アンモニウム塩基等が挙げられる。例えば、高分子化合物中に酸を有する場合、このような陰イオン交換基を含む樹脂用いて処理すると、酸を吸着し、高分子化合物中の酸不純物を除去することができる。   Examples of the anion exchange group include a quaternary ammonium base. For example, when an acid is contained in the polymer compound, treatment with a resin containing such an anion exchange group can adsorb the acid and remove acid impurities in the polymer compound.

本発明において、前記陰イオン交換樹脂の各金属イオン不純物濃度が、2.0ppb以下、好ましくは1.8ppb以下、さらに好ましくは1.5ppb以下のものを使用する。各不純物濃度が前記範囲内であれば、陰イオン交換樹脂中の金属イオン等不純物が高分子化合物中へ溶出を抑制することができる。
各不純物濃度が前記範囲内の陰イオン交換樹脂を得る方法としては、例えば、陰イオン交換樹脂を超純水等で洗浄し乾燥する方法等が挙げられる。
各不純物濃度が前記範囲内の陰イオン交換樹脂に、前記高分子化合物を溶解した溶液に通すことで、前記陰イオン交換樹脂から溶出する金属イオン不純物濃度を最小限に抑えた上、酸不純物を非常に低い濃度まで除去することができる。
In the present invention, a metal ion impurity concentration of the anion exchange resin is 2.0 ppb or less, preferably 1.8 ppb or less, more preferably 1.5 ppb or less. When each impurity concentration is within the above range, the elution of impurities such as metal ions in the anion exchange resin into the polymer compound can be suppressed.
Examples of a method for obtaining an anion exchange resin having each impurity concentration within the above range include a method in which the anion exchange resin is washed with ultrapure water and dried.
Each impurity concentration is passed through an anion exchange resin within the above range through a solution in which the polymer compound is dissolved, so that the metal ion impurity concentration eluted from the anion exchange resin is minimized and acid impurities are reduced. It can be removed to very low concentrations.

前記陰イオン交換樹脂の洗浄方法としては、特に限定されないが、例えば、カラム中またはバッチプロセスにおいて、陰イオン交換樹脂を樹脂の20倍重量の超純水ですすぎ、次いで、20倍重量の水酸化アンモニウム溶液ですすぎ、その後、さらに20倍重量の超純水ですすぐことによって、得られた該陰イオン交換樹脂を乾燥する方法、または、前記陰イオン交換樹脂を、さらに鉱酸溶液(例えば、硫酸、塩酸の5〜98%水溶液)ですすぎ、再び超純水ですすぎ、乾燥させる方法が好ましい。   The washing method of the anion exchange resin is not particularly limited. For example, in a column or in a batch process, the anion exchange resin is rinsed with ultrapure water 20 times the weight of the resin, and then 20 times the weight of hydroxylation. A method of drying the resulting anion exchange resin by rinsing with an ammonium solution and then further rinsing with 20 times the weight of ultrapure water, or the anion exchange resin can be further mixed with a mineral acid solution (eg, sulfuric acid) Rinse with 5 to 98% aqueous solution of hydrochloric acid), rinse with ultrapure water again and dry.

前記陰イオン交換樹脂として、好ましくは、ORGANO社から商業的に入手可能なAmberlyst B20−HG・Dryがある。   The anion exchange resin is preferably Amberlyst B20-HG · Dry commercially available from ORGANO.

本発明で得られる半導体リソグラフィー用高分子化合物は、該高分子化合物中に含まれる各金属イオン不純物の濃度が100ppb以下であり、かつ、酸不純物濃度が100ppm以下、好ましくは50ppm以下、特に好ましくは30ppm以下である。   In the polymer compound for semiconductor lithography obtained by the present invention, the concentration of each metal ion impurity contained in the polymer compound is 100 ppb or less, and the acid impurity concentration is 100 ppm or less, preferably 50 ppm or less, particularly preferably. 30 ppm or less.

<(c)再沈殿工程>
本発明の製法は、前記陰イオン交換樹脂に接触させた高分子化合物溶液を、貧溶媒中で
再沈殿する工程を含む。
再沈殿工程において、前記陰イオン交換樹脂に接触させて得られた溶液を、良溶媒で適当な濃度に希釈した後、溶媒中に滴下することで高分子化合物を析出させる。
良溶媒としては、例えば、アニソール、ベンゼン、トルエン、キシレン、1,4-ジオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン、メチルイソブチルケトン、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル等が挙げられる。
貧溶媒としては、例えば、メタノール、イソプロピルアルコール、ジイソプロピルエーテル、水、ヘキサン、ヘプタン等、またはこれらの混合溶媒等が挙げられる。
<(C) Reprecipitation step>
The production method of the present invention includes a step of reprecipitation of a polymer compound solution brought into contact with the anion exchange resin in a poor solvent.
In the reprecipitation step, the solution obtained by contacting the anion exchange resin is diluted to a suitable concentration with a good solvent, and then dropped into the solvent to precipitate the polymer compound.
Examples of the good solvent include anisole, benzene, toluene, xylene, 1,4-dioxane, tetrahydrofuran, acetone, methyl ethyl ketone, methyl isobutyl ketone, γ-butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, and the like.
Examples of the poor solvent include methanol, isopropyl alcohol, diisopropyl ether, water, hexane, heptane, or a mixed solvent thereof.

再沈殿工程により、高分子化合物溶液中に残存する未反応のモノマーや重合開始剤、酸触媒等を除去することができる。これらの未反応物は、そのまま残存しているとレジストや反射防止膜性能に悪影響を及ぼす可能性が高く、可能な限り除去することが好ましい。
再沈殿工程後、その析出物を濾別し、十分に乾燥してフォトリソグラフィー用組成物に使用するのに好適な成膜性樹脂を得ることができる。
また、濾別した後、乾燥工程を含まずに湿粉のまま使用することも可能である。
By the reprecipitation step, unreacted monomers, polymerization initiator, acid catalyst, etc. remaining in the polymer compound solution can be removed. If these unreacted substances remain as they are, there is a high possibility that they will adversely affect the performance of the resist and the antireflection film, and it is preferable to remove them as much as possible.
After the reprecipitation step, the precipitate is filtered off and sufficiently dried to obtain a film-forming resin suitable for use in a photolithography composition.
Moreover, after filtering off, it is also possible to use it as a moist powder without including a drying step.

本明細書に記載の方法で半導体リソグラフィー用組成物として使用するのに好適な高分子化合物を含む溶液を処理することで、原料由来および/または製造工程に由来する酸不純物を非常に低い濃度まで除去することが可能である。また、同時に溶出される金属イオン不純物濃度も最小限に抑える事もできる。   By treating a solution containing a polymer compound suitable for use as a semiconductor lithography composition by the method described herein, acid impurities derived from raw materials and / or manufacturing processes can be reduced to very low concentrations. It is possible to remove. Further, the concentration of metal ion impurities eluted at the same time can be minimized.

また、各金属イオン不純物濃度が50ppb以下の高分子化合物溶液は、原料中の金属イオン不純物濃度の管理、再沈殿、水や有機溶媒による洗浄、または脱金属フィルター等により、得ることができる。   In addition, a polymer compound solution having a metal ion impurity concentration of 50 ppb or less can be obtained by controlling the metal ion impurity concentration in the raw material, reprecipitation, washing with water or an organic solvent, or a metal removal filter.

前記脱金属フィルターは、特に制限されないが、電荷調整剤によってゼータ電位を生じる強酸性イオン交換性基を含まないフィルターが好ましい。例えば、前記性質を有するフィルターシートとして、住友3Mから商業的に入手可能なCUMO TM ゼータプラス TM フィルターカートリッジ EC(GNグレード)として入手することができる。 The demetallizing filter is not particularly limited, but a filter that does not contain a strongly acidic ion-exchange group that generates a zeta potential by a charge adjusting agent is preferable. For example, a filter sheet having the above properties can be obtained as a CUMO TM Zeta Plus TM filter cartridge EC (GN grade) commercially available from Sumitomo 3M .

以下の具体例は、本発明を利用した高分子化合物の製造方法の例示である。
しかし、これらの例は、本発明の範囲を如何様にも限定もしくは減縮することを意図したものではなく、本発明を実施するために排他的に利用しなければならない条件、パラメータまたは値を教示するものと解釈されるべきものではない。また、特に断りがない場合、全ての部および百分率は重量に基づく値である。
また、実施例および比較例で用いた陰イオン交換樹脂は、前記洗浄方法等により、各金属イオン不純物濃度を低減させた。
The following specific examples are examples of a method for producing a polymer compound using the present invention.
However, these examples are not intended to limit or reduce the scope of the invention in any way, but teach conditions, parameters or values that must be used exclusively to practice the invention. It should not be construed to do. Also, unless otherwise specified, all parts and percentages are values based on weight.
Moreover, the anion exchange resin used in the Examples and Comparative Examples reduced the concentration of each metal ion impurity by the cleaning method and the like.

分子量測定方法
下記合成例等において得られた高分子化合物の重量平均分子量は、GPC(Gel Permeation Chromatography:東ソー製HLC8220GPC)により、ポリスチレン換算で求めた(測定条件;測定サンプル:乾粉50mg/溶離液5mL、溶離液:1.7mMリン酸/THF、分離カラム:昭和電工社製、Shodex GPC K−805L(商品名)、測定温度:40℃、検出器:示差屈折率検出器)。
Molecular weight measurement method The weight average molecular weight of the polymer compound obtained in the following synthesis examples and the like was determined in terms of polystyrene by GPC (Gel Permeation Chromatography: HLC8220GPC manufactured by Tosoh Corporation) (measurement conditions; measurement sample: dry powder 50 mg / eluent 5 mL). , Eluent: 1.7 mM phosphoric acid / THF, separation column: Showa Denko K.K., Shodex GPC K-805L (trade name), measurement temperature: 40 ° C., detector: differential refractive index detector).

金属イオン不純物濃度測定方法
陰イオン交換樹脂中の各金属イオン不純物濃度は、次のようにして求めた。
陰イオン交換樹脂2.0gを2%硝酸60gに5時間浸漬した後の溶液を、高周波誘導結合プラズマ質量分析計(ICP−MS(Inductively Coupled Plasma Mass Spectrometer):Agilent Technologies製7500cs)により金属分析し、各金属イオン不純物濃度(Na、Fe)を求めた。また、高分子化合物溶液中の各金属イオン不純物濃度も、前記高周波誘導結合プラズマ質量分析計により金属分析し、各金属イオン不純物濃度(Na,Fe)を求めた(測定サンプル: 高分子化合物溶液または高分子化合物の乾粉1.5gを蒸留精製したN-メチル-2-ピロリドンで100倍希釈したサンプル、測定法:標準添加法)。
Method for measuring metal ion impurity concentration The concentration of each metal ion impurity in the anion exchange resin was determined as follows.
A solution obtained by immersing 2.0 g of an anion exchange resin in 60 g of 2% nitric acid for 5 hours was subjected to metal analysis using a high frequency inductively coupled plasma mass spectrometer (ICP-MS (Inductively Coupled Plasma Mass Spectrometer): 7500 cs made by Agilent Technologies). Each metal ion impurity concentration (Na, Fe) was determined. Each metal ion impurity concentration in the polymer compound solution was also subjected to metal analysis by the high frequency inductively coupled plasma mass spectrometer to obtain each metal ion impurity concentration (Na, Fe) (measurement sample: polymer compound solution or A sample obtained by diluting 1.5 g of a dry powder of a polymer compound 100 times with distilled and purified N-methyl-2-pyrrolidone, measurement method: standard addition method).

残存酸触媒(pTSA)量測定方法
高分子化合物の乾粉1.0gをアセトニトリル21ml、水9mlの混合溶液に溶解し、高速液体クロマトグラフィー(HPLC:島津理化製LC−20A、分離カラム:GL Science Intersil ODS−2)にて、残pTSAの定量を行った。
Method for measuring amount of residual acid catalyst (pTSA) 1.0 g of a dry powder of a polymer compound was dissolved in a mixed solution of 21 ml of acetonitrile and 9 ml of water, and high performance liquid chromatography (HPLC: LC-20A manufactured by Shimadzu Rika Co., Ltd.) Separation column: GL Science Intersil The remaining pTSA was quantified in ODS-2).

[合成例1]
1,3,5−トリス(2−ヒドロキシエチル)イソシアヌレート(67.12g,0.258mol)、デカヒドロ−2,6−ナフタレンジカルボン酸ジメチル(65.36g, 0.258mol)、p−トルエンスルホン酸−水和物(pTSA)(2.606g,13.7mmol)、およびアニソール(79.60g)を三口フラスコに充填し、Dean-Starkトラップを用いて脱水および脱メタノール反応を行いながら130℃で9時間重合させた後、50℃まで冷却し、トリエチルアミン(1.386g,13.7mmol)を加えて反応を停止させた。その後、テトラヒドロフラン(THF)(89.4g)で希釈し、ヘキサン(580.0g)とIPA(1740.0g)の混合物に再沈殿し、下記式(1)に示すポリエステル系高分子化合物(重量平均分子量:7,260、収率:約43%)を得た。
尚、再沈殿する前の重合液中の金属イオン不純物濃度は、Na50ppm、Fe40ppmであった。
[Synthesis Example 1]
1,3,5-tris (2-hydroxyethyl) isocyanurate (67.12 g, 0.258 mol), dimethyl decahydro-2,6-naphthalenedicarboxylate (65.36 g, 0.258 mol), p-toluenesulfonic acid -A hydrate (pTSA) (2.606 g, 13.7 mmol) and anisole (79.60 g) were charged into a three-necked flask and subjected to dehydration and demethanol reaction at 130 ° C using a Dean-Stark trap. After polymerization for a period of time, the mixture was cooled to 50 ° C., and triethylamine (1.386 g, 13.7 mmol) was added to stop the reaction. Thereafter, the mixture was diluted with tetrahydrofuran (THF) (89.4 g), reprecipitated into a mixture of hexane (580.0 g) and IPA (1740.0 g), and then a polyester polymer compound represented by the following formula (1) (weight average) Molecular weight: 7,260, yield: about 43%).
In addition, the metal ion impurity density | concentration in the polymerization liquid before reprecipitation was Na50ppm and Fe40ppm.

[合成例2]
1,3,5−トリス(2−ヒドロキシエチル)イソシアヌレート(67.12g,0.258mol)、デカヒドロ−2,6−ナフタレンジカルボン酸ジメチル(65.36g, 0.258mol)、p−トルエンスルホン酸−水和物(pTSA)(2.606g,13.7mmol)、およびアニソール(79.60g)を三口フラスコに充填し、Dean-Starkトラップを用いて脱水および脱メタノール反応を行いながら130℃で9時間重合した。その後、テトラヒドロフラン(THF) (89.4g)で希釈して、テトラメトキシグリコールウリル(TMGU)(25.64g,80.55mmol)を添加し、20℃で6時間反応させてトリエチルアミン(1.386g,13.7mmol)を加えて反応を停止させた。この反応液を、ヘキサン(580.0g)とIPA(1740.0g)の混合物に再沈殿し、下記式(2)に示す側鎖に架橋剤が付加されたポリエステル系高分子化合物(重量平均分子量:8,520、収率:約41%)を得た。
尚、再沈殿する前の重合液中の金属イオン不純物濃度は、Na40ppm、Fe30ppmであった。
[Synthesis Example 2]
1,3,5-tris (2-hydroxyethyl) isocyanurate (67.12 g, 0.258 mol), dimethyl decahydro-2,6-naphthalenedicarboxylate (65.36 g, 0.258 mol), p-toluenesulfonic acid -A hydrate (pTSA) (2.606 g, 13.7 mmol) and anisole (79.60 g) were charged into a three-necked flask and subjected to dehydration and demethanol reaction at 130 ° C using a Dean-Stark trap. Polymerized for hours. Thereafter, the mixture was diluted with tetrahydrofuran (THF) (89.4 g), tetramethoxyglycoluril (TMGU) (25.64 g, 80.55 mmol) was added, and the mixture was reacted at 20 ° C. for 6 hours to obtain triethylamine (1.386 g, 13.7 mmol) was added to stop the reaction. This reaction solution was reprecipitated into a mixture of hexane (580.0 g) and IPA (1740.0 g), and a polyester polymer compound (weight average molecular weight) in which a crosslinking agent was added to the side chain represented by the following formula (2). : 8,520, yield: about 41%).
In addition, the metal ion impurity density | concentration in the polymerization liquid before reprecipitation was Na40ppm, Fe30ppm.

[実施例1]
各金属イオン不純物濃度1.5ppb以下の陰イオン交換樹脂(ORGANO Amberlyst B20−HG・Dry)(5.00g)をTHFにて洗浄し、乾燥した。この陰イオン交換樹脂に、合成例1で得られた高分子化合物(9.00g)をTHF(21.00g)に溶解した高分子化合物溶液を加えて5時間攪拌し、残存酸触媒(pTSA)の除去を行った。陰イオン交換樹脂とのスラリー溶液を濾別して得られた濾液(該高分子化合物溶液)を、ヘキサンと2−プロパノールの混合物(ヘキサン/2−プロパノール=1/3質量比)の貧溶媒にて再沈殿し、ポリエステル系高分子化合物を得た。
得られた高分子化合物を、40℃で60時間減圧乾燥し、高分子化合物乾粉の重量平均分子量(Mw)およびZ平均分子量(Mz)、金属イオン不純物濃度、残pTSAを測定した。
[Example 1]
Each anion exchange resin (ORGANO Amberlyst B20-HG · Dry) (5.00 g) having a metal ion impurity concentration of 1.5 ppb or less was washed with THF and dried. To this anion exchange resin, a polymer compound solution obtained by dissolving the polymer compound (9.00 g) obtained in Synthesis Example 1 in THF (21.00 g) was added and stirred for 5 hours, and a residual acid catalyst (pTSA) was obtained. Was removed. The filtrate obtained by filtering off the slurry solution with the anion exchange resin (the polymer compound solution) was re-reused with a poor solvent of a mixture of hexane and 2-propanol (hexane / 2-propanol = 1/3 mass ratio). A polyester polymer compound was obtained by precipitation.
The obtained polymer compound was dried under reduced pressure at 40 ° C. for 60 hours, and the weight average molecular weight (Mw) and Z average molecular weight (Mz), metal ion impurity concentration, and residual pTSA of the polymer compound dry powder were measured.

[実施例2]
各金属イオン不純物濃度1.5ppb以下の陰イオン交換樹脂(ORGANO Amberlyst B20−HG・Dry)(5.00g)をTHFにて洗浄し、乾燥した。この陰イオン交換樹脂に、合成例2で得られた高分子化合物(9.00g)をTHF(21.00g)に溶解した高分子化合物溶液を加えて5時間攪拌し、酸触媒(pTSA)の除去を行った。その後、実施例1と同様の方法で処理し、得られた高分子化合物乾粉の重量平均分子量(Mw)およびZ平均分子量(Mz)、金属イオン不純物濃度、残pTSAを測定した。
[Example 2]
Each anion exchange resin (ORGANO Amberlyst B20-HG · Dry) (5.00 g) having a metal ion impurity concentration of 1.5 ppb or less was washed with THF and dried. To this anion exchange resin, a polymer compound solution obtained by dissolving the polymer compound (9.00 g) obtained in Synthesis Example 2 in THF (21.00 g) was added and stirred for 5 hours, and the acid catalyst (pTSA) Removal was performed. Then, it processed by the method similar to Example 1, and measured the weight average molecular weight (Mw) and Z average molecular weight (Mz), metal ion impurity density | concentration, and residual pTSA of the obtained high molecular compound dry powder.

[比較例1]
合成例1で得られた高分子化合物(9.00g)を、THF(21.00g)に溶解した高分子化合物溶液を、陰イオン交換樹脂に接触させずに、ヘキサンと2−プロパノールの混合物(ヘキサン/2−プロパノール=1/3質量比)の貧溶媒にて再沈殿し、ポリエステル系高分子化合物を得た。
得られた高分子化合物を、40℃で60時間減圧乾燥し、高分子化合物乾粉の重量平均分子量(Mw)およびZ平均分子量(Mz)、金属イオン不純物濃度、残pTSAを測定した。
[Comparative Example 1]
A polymer compound solution (9.00 g) obtained in Synthesis Example 1 was dissolved in THF (21.00 g) without contacting an anion exchange resin with a mixture of hexane and 2-propanol ( Reprecipitation was performed using a poor solvent of hexane / 2-propanol = 1/3 mass ratio to obtain a polyester polymer compound.
The obtained polymer compound was dried under reduced pressure at 40 ° C. for 60 hours, and the weight average molecular weight (Mw) and Z average molecular weight (Mz), metal ion impurity concentration, and residual pTSA of the polymer compound dry powder were measured.

[比較例2]
合成例2で得られた高分子化合物(9.00g)をTHF(21.00g)に溶解した高分子化合物溶液を、陰イオン交換樹脂に接触させずに、ヘキサンと2−プロパノールの混合物(ヘキサン/2−プロパノール=1/3質量比)の貧溶媒にて再沈殿し、ポリエステル系高分子化合物を得た。
得られた高分子化合物を、40℃で60時間減圧乾燥し、高分子化合物乾粉の重量平均分子量(Mw)およびZ平均分子量(Mz)、金属イオン不純物濃度、残pTSAを測定した。
[Comparative Example 2]
Without bringing the polymer compound solution obtained by dissolving the polymer compound (9.00 g) obtained in Synthesis Example 2 into THF (21.00 g) into contact with an anion exchange resin, a mixture of hexane and 2-propanol (hexane Reprecipitation was performed with a poor solvent of (2-propanol = 1/3 mass ratio) to obtain a polyester polymer compound.
The obtained polymer compound was dried under reduced pressure at 40 ° C. for 60 hours, and the weight average molecular weight (Mw) and Z average molecular weight (Mz), metal ion impurity concentration, and residual pTSA of the polymer compound dry powder were measured.

[比較例3]
各金属イオン不純物濃度2.5ppbの陰イオン交換樹脂(ORGANO Amberlyst B20−HG・Dry)(5.00g)をTHFにて洗浄し、乾燥した。この陰イオン交換樹脂に、合成例1で得られた高分子化合物(9.00g)をTHF(21.00g)に溶解した高分子化合物溶液を加えて5時間攪拌し、酸触媒(pTSA)の除去を行った。その後、実施例1と同様の方法で処理し、得られた高分子化合物乾粉の重量平均分子量(Mw)およびZ平均分子量(Mz)、金属イオン不純物濃度、残pTSAを測定した。
[Comparative Example 3]
Each anion exchange resin (ORGANO Amberlyst B20-HG · Dry) (5.00 g) having a metal ion impurity concentration of 2.5 ppb was washed with THF and dried. To this anion exchange resin, a polymer compound solution obtained by dissolving the polymer compound (9.00 g) obtained in Synthesis Example 1 in THF (21.00 g) was added and stirred for 5 hours to prepare an acid catalyst (pTSA). Removal was performed. Then, it processed by the method similar to Example 1, and measured the weight average molecular weight (Mw) and Z average molecular weight (Mz), metal ion impurity density | concentration, and residual pTSA of the obtained high molecular compound dry powder.

[比較例4]
各金属イオン不純物濃度3.5ppbの陰イオン交換樹脂(ORGANO Amberlyst B20−HG・Dry)(5.00g)をTHFにて洗浄し、乾燥した。この陰イオン交換樹脂に、合成例1で得られた高分子化合物(9.00g)をTHF(21.00g)に溶解した高分子化合物溶液を加えて5時間攪拌し、酸触媒(pTSA)の除去を行った。その後、実施例1と同様の方法で処理し、得られた高分子化合物乾粉の重量平均分子量(Mw)およびZ平均分子量(Mz)、金属イオン不純物濃度、残pTSAを測定した。
[Comparative Example 4]
Each anion exchange resin (ORGANO Amberlyst B20-HG · Dry) (5.00 g) having a metal ion impurity concentration of 3.5 ppb was washed with THF and dried. To this anion exchange resin, a polymer compound solution obtained by dissolving the polymer compound (9.00 g) obtained in Synthesis Example 1 in THF (21.00 g) was added and stirred for 5 hours to prepare an acid catalyst (pTSA). Removal was performed. Then, it processed by the method similar to Example 1, and measured the weight average molecular weight (Mw) and Z average molecular weight (Mz), metal ion impurity density | concentration, and residual pTSA of the obtained high molecular compound dry powder.

[比較例5]
各金属イオン不純物濃度2.5ppbの陰イオン交換樹脂(ORGANO Amberlyst B20−HG・Dry)(5.00g)をTHFにて洗浄し、乾燥した。この陰イオン交換樹脂に、合成例2で得られた高分子化合物(9.00g)をTHF(21.00g)に溶解した高分子化合物溶液を加えて5時間攪拌し、酸触媒(pTSA)の除去を行った。その後、実施例1と同様の方法で処理し、得られた高分子化合物乾粉の重量平均分子量(Mw)およびZ平均分子量(Mz)、金属イオン不純物濃度、残pTSAを測定した。
[Comparative Example 5]
Each anion exchange resin (ORGANO Amberlyst B20-HG · Dry) (5.00 g) having a metal ion impurity concentration of 2.5 ppb was washed with THF and dried. To this anion exchange resin, a polymer compound solution obtained by dissolving the polymer compound (9.00 g) obtained in Synthesis Example 2 in THF (21.00 g) was added and stirred for 5 hours, and the acid catalyst (pTSA) Removal was performed. Then, it processed by the method similar to Example 1, and measured the weight average molecular weight (Mw) and Z average molecular weight (Mz), metal ion impurity density | concentration, and residual pTSA of the obtained high molecular compound dry powder.

[比較例6]
各金属イオン不純物濃度3.5ppbの陰イオン交換樹脂(ORGANO Amberlyst B20−HG・Dry)(5.00g)をTHFにて洗浄し、乾燥した。この陰イオン交換樹脂に、合成例2で得られた高分子化合物(9.00g)をTHF(21.00g)に溶解した高分子化合物溶液を加えて5時間攪拌し、酸触媒(pTSA)の除去を行った。その後、実施例1と同様の方法で処理し、得られた高分子化合物乾粉の重量平均分子量(Mw)およびZ平均分子量(Mz)、金属イオン不純物濃度、残pTSAを測定した。
[Comparative Example 6]
Each anion exchange resin (ORGANO Amberlyst B20-HG · Dry) (5.00 g) having a metal ion impurity concentration of 3.5 ppb was washed with THF and dried. To this anion exchange resin, a polymer compound solution obtained by dissolving the polymer compound (9.00 g) obtained in Synthesis Example 2 in THF (21.00 g) was added and stirred for 5 hours, and the acid catalyst (pTSA) Removal was performed. Then, it processed by the method similar to Example 1, and measured the weight average molecular weight (Mw) and Z average molecular weight (Mz), metal ion impurity density | concentration, and residual pTSA of the obtained high molecular compound dry powder.

[比較例7]
各金属イオン不純物濃度3.5ppbの陰イオン交換樹脂(ORGANO Amberlyst B20−HG・Dry)(5.00g)をTHFにて洗浄し、乾燥した。この陰イオン交換樹脂に、合成例2で得られた高分子化合物(9.00g)をTHF(21.00g)に溶解した高分子化合物溶液を加えて5時間攪拌し、酸触媒(pTSA)の除去を行った。さらに、陰イオン交換樹脂とのスラリー溶液を濾別して得られた濾液(該高分子化合物溶液)を、あらかじめ超純水、THFにて洗浄した陽イオン交換樹脂(ダウエックスTM 50Wx8)(5.00g)に加えて、5時間攪拌し、金属イオン不純物の除去を行った。その後、実施例1と同様の方法で処理し、得られた高分子化合物乾粉の重量平均分子量(Mw)およびZ平均分子量(Mz)、金属イオン不純物濃度、残pTSAを測定した。
[Comparative Example 7]
Each anion exchange resin (ORGANO Amberlyst B20-HG · Dry) (5.00 g) having a metal ion impurity concentration of 3.5 ppb was washed with THF and dried. To this anion exchange resin, a polymer compound solution obtained by dissolving the polymer compound (9.00 g) obtained in Synthesis Example 2 in THF (21.00 g) was added and stirred for 5 hours, and the acid catalyst (pTSA) Removal was performed. Further, the filtrate obtained by filtering the slurry solution with the anion exchange resin (the polymer compound solution) was previously washed with ultrapure water and THF (cation exchange resin (Dowex TM 50Wx8)) (5.00 g). In addition, the metal ion impurities were removed by stirring for 5 hours. Then, it processed by the method similar to Example 1, and measured the weight average molecular weight (Mw) and Z average molecular weight (Mz), metal ion impurity density | concentration, and residual pTSA of the obtained high molecular compound dry powder.

前記実施例および比較例で得られた高分子化合物乾粉の、重量平均分子量(Mw)およびZ平均分子量(Mz)、金属イオン不純物濃度、残pTSAの測定結果を表1または2に示す。   Tables 1 and 2 show the measurement results of the weight average molecular weight (Mw) and Z average molecular weight (Mz), metal ion impurity concentration, and residual pTSA of the polymer compound dry powders obtained in the above Examples and Comparative Examples.

表1および2より、実施例1および2の場合、各金属イオン不純物濃度が100ppb以下かつ酸不純物(残pTSA)濃度が100ppm以下を満たす、高純度な高分子化合物を製造することが可能である。
一方、比較例1および2の場合には、陰イオン交換樹脂との接触させる工程が無いため、残pTSA量が低減されていない。
また、比較例3〜6の場合には、金属イオン不純物濃度が高い陰イオン交換樹脂を使用しているため、残pTSA量は低減しているものの、各金属イオン不純物濃度が、陰イオン交換樹脂処理前と比較して大幅に増加している。
さらに、比較例7の場合には、高分子化合物溶液中の金属イオン不純物を除去するために陽イオン交換樹脂と接触させたために、高分子化合物の側鎖に付加している架橋剤が反応し、架橋反応が進行(MwおよびMzの増加)していることが判断できる。
以上より、本発明によって、金属イオン不純物濃度が100ppb以下かつ酸不純物濃度が100ppm以下となる、半導体リソグラフィー用高分子化合物、および該高分子化合物の製造方法を提供することが可能である。
From Tables 1 and 2, in the case of Examples 1 and 2, it is possible to produce a high-purity polymer compound in which each metal ion impurity concentration is 100 ppb or less and the acid impurity (residual pTSA) concentration is 100 ppm or less. .
On the other hand, in the case of Comparative Examples 1 and 2, since there is no step of contacting with an anion exchange resin, the amount of residual pTSA is not reduced.
In Comparative Examples 3 to 6, since an anion exchange resin having a high metal ion impurity concentration is used, the residual pTSA amount is reduced, but each metal ion impurity concentration is an anion exchange resin. This is a significant increase compared to before processing.
Furthermore, in the case of Comparative Example 7, since the metal ion impurities in the polymer compound solution were contacted with the cation exchange resin, the crosslinking agent added to the side chain of the polymer compound reacted. It can be judged that the crosslinking reaction is proceeding (increase in Mw and Mz).
As described above, according to the present invention, it is possible to provide a polymer compound for semiconductor lithography in which the metal ion impurity concentration is 100 ppb or less and the acid impurity concentration is 100 ppm or less, and a method for producing the polymer compound.

Claims (3)

下記工程(a)〜(c)を含む各金属イオン不純物濃度が100ppb以下かつ酸不純物濃度が100ppm以下となる半導体リソグラフィー用高分子化合物の製造方法。
(a)酸触媒の存在下で、高分子化合物を得る工程、
(b)前記工程(a)で得られた高分子化合物溶液、または、前記高分子化合物溶液を貧溶媒中で再沈澱精製した高分子化合物を再溶解した溶液を、各金属イオン不純物濃度2.0ppb以下の陰イオン交換樹脂に接触させる工程、
(c)前記陰イオン交換樹脂に接触させた高分子化合物溶液を、貧溶媒中で再沈澱し、高分子化合物を製造する工程
The manufacturing method of the high molecular compound for semiconductor lithography in which each metal ion impurity density | concentration including following process (a)-(c) becomes 100 ppb or less and acid impurity density | concentration is 100 ppm or less.
(A) obtaining a polymer compound in the presence of an acid catalyst;
(B) The polymer compound solution obtained in the step (a) or a solution obtained by re-dissolving the polymer compound obtained by reprecipitation and purification of the polymer compound solution in a poor solvent is used for each metal ion impurity concentration. Contacting with an anion exchange resin of 0 ppb or less,
(C) A step of producing a polymer compound by reprecipitation of the polymer compound solution brought into contact with the anion exchange resin in a poor solvent.
前記陰イオン交換樹脂に接触させる溶液が、各金属イオン不純物濃度が50ppb以下である請求項1記載の半導体リソグラフィー用高分子化合物の製造方法。   The method for producing a polymer compound for semiconductor lithography according to claim 1, wherein the concentration of each metal ion impurity in the solution brought into contact with the anion exchange resin is 50 ppb or less. 請求項1または2に記載の方法で得られた半導体リソグラフィー用高分子化合物。   A polymer compound for semiconductor lithography obtained by the method according to claim 1.
JP2011071518A 2011-03-29 2011-03-29 Method for producing polymer compound for semiconductor lithography Active JP5854253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071518A JP5854253B2 (en) 2011-03-29 2011-03-29 Method for producing polymer compound for semiconductor lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071518A JP5854253B2 (en) 2011-03-29 2011-03-29 Method for producing polymer compound for semiconductor lithography

Publications (2)

Publication Number Publication Date
JP2012207058A true JP2012207058A (en) 2012-10-25
JP5854253B2 JP5854253B2 (en) 2016-02-09

Family

ID=47187097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071518A Active JP5854253B2 (en) 2011-03-29 2011-03-29 Method for producing polymer compound for semiconductor lithography

Country Status (1)

Country Link
JP (1) JP5854253B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002994A1 (en) * 2012-06-26 2014-01-03 三菱レイヨン株式会社 Method for producing polymer compound and polymer compound
JP2016014116A (en) * 2014-07-03 2016-01-28 三菱レイヨン株式会社 Method and device of producing polymer for semiconductor lithography, and container for semiconductor lithography raw material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126376A (en) * 1993-09-07 1995-05-16 Mitsui Toatsu Chem Inc Production of polyoxyalkylene polyol
JPH09143237A (en) * 1995-09-29 1997-06-03 Hoechst Celanese Corp Novolac resin having stable molecular weight and photoresist made thereof
JPH10504599A (en) * 1994-08-23 1998-05-06 ヘキスト、セラニーズ、コーポレーション Reduction of metal ions in novolak resin solution using anion exchange resin
JP2002182379A (en) * 2000-10-03 2002-06-26 Sanyo Chem Ind Ltd Photosensitive composition
JP2003522232A (en) * 2000-02-01 2003-07-22 ダイネオン リミティド ライアビリティー カンパニー Ultra-clean fluoropolymer
JP2010189563A (en) * 2009-02-19 2010-09-02 Mitsubishi Rayon Co Ltd Method for removing metal ion impurity in polymer compound for photolithography
JP2010270185A (en) * 2009-05-19 2010-12-02 Daicel Chem Ind Ltd Method of manufacturing polymer compound for photoresist

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126376A (en) * 1993-09-07 1995-05-16 Mitsui Toatsu Chem Inc Production of polyoxyalkylene polyol
JPH10504599A (en) * 1994-08-23 1998-05-06 ヘキスト、セラニーズ、コーポレーション Reduction of metal ions in novolak resin solution using anion exchange resin
JPH09143237A (en) * 1995-09-29 1997-06-03 Hoechst Celanese Corp Novolac resin having stable molecular weight and photoresist made thereof
JP2003522232A (en) * 2000-02-01 2003-07-22 ダイネオン リミティド ライアビリティー カンパニー Ultra-clean fluoropolymer
JP2002182379A (en) * 2000-10-03 2002-06-26 Sanyo Chem Ind Ltd Photosensitive composition
JP2010189563A (en) * 2009-02-19 2010-09-02 Mitsubishi Rayon Co Ltd Method for removing metal ion impurity in polymer compound for photolithography
JP2010270185A (en) * 2009-05-19 2010-12-02 Daicel Chem Ind Ltd Method of manufacturing polymer compound for photoresist

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002994A1 (en) * 2012-06-26 2014-01-03 三菱レイヨン株式会社 Method for producing polymer compound and polymer compound
US10307752B2 (en) 2012-06-26 2019-06-04 Mitsubishi Chemical Corporation Method for producing polymer, and polymer
JP2016014116A (en) * 2014-07-03 2016-01-28 三菱レイヨン株式会社 Method and device of producing polymer for semiconductor lithography, and container for semiconductor lithography raw material

Also Published As

Publication number Publication date
JP5854253B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5225139B2 (en) Method for removing metal ion impurities of polymer compound for photolithography
KR100806649B1 (en) Process for producing film forming resins for photoresist compositions
US20050100815A1 (en) Process for the production of high-molecular compounds for photoresist
JP5854253B2 (en) Method for producing polymer compound for semiconductor lithography
KR20010052543A (en) PURIFIED METHYL α-CHLOROACRYLATE/α-METHYLSTYRENE COPOLYMER AND ELECTRON BEAM RESIST COMPOSITION CONTAINING THE SAME
US10307752B2 (en) Method for producing polymer, and polymer
US11725078B2 (en) Method for producing acid-decomposable polymer
JP6349943B2 (en) Compound purification method and polymer compound production method
JP6772132B2 (en) A method for producing a polymer for electronic materials and a polymer for electronic materials obtained by the production method.
JP6680292B2 (en) Polymer, positive resist composition, and method for forming resist pattern
JPS636026A (en) Purification of novolak resin
JP4917969B2 (en) Antireflection film forming composition and resist pattern forming method using the same
US20230288805A1 (en) Copolymer, positive resist composition, and method of forming resist pattern
US20230063003A1 (en) Copolymer, positive resist composition, and method of forming resist pattern
TWI840567B (en) Method for producing acid-degradable resin
JP2010168434A (en) Method for polymerizing methacrylic lactone copolymer and the copolymer
US6028120A (en) Chelated polyhydroxstyrene for removing metal ions from aqueous and nonaqueous systems
JP2008250191A (en) Photosensitive resin composition
CN110003413A (en) The preparation method and dihydroxy naphthlene condensation product of dihydroxy naphthlene condensation product
KR20020036117A (en) A composition for protection film having acid resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151125

R151 Written notification of patent or utility model registration

Ref document number: 5854253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250